
 Open access  Journal Article  DOI:10.1080/00207179.2018.1548773

On the use of Youla–Kucera parametrisation in adaptive active noise and vibration
control – a review — Source link 

Ioan Doré Landau

Institutions: University of Grenoble

Published on: 01 Feb 2020 - International Journal of Control (Taylor & Francis)

Topics: Active vibration control, Active noise control, Adaptive control, Noise and Vibration control

Related papers:

 Youla–Kučera Parametrized Adaptive Feedforward Compensators

 Why one should use Youla-Kucera parametrization in adaptive feedforward noise attenuationƒ

 On the LPV control design and its applications to some classes of dynamical systems

 Youla parameterized adaptive regulation against unknown multiple narrow-band disturbances:

 Input-output implementation of the Youla architecture

Share this paper:    

View more about this paper here: https://typeset.io/papers/on-the-use-of-youla-kucera-parametrisation-in-adaptive-
3qvfhltnmw

https://typeset.io/
https://www.doi.org/10.1080/00207179.2018.1548773
https://typeset.io/papers/on-the-use-of-youla-kucera-parametrisation-in-adaptive-3qvfhltnmw
https://typeset.io/authors/ioan-dore-landau-3d68iiat89
https://typeset.io/institutions/university-of-grenoble-1irzuhle
https://typeset.io/journals/international-journal-of-control-2crp4v1j
https://typeset.io/topics/active-vibration-control-2d9o26wa
https://typeset.io/topics/active-noise-control-3i8kkq87
https://typeset.io/topics/adaptive-control-26nw9gzk
https://typeset.io/topics/noise-b2s2oriw
https://typeset.io/topics/vibration-control-1fm36fjc
https://typeset.io/papers/youla-kucera-parametrized-adaptive-feedforward-compensators-2723wg5gij
https://typeset.io/papers/why-one-should-use-youla-kucera-parametrization-in-adaptive-has4yvhwg7
https://typeset.io/papers/on-the-lpv-control-design-and-its-applications-to-some-3nadtbht50
https://typeset.io/papers/youla-parameterized-adaptive-regulation-against-unknown-18unmcwnwu
https://typeset.io/papers/input-output-implementation-of-the-youla-architecture-3w0im64cqw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-use-of-youla-kucera-parametrisation-in-adaptive-3qvfhltnmw
https://twitter.com/intent/tweet?text=On%20the%20use%20of%20Youla%E2%80%93Kucera%20parametrisation%20in%20adaptive%20active%20noise%20and%20vibration%20control%20%E2%80%93%20a%20review&url=https://typeset.io/papers/on-the-use-of-youla-kucera-parametrisation-in-adaptive-3qvfhltnmw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-use-of-youla-kucera-parametrisation-in-adaptive-3qvfhltnmw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-use-of-youla-kucera-parametrisation-in-adaptive-3qvfhltnmw
https://typeset.io/papers/on-the-use-of-youla-kucera-parametrisation-in-adaptive-3qvfhltnmw


HAL Id: hal-01920419
https://hal.archives-ouvertes.fr/hal-01920419

Submitted on 13 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the use of Youla-Kucera parametrization in adaptive
active noise and vibration control-A review

Ioan Doré Landau

To cite this version:
Ioan Doré Landau. On the use of Youla-Kucera parametrization in adaptive active noise and vibra-
tion control-A review. International Journal of Control, Taylor & Francis, 2020, 93 (2), pp.204-216.
฀10.1080/00207179.2018.1548773฀. ฀hal-01920419฀

https://hal.archives-ouvertes.fr/hal-01920419
https://hal.archives-ouvertes.fr


On the use of Youla-Kucera parametrization in adaptive active noise

and vibration control - A review

Ioan D. Landaua

aUniv. Grenoble Alpes, CNRS, GIPSA-lab, F-38000 Grenoble

ARTICLE HISTORY

Compiled October 23, 2018

Abstract

Youla-Kucera parametrization plays a very important role in adaptive active vibra-
tion control and adaptive active noise control. This concerns both vibration and
noise attenuation by feedback as well as by feedforward compensation when a mea-
surement of an image of the disturbance (noise or vibration) is available. The paper
will review the basic algorithms and various extensions trying to emphasize the ad-
vantages of using Youla-Kucera parametrization. Specific aspects related to the use
of this approach in adaptive active vibration and noise control will be mentioned. A
brief review of applications and experimental testing will be provided.
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Abbreviations:

ANC - Active noise control system
AVC - Active vibration control system
FIRYK - Youla-Kucera parameterized IIR adaptive feedforward compensator using
a FIR Youla-Kucera filter
IIR - IIR adaptive feedforward compensator
IIRYK - Youla-Kucera parameterized IIR adaptive feedforward compensator using
an IIR Youla-Kucera filter
IMP - Internal model principle
PAA - Parameter adaptation algorithm
QFIR - Youla-Kucera FIR filter
QIIR - Youla-Kucera IIR filter
SPR - Strictly positive real (transfer function)
YK - Youla-Kucera

1. Introduction

Active vibration control (AVC) and active noise control (ANC) are two very dynamic
fields driven on one hand by environmental issues and on the other hand by techno-
logical issues.
From the point of view of automatic control, AVC and ANC raise the same type of
problems even if the implementation aspects are very different and the dynamic mod-
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the occasion of his 70th birthday.
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els of the systems involved do not have the same complexity.
One of the major control problems encountered both in ANC and AVC is the attenua-
tion of disturbances (noise or vibration) using a secondary source of noise or vibration
(the actuator in control terms). The term ”active ” is associated to this type of struc-
tures. The objective is to drastically reduce the level of residual noise or vibration. In
practice one encounters two situations:

• No information available in real time about the disturbance
• An image of the disturbance is available

For the first situation a feedback solution has to be considered. For the second situa-
tion a feedforward compensation scheme can be considered, eventually combined with
a feedback control.
The problem to be solved is a regulation problem, the objective being to minimize the
residual noise (in ANC) or the residual acceleration (or force) in AVC. The regulated
variable (i.e. the output of the system as well as the performance variable) is the resid-
ual noise or acceleration or force measurement. The control signal to be computed is
the input to the hardware of the compensatory path (called ”secondary path”). Fig.
1 gives the structure of the feedback control. The disturbance propagates through the
so called primary path and compensation is done through the secondary path.
Fig.2 gives a view of a feedforward compensator (a feedback control can be added).

