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Abstract: In several processes of the forest products industry, an in-depth knowledge of log and board internal features is
required and their determination needs fast scanning systems. One of the possible technologies is X-ray computed tomogra-
phy (CT) technology. Our paper reviews applications of this technology in wood density measurements, in wood moisture
content monitoring, and in locating internal log features that include pith, sapwood, heartwood, knots, and other defects. An-
nual growth ring measurements are more problematic to be detected on CT images because of the low spatial resolution of
the images used. For log feature identification, our review shows that the feed-forward back-propagation artificial neural net-
work is the most efficient CT image processing method. There are also some studies attempting to reconstruct three-dimen-
sional log or board images from two-dimensional CT images. Several industrial prototypes have been developed because
medical CT scanners were shown to be inappropriate for the wood industry. Because of the high cost of X-ray CT scanner
equipment, other types of inexpensive sensors should also be investigated, such as electric resistivity tomography and micro-
waves. It also appears that the best approach uses various different sensors, each of them having its own strengths and weak-
nesses.

Résumé : Plusieurs processus de l’industrie des produits forestiers exigent une connaissance approfondie des caractéristiques
internes des billes et des planches dont l’acquisition nécessite des appareils à balayage rapide. Une des technologies poten-
tielles est la tomodensitométrie (TDM). Notre article passe en revue les applications de cette technologie pour mesurer la
densité du bois, faire le suivi de la teneur en humidité dans le bois et localiser les caractéristiques internes du bois, telles
que la moelle, le bois d’aubier, le bois de cœur, les nœuds et les autres défauts. Il est plus difficile de mesurer les cernes an-
nuels sur les images obtenues par TDM à cause de la faible résolution spatiale de ces images. Pour l’identification des ca-
ractéristiques des billes, notre revue montre que le réseau neuronal artificiel multicouche à rétropropagation est la méthode
la plus efficace pour traiter les images obtenues par TDM. Il y a aussi certaines études qui tentent de reconstruire des ima-
ges en trois dimensions à partir des images en deux dimensions obtenues par TDM. Plusieurs prototypes industriels ont été
développés parce qu’il a été démontré que les tomographes médicaux ne sont pas appropriés pour l’industrie du bois. Étant
donné le coût élevé des appareils de TDM, d’autres types de capteurs bon marché devraient être étudiés, tels que la tomo-
graphie de résistivité électrique et les micro-ondes. Il semble aussi que la meilleure approche consiste à utiliser plusieurs
capteurs différents, chacun ayant ses forces et ses faiblesses.

[Traduit par la Rédaction]

Introduction

In current wood manufacturing operations, knowledge of
wood characteristics and measurement of those characteristics
are essential to ensure that the right fibre is directed to the
appropriate wood manufacturing company at the right time
and cost to produce products in demand. Among all of the
quality-related wood properties that should be monitored,
density and moisture content are two of the most important
because they affect the efficiency of manufacturing processes.
For example, moisture content should be known to optimize
the drying process or log inventory management. Density is
related to stiffness and can be used to maximize fibre quality
when bucking. Also, knowledge of the position and size of
internal log defects, such as knots and decay, is required for

optimizing log sawing that brings lumber value improvement,
ranging from 3% to 28% depending on the species (Peter
1962, 1967; Wagner et al. 1989; Guddanti and Chang 1998;
Schmoldt et al. 2000b; Lemieux et al. 2002; Rinnhofer et al.
2003).
To accurately control product quality before or during

processing, there is the need of nondestructive real-time scan-
ning of both the macroscopic and microscopic structure of
wood properties. According to Bucur (2003a), knots and de-
fects constitute the macroscopic structure of logs, while the
microscopic structure of the wood is constituted by length,
diameter, and shape of the tracheids, which are related to
wood density and stiffness. Currently, there are several non-
destructive technologies that use X-ray, gamma-ray, neutron,
optical (visible and near- or shortwave infrared), thermal in-
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frared, microwave, ultrasound, radiofrequency, and magnetic
resonance radiations. To reach deep wood layers, the radia-
tion should have either a wavelength that is long enough or
an energy that is high enough to penetrate the material. Mi-
crowave, ultrasound, and magnetic resonance radiations have
wavelengths that are long enough (on the order of 10–2 m) to
penetrate the wood material, but at the same time, they are
not able to detect microscopic wood structures (Bucur
2003a). By contrast, X-ray, gamma-ray, and neutron radia-
tions have a wavelength that is short enough (less than 10–
9 m) to detect not only macroscopic but also submicroscopic
and microscopic wood structures (Bucur 2003a). At the same
time, these short-wavelength radiations have energy that is,
according to the Plank’s law, higher than 100 eV. This is
enough to penetrate the wood material. Among all of the
short-wavelength radiations, X-ray radiation is the most ap-
plicable (Osterloh et al. 2007). Other radiations require spe-
cial equipment or settings, as they are produced by isotopes
having a long life time. Compared with fast neutron technol-
ogies, X-ray-based technologies still deliver images of better
quality and can be adopted for portable devices that can
easily be taken onto sites (Osterloh et al. 2007).

Principles of X-ray ccanning computed
tomography technology
X-ray scanners follow the theorem of Radon (1917) who

theoretically demonstrated that the internal structures of an
object can be reconstructed from single or multiple projec-
tions of the object, depending on the number of directions
considered. Whatever the numbers of directions, X-ray beams
are sent and detectors measure the X-ray radiation that is
transmitted through the object (Fig. 1). The transmitted X-
ray radiation can be related to the attenuation coefficient of
the X-ray by the object by the Lambert–Beer exponential
law under the assumption of a monochromatic ray and a lin-
ear propagation of the beam in the object (Davis and Wells
1992; Lindgren et al. 1992; Bucur 2003a):

½1� I ¼ I0e
�md

where I is the intensity of the transmitted X-ray beam passing
through the object, I0 is the intensity of the incident X-ray
beam, e is Euler’s constant = 2.718, d is the thickness of the
object (length unit), and m is the linear attenuation coefficient
of the material along the transmission path
(length unit–1).
Single- or multidirectional industrial X-ray scanners have

been developed for wood scanning (e.g., Oja et al. 2004;
Grönlund et al. 2005), such as X-Scan (Luxscan), Denscan
(MiCROTEC GmbH), and Goldeneye (MiCROTEC GmbH)
for lumber scanning and OPMES AX1 (Mikropuu Oy),
Wood X (Bintec Oy), ACTIS (Bio-Imaging Research), TO-
MOLOG and LOGEYE 301/306 (MiCROTEC GmbH), Re-
maLog XRay (RemaControl AB), and Pantak 420k-V
(Omega International Technology Inc.) for log scanning.
These scanners are based on digital radiography technology,
which has several limitations (Harding et al. 2007). It was
shown to be inappropriate for high moisture content logs,
such as slash pine (Pinus elliottii Engelm.) logs (Harding et
al. 2007). Indeed, thick layers of wood have the property to
produce scattered radiation (particularly in the case of high

moisture content) that renders the radiography noisy, making
the perception of details difficult (Osterloh et al. 2006). Sin-
gle-directional X-ray digital radiography scanners have the
following additional drawbacks: (i) there are cases where fea-
ture location cannot be done along the X-ray path (Fig. 2a),
(ii) the effects of high-density areas such as knots can be can-
celed out with effects of low-density areas such as cracks
(Fig. 2b), and (iii) multiple dense areas may appear as a sin-
gle dense area (Fig. 2c). While being used worldwide, both
single- and multidirectional X-ray scanners do not have the
high image resolution of computed axial tomography (CAT
or CT) scanners that allow accurate analysis of wood proper-
ties and structures and their distribution within logs or wood
products (Osterloh et al. 2006), particularly when features to
be identified are lacking in contrast with their surrounding
(Harding et al. 2007). To achieve the same precision, hun-
dreds of X-ray directional scanners would have to be used
(Harding et al. 2007; Brüchert et al. 2008).
In the CT system, the X-ray tube rotates perpendicular to

the longitudinal axis of the object through a full 360° arc
with a wide fan beam. As the fan beam revolves, it activates
those detectors that fall within its view on the opposite side
of the object. After the rotation is completed, a computer cal-
culates the X-ray absorption coefficient (m) in small volume
elements (voxels) within a slice. The calculated X-ray absorp-
tion coefficient in each voxel is normalized to the corre-
sponding absorption coefficient for water to give the CT
number, or Hounsfield number (H), according to the follow-
ing scale (Benson-Cooper et al. 1982; Lindgren 1991a,
1991b; Davis and Wells 1992; Lindgren et al. 1992; Bucur
2003a):

½2� CT number ¼ H ¼ 1000� ðmx � mwaterÞ=mwater

where mx is the linear absorption coefficient for the tested
wood material (length unit–1) and mwater is the linear absorp-
tion coefficient for the water (length unit–1).
Equation 2 is usually used for medical CT scanners that

typically have a mean photon energy around 73 keV. Accord-
ing to eq. 2, H varies from –1000 for air to +1000 for a ma-
terial that has a density exactly twice the attenuation of water,
H of water being 0. Because H is generally negative, an off-
set (of 1000, 1024, or 1035) is sometimes added to the origi-
nal H values to obtain only positive values in the CT images
(Lindgren et al. 1992; Longuetaud et al. 2005; Wei et al.