+

+

-
Residual

force

(disturbance)

Primary path

Secondary pathController

Figure 1. Active compensation by feedback.

The signal d(t) is an image of the disturbance (called also ”source”). Its measured
value denoted y(t) will be processed by the feedforward compensator in order to min-
imize the residual noise or acceleration. Unfortunately in most of the systems there is
an unwanted positive coupling from the control signal u(t) to the measured signal y(t),
since the effect of the compensator propagates toward the residual noise or accelera-
tion measurement but also toward the measurement of the image of the disturbance
(only in the absence of the compensator y(t) = d(t)). See I. Landau, Airimitoaie,
Castellanos-Silva, and Constantinescu (2016) and Zeng and de Callafon (2006) for
ilustrative examples. This block characterizing the internal positive feedback is de-
noted by M . Since this feedback effect is positive it raises of course stability problems.
Therefore the design of the feedforward compensator involves two objectives:

• minimization of the residual noise or acceleration
• simultaneous stabilization of the internal positive feedback loop formed by the
feedforward compensator and the positive coupling block.

In a large number of applications, the dynamic characteristics of the secondary
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Figure 2. Active compensation by feedforward.

path (the ”plant” in control terms) are constant or subject to small variations. In
addition using system identification methodology an accurate model of the secondary
path (as well as of the reverse path in feedforward control) can be obtained from on
site experimental data (see I. Landau et al. (2016), Melendez, Landau, Dugard, and
Buche (2017)). Therefore one can assume that the plant model is constant and known
and the eventually small variations of the plant model are quantifiable and bounded
and therefore, their effect can be handled by the control design.
The challenging problem for control design comes from the fact that the characteristics
of the disturbances (defined in the frequency domain) are in general unknown and time-
varying. However some information upon the range of variations and the structure
of the disturbance are in general available. It is convenient to classify the type of
disturbances as:

• single or multiple narrow-band disturbances
• broad (finite)-band disturbances2

One has to solve an adaptive regulation problem (see I. D. Landau, Alma, Constanti-
nescu, Martinez, and Noë (2011)for details on adaptive regulation ) characterized by
the presence of unknown and time varying disturbances while the plant dynamics is
constant and known 3. It turns out that in this context, the Youla-Kucera parametriza-
tion plays a fundamental role for implementing efficient adaptive control algorithms.
The objective of the paper is to present the fundamental issues in using Youla-Kucera
parametrization in Adaptive ANC and AVC and to illustrate its advantages. Some
open problems will also be mentioned. Before going to technical details let us point
out some of the pertinent advantages of using Youla-Kucera parametrization:

• Use of Youla-Kucera parametrization allows to derive direct adaptive control
schemes for adaptive feedback regulation

• As a consequence a substantial reduction of the computer load is obtained
• Even when indirect adaptive regulation schemes are used, a significant reduction

2Of course, combination of the two types of disturbances is possible
3The basic adaptive control paradigm deals with unknown and time-varying plants while making assumptions

on the disturbances and reference
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of the computer load related to the solution of a Bezout equation is obtained
• In adaptive feedforward compensation it allows to decouple the problem of sta-
bilizing the internal positive loop from the problem of minimizing the residual
noise or acceleration

• When using YK parametrization in the context of adaptive feedforward compen-
sation, the design of filters operating on the regressor vector allowing to satisfy
a strictly postive real condition (SPR) for stability is much easier

The use of YK parametrization in the context of adaptive ANC and AVC raised also
a number of interesting design problems (the design of the central controller, the size
of the parametrization, use of FIR or IIR structures for the YK filter) which have not
been considered in the traditional control literature. These issues, even if they may
be considered as minor from a control theoretical point of view, have a tremendous
impact on the final performance of the ANC or AVC systems. A basic reference for
the Youla-Kucera parametrization is the survey paper Anderson (1998) published in
1998. However the specific problems encountered in ANC and AVC are not covered
(these results have been published basically after 1998).
The paper consider a discrete-time representation of the AVC and ANC systems since
most of the applications have been done using a discrete-time formulation. Of course
a continuous time representation for the Youla Kucera parametrization can be used.
An example of continuous time approach is Wang, Aranovski, and Bobtsov (2017).
The paper is organized as follows: Section 2 reviews the basic system’s equations.
Section 3 is dedicated to the use of YK parametrization in adaptive feedback regu-
lation. Section 4 illustrates the use of YK parametrization for adaptive feedforward
compensation. Section 5 provides a brief summary of experiments and applications of
YK parametrization in adaptive active noise and vibration control.

2. Plant representation and feedback controller structure

The structure of a linear time invariant discrete time model of the plant- the secondary
path- used for controller design is:

G(z−1) =
z−dB(z−1)

A(z−1)
=
z−d−1B∗(z−1)

A(z−1)
, (1)

with:

d = the plant pure time delay in

number of sampling periods

A = 1 + a1z
−1 + · · ·+ anA

z−nA ;

B = b1z
−1 + · · ·+ bnB

z−nB = z−1B∗ ;

B∗ = b1 + · · ·+ bnB
z−nB+1 ,

where A(z−1), B(z−1), B∗(z−1) are polynomials in the complex variable z−1 and nA,
nB and nB − 1 represent their orders4. The model of the plant may be obtained by

4The complex variable z−1 will be used for characterizing the system’s behavior in the frequency domain and

the delay operator q−1 will be used for describing the system’s behavior in the time domain.
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system identification. Details on system identification of the models considered in this
paper can be found in Constantinescu (2001); Constantinescu and Landau (2003);
Karimi (2002); I. Landau, Karimi, and Constantinescu (2001); I. Landau and Zito
(2005); Melendez et al. (2017).

Since in this paper we are focused on regulation, the controller to be designed is
a RS-type polynomial controller (I. Landau and Zito (2005); I. D. Landau, Lozano,
M’Saad, and Karimi (2011)).

The output of the feedback system e(t) and the plant input u(t) when using a RS
polynomial controller may be written as:

e(t) =
q−dB(q−1)

A(q−1)
· u(t) + x(t) ; (2)

S(q−1) · u(t) = −R(q−1) · e(t) , (3)

where q−1 is the delay (shift) operator (x(t) = q−1x(t + 1)) and x(t) is the resulting
additive disturbance on the output of the system. R(z−1) and S(z−1) are polynomials
in z−1 having the orders nR and nS , respectively, with the following expressions:

R(z−1) = r0 + r1z
−1 + . . .+ rnR

z−nR = R′(z−1) ·HR(z
−1) ; (4)

S(z−1) = 1 + s1z
−1 + . . .+ snS

z−nS = S′(z−1) ·HS(z
−1) , (5)

where HR and HS are pre-specified parts of the controller (used for example to
incorporate the internal model of a known disturbance or to open the loop at certain
frequencies).

We define the following sensitivity functions:

• Output sensitivity function (the transfer function between the disturbance x(t)
and the output of the system y(t)):

Syp(z
−1) =

A(z−1)S(z−1)

P (z−1)
; (6)

• Input sensitivity function (the transfer function between the disturbance x(t)
and the input of the system u(t)):

Sup(z
−1) = −

A(z−1)R(z−1)

P (z−1)
, (7)

where

P (z−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1)

= A(z−1)S′(z−1) ·HS(z
−1) + z−dB(z−1)R′(z−1) ·HR(z−1) (8)

defines the poles of the closed loop (roots of P (z−1)). In pole placement design, P (z−1)
is the polynomial specifying the desired closed loop poles and the controller polyno-
mials R(z−1) and S(z−1) are minimal degree solutions of (8) where the degrees of P ,
R and S are given by: nP ≤ nA + nB + d − 1, nS = nB + d − 1 and nR = nA − 1.
P (z−1) has usually the following structure:

P (z−1) = P0(z
−1)Paux(z

−1) (9)

where P0(z
−1) defines the dominant poles and Paux(z

−1) represents the auxiliary poles
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added for robustenss reasons.
Using the equations (2) and (3), one can write the output of the system as:

e(t) =
A(q−1)S(q−1)

P (q−1)
· x(t) = Syp(q

−1) · x(t) . (10)

For more details on RS-type controllers and sensitivity functions see I. Landau and
Zito (2005).

Suppose that x(t) is a deterministic disturbance, so it can be written as

x(t) =
Np(q

−1)

Dp(q−1)
· δ(t) , (11)

where δ(t) is a Dirac impulse and Np(z
−1), Dp(z

−1) are coprime polynomials in z−1, of
degrees nNp

and nDp
, respectively. In the case of stationary disturbances the roots of

Dp(z
−1) are on the unit circle. The energy of the disturbance is essentially represented

by Dp. The contribution of the terms of Np is weak compared to the effect of Dp, so
one can neglect asymptotycally the effect of Np.

A key point in the design of feedback control for attenuation of disturbances is the
Internal Model Principle(Francis & Wonham, 1976).
Internal Model Principle: The effect of the disturbance given in (11) upon the
output:

e(t) =
A(q−1)S(q−1)

P (q−1)
·
Np(q

−1)

Dp(q−1)
· δ(t) , (12)

where Dp(z
−1) is a polynomial with roots on the unit circle and P (z−1) is an asymp-

totically stable polynomial, converges asymptotically towards zero if and only if the
polynomial S(z−1) in the RS controller has the form:

S(z−1) = Dp(z
−1)S′(z−1) . (13)

In other terms, the pre-specified part of S(z−1) should be chosen as HS(z
−1) =

Dp(z
−1) and the controller is computed using eq. (8), where P , Dp, A, B, HR and d

are given
Obviously the model of the disturbance should be known in order to apply the IMP.

Therefore, when the model of the disturbance is unknown and/or time varying in order
to apply the IMP, one has to identify in real time the model of the disturbance and
then solve in real-time a Bezout equation which in general is of high order (the orders
of the polynomials A and B are large in ANC and AVC - see I. Landau et al. (2016)
and Melendez et al. (2017). This lead to an indirect adaptive regulation scheme. One
may ask however if it is possible to develop a direct adaptive regulation scheme. As it
will be shown next this indeed is possible using Youla-Kucera parametrization of the
controller.
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3. Adaptive feedback regulation using Youla-Kucera paramametrization

3.1. Youla-Kucera parametrization for feedback regulation

Fig 3 gives the configuration of the YK parametrized feedback controller (to be com-
pared with Figure 1). q−dB/A defines the model of the secondary path (called also

+

-

-
+

+

-

Plant

Controller

update

Controller

Figure 3. Youla-Kucera direct adaptive feedback regulation scheme.

plant), Q̂ designates the so called YK filter. R0 and S0 defines what is called the central
controller.