Fig. 1. Principles of X-ray scanning. (Courtesy of Z. Pirouz, FPIn-
novations.)
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2008a; Hou et al. 2009). Typical H values of wood are given
for a variety of tree species in Mull (1984), Klein and Vogel
(1993), and Bucur (2003a). The H values corresponding to
each voxel are then used to reconstruct the CT image, which
is a matrix made by discrete picture elements (pixels) for
which each gray-level (GL) value is proportional to the pixel
H value that is related to the attenuation coefficient of the
corresponding voxel. The voxel size is determined by the
pixel size and the thickness of the X-ray beam. From sepa-
rately successive scanned CT images‚ or “slices”, it is then
possible to reconstruct the entire log using three-dimensional
(3D) reconstruction techniques (see “3D reconstructions” sec-
tion below). Wood H values depend on wood density because
the attenuation coefficient m is directly related to density (cf.
Tsai and Cho 1976; Lindgren 1991a, 1991b; Davis and Wells
1992; Macedo et al. 2002; Bucur 2003a). For this reason, the
first application of CT images in the wood industry is to
monitor wood density. CT images can also be used to image
wood moisture content distribution because wood density
highly depends on its moisture content (e.g., Simpson 1993).
Each internal wood feature, such as defects, decay, heart-
wood, and sapwood, has a typical density and moisture con-
tent, so they appear differently on CT images, which can be
used for feature detection.
Our study presents a review of the state of the art on the

use of CT images for determining the following wood prop-
erties: (i) wood density, (ii) wood moisture content, and (iii)
internal log features. Our review is an update of the reviews
of Pham and Alcock (1998), Müller and Teischinger (2001),
Bucur (2003a, 2003b), and Brashaw et al. (2009), but in con-
trast with these general reviews dealing with all existing non-
destructive techniques applied to wood, our review has a
special focus on X-ray CT image applications. It also com-
pares the various image processing methods that were devel-
oped for processing CT images. A discussion about the
operational use of X-ray CT scanners in the wood industry
are also presented.

Wood density
Equation 2 gives the relationship between H and m of the

scanned material. In the model of Tsai and Cho (1976), the
linear attenuation coefficient m is the sum of two absorption
coefficients, each of them being directly proportional to the
material density r. Several other authors suggested that the
linear attenuation coefficient m can be directly related to the
material density r as follows (Knoll 1989; Davis and Wells
1992; Wang 1997; Macedo et al. 2002; Bucur 2003a):

½3� m ¼ mm � r

where m is the linear attenuation coefficient of the material
(m–1 or cm–1), mm is the mass attenuation coefficient of the
material (m2·kg–1 or cm2·g–1), and r is the material density
(kg·m–3 or g·cm–3).
Combining eqs. 2 and 3 shows that H strongly depends on

material density r. The other factors involved are the chemi-
cal composition of the material (Tsai and Cho 1976; Lindg-
ren 1991a; Rojas et al. 2005; Freyburger et al. 2009) and the
incident beam energy that is related to the type of scanner
used (Macedo et al. 2002; Bucur 2003a; Freyburger et al.
2009). All of these factors are not independent. Material den-
sity r has the main influence for high-energy X-ray beams,
whereas chemical composition has the main effect at low en-
ergy (Macedo et al. 2002; Freyburger et al. 2009).
The absolute values of H may vary significantly, even be-

tween two scanners of the same manufacturer and model
(Levi et al. 1982; Mull 1984; Lindgren 1988, 1991a). Be-
cause of the unreliability of the absolute values of H, there
is the need to calibrate CT scanners in terms of comparable
quantities, such as the material density (Mull 1984). Two
types of density can be defined for wood. The first one is
green density that is computed as the green mass to green
volume ratio. The second one is basic (dry) density that is
computed as the oven-dry mass to green volume ratio. Linear
relationships have been developed between H values and ei-
ther green density (Table 1) or dry density (Table 2). Most of
these relationships have been used as calibration curves for a
specific scanner and thus were derived for a variety of tree
species. Overall, relationships with density related to wood
samples having some moisture content (either green density
or air-dried density of samples having A moisture content
around 12%) are better than relationships established with
oven-dried samples because of the positive influence of
moisture content. The relationship with the oven-dry density
was insignificant in the case of the Agathis species in Hattori
and Kanagawa’S (1985) study. Benson-Cooper et al. (1982)
suggested including moisture content in the regression for es-
timating dry density from H values.
The influence of moisture content on H (and thus on the

linear attenuation coefficient m) should be related to its influ-
ence on the density (r) rather than on the mass attenuation
coefficient mm (eq. 3). Gierlik and Dzbenski (1996) found an
insignificant relationship between moisture content and mm.
Lindgren (1991a) showed that H increases with increasing
amount of water in a wooden test piece because of change in
density. Indeed, the volume of air is being replaced by water,
and according to eq. 2, water has a higher H value (H = 0)
than air (H = –1000). The strong relationship between H and
green density led some authors to consider that H values can

Fig. 2. Problems occurring with single-directional X-ray scanners, (a) The feature cannot be located along the X-ray path, (b) the effects of
high-density areas such as knots can be canceled out with the effects of low-density areas such as cracks, and (c) multiple dense areas may
appear as a single dense area. (Courtesy of Z. Pirouz, FPInnovations.)
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Table 1. Parameters for the linear relationship (r = a × H + b) between green wood density (r) and the Hounsfield number (H).

Scanner
Energy
(kVpeak) Intensity (mA)

Average
energy
(keV) Species

Moisture
content a b R2 n

Estimation
error
(kg·m–3) Reference

Technicare Delta
2020

120 40–200
(during 2s)

5 speciesa Green wood 0.910 1002 0.92 40 Benson-Cooper et al. 1982

Ohio Nuclear
2010

120 50 during 4 s Quercus sp. Green wood 1.043 1055 0.99 4 Mull 1984
Black walnut (Juglans
nigra L.)

Green wood 1.043 1055 0.99 7

6 speciesb Green wood 1.043 1055 0.99 6 8.7

EMI CT1010 120 20–30 70 12 speciesc Green wood 1.006 1035 na 13 na Davis and Wells 1992

Toshiba TCT-20
A

120 Shorea sp. 2%–96% 1.002 1018 0.98 35 Hattori and Kanagawa
1985dAgathis sp. 2%–27% 0.894 966 0.94 35

GE 9800 Quick 120 70 73 Scots pine (Pinus
sylvestris L.)

6%–117% 0.993 1015 na 50 13.4 Lindgren 1991a

Siemens SO-
MATOM Plus
4 Volume
Zoom CT

140 178 Balsam fir (Abies
balsamea (L.) Mill.)

107.5% 0.860 1046 0.62 25 1–15 Hou et al. 2009

Eastern beech (Fagus
grandifolia Ehrh.)

68.5% 0.694 916 0.92 23 6–11

aRadiata pine (Pinus radiata D. Don), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Eucalyptus delegatensis R. Baker, Tasmanian blackwood (Acacia melanoxylon R. Br.), red beech (Nothofagus
fusca (Hook. f.) Oerst.).

bPine (Pinus sp.), mahogany (Swietenia mahagoni (L.) Jacq.), poplar (Populus sp.), maple (Acer sp.), ash (Fraxinus sp.), teak (Tectona sp.).
cBalsa (Ochroma pyramidale (Cav. ex Lam.) Urb.), treated pine (Pinus sp.), radiata pine (Pinus radiata D. Don), Oregon, meranti (Shorea bracteolate Dyer), Cypress pine (Callitris sp.), merbau (Intsia sp.),

New Zealand pencil pine (Athrotaxis cupressoides D. Don), red gum Jarrah (Eucalyptus marginata Donn ex Sm.), gray box, red box, red iron bark (Eucalyptus fibrosa F. Muell.).
dThis study computes H as a function of r. The parameters a and b have therefore been recomputed from the published regression parameters. For the slope parameter, it is slightly different from what

would have been obtained by estimating directly the a and b parameters. All of the wood samples were surrounded with granular sugar for improving the density uniformity of the CT image.
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Table 2. Parameters of the linear relationship (r = a × H + b) between the dry wood density (r) and the Hounsfield number (H).

Scanner
Energy
(kVpeak)

Intensity
(mA)

Average
energy
(keV) Species Drying a b R2 n

Estimation
error (kg·m–3) Reference

Technicare Delta
2020

120 40–200 5 speciesa Oven —e —e 0.82e 40 Benson-Cooper et al. 1982

Philips 210 Scots pine (Pinus
sylvestris L.)

Oven 1.075 1076 0.98 7 Lindgren 1985f

GE 9800 Quick 120 70 73 Scots pine (Pinus
sylvestris L.)

Oven 1.052 1053 na 11 4 Lindgren 1988

Toshiba TCT-20
A

120 Agathis sp. Oven ns 35 Hattori and Kanagawa 1985f

Shorea sp. Oven 0.973 1040 0.74 35

Homemade 160 18.75 28.3 6 speciesb Air 0.826 779 0.98 6 Macedo et al. 2002g

Medical CT
scanner

Hardwood Air 1.044 1044 0.99 25 Taylor 2006

GE Bright-
Speed Excel

120 50 16 speciesc Air 1.058 1062 0.99 16 4.5–8.0 Freyburger et al. 2009
120 50 7 speciesd Air 1.058 1062 0.99 21 5.4–7.7

aRadiata pine (Pinus radiata D. Don), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), Eucalyptus delegatensis, Tasmanian blackwood (Acacia melanoxylon R. Br.), red beech (Nothofagus fusca (Hook
f.) Oerst.)

bwhite birch (Betula papyrifera Marsh.), Liquidambar styraciflua L., Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), red oak (Quercus rubra L.), western hemlock (Tsuga heterophylla), yellow-poplar
(Liriodendron tulipifera L.).

cBrosimum guianense (Aubl.), Dicorynia guianensis (Amsh.), Bocoa prouacensis (Aubl.), Hymenaea courbaril (L.), Parkia nitida (Miq.), Tabebuia serratifolia (Vahl), Qualea rosea (Aubl.), Sextonia rubra
(Mez), Simarouba amara (Aubl.), Vouacapoua americana (Aubl.), Ochroma lagopus (O.P. Swartz), Peltogyne venosa (Vahl), Bagassa guianensis (Aubl.), Cecropia sciadophylla (Mart.), Diplotropis purpurea
(Rich.), Aspidosperma album (Vahl).