S0 = 1 + s01z
−1 + . . .+ s0nS0

z−nS0 = S′

0(z
−1) ·HS0

(z−1), (14)

R0 = r00 + r01z
−1 + . . .+ r0nR0

z−nR0 = R′

0(z
−1) ·HR0

(z−1), (15)

where HS0
(q−1) and HR0

(q−1) represent pre-specified parts of the controller (used for
example to incorporate the internal model of a known disturbance or to open the loop
at certain frequencies) and S′

0(q
−1) and R′

0(q
−1) are computed using Pole Placement.

The characteristic polynomial, which specifies the desired closed-loop poles of the
system when using only the central controller is given by (see also I. Landau and Zito
(2005)):5

P0(z
−1) = A(z−1)S0(z

−1) + z−dB(z−1)R0(z
−1), (16)

Introducing the expressions of S0 and R0 given in Eqs. (14) and (15), R′

0 and S′

0 are
solutions of:

P0(z
−1) = A(z−1)S′

0(z
−1)HS0

(q−1) + z−dB(z−1)R′

0(z
−1)HR0

(q−1), (17)

In what follows the Youla–Kučera parametrization (Anderson (1998); Tsypkin (1997))
is used. Nevertheless, the Youla–Kučera parametrization is not unique. It depends on
the right coprime factorization selected G = ND−1. Four factorization are mostly used

5It is assumed that a reliable model identification is achieved and therefore the estimated model is assumed
to be equal to the true model.
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I. Landau, Castellanos Silva, Airimitoaie, Buche, and Noé (2013):

N = G; D = I. (18)

N = z−m; D = Pm with G ≈ z−mP−1
m . (19)

N = q−dB; D = A with G = q−dB

A
. (20)

N = q−dBF ;D = AF with G = q−dB

A
;F =

FN

FD

, (21)

with F and F−1 asymptotically stable 6. More details can be found in I. Landau et
al. (2013). Subsequently the parametrization (20) will be used.

Selecting a FIR structure for the Q filter associated to the Youla–Kučera
parametrization, the controller’s polynomials become:

R = R0 +AQHS0
HR0

, (22)

S = S0 − z−dBQHS0
HR0

, (23)

where R0 and S0 define the central controller which verifies the desired specifications
in the absence of the disturbance. The characteristic polynomial of the closed-loop
is still given by eq. (17) (can be verified by simple calculations). The output and
input sensitivity functions are still given by eq.(6) and (7) with P replaced by P0

(the denominator of the sensitivity functions remains unchanged whatever FIR Q
polynomial is used).

It is important to remark that the signal w(t) in Fig. 3 is an image of the disturbance.
Its expression (when plant parameters are perfectly known) is:

w(t) = A(q−1)x(t) (24)

As such the YK parametrization can be interpreted also as a ”disturbance observer”
i.e. it also belong to the class of solutions called DOB (disturbance observer based)
control Li, Qiu, Ji, Zhu, and Li (2011).
Applying the internal model principle (IMP), the pre-specified part of S(z−1) (denoted
HS see Eq. (5)) should incorporate the denominator of the model of the disturbance
Dp, i.e.

HS(z
−1) = Dp(z

−1)HS0
(z−1).

The controller is computed solving

P = ADpHS0
S′ + z−dBHR0

R′, (25)

6As a consequence of the presence of the filter F both in N and in D, strictly speaking N and D will no more
be coprime. This factorization is used in (de Callafon & Fang, 2013)
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where P , Dp, A, B, HR0
, HS0

and d are given.7 In the context of the Youla–Kučera
controller parametrization using a FIR Q filter,

Q(z−1) = q0 + q1z
−1 + . . .+ qnQ

z−nQ . (26)

application of the internal model principle leads to the problem of finding Q such that:

S = S′

0HS0
− z−dBQHS0

HR0
= DpHS0

S′ (27)

So in order to compute the corresponding Q polynomial one has to solve the diophan-
tine equation

S′Dp + z−dBHR0
Q = S′

0, (28)

where Dp, d, B, S′

0, and HR0
are known and S′ and Q are unknown. The Bezout type

Eq. (28) has a unique solution for S′ and Q with: nS′

0
≤ nDp

+ nB + d + nHR0
− 1,

nS′ = nB + d+ nHR0
− 1, nQ = nDp

− 1, (I. Landau & Zito, 2005). One sees that the
order nQ of the polynomial Q depends upon the structure of the disturbance model
and not upon the structure of the plant model.
This approach leads to indirect adaptive regulation scheme when one would like to
handle unknown and time varying disturbances. However the size of the Bezout equa-
tion which has to be solved in real-time has been drastically reduced (compare eq.
(28) with eq. (8)).

3.2. Direct adaptive regulation for disturbance attenuation

The objective is to find an estimation algorithm which will directly estimate the pa-
rameters of the internal model in the controller in the presence of an unknown distur-
bance (but of known structure) without modifying the closed loop poles. Clearly, the
Q-parametrization is a potential option since modifications of the Q polynomial will
not affect the closed loop poles. In order to build an estimation algorithm it is neces-
sary to define an error equation which will reflect the difference between the optimal
Q polynomial and its current value.

In Tsypkin (1997), such an error equation is provided and it can be used for develop-
ing a direct adaptive control scheme. This idea has been used in Ben Amara, Kabamba,
and Ulsoy (1999a, 1999b); I. Landau, Constantinescu, and Rey (2005); Valentinotti
(2001). Using the Q-parametrization, the output of the system in the presence of a
disturbance can be expressed as:

e(t) =
A[S0 − q−dBHS0

HR0
Q]

P
·
Np

Dp

· δ(t) =
S0 − q−dBHS0

HR0
Q

P
· w(t), (29)

where w(t) (see also Fig. 3) is given by (using Eqs. (24) and (11)):

w(t) =
ANp

Dp
· δ(t) = A · y(t)− q−dB · u(t). (30)

Taking into consideration that the adaptation of Q is done in order to obtain an output
e(t) which tends asymptotically to zero, one can define ε0(t+1) as the value of e(t+1)

7Of course, it is assumed that Dp and B do not have common factors.
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obtained with Q̂(t, q−1) (the estimate of Q at time t, written also Q̂(t))

ε◦(t+ 1) =
S0
P

· w(t+ 1)− Q̂(t)
q−dB∗HS0

HR0

P
· w(t). (31)

Similarly, the a posteriori error becomes (using Q̂(t+ 1)) as:8

ε(t+ 1) =
S0
P

· w(t+ 1)− Q̂(t+ 1)
q−dB∗HS0

HR0

P
· w(t). (32)

Replacing S0 from the last equation using the expression given in (14) (S0 = S′

0HS0
)

and using (28) for S′

0, one obtains:

ε(t+ 1) = [Q− Q̂(t+ 1)] ·
q−dB∗HS0

HR0

P
· w(t) + η(t+ 1), (33)

where

η(t) =
S′DpHS0

P
· w(t) =

S′HS0
ANp

P
· δ(t) (34)

is a signal which tends asymptotically towards zero since P is an asymptotically stable
polynomial.

Define the estimated polynomial Q̂(t, q−1) = q̂0(t)+ q̂1(t)q
−1+ . . .+ q̂nQ

(t)q−nQ and

the associated estimated parameter vector θ̂(t) = [q̂0(t) q̂1(t) . . . q̂nQ
(t)]T . Define the

fixed parameter vector corresponding to the optimal value of the polynomial Q as:
θ = [q0 q1 . . . qnQ

]T .
Denote

w2(t) =
q−dB∗HS0

HR0

P
· w(t) (35)

and define the following observation vector:

φT (t) = [w2(t) w2(t− 1) . . . w2(t− nQ)] . (36)

Equation (33) becomes

ε(t+ 1) = [θT − θ̂T (t+ 1)] · φ(t) + η(t+ 1) . (37)

One can remark that ε(t) corresponds to an adaptation error (I. D. Landau, Lozano,
et al. (2011)).

From equation (31) one obtains the a priori adaptation error:

ε0(t+ 1) = w1(t+ 1)− θ̂T (t)φ(t) ,

8In adaptive control and estimation the predicted output at t+ 1 can be computed either on the basis of the
previous parameter estimates (a priori, time t) or on the basis of the current parameter estimates (a posteriori,
time t+ 1).
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with

w1(t+ 1) =
S0(q

−1)

P (q−1)
· w(t+ 1) ; (38)

w(t+ 1) = A(q−1) · y(t+ 1)− q−dB∗(q−1) · u(t) , (39)

where B(q−1)u(t+ 1) = B∗(q−1)u(t).
The a posteriori adaptation error is obtained from (32):

ε(t+ 1) = w1(t+ 1)− θ̂T (t+ 1)φ(t) .

Taking into account that η(t) tends asymptotically to zero eq. (37) has the stan-
dard form of an adaptation error equation leading to the following algorithm for the
estimation of the parameters of Q̂(t, q−1) (I. D. Landau, Lozano, et al. (2011)):

θ̂(t+ 1) = θ̂(t) + F (t)φ(t)ε(t+ 1) ; (40)

ε(t+ 1) =
ε0(t+ 1)

1 + φT (t)F (t)φ(t)
; (41)

ε0(t+ 1) = w1(t+ 1)− θ̂T (t)φ(t) ; (42)

F (t+ 1) =
1

λ1(t)



F (t)−
F (t)φ(t)φT (t)F (t)

λ1(t)
λ2(t)

+ φT (t)F (t)φ(t)



 . (43)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2 (44)

where λ1(t), λ2(t) allow to obtain various profiles for the evolution of the adaption
gain F (t) (for details see I. Landau and Zito (2005); I. D. Landau, Lozano, et al.
(2011)).

In order to implement this methodology for disturbance rejection (see fig. 3), it is

supposed that the plant model
z−dB(z−1)

A(z−1)
is known (identified) and that it exists a

controller [R0(z
−1), S0(z

−1)] which verifies the desired specifications in the absence of
the disturbance. One also supposes that the degree nQ of the polynomial Q(z−1) is
fixed, nQ = nDp

−1, i.e. the structure of the disturbance is known. A stability analysis
is provided in I. Landau et al. (2005). It does not require a SPR condition. If the
disturbance is a sum of n narrow band disturbances, the order of the polynomial Dp is
2n. It is also shown in I. Landau et al. (2005) that if nQ = 2n− 1 and the disturbance
contains n distinct sinusoids (richness condition), asymptotic convergence of the Q
parameters towards their optimal values is obtained,

3.3. Design of the central controller

As it is well known, the introduction of the internal model for the perfect rejection
of the disturbance (asymptotically) may have as effect to raise the maximum value
of the modulus of the output sensitivity function in the vicinity of the attenuation
zone (waterbed effect). This may lead to unacceptable values for the modulus margin
and the delay margins if the design of the central controller is not appropriately done
(see I. Landau and Zito (2005)). As a consequence, a robust control design should
be considered assuming that the model of the disturbance is known as well as its
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domain of variations in the frequency domain. The objective is that for all situations
an acceptable modulus margin and delay margin are obtained.