dPeltogyne venosa (Vahl), sessile oak (Quercus petraea (Mattuschka) Liebl.), Norway spruce (Picea abies (L.) Karst.), European beech (Fagus sylvatica (L.)), Prunus avium (L.), Ulmus sp., Scots pine
(Pinus sylvestris (L.)).

eMultiple regression with the moisture content as second regressor.
fThese studies computed H as a function of r. The parameters a and b have therefore been recomputed from the published regression parameters. For the slope parameter, it is slightly different from what

would have been obtained by estimating directly the a and b parameters. The regression is not significant in the case of Agathis sp. For Hattori and Kanagawa’s (1985) study, the wood samples were sur-
rounded by granular sugar to improve the density uniformity of the CT images.

gThe H values have been recomputed from the published linear attenuation coefficients using eq. 1.
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be replaced by density values when analyzing CT images.
For Longuetaud et al. (2005, 2007), 1 unit of H can be con-
sidered as being equivalent to a density of 1 kg·m–3. CT im-
ages have been segmented based on density threshold values
instead of H threshold values (Grundberg and Grönlund
1991; Longuetaud et al. 2005, 2007). However, one may pay
attention to some limitations in using the H–r relationship. In
the case of sugar maple (Acer saccharum Marsh.) logs, Rojas
et al. (2005) scaled CT images into 256 GL images and
showed that the relationship between GL values and the
green density varies with the type of internal log feature con-
sidered (sapwood, knot, heartwood, knots). They hypothe-
sized that this difference should be attributed to the state of
crystalline structures in the different log features.
CT-derived wood density measurements are useful in wood

biomass and carbon storage estimations (Freyburger et al.
2009) and in monitoring wood strength and wood stiffness.
For example, Axelsson (1994) used CT images for studying
momentary disturbances due to changes in the wood structure
that can cause asymmetrical lateral forces and lateral deflex-
ions of the saw tooth and saw blade. CT images have been
used to assess the distribution of horizontal density in Chi-
nese fir (Cunninghamia lanceolata (Lamb.) Hook.) oriented
laminated stick lumber (Du et al. 2009). CT images were
even used in forest management studies to determine the ef-
fect of thinning on density of Austrian pine (Pinus nigra Ar-
nold) (Uner et al. 2009).
Because CT values are strongly related to green density,

which is dependent on moisture content, one of the applica-
tions of CT images in the wood industry is for assessing
moisture content distribution within logs or wood products
(see next section). Another important industrial application
of CT images is for identifying internal log features that dif-
fer based on their density or moisture content and thus on CT
values (see “Identification of internal log features” section
below). For this application, several factors should be consid-
ered when selecting the radiometric and spatial resolution of
the CT images. With respect to the radiometric resolution,
features are easily distinguished in CT images if they differ
in density by 1%–2% (Schmoldt et al. 2000b) or by about
2 kg·m–3 in the case of basic densities and about 6 kg·m–3 in
the case of green densities with moisture content levels rang-
ing from 6% to 100% (Lindgren 1991b). With respect to the
spatial resolution, Lindgren et al. (1992) was not able to
measure density in earlywood or latewood of Scots pine (Pi-
nus sylvestris L.) wood specimens because of the too coarse
resolution of the CT image compared with the annual growth
ring width. They suggested that density measurements using
CT images can only be done over large uniform density
areas. The density distinction capability of CT images was
also found to be related to the scanned volume because the
accuracy of wood density measurements was shown to be
low for small volume size (Lindgren 1991b).

Wood moisture
Wood moisture is an important property to be measured

and is highly related to wood density that can be monitored
using CT images (see “Wood density” section above). One
of the most important industrial applications of CT images is
monitoring of wood moisture during the drying process. For

modeling the kiln drying process of boards, CT images have
been used to determine moisture flux and diffusion coeffi-
cients (e.g., Danvind and Morén 2004), to validate mathemat-
ical models in the case of radiata pine (Pinus radiata D.
Don) (Pang and Wiberg 1998) or of Norway spruce (Picea
abies (L.) Karst.) (Eriksson et al. 2007), to assess wet-wood
distributions in heartwood in the case of subalpine fir (Abies
lasiocarpa (Hook.) Nutt.) (Alkan et al. 2007), and to assess
moisture content distribution, two-dimensional (2D) displace-
ments, and related strains in the case of Scots pine (Danvind
2002; Danvind and Morén 2004). Outside of monitoring dry-
ing processes, CT images were also tested to assess moisture
content distribution during microwave heating of Scots pine
boards (Hansson and Antti 2008) and to describe water sorp-
tion in specimens made of Norway spruce wood (Sandberg
2006) or of European aspen (Populus tremula L.), English
oak (Quercus robur L.), and Scots pine wood (Johansson
and Kifetew 2010).
Wood moisture monitoring is also useful in tree physiol-

ogy studies such as those related to water processes in trees.
The first tree physiology studies used gamma-ray CT images,
for example to relate sap flow to wood density, water content,
and cavitations rate of sessile oak (Quercus petraea (Mat-
tuschka) Liebl. ) and Turkey oak (Quercus cerris L.) mature
standing trees (Tognetti et al. 1996) and to study water stress
on healthy and unhealthy trees of decaying oak forests (Feny-
vesi et al. 1998) or following pollution over Scots pine trees
(e.g., Lüttschwager et al. 2004). Nikolova et al. (2009) used
X-ray CT images to study the role of sapwood and heart-
wood in the water transport of Norway spruce and oak
(Quercus species) trees and to measure the conductive lumen
area of coarse-root conduits in the case of European beech
(Fagus sylvatica L.) and Norway spruce trees.
One of the problems of using CT images for moisture con-

tent distribution assessment is the interference with wood
density. One may assume that the wood basic (dry) density
profile is known (Pang and Wiberg 1998). Also, during
wood drying, a change in wood volume (i.e., shrinkage) can
occur. Considering the effect of drying on both wood volume
and density, the method presented in Fig. 3 was developed
for measuring strain and moisture content in a cross section
of drying wood (Danvind 2002) and for assessing drying be-
haviour of knots and their surroundings (Danvind and Morén
2004) from CT images. The method considers the changes in
both density and volume during drying.

Identification of internal log features
The internal log features that should be identified on a CT

image include pith, growth rings, heartwood, sapwood, knots,
and other defects such as decay.

Pith location
Most of the studies on automated detection of the pith on

CT images are based on growth rings. For CT images of logs
of radiata pine and eucalyptus (Eucalyptus regnans L. and
Eucalyptus marginata L.), Som et al. (1993, 1995) created
an edge image using the second-derivative operator or using
top-hat morphologic operators. The pith was located using
the ring tangents at 0° and 90°. All other growth ring based
studies on the automated detection of the pith on CT images
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used the Hough transform (HT) method (Hough 1962) in the
case of hardwood (Bhandarkar et al. 1999) or softwood tree
species (Wu and Liew 2000; Andreu and Rinnhofer 2001;
Longuetaud et al. 2004). The HT method supposes that the
growth rings are circular and centered on the pith. First, the
image is filtered using an edge operator (Sobel or Canny) to
compute the gradient value and orientation. The resulting
edge point image is then used to compute an HT accumula-
tion image. The pith location is then derived as the coordi-
nate corresponding to the maximum GL value of the HT
accumulation image. Andreu and Rinnhofer (2001) used a
different approach to create the HT image. First, they applied
a Fourier transform in local neighbourhoods to compute fre-
quency and orientation parameters. Each neighbourhood was
filtered using a Gabor filter that was set on these parameters.
The HT method was then used to exploit the fact that the line
perpendicularly bisecting a chord passes through the center
of the circle.
Some of the automated pith location methods do not use

growth rings. For example, Jaeger et al. (1999) proposed a
method of pith location on CT images acquired over Norway
spruce logs that is based on the low density of the pith com-
pared with the surrounding area, the pith being manually lo-
cated on the first CT slice. Flood et al. (2003) based their
algorithm on the branch orientation in the log using a 3D
shape and direction discriminating method. Longuetaud
(2005) compared the tangent-based method of Som et al.
(1993, 1995), the density-based method of Jaeger et al.
(1999), and an HT-based method (Wu and Liew 2000) and
concluded that the HT-based method gives the best location
accuracy.
Bhandarkar et al. (1999) suggested that a good pith loca-

tion error should be around 10 pixels (7.5 mm). Som et al.’s
(1993, 1995) method was tested over five images and the
mean location error was 5.4 pixels (5.4 mm). Bhandarkar et

al. (1999) achieved a location precision of 5 pixels
(3.75 mm) for the majority of the processed CT images and
a precision of 20 pixels (15 mm) for almost all of the proc-
essed CT images. The poorest accuracy was achieved for
sugar maple logs and the best one for black walnut (Juglans
nigra L.) logs. For Norway spruce logs, Andreu and
Rinnhofer (2001) achieved a mean location precision of 2.2
pixels with a maximum error of 6.7 pixels on CT images ac-
quired with an industrial CT scanner. With images acquired
with a medical CT scanner, Longuetaud et al. (2004) were
able to achieve an average pith location accuracy of less
than 1 pixel (1 mm), with more than 95% of the images hav-
ing a pith location error of less than 1.97 mm.