On the other hand at the frequencies where perfect rejection of the disturbance is
achieved one has Syp(e

−jω) = 0 and

∣

∣Sup(e
−jω)

∣

∣ =

∣

∣

∣

∣

A(e−jω)

B(e−jω)

∣

∣

∣

∣

. (45)

Equation (45) corresponds to the inverse of the gain of the system to be controlled.
The implication of equation (45) is that cancellation (or in general an important
attenuation) of disturbances on the output should be done only in frequency regions
where the system gain is large enough. If the gain of the controlled system is too
low, |Sup| will be large at these frequencies. Therefore, the robustness vs additive
plant model uncertainties will be reduced and the stress on the actuator will become
important I. Landau and Zito (2005). Equation (45) also implies that serious problems
will occur if B(z−1) has complex zeros close to the unit circle (stable or unstable
zeros) at frequencies where an important attenuation of disturbances is required since
at these frequencies the modulus of B(e−jω) will be very low. It is mandatory to avoid
attenuation of disturbances at these frequencies.

Since on one hand we would not like to react to very high frequency disturbances
and on the other hand we would like to have a good robustness it is often wise to
open the loop at 0.5fs (fs is the sampling frequency) by introducing a fixed part in
the controller HR0

(q−1) = 1 + q−1 (for details see I. Landau and Zito (2005) and
I. Landau et al. (2016).

3.4. Use of IIR Youla Kucera parametrization

Consider now the case of the disturbance model given in eq. (11) and lets assume that
we are in a stochastic context and that we deal with a narrow band disturbances. In
this case x(t) has the expression:

x(t) =
Dp(ρz

−1)

Dp(z−1)
v(t) (46)

where v(t) is a zero mean discret time white Gaussian noise sequence and

Dp(z
−1) = 1 + αz−1 + z−2, (47)

is a polynomial with roots on the unit circle.9 In (47), α = −2 cos (2πω1Ts), ω1 is the
frequency of the disturbance in Hz, and Ts is the sampling time. Dp(ρz

−1)) is given
by:

Dp(ρz
−1) = 1 + ραz−1 + ρ2z−2, (48)

with 0 < ρ < 1. The roots of Dp(ρz
−1) are in the same radial line as those of Dp(z

−1)
but inside of the unitary circle, and therefore stable Nehorai (1985).

9Its structure in a mirror symmetric form guarantees that the roots are always on the unit circle.
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Using the output sensitivity function, the output of the plant in the presence of the
disturbance can be expressed as

e(t) =
AS′

P0

HS

Paux

Dp(ρq
−1)

Dp(q−1)
v(t) (49)

where P = P0Paux (see eq. (9). One can rewrite eq. (49) as:

e(t) =
AS′

P0
β(t) (50)

where

β(t) =
HS

Paux

Dp(ρq
−1)

Dp(q−1)
v(t) (51)

In order to minimize the effect of the disturbance upon y(t), one should minimize
the variance of β(t). One has two tuning devices: HS and Paux. Minimization of the
variance of β(t) is equivalent of searching HS and Paux such that β(t) becomes a white
noise Astrom and Wittenmark (1984); I. Landau and Zito (2005). The obvious choices
are HS = Dp (which corresponds to the IMP) and Paux = Dp(ρq

−1). Of course this
development can be generalized for the case of multiple narrow-band disturbances.
Therefore in order to optimally reject a single or multiple narrow band disturbance
one needs to introduce in addition to the internal model (the denominator of the
disturbance model) auxiliary tuned closed loop poles. This can be achieved by using
an IIR YK parametrization.
Consider now the case of a Q filter as ratio of rational polynomials (IIR filter) with
an asymptotically stable denominator:

Q(z−1) =
BQ(z

−1)

AQ(z−1)
(52)

The YK controller will have the structure:

R(z−1) = AQ(z
−1)R0(z

−1) +A(z−1)BQ(z
−1) (53)

S(z−1) = AQ(z
−1)S0(z

−1)− z−dB(z−1)BQ(z
−1) (54)

but in this case the poles of the closed-loop will be given by

P (z−1)QIIR = P (z−1)AQ(z
−1) (55)

In the case of IIR Q filters, the poles of the denominator of Q will appears as additional
poles of the closed-loop. Therefore the extension of this approach to the adaptive case
lead to the need of adapting both the parameters of the numerator and denominator
of the IIR Q filter. While an adaptation algorithm can be derived (see (I. Landau et
al., 2016)) there is not enough richness in the signal to adjust the parameters of both
BQand AQ. A solution has been proposed and successfully tested in Castellanos-Silva,
Landau, Dugard, and Chen (2016) where a direct adaptation of the parameters of BQ

is done and the parameters of the AQ are cleverly computed from the estimation of
the parameters of the disturbance (see also Chen and Tomizuka (2013)).
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3.5. Overparametrization

When the objective is to reject disturbances using the IMP, the order of the Q FIR
polynomial results directly from the supposed order of DP (the denominator of the
disturbance model). The idea of using over parametrized Q FIR filters emerged as
a possibility for handling uncertainties in the plant model Valentinotti (2001). This
will require to formalize the plant uncertainties in a proper way. Work remains to be
done in this direction even if some tests have been done. A reference dealing with the
stability of the adaptive schemes in the presence of model errors is Mullhaupt and
Bonvin (2012). The use of over parametrized Q filters was also considered in Jafari,
Ioannou, Fitzpatrick, and Wang (2013) as a possibility of improving the robustness
and performances of the scheme. The paper Castellanos-Silva, Landau, and Ioannou
(2015) evaluates this approach and compares it with a procedure for designing the
central controller in order to improve the performances. The basic conclusion is that
small increase of the order of the Q filter with respect to the minimal order is beneficial
in practice and this can be combined with an improved design of the central controller.
The explanation is related to the presence of some low level disturbances in addition
to the main narrow band disturbances to be canceled. These secondary disturbances
will be attenuated by the additional Q parameters.