Growth rings
Medical or industrial X-ray CT images produce too coarse

images and cannot be used for accurately measuring growth
ring parameters. Lindgren et al. (1992) showed that medical
CT images were not able to measure densities within growth
ring structures, i.e., densities of earlywood and latewood, of
Scots pine logs when the growth ring was smaller than
4 mm. Okochi et al. (2007) and Brüchert et al. (2008) re-
ported that CT images cannot measure annual growth ring
widths of less than 1 mm. For CT images acquired over Nor-
way spruce logs, Jaeger et al.’s (1999) algorithm that auto-
matically detected growth rings based on radii drawn from
the pith did not work beyond the 15th to 20th growth ring
because the rings have a too small width. Andreu and
Rinnhofer (2001, 2003) applied a Fourier transform and a
Gabor filter to enhance the visibility of growth rings over
CT images to locate the pith of Norway spruce logs.
Other types of images have been used for growth ring

studies, such as cross-section images (e.g., Sliwa et al.
2003), magnetic resonance images (Morales et al. 2004), X-
ray analog radiography images (Parker and Jozsa 1973), X-

Fig. 3. Flowchart of a method for estimating moisture content from CT images in a drying piece of wood (after Danvind and Morén 2004).
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ray digital radiography images (Wang 1997), and X-ray mi-
crotomography (µCT) images (e.g., Lindgren et al. 1992;
Okochi et al. 2007). These techniques are also used in den-
drochronology studies and for dating heritage wood speci-
mens (Okochi et al. 2007).

Heartwood and sapwood
Heartwood and sapwood are important to be discriminated

in several applications. For example, in tree physiology stud-
ies, sapwood parameters were related to needle biomass
(Gruber 1995) and were used to study water-related processes
in trees (Fromm et al. 2001) or tree vitality or pollution im-
pact (Lüttschwager et al. 2004). In industrial applications,
heartwood and sapwood have different physical and techno-
logical properties, including colour, moisture content, dura-
bility, and suitability for chemical treatment (Panshin and
de Zeeuw 1980; Björklund 1999; Oja and Temnerud 1999;
Rojas et al. 2005, 2006, 2007). In log breakdown processes,
there is the need to delineate heartwood–sapwood borders, ei-
ther because heartwood is a defect, such as the coloured
heartwood of the sugar maple (Rojas et al. 2006) or the de-
fective core of pruned radiata pine (Benson-Cooper et al.
1982; Rojas and Ortiz 2009) or because knots are difficult to
distinguish from sapwood over CT images (see “Other de-
fects” section below).
Because heartwood and sapwood areas and widths are

considered as wood quality parameters, some studies on the
use of CT images in heartwood and sapwood identification
attempted to directly relate heartwood and sapwood areas
and widths to tree, stand, or site inventory variables. Sap-
wood width extracted from CT images acquired over Norway
spruce logs were correlated with tree slendemess (tree height
and breast height diameter) and with the relative height of the
crown (Longuetaud et al. 2006). However, in the case of
Scots pine, Björklund (1999) found that heartwood area per-
centage, heartwood radius, and sapwood width extracted
from CT images of logs varied too much between individual
trees and between stands to be significantly correlated with
tree, stand, and site variables.
Heartwood generally has a higher moisture content and

concentration of certain inorganic and extractive materials
than sapwood (Rojas et al. 2005). Since water has a higher
density than wood, regions of high moisture content such as
heartwood will appear brighter in the CT image (Fig. 4a).
However, there are species such as black spruce (Picea ma-
riana (Mill.) BSP) for which the heartwood has a lower den-
sity and moisture content than the sapwood (Panshin and
de Zeeuw 1980), so it will appear dark on the CT image
(Fig. 4b). In both cases, because of the difference in density
and (or) moisture content between heartwood and sapwood,
CT images will thereby be suitable for distinguishing heart-
wood and sapwood. However, this difference is less strong
over dry logs (Björklund 1999). For Scots pine logs, Grund-
berg and Grönlund (1991) used fixed GL threshold values,
which are expressed in density values, to separate heartwood
from sapwood, but the density thresholds cannot differentiate
between heartwood and dead knots and between sapwood
and sound knots. Grundberg and Grönlund (1992) delineated
the border between heartwood and sapwood by applying GL-
based thresholds on low-pass-filtered images and by comput-
ing gradient images using a Roberts filter to highlight the

border between heartwood and sapwood. Such a method al-
lows describing the heartwood–sapwood border by a mean
radius for 12° sectors every 10 mm along the log that is ex-
pressed in polar coordinates originated from the pith. Grund-
berg and Grönlund’s method was used in several studies (e.
g., Hagman and Grundberg 1995; Björklund 1999; Chiorescu
and Grönlund 2000). All of the methods developed by
Grundberg and Grönlund did not take explicitly into account
the knot disturbance of the heartwood–sapwood border. It is
why Longuetaud et al. (2005, 2007) proposed an image proc-
essing method to delineate the heartwood–sapwood border
for Norway spruce green logs, which also works for knotty
CT slices as follows: (i) location of the pith by the method
of Longuetaud et al. (2004), (ii) Gaussian smooth filtering to
reduce the contrast between earlywood and latewood of an-
nual rings in the heartwood, (iii) for each knot-free CT slice,
drawing 360 radii every degree from the pith and computat-
ing the distance from the pith to the first pixel whose GL
value exceeds 800 (representing the heartwood–sapwood
boundary) (for CT slices with knots, the distance is computed
from the pith to the knot and the resulting boundary is cor-
rected in the next step, (iv) post-processing to delineate the
heartwood–sapwood boundary in the area of knots by longi-
tudinal interpolation of the boundary between CT slices of
the same log, and (v) delineation of a continuous boundary
for each CT slice by linearly joining the 360 points for each
cross section. They achieved accuracy in the hardwood–sap-
wood boundary delineation of 1.8 mm on average.
In previous studies, image region identification through

thresholds and labeling were done in two steps. This in-
creases the computing time of the developed algorithms and
thus their real-time operability. One way to achieve both im-
age region identification and labeling in one step is through
the Bayesian maximum likelihood classifier. Such a classifier
was used to identify selected log features (sapwood, heart-
wood, knots, and bark) in CT images acquired over sugar
maple logs (Rojas et al. 2006, 2007; Wei et al. 2008a) and
over black spruce logs (Wei et al. 2009a, 2010). All of the
studies first removed the air background from the images
based on GL threshold values. While Rojas et al.’s studies
used only the spectral information of the image, i.e., GL val-
ues, as input features in the classifier, Wei et al.’s studies also
used variables that depend on the spatial information of the
image, such as the Euclidean distance from the pith and
seven textural features (homogeneity, contrast, dissimilarity,
mean, standard deviation, entropy, and angular second mo-
ment) that were computed using the GL co-occurrence matrix
method of Haralick et al. (1973). The classification pro-
ducer’s accuracies (as defined by Congalton 1991) for the
sapwood and heartwood classes are compared for all of the
Rojas et al. and Wei et al. studies in Table 3. Table 3 results
show that for sugar maple logs, the classification was better
for freshly cut logs than for logs that dried sometimes on the
wood yard. Such better results can be explained by the posi-
tive influence of moisture content in identifying heartwood
and sapwood over CT images. Rojas et al. (2007) even found
a quadratic relationship between log moisture content and
sapwood classification accuracies. As expected, applying the
maximum likelihood classifier to validation CT images, i.e.,
those that were not used for training the classifier, reduced
the class accuracies for both wood types and species (Ta-
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ble 3). For both the training and the validation data sets, bet-
ter classification accuracy was achieved for sapwood in the
case of sugar maple logs and for heartwood in the case of
black spruce logs (Table 3). In the case of sugar maple logs,
heartwood is difficult to distinguish from knots because of
similar GL values (Wei et al. 2008a). In the case of black
spruce logs, sapwood is difficult to distinguish because of a
high spectral variability of the sapwood class and confusion
with bark and knots, each of them being spectrally similar to
sapwood (Wei et al. 2010). Wei et al. (2008a) suggested ap-
plying a median filter after classification for improving the
visual appearance of the images, but this filter did not im-
prove classification accuracies in the case of sugar maple
logs (Rojas et al. 2006).
While the maximum likelihood classifier produces better

classification accuracies than simple segmentation algo-
rithms, the overall accuracy is still too low for an operational
use. Also, the maximum likelihood classifier performance for
detecting sapwood on CT images acquired over sugar maple
logs was shown to be limited to log moisture content ranging
from 44% to 67% (Rojas et al. 2007).
Other image classification techniques have been investi-

gated to identify heartwood and sapwood in CT images. One
of the widely used image processing techniques is the artifi-
cial neural network (ANN). Among all the ANN types, the
feed-forward back-propagation (BP) ANN is one of the most
easy to use and is effective for solving pattern-matching
problems (Schmoldt et al. 2000a). In studies aiming to detect
defects, BP-ANNs have been developed for various hardwood
species, but the classification of heartwood and sapwood over
CT slices was tested only for yellow-poplar (Liriodendron tu-
lipifera L.), which was the only hardwood species for which
sapwood was visible on CT slices (Schmoldt et al. 2000a).
The CT slices were fist preprocessed to remove the air back-
ground and internal voids and to normalize the GL histo-
grams to accommodate different hardwood species. The BP-
ANN classifier was trained using GL values from the neigh-

bourhood of the pixel to be classified. It then classified each
pixel to a particular labeled class. Both studies considered a
3D neighbourhood, while Schmoldt et al. (2000a) also con-
sidered a 2D neighbourhood. Schmoldt et al. (2000a) also
used the distance from the pith as input in the ANN classi-
fier. Morphological post-processing was then used to remove
spurious misclassifications and refine the shapes of detected
image regions. The ANN classifier was able to achieve an
overall classification accuracy higher than 95% (Table 4),
but no specific sapwood and heartwood class accuracy was
provided (Schmoldt et al. 2000a). The 2D classifier worked
better for the single species, but the 3D classifier was better
as multispecies classifier (Table 4). For both 2D and 3D clas-
sifiers, the single-species classifiers gave better classification
accuracies than the multispecies classifiers (Table 4).
An improved version of BP-ANN was used to identify

heartwood and sapwood over CT slices acquired over sugar
maple logs (Wei et al. 2008b) and black spruce logs (Wei et
al. 2008b, 2009a). First, in contrast with Schmoldt et al.’s
studies, the BP-ANN was trained not only with spectral infor-
mation (GL values) and distance information but also using
the same seven textural features as for the maximum likeli-
hood classifier (Wei et al. 2008a, 2010). Second, Wei et al.
(2008b, 2009a) used the resilient BP training algorithm
(Riedmiller and Braun 1993) instead of the commonly used
steepest gradient descent with momentum algorithm (Free-
man and Skapura 1991). The resilient BP training algorithm
was shown to be five to six times faster for converging
(Riedmiller and Braun 1993; Wei et al. 2008b). The classifi-
cation accuracies obtained for the heartwood and sapwood
with the BP-ANN classifier (Table 4) were significantly
higher compared with the accuracies obtained with the maxi-
mum likelihood classifier (Table 3), reaching even a classifi-
cation accuracy of 100% in some cases (Table 4). As
expected, the classification accuracies are lower when the al-
gorithms are validated on other images than those used for
their training (Table 4).