3.6. Indirect adaptive feedback attenuation

In indirect adaptive feedback regulation, a disturbance observer is built which allows
to identify the model of the disturbance used for the design of the controller. The
interest of the indirect approach is related to the assignment of different attenuation
levels in the frequency domain (instead of total rejection when using IMP). This is
achieved by shaping in real time the output sensitivity function using band stop filters
assuring a desired amount of attenuation for each narow band disturbance. Details
can be found in Airimitoaie and Landau (2014). Using a YK parametrization of the
band stop filters, a drastic reduction of the computation load is obtained since there
is a significant reduction in the size of the Bezout equation which has to be solved.

4. Adaptive feedforward disturbance attenuation using Youla-Kucera
parametrization

When a correlated measurement with the disturbance is available, adaptive feedfor-
ward compensation of broadband vibrations or noise can be considered Elliott and
Nelson (1994); Jacobson, Johnson, McCormick, and Sethares (2001); Kuo and Morgan
(1996); Zeng and de Callafon (2006). However in many AVC (Active Vibration Con-
trol) or ANC (Active Noise Control) systems there is a ”positive” feedback coupling
between the compensator system and the correlated measurement of the disturbance
which serves as reference Hu and Linn (2000); Jacobson et al. (2001); Zeng and de
Callafon (2006). The positive feedback may destabilize the system.
The disturbance is assumed to be unknown and with variable spectral characteristics,
but the dynamic models of the AVC and ANC systems are supposed to be constant
and known (these models can be identified).
In Jacobson et al. (2001) and I. Landau, Alma, and Airimitoaie (2011), algorithms for
adapting an IIR feedforward compensator in real time taking into account the pres-
ence of the internal positive feedback have been proposed, analyzed and evaluated. In
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Zeng and de Callafon (2006), the idea of using a Youla-Kucera parametrization of the
feedforward compensator is illustrated in the context of active noise control. Based
on the identification of the system, a stabilizing YK controller is designed. The YK
parameters are then updated by using a two time scale indirect procedure: (1) estima-
tion of the Q-filter’s parameters over a certain horizon, (2) updating of the controller.
However direct adaptation of the Q parameters is possible. Direct adaptive schemes
using FIR YK filters has been proposed and analyzed in (I. Landau, Airimitoaie, &
Alma, 2012) Use of IIR YK filters has been considered in (I. D. Landau, Airimitoaie, &
Alma, 2013). Both references provide also experimental results and relevant compar-
isons. As indicated in the introduction, the basic motivation of using a YK structure
for the feedforward compensator is that the problem of the stabilization of the internal
positive feedback loop can be dissociated from the problem of the optimization of the
parameters of the feedforward compensator in order to minimize the residual noise or
acceleration. In what follows the basic ideas for the development of such algorithms
will be presented.

4.1. Basic configuration

W D
s(t)

d(t)

d(t) x(t)

Global primary path

   Measurement of the

image of the disturbance

    Residual

 acceleration

measurement

Primary path

χ (t)

(a)

Global primary path

Positive feedback coupling (reverse path)

   Measurement of the

image of the disturbance

Secondary

path

    Residual

 acceleration

PAA

Primary path

Parameter adaptation algorithm

-1

Feedforward 

compensator

(b)

Figure 4. Feedforward AVC: in open loop (a) and with adaptive feedforward compensator (b)

The block diagrams of adaptive feedforward compensation associated with an AVC
or an ANC system when an image of the disturbance is available, are shown in fig. 4.
The open loop configuration is shown in fig. (4(a)). The case when the Youla-Kucera
compensator is active is shown in fig. (4(b)). For adaptive IIR feedforward compen-
sators see I. Landau et al. (2011). s(t) is the disturbance and d(t) is the correlated
measurement with the disturbance (the image of the disturbance). The primary (D),
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secondary (G) and reverse (positive coupling) (M) paths represented in (4(b)) are
respectively characterized by the asymptotically stable transfer operators:

D(q−1) =
BD(q

−1)

AD(q−1)
=

bD1 q
−1 + ...+ bDnBD

q−nBD

1 + aD1 q
−1 + ...+ aDnAD

q−nAD

, (56)

G(q−1) =
BG(q

−1)

AG(q−1)
=

bG1 q
−1 + ...+ bGnBG

q−nBG

1 + aG1 q
−1 + ...+ aGnAG

q−nAG

, (57)

M(q−1) =
BM (q−1)

AM (q−1)
=

bM1 q
−1 + ...+ bMnBM

q−nBM

1 + aM1 q
−1 + ...+ aMnAM

q−nAM

, (58)

with BX = q−1B∗

X for any x ∈ {D,G,M}. Ĝ and M̂ denote the identified (estimated)
models of G and M10. The optimal IIR feedforward compensator which will minimize
the residual acceleration can be written, using the Youla-Kucera parametrization (Q-
parametrization), as

NF (q
−1) =

R(q−1)

S(q−1)
=
R0(q

−1)−AM (q−1)Q(q−1)

S0(q−1)−BM (q−1)Q(q−1)
(59)

where the optimal polynomial Q(q−1) has a FIR structure:

Q(q−1) = q0 + q1q
−1 + ...+ qnQ

q−nQ . (60)

and R0(q
−1), S0(q

−1) = 1+q−1S∗

0(q
−1) are the polynomials of the central (stabilizing)

filter and AM (q−1), BM (q−1) are given in (58).