Fig. 4. Comparison between a CT slice acquired over (a) a sugar maple (Acer saccharum) log and (b) a black spruce (Picea mariana) log
(after Wei et al. 2008a, 2009a).
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Knots
One important log defect to be identified in logs is the

knots; hence, identifying knots is the purpose of most of CT
studies applied to log feature identification. The knot is either
a dormant bud or the portion of a branch that is embedded in
the wood of a tree trunk. In a longitudinally sawn plank, a
knot will appear as a roughly circular or elliptical feature
where the grain direction of the wood is up to 90° different
from the grain direction of the surrounding part of the wood.
Because optimization of log breakdown should take into

account the location of knots, knottiness is a good timber
quality indicator. Knot parameters extracted from CT images
have been shown to be influenced by several tree or stand
variables, such as spacing and thinning regimes, class of di-
ameter at breast height, and position in the tree stem in the
case of Scots pine (Moberg 1999). Knot size and orientation
parameters have been correlated with tree, stand, and site var-
iables in the case of Scots pine (Björklund and Petersson
1999; Moberg 2006) and in the case of Norway spruce (Mo-
berg 2006). All of the knot inventory data relationships were
later used to predict lumber volume and grade recovery in
sawmill simulations (e.g., Moberg and Nordmark 2006).

On CT images, knots appear typically with a lighter tone
(higher GL values) than the surrounding area because they
are made of high-density cells. These differences in GL val-
ues among log features allow the development of segmenta-
tion algorithms that use GL value histogram thresholds to
identify potential defect regions on CT images (Taylor et al.
1984; Funt and Bryant 1987; Grundberg and Grönlund 1991,
1992; Wells et al. 1991; Schmoldt et al. 1993; Som et al.
1993, 1995; Hagman and Grundberg 1995; Zhu et al. 1996;
Oja 1997, 2000; Bhandarkar et al. 1999; Jaeger et al. 1999;
Aguilera et al. 2002; Andreu and Rinnhofer 2003; Longue-
taud et al. 2005). The labeling of the identified areas is done
using various techniques. Knots are labeled based on their
typical elliptical shape (Taylor et al. 1984; Funt and Bryant
1987). Wells et al. (1991) used principal components analy-
sis, nonlinear combination of GL statistics vectors (mean,
variance), and mathematical morphology operations to iden-
tify knots. Grundberg and Grönlund (1991) labeled, as sound
knots, every image area having a GL higher than 1100 kg·m–3

in the case of Scots pine logs. For the same species, Grund-
berg and Grönlund (1991, 1992) proposed the following im-
age processing method. First, a low-pass filter is used to

Table 3. Producer’s overall and class accuracy (as defined by Congalton (1991)) for identifying log features over CT slices using the max-
imum likelihood classifier.

Species Data set Log type Sapwood Heartwood Rot Splits Knots Bark Overall Reference(s)
Sugar maple
(Acer sac-
charum Marsh.)

Training Green log 98.6 46.3 54.2 75.0 64.8 22.6 83.1 Rojas et al. 2006
Wood yard 81.8 78.8 10.5 0.0 44.7 na 78.0 Rojas et al. 2006

85.6 71.3 72.1 83.0 79.8 Wei et al. 2008a
Validation 75.8 60.0 73.4 80.5 72.2 Wei et al. 2008a

Black spruce
(Picea mariana
(Mill.) BSP)

Training 73.0 87.5 78.3 81.6 80.9 Wei et al. 2009a,
2010

Validation 60.9 83.0 67.6 53.2 71.0 Wei et al. 2010

Table 4. Overall and class accuracy for identifying log features over CT slices using a BP-ANN classifier.

Overall (%)

Species Sapwood Heartwood Knots Bark 2D 3D Reference
Red oak (Quercus rubra L.) and water
oak (Quercus nigra L.)

95.0 Li et al. 1996

Red oak 90.0 Schmoldt et al. 1996
Red oak 96.0 95.0 Schmoldt et al. 2000a
Black cherry (Prunus serotina Ehrh.) 97.0 97.0
Yellow-poplar (Liriodendron tulipifera
L.)

96.0 94.0

Red oak and black cherry 96.0 97.0
Yellow-poplar and black cherry 90.5 92.0
Red oak and yellow-poplar 94.0 95.0
Red oak, yellow-poplar, and black
cherry

93.0 93.0

Scots pine (Pinus sylvestris L.) 95.9 Nordmark 2002
Sugar maple (Acer saccharum Marsh.) Wei et al. 2008b
Training logs 100.0 99.3 97.9 96.7 98.5
Validation logs 98.4 100.0 75.2 84.6 89.5

Black spruce (Picea mariana (Mill.)
BSP)
Training logs 98.1 100.0 95.5 96.8 97.6 Wei et al. 2009a
Validation logs 80.7 99.7 91.8 97.6 92.4 Wei et al. 2008b

Note: The CT images were acquired over drying logs.
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smooth the growth rings from the CT images. Then 10 con-
centric surfaces (five in the sapwood and five in the heart-
wood) around the pith are delineated and processed. Knots
are identified only on the heartwood concentric surfaces
based on a fixed GL threshold of 875. The algorithm then
computed 11 parameters (like diameter, angle, distance from
the pith, etc.) for the knots in the heartwood. The parameters
are used to fit knot geometrical models. These help in finding
knots in the sapwood that has similar spectral responses as
the knots. While the location of the knots is relatively good,
knot geometrical parameters are overestimated. Grundberg
and Grönlund’s (1991, 1992) method was validated on CT
images acquired over Norway spruce logs (Oja 1997). An im-
proved version of the image processing method, which better
detects small knots and positions the knots in the longitudinal
direction, was validated over Norway spruce logs (Oja 2000)
and over radiata pine logs (Aguilera et al. 2002). Elsewhere,
knots have been labeled using first edge detection algorithms
and then a 3 × 3 mask adapted to the knot radial structure
(Som et al. 1993) or as being the disturbing elements of the
growth rings that were detected through mathematical mor-
phology operations (Som et al. 1995).
In some of the previous listed studies, defect identification

and labeling are helped with the use of 3D information. Con-
centric surfaces from successive CT slices helped to identify
the branches in 3D (Grundberg and Grönlund 1992). Knots
were labeled using segmentation of images based on sub-
tracted successive CT slices (Som et al. 1993; Jaeger et al.
1999). Correlation analysis across corresponding defect-like
regions in neighbouring CT slices was used to verify whether
the region, previously identified as a potential defect region,
is indeed a defect-free or not region (Bhandarkar et al. 1999).
A heuristic rule based recognition algorithm that is based on
threshold values of 3D volume descriptors was used to detect
defects on red oak (Quercus rubra L.) and yellow-poplar logs
(Schmoldt et al. 1993). 3D intensity-related and orientation-
related characteristics of log defects were used to label the
segmented images into specific typical zones using a knowl-
edge-based method called the Dempster–Shafer theory of evi-
dential reasoning (Zhu et al. 1996). The longitudinal GL

profile of the log was extracted from stacks of CT slices to
locate knots lengthwise (Flood et al. 2003; Longuetaud et al.
2005).
The knot detection accuracy that was achieved by these

segmentation algorithms depends on the species and knot di-
ameter (Table 5). However, these algorithms also have sev-
eral limitations. The algorithms rely heavily on thresholds
that are sometimes difficult to determine. For example, in
most of the studies, the developed methods were applied
only to green logs, which are characterized by large differen-
ces in density caused by the difference in moisture content,
and to knots, which are located in the heartwood area, be-
cause sapwood and knots have the same density (Grundberg
and Grönlund 1991, 1992; Wells et al. 1991; Hagman and
Grundberg 1995; Longuetaud et al. 2005). Also, the segmen-
tation algorithms do not work properly for young trees for
which heartwood has a too small area (Nordmark 2002). In
other studies, moisture content variation within the green log
was identified as a source of error in distinguishing defects
from sound wood because the difference in CT numbers is
attributed to the difference in moisture content rather than to
that in density (Taylor et al. 1984; Funt and Bryant 1987;
Schmoldt et al. 1993; Schad et al. 1996; Müller and Tei-
schinger 2001; Bucur 2003a; Middleton et al. 2003; Alkan
et al. 2007; Longuetaud et al. 2007; Brüchert et al. 2008).
The algorithms that labeled the identified regions based on a
supposed elliptical shape of knots did not work very well for
identifying knots with irregular shapes on CT slices (Bhan-
darkar et al. 1999). Finally, in all of these studies, the seg-
mentation and region labeling were done in two steps and
thus the computing time of the algorithms was increased.
Similar to the identification of heartwood and sapwood,

image segmentation and labeling for knots can be done in
one step using Bayesian maximum likelihood classifiers. Us-
ing the same maximum likelihood classifier as for the identi-
fication of heartwood and sapwood, knots were identified in
CT images acquired over sugar maple logs (Rojas et al. 2006,
2007; Wei et al. 2008a) and over black spruce logs (Wei et
al. 2009a, 2010). The resulting producer’s accuracies for
knot detection in both Rojas et al.’s and Wei et al.’s studies

Table 5. Knot detection accuracy as a function of the species and the knot diameter class using thresholding segmentation algorithms.

Accuracy (%)

Species
Knot diameter
class (mm) 2D analysis 3D analysis Reference

Norway spruce (Picea abies (L.) Karst.) ≥7 94 Oja 2000
≥10 90 Oja 1997
<10 42

Radiata pine (Pinus radiata D. Don) ≥10 100.0–162.5a 50.0–87.5 Aguilera et al. 2002
<10 66.7–112.5a 18.4–46.7

Sugar maple (Acer saccharum Marsh.) 84 81.4 Bhandarkar et al. 1999
White ash (Fraxinus americana L.) 90.2 89.3
Red oak (Quercus rubra L.) 83.2 80.8
Black walnut (Juglans nigra L.) 85.7 83.3
Scots pine (Pinus sylvestris L.) 84 Nordmark 2003
Scots pine (Pinus sylvestris L.) ∼100b Longuetaud et al. 2005

aThe destructive method does not identify properly some knots.
bThey were not able to differentiate between the actual annual growth unit whorls and the lammas shoots.
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are presented in Table 3. Table 3 results show that Wei et
al.’s algorithm, which considers also the textural image infor-
mation, gave better knot detection over sugar maple logs than
Rojas et al.’s algorithm, which is based only on the spectral
image information. For Rojas et al.’s algorithm, the classifi-
cation was better for freshly cut logs than for logs that dried
sometimes on the wood yard. As expected, applying the max-
imum likelihood classifier to validation CT slices, i.e., those
that were not used for training the classifier, reduced the
class accuracies for both species but mainly for the black
spruce logs (Table 3). The rather modest classification accu-
racy of knots in sugar maple logs can be explained because
of confusion with heartwood that has similar GL values as
knots (Wei et al. 2008a). In the case of black spruce logs,
knots are spectrally similar to sapwood and inner bark (Wei
et al. 2010). Similar to the heartwood and sapwood classifi-
cation accuracies, the knot classification accuracy obtained
by the maximum likelihood classification is too low for op-
erational use of the method in processing CT images of logs.
Other more sophisticated algorithms were proposed. For

hardwood (white ash (Fraxinus americana L.), sugar maple,
and red oak) logs, Bhandarkar et al. (2006) used a dynamic
contour extraction technique based on Kalman Snakes to re-
construct the knots and the outer boundary of the log in 3D
space. They achieved a detection accuracy of 100% for all the
species. The BP-ANN algorithms that were developed for the
identification of heartwood and sapwood (“Heartwood and
sapwood” section above) were used to detect defects over
CT images acquired over red oak and water oak (Quercus ni-
gra L.) logs (Li et al. 1996; Schmoldt et al. 1996, 1999,
2000a; Sarigul et al. 2003), yellow-poplar and black cherry
(Prunus serotina Ehrh.) logs (Schmoldt et al. 1999, 2000a),
sugar maple logs (Wei et al. 2008b), black spruce logs (Wei
et al. 2009a), and Scots pine logs from young stands (Nord-
mark 2002). For these logs, Nordmark (2003) computed from
the classified images the same 11 knot geometrical parame-
ters as those of Grundberg and Grönlund’s method.
Similar to the heartwood and sapwood classification accu-

racies, the BP-ANN classifiers for knot detection produced
overall classification accuracy above than 90% (and often
higher than 95%) (Table 4), which is higher than those pro-
duced by the maximum likelihood classifier (Table 3). The
low classification accuracies occurred when using validation
logs or with multispecies classifiers (Table 4). Only Wei et
al. (2008b, 2009a) computed classification accuracy for the
knot class, which ranges from 75.2% to 97.9%, depending
on the tested species and the type of data sets (Table 4). The
post-classification morphological method of Sarigul et al.
(2003) further improved the labeling accuracy by 4.6%–6%
while at the same time allowed the removal of many spurious
regions from the interior of the wood and many incorrect de-
fect regions from the outside edge of the wood. The method
also allows the production of more rounded shapes of image
regions and an enhanced representation for the splits. The
BP-ANN classifier was also shown to be 22 times faster
than knowledge-based classification methods (Schmoldt et
al. 1996, 2000a) and to be more suitable for young trees
with lower heartwood area (Nordmark 2002, 2003). How-
ever, BP-ANN classifiers that only use GL values as inputs
were reported to have problems distinguishing between knots
and moisture pockets, both being characterized by high GL

values in the CT images. BP-ANN classifiers were also de-
veloped to classify knots into three categories, which differ
according to the knot biological status (living, dead, or rot-
ten), with an accuracy ranging between 85% and 93%. The
knots were classified over CT images using Grundberg and
Grönlund’s segmentation method (Hagman and Grundberg
1995).

Other defects
Among all other defects occurring in logs, decay is one of

the most current. It can appear as very dark zones because of
very low GL values. These values can be sometimes close to
the image background (air) (Schmoldt et al. 1996), particu-
larly when they are related to air pockets, such as those pro-
duced by advanced decay (Benson-Cooper et al. 1982).
However, on CT images, some decay can have a similar ap-
pearance to healthy wood (Rinnhofer et al. 2003). When fun-
gal decay binds moisture, the GL values can be high because
of the increase in local density (Habermehl and Ridder
1995).
Besides portable gamma-ray CT images (Habermehl and

Ridder 1995; Niemz et al. 1998), X-ray CT images have
been tested for decay detection in logs (e.g., Benson-Cooper
et al. 1982; Petutschnigg et al. 2002; Rinnhofer et al. 2003;
Rojas et al. 2005, 2006) and in other wood products, such as
historical wood specimens (Bahýl and Rohanová 2006).
However, Petutschnigg et al. (2002) was not able to detect
rot in Norway spruce logs using CT images, unless they
added log moisture content in the regression analysis. The re-
sulting identification accuracy was 80%. Yu and Qi (2008)
showed that a method based on multifractal theory was better
than classical methods for edge detection in CT images ac-
quired over logs that were subjected to decay.
Other defects that can affect logs are due to insect attacks.

Benson-Cooper et al. (1982) showed that insect tunnels that
were filled with air appear dark on CT images acquired over
Tasmanian blackwood (Acacia melanoxylon R. Br.) and red
beech (Nothofagus fusca (Hook. f.) Oerst.) logs. Kozakiewicz
and Gawarecki (2003) were able to detect insect tunnels
bored by Anobium punctatum De Geer in an 18th century
wooden angel sculpture using CT images.
Resin pockets are another defect common in softwoods

and can cause economical losses due to rejection of speci-
mens during assembling or coating processes. They appear
as small lenses of resin lying along the annual rings of trees
(Temnerud and Oja 1998). In slash pine, they are always as-
sociated with the existence of wood tissue fracture or shake
(Harding et al. 2007). Resin pockets are usually smaller than
knots. In Norway spruce, the size of resin pockets varies
from a minimum length, width, and thickness of 3.0, 2.5,
and 0.5 mm to a maximum of 175, 65, and 7 mm, respec-
tively (Temnerud 1997). According to Oja and Temnerud
(1999) and Harding et al. (2007), the high density of resin
gives a contrast between resin pockets and normal heartwood
over green log CT images. Resin pockets can usually be dis-
tinguished from knots (that also show high GL values) be-
cause both have a completely different geometrical shape, at
least if they are large enough. While green sapwood has sim-
ilar density to resin pockets, resin pockets can still be identi-
fied in green sapwood because of a thin area with low
density surrounding the pocket. Resin pocket detection was

Wei et al. 2131

Published by NRC Research Press

C
an

. J
. F

or
. R

es
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
U

N
IV

E
R

SI
T

E
T

SB
IB

L
IO

T
E

K
E

T
 I

 T
R

O
N

D
H

E
IM

 o
n 

09
/1

8/
12

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



done using 3D log information through stereology analysis
applied to CT images acquired over Norway spruce logs
(Temnerud and Oja 1998) or through volume rendering ap-
plied to CT images acquired over slash pine logs (Harding et
al. 2007). The volume of resin pockets was estimated with a
coefficient of error of less than 10% by Temnerud and Oja
(1998). While large resin pockets were easy to detect, detec-
tion of small resin pockets was most difficult because it re-
quires differentiation from compression wood (Temnerud
and Oja 1998) or because of confusion with knots or local
dry areas (Oja and Temnerud 1999).
The last type of internal log defect is related to the type of

wood. For sugar mapl, the heartwood is coloured and should
be considered as a defect (Rojas et al. 2006). Coloured heart-
wood was easily identified on CT images using the maxi-
mum likelihood classifier (Table 3) (Rojas et al. 2006; Wei
et al. 2008a) or BP-ANN classifier (Wei et al. 2008b), but
some confusion occurred with knots (Wei et al. 2008a).
European beech has a red heart that should be detectable on
CT images because it corresponds to a low moisture content
area (Bauch and Koch 2001). However, red heart often ap-
pears on old trees that have a too large diameter to be
scanned with medical scanners. Pruned radiata pine logs
often experience a defective core that is a central area of the
stem that is produced by the removal (pruning) of dead or
living branches to produce knot-free wood. Defective cores
can be identified on CT images (Benson-Cooper et al. 1982;
Rojas and Ortiz 2009). Indeed, a defective core has heteroge-
neous GL values because it is constituted of oval light areas
(corresponding to knots) within a dark zone, which consti-
tutes the rest of the defective core. Rojas and Ortiz (2009)
used a maximum supervised classifier to classify CT images
into three classes (knots, defect-free zone, and defective core)
and applied a 7 × 7 median filter on the classified images.
They achieved an overall classification accuracy of 92.7%
and a class accuracy for the defective core of 98.5%.
Reaction wood is another important defect in wood that

occurs very frequently in some wood raw material. It appears
as lighter areas contrasting with opposite wood. Marčok et al.
(1996) showed that reaction wood can easily be identified on
CT images acquired over European beech logs with moisture
content above the fibre saturation point because zones with
reaction wood have on average a higher moisture content
than the opposite wood.

3D reconstructions
Most previous studies are limited to 2D image analysis,

which does not make full use of the 3D nature (voxel) of CT
images. 3D internal information of the full-length log is used,
for example, in sawing optimization programs such as the
GRAphic Sawing Program (GRASP) (Occeña and Schmoldt
1996), TOPSAW (Guddanti and Chang 1998), virtual Saw-
Mill (vSM) (Chiorescu and Grönlund 2000), the computer vi-
sion-based lumber production planning system (CVLPPS)
(Bhandarkar et al. 2006), and OPTITEK from FPInnvations
(Grondin and Drouin 1998). 3D reconstruction of the full-
length log is therefore needed, as CT scanning is often per-
formed over log sections, particularly if medical scanners are
used. While some studies directly acquired 3D cone-beam to-
mography images (Flood et al. 2003; Seger and Danielsson
2003), all of the other studies reconstructed 3D images of

logs from successive 2D CT images using various techni-
ques.
Several studies used volume rendering techniques to visu-

alize volumetric data. Volume rendering techniques render
the opacity and colour of the voxel of the whole volume
data using a red–green–blue–alpha value that depends on the
original signal intensity from the CT slice. There are two
main types of volume rendering techniques (Meißner et al.
2000). The first one is indirect volume rendering. It first con-
verts the volumetric data into a set of polygonal isosurfaces
and then renders with polygon rendering hardware. A com-
mon indirect volume rendering method for extracting isosur-
faces from volume data is the Marching Cubes algorithm
(Lorensen and Cline 1987). The algorithm proceeds through
the scalar field, taking eight neighbour locations at a time
(thus forming an imaginary cube) and then determining the
polygon(s) needed to represent the part of the isosurface that
passes through this cube. The individual polygons are then
fused into the desired surface. The algorithm has been imple-
mented into open-source 3D visualization software such
Slicer 3.4 (www.slicer.org/) (Gering et al. 2001).
The second type of volume rendering is a direct volume

rendering that directly renders the volumetric data without
the intermediate conversion step. It is a computationally in-
tensive task that may be performed using several approaches,
including raycasting (Levoy 1988), splatting (Westover
1990), shear-warp (Lacroute and Levoy 1994), and 3D tex-
ture-mapping hardware (Cabral et al. 1994). Meißner et al.
(2000) showed that the best direct volume rendering methods
are the 3D texture-mapping hardware and shear-warp. Ray-
casting approaches have been implemented in open-source
software such as ImageVis3D (www.sci.utah.edu/cibc/soft-
ware/41-imagevis3d.html) and Voreen (Meyer-Spradow et al.
2009) and in commercial software such as VoluMedic (www.
volumedic.com/). Open-source software Volpack (www.osta-
tic.com/volpack/) uses the shear-wrap method, whereas Vol-
view (www.kitware.com/) is based on the 3D texture-
mapping hardware method (Constantinescu and Vlădoiu
2009). Direct volume rendering methods should be more effi-
cient than indirect volume rendering methods because the
complexity of the extracted polygonal mesh can overwhelm
the capabilities of the polygon subsystem, especially when
the object is complex or large or when the isosurface is inter-
actively varied (Meißner et al. 2000).
All of these algorithms have been developed mainly for

medical applications, but some have been tested for log or
board 3D visualization. The Marching Cubes algorithm was
used to visualize internal defects in 3D white spruce (Picea
glauca (Moench) Voss) logs and sawn logs (Middleton et al.
2003), to reconstruct termite (Cryptotermes secundus Hill)
gallery systems in dead radiata pine logs (Fuchs et al. 2004),
to assess 3D wet-wood distributions in heartwood of subal-
pine fir logs (Alkan et al. 2007), and to identify internal fea-
tures (bark, sapwood, heartwood, and knots) in 3D in the
case of sugar maple and black spruce logs (Wei et al.
2009b). With Volview, Aguilera et al. (2002) reconstructed
3D log CT images to detect knots in radiata pine logs. Bhan-
darkar et al. (1999) used a modified version of the z-buffer
algorithm that simultaneously renders 3D opaque and semi-
transparent objects (Foley et al. 1990) to detect and locate de-
fects in CT images acquired over white ash, red oak, sugar
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maple, and black walnut logs. Both Aguilera et al. (2002)
and Bhandarkar et al. (1999) achieved a knot detection accu-
racy that was lower than those produced using 2D CT images
(Table 5). Volume rendering software was also used to recon-
struct 3D resin pockets and knot whorls from CT images ac-
quired over slash pine logs (Harding et al. 2007).
Whatever method is used for obtaining 3D reconstruction,

interpolation techniques can be applied to estimate CT values
between the measured CT slices to reduce the number of CT
slices needed for a satisfactory reconstruction of the object.
Xu et al. (2005) used cubic natural spline interpolation func-
tions to reconstruct European ash (Fraxinius excelsior L.)
logs, while zu Castell et al. (2005) used radial basis interpo-
lation functions to reconstruct Norway spruce logs. Radial
basis interpolation functions have the advantage of taking
into account that log structures differ more in the radial than
in the longitudinal direction; hence, better interpolation re-
sults for log structures are obtained.
Currently, log 3D information for sawing optimization pro-

grams is mainly external and derived from laser measure-
ments. There are several issues with operational use of CT
images in 3D reconstruction of logs. These are related first
to lower accuracy in internal feature identification than pro-
duced using 2D CT images (Table 5). Another limitation is
related to the high computation time required that is not yet
suitable in online systems. Wei et al. (2009b) showed that re-
construction of a 3D image from 72 thick CT slices, each of
them having 10 mm thickness, requires between 15 and
20 min to complete over a desktop computer with Pentium
(R) 4CPU 2.4 GHz processing speed.

Operability of X-ray CT scanners in real wood
industry environments
Since 1972, CT scanners have been used as medical diag-

nosis tools (Cormack 1963; Hounsfield 1980). As described
above, they have been used widely for laboratory testing be-
cause of the similar organic nature of wood and the human
body. However, they are not suitable for real wood industry
environments. First, their scanning speed is usually not com-
patible with the production flow rate. For example, Oja
(1997) reported that it took about 2.5 h to scan one Norway
spruce log every 10 mm with a 5 mm wide X-ray beam with
a medical CT scanner (Siemens SOMATOM ART). They
were able to achieve a knot identification accuracy of 90%.
However, Wagner et al. (1989) tested a medical CT scanner
(Imatron C-100) in its ultrafast configuration that was able to
acquire 34 images per second over a water oak log. Such a
scanning speed approaches those required to be used in com-
mercial sawmills and veneer plants. The CT scanner in its ul-
trafast mode can scan logs having a maximum diameter of
38.1 cm. While all log defects can be seen on CT images,
Wagner et al. (1989) did not quantitatively test the image
quality with respect to log feature identification accuracies.
The speed of a CT scanner is strongly related to the reso-

lution along the feeding direction. Increasing CT scanning
speed can be done using either a low radiometric image reso-
lution or a low spatial image resolution. Reduced radiometric
resolution can affect the ability to distinguish different den-
sity areas in logs, which is the basis of any CT image use in
the wood industry (Schad et al. 1996). Spatial image resolu-

tion depends on pixel size, scan thickness, and scan fre-
quency. Scanning speed is more dependent on longitudinal
scanning rates (thickness and frequency) than within-slice
resolution (pixel size). For hardwood logs, Thawornwong et
al. (2003) did not observe any significant changes in the si-
mulated lumber value yields when the spatial resolution of
CT scans was reduced by doubling the pixel size, scan thick-
ness, and scan frequency. However, detection of small or thin
defects (i.e., metallic inclusions, cracks, and resin pockets) or
defects that need the detection of annual rings (i.e., spiral
grain) requires high spatial resolution CT images (Rinnhofer
et al. 2003; Harding et al. 2007).
Second, even if CT scanning can be done with an appro-

priate speed, there is the need to have image processing algo-
rithms that should be fast enough to be compatible with the
production flow rate. Indeed, medical CT images are visually
inspected offline by the radiologist for medical diagnosis pur-
poses. In contrast, in the wood industry, image processing al-
gorithms should allow automatic detection of the appropriate
features, such as defects, for online production optimization.
It should also be fast enough to be compatible with the pro-
duction flow rate. Indeed, a CT scan of a single log usually
produces a large amount of data to be processed. According
to Benson-Cooper et al. (1982), a scan time of about 2 s al-
lows the acquisition of some 400 000 data points. A CT scan
of a single log can produce over several hundred megabytes
of data (Li et al. 1996; Schmoldt et al. 1999; Rinnhofer et al.
2003). Grundberg and Grönlund (1991) proposed three meth-
ods for reducing the amount of data to be processed. The
first method reduces the radiometric resolution of the image,
for example from a 256 GL image to a 5 GL image. Such
reduction is done through segmentation of the CT image us-
ing density threshold values. Such a decrease in radiometric
resolution can lead to a lower ability to distinguish log fea-
tures for which the density difference is too small (Schad et
al. 1996). The second method reduces the spatial resolution
of the CT image by increasing the pixel size from 0.5 to
5 mm, for example. Low spatial image resolutions have no
discernable effect on lumber value yields (Thawornwong et
al. 2003) but do have an effect on the detection of small or
thin defects or annual rings (Rinnhofer et al. 2003; Harding
et al. 2007). The third method processes only a portion of
the CT image by searching knots only on 10 concentric sur-
faces around the pith. Knot geometrical models are derived
from the heartwood knots and used to help find the sapwood
knots that have a low spectral discrimination with the sur-
rounding wood. Schmoldt et al. (1999) proposed the geomet-
ric data reduction model to eliminate slice data (in a
recursive fashion) that do not exhibit unique centroidal dis-
placement or size characteristics within a threshold value.
Another way of increasing image processing speed is to

use more efficient image processing algorithms. One of the
fastest ones that also produce high classification accuracies
is the BP-ANN classifier. BP-ANN classifiers were able to
process one image in 25 s (Li et al. 1996; Schmoldt et al.
1996), i.e., 22 times faster than a knowledge-based classifier
(9 min) (Schmoldt et al. 1996). These BP-ANN classifiers
should be 8–10 times faster on high-performance hardware
(Schmoldt et al. 1996) and five to six times faster if a resil-
ient BP algorithm is used (Riedmiller and Braun 1993; Wei
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et al. 2008b). However, even with BP-ANN algorithms, the
data amount should be reduced (Schmoldt et al. 1999).
Third, besides the difference in spatial resolution, radio-

metric resolution, and scanning speed, Schmoldt et al.
(2000b) and Rinnhofer et al. (2003) listed several other tech-
nical differences between medical CT scanners and CT scan-
ners suitable for the wood industry. The first one is the duty
cycle, i.e., the frequency at which the CT scanner is used.
Medical CT scanners are not used continuously, while CT
scanners in a wood production line should be used 24 h a
day 7 days per week. The second one is the reconstruction
circle and the aperture size. Medical CT scanners have been
designed with a maximum 40–50 cm reconstruction circle,
which is too small for the diameter of the logs that should
be processed. The third one is the environment in which CT
scanners operate. Medical CT scanners are operated in a sa-
nitized controlled hospital environment, whereas CT scanners
in the wood industry would operate in harsh environments
subjected to dust, temperature and humidity variations, typi-
cal of a sawmill or, even worse, outdoors in the wood yard.
Other technical constraints that should be considered when
operating an X-ray CT scanner in a wood plant include the
usual radiation safety rules and the need for highly qualified
service engineers to maintain the equipment (Benson-Cooper
et al. 1982; Schad et al. 1996; Schmoldt et al. 2000b;
Rinnhofer et al. 2003).
Other CT scanners that were tested over wood specimens

have been developed for very dense metal objects, such as
rocket engines and automobile scanning (Schad et al. 1996),
and for luggage checking at airports (Schmoldt et al. 2000b,
Rinnhofer et al. 2003). While airport scanner types are better
than medical scanners with respect to their duty cycle, recon-
struction circle, and their design for harsh environments
(Schmoldt et al. 2000b; Rinnhofer et al. 2003; Harding et al.
2007), interpretation of the CT images is still done offline
and the scanners do not have a suitable scanning speed.
Also, airport scanners usually handle small objects (luggage)
and would not be suitable for large objects (logs or lumber)
(Schmoldt et al. 1999).
For all of these reasons, CT scanners that are specifically

designed for the wood industry were developed. Schmoldt et
al. (1999) designed an X-ray tangential CT scanner prototype
for Omega International Inc. It claims to allow for time sav-
ings in the scanning process. First, the detector array and the
fan beam are oriented to acquire data in the longitudinal log
direction because the tangential CT scanner has the detector
array parallel to the axis of rotation, while it is perpendicular
in medical and airport CT scanners. Such a setup allows sin-
gle continuous motion that collects the entire data set for all
slices, while in medical and airport CT scanners, data for 180
views or 360 views are collected through several traverses
that start and stop the linear motion each time. Second, it
does not collect outside the object, while for medical and air-
port CT scanners, each detector can collect all rays through
the entire object, including those through air (image back-
ground). The major drawback of this tangential scanner was
the lack of a efficient image reconstruction algorithm.
Andreu and Rinnhofer (2001, 2003) and Rinnhofer et al.

(2003) tested the Invision CTX 2500 scanner, an airport
scanner that was adapted for log scanning. The Invision
CTX 2500 scanner provides low spatial resolution images

compared with classical medical scanners. Also, its scanning
speed (1.5 m·min–1) is about 100 times too slow for volume-
oriented high-speed sawmills. Flood et al. (2003) and Seger
and Danielsson (2003) tested an X-ray linear cone-beam to-
mography device to directly obtain 3D images of logs that
are translated at relatively high speed (2–3 m·s–1). The knots
were reconstructed with sufficient accuracy to allow for
quantitative optimization, but heartwood was barely distin-
guished from sapwood due to the missing data. In Canada,
FPInnovations-Forintek has an industrial CT scanner that
was designed by Bio-Imaging Research (Middleton et al.
2003; Alkan et al. 2007). Middleton et al. (2003) tested the
scanner over white spruce logs. The images were processed
to detect features such as pith, outer shape, and sapwood–
heartwood boundary as well as to visualize log features
(knots obscured by wet wood, wet pockets, knots, and
cracks) and to reconstruct the 3D internal structure of the
log. Image quality was not judged as being satisfactory
enough to be included in a permanent CT stem bank data-
base. Also, the image-processing algorithm that was used
was developed for CT images acquired with a medical CT
scanner. The scanner was used later on for detecting wet
pockets and measuring moisture profile on subalpine fir
boards (Alkan et al. 2007). In 2008, MiCROTEC GmbH an-
nounced the commercialization of an industrial CT scanner
(CT.LOG) for log scanning (http://www.microtec.eu/), but its
technical details appear to be commercially protected.
Besides the technical aspects, economical feasibility should

also be analyzed because of the high cost of CT scanners
(some cost figures are given in Benson-Cooper et al. (1982)
and in Harding et al. (2007)). While most of the studies on
the use of CT images have focussed on sophisticated auto-
matic internal feature detection, very little work has been
done on the economical viability of CT scanning in the
wood industry (Harding et al. 2007). Some authors showed
that lumber value gains can offset CT scanner costs (Hodges
et al. 1990; Schmoldt et al. 2000b). According to Hodges et
al. (1990), investments in CT scanning systems could be
profitable with increases in lumber value yield of 5%–10%
in the case of large hardwood sawmills (60–103 m3·year–1)
and of 30% in the case of smaller hardwood sawmills (12–
103 m3·year–1). However, it was suggested that the use of
CT scanners is only economically sound for high-value logs
(Schmoldt et al. 1993; Rinnhofer et al. 2003; Harding et al.
2007) and only on defect areas of logs (Schmoldt et al. 1993).

Alternatives to CT scanning
Because of the high cost of X-ray CT scanner equipments,

other types of inexpensive sensors were investigated. One of
these is electric resistivity tomography (ERT), which is origi-
nally a geophysical method that is based on the material elec-
tric resistivity or its reciprocal, electrical conductivity, both
being related to object structure. ERT was applied to identify
discoloured wood (Weihs 2001) and decay in trees (e.g.,
Bieker et al. 2010). However, according to Harding et al.
(2007), the resulting ERT images are rather coarse in the
case of logs and reliable results can only be achieved at a
maximum depth of six or seven growth rings. Also, large
changes in internal electrical conductivity can result in small
voltage changes.
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Microwave sensors have been tested over lumber for den-
sity and moisture content distribution (Bucur 2003a; Lundg-
ren et al. 2006) and over logs (Kästner 2002; Harding et al.
2007), but additional research is needed, for example, to
study the influence of the air gap between the microwave
source and the log surface and the influence of log speed on
measurement accuracy. Also, the large damping of the micro-
wave signal creates a large noise in the signal and microwave
sensors cannot be used on frozen logs. Such conditions often
occur in wood yards in Canada.
Probably a multisensor approach should be used. Oja et al.

(2004) reported an improvement in classification accuracy
when classifying logs by centre board grade from 57% when
using only 3D laser scanning to 66% when using both 3D la-
ser and X-ray scanning of logs without knowledge about
stem properties. Longuetaud et al. (2005) suggested that a
combination of an X-ray CT scanner and an optical device
would be the most appropriate to detect annual growth units
over Scots pine logs because the annual GU whorls would be
identified by the optical method, whereas lammas shoot
whorls would be obtained by removing the optically detected
whorls from the X-ray CT images. Hasenstab et al. (2006)
compared the potential to detect cracks in woody building
structures between ultrasound and X-rays and concluded that
ultrasound is sensitive to cracks parallel to the surface and X-
rays are sensitive to cracks perpendicularly aligned.

Conclusions

X-ray CT was proven as an internal board and log scan-
ning technology. It has been utilized for wood density meas-
urements, for wood moisture monitoring, and for internal log
features that include pith, sapwood, heartwood, knots, and
other defects. Annual growth ring measurements were more
problematic to be detected on CT images because of the low
spatial resolution of the images used. For log feature identifi-
cation, our review shows that the BP-ANN was the most effi-
cient CT image processing method. However, the method
still requires calibration for each species or group of species
and is therefore difficult to be generalized. Eventually, further
work will be needed to test other image processing methods
that also take into account the spatial dimensions of the im-
age, such as fractal geometry and lacuranity analysis. In the
reviewed literature, there were also some studies attempting
to reconstruct 3D log or board images from 2D CT images.
Most of them still needed to be validated by comparing
against appropriate reconstructed reference 3D images (Jaeger
et al. 1999; Wei et al. 2009b).
Medical scanners were shown to be inappropriate for the

wood industry. Several industrial prototypes have been devel-
oped. There is now the need to validate most of the results
that are presented in this study because they were mostly de-
veloped using medical CT scanners. Also, development of in-
dustrial CT scanners adapted for the wood industry requires
further economical studies because of the high capital and
operation costs associated with CT scanners as well as a
thoughtful market analysis, as the wood industry is smaller
than the medical sector. Because CT scanners are expensive,
alternative inexpensive technologies have been tested such as
ERT, microwave sensors, and the use of a multisensor ap-

proach. Each of them has its own advantages and disadvan-
tages.
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