The estimated Q polynomial is denoted by Q̂(q−1) or Q̂(θ̂, q−1) when it is a linear

filter with constant coefficients or Q̂(t, q−1) during estimation (adaptation).
The input of the feedforward filter is denoted by ŷ(t) and it corresponds to the

measurement provided by the primary transducer (force or acceleration transducer in
AVC or a microphone in ANC) in the absence of the compensation loop ( in open
loop operation ŷ(t) = d(t)). The output of the feedforward filter (which is the control

signal applied to the secondary path) is denoted by û(t) = û(t+1|θ̂(t+1)) (a posteriori

output). The a priori output û0(t+ 1) = û(t+ 1|θ̂(t)) is given by:

û0(t+ 1) = −S∗

0 û(t) +R0ŷ(t+ 1) + Q̂(t, q−1)[B∗

M û(t)−AM ŷ(t+ 1)], (61)

where û(t), û(t−1), ... are the ”a posteriori” outputs of the feedforward filter generated
by

û(t+ 1) = −S∗

0 û(t) +R0ŷ(t+ 1) + Q̂(t+ 1, q−1)[B∗

M û(t)−AM ŷ(t+ 1)]. (62)

The measured input to the feedforward filter satisfies the following equation (when
feedforward compensation is active)

ŷ(t+ 1) = d(t+ 1) +
B∗

M (q−1)

AM (q−1)
û(t). (63)

10Like for the feedback compensation it is assumed that a reliable model identification is achieved and therefore
the estimated models are considered to be equal to the real models
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The unmeasurable value of the output of the primary path is denoted x(t). The
unmeasurable ”a priori” output of the secondary path will be denoted ẑ0(t+ 1).

ẑ0(t+ 1) = ẑ(t+ 1|θ̂(t)) =
B∗

G(q
−1)

AG(q−1)
û(t) (64)

The ”a posteriori” unmeasurable value of the output of the secondary path is denoted
by:

ẑ(t+ 1) = ẑ(t+ 1|θ̂(t+ 1)) (65)

The a priori adaptation error is defined as:

ν0(t+ 1) = ν(t+ 1|θ̂(t)) = −e0(t+ 1) = −x(t+ 1)− ẑ0(t+ 1) (66)

where e0(t+ 1) is the measured residual noise or acceleration (or force). The ”a pos-
teriori” adaptation error (computed) will be given by:

ν(t+ 1) = ν(t+ 1|θ̂(t+ 1)) = −x(t+ 1)− ẑ(t+ 1). (67)

When using an estimated filter N̂F with constant parameters: û0(t) = û(t), ẑ0(t) =
ẑ(t) and ν0(t) = ν(t).

The objective is to develop stable recursive algorithms for adaptation of the pa-
rameters of the Q filter such that the measured residual error (acceleration or force in
AVC, noise in ANC) be minimized in the sense of a certain criterion. This has been
done for broadband disturbances d(t) (or s(t)) with unknown and variable spectral
characteristics and an unknown primary path model.

4.2. Parameter adaptation algorithm

The algorithm for adaptive feedforward compensation has been developed under the
following hypotheses:

(1) The signal d(t) is bounded (which is equivalent to say that s(t) is bounded and
W (q−1) in figure 4 is asymptotically stable).

(2) It exists a central feedforward compensator N0
F (R0, S0) which stabilizes the

inner positive feedback loop formed by N0
F and M such that its characteristic

polynomial 11

P0(z
−1) = AM (z−1)S0(z

−1)−BM (z−1)R0(z
−1) (68)

is a Hurwitz polynomial.
(3) (Perfect matching condition) It exists values of the Q filter parameters such that

G ·AM (R0 −AMQ)

AMS0 −BMR0
= −D. (69)

11The parenthesis (q−1) will be omitted in some of the following equations to make them more compact.
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(4) The effect of the measurement noise upon the measurement of the residual ac-
celeration is neglected (deterministic context).

Then resulting algorithms have been analyzed when hypoteses 3 and 4 have been
removed in I. Landau et al. (2012).

A first step in the development of the algorithms is to establish for a fixed estimated
compensator a relation between the error on the Q-parameters (with respect to the
optimal values) and the adaptation error ν ( i.e. the residual acceleration or noise).
This equation has the form (I. Landau et al. (2012)):

ν(t+ 1/θ̂) =
AM (q−1)G(q−1)

P0(q−1)
[θ − θ̂]Tφ(t), (70)

where θ, θ̂ and φ are given respectively by:

θT = [q0, q1, q2, . . . , qnQ
] (71a)

θ̂T = [q̂0, q̂1, q̂2, . . . , q̂nQ
] (71b)

φT (t) = [α(t+ 1), α(t), . . . , α(t− nQ + 1)]. (71c)

α(t+ 1) = BM ŷ(t+ 1)−AM û(t+ 1)

= B∗

M ŷ(t)−AM û(t+ 1) (71d)

where qi are the coefficients of the optimal Q-filter and q̂i are the coefficients of the
fixed estimated Q̂-filter.

Filtering the vector φ by an asymptotically stable filter L(q−1), eq. (70) becomes

ν(t+ 1/θ̂) =
AM (q−1)G(q−1)

P0(q−1)L(q−1)
[θ − θ̂]Tφf (t) (72)

with

φf (t) = L(q−1)φ(t) (73)

= [αf (t+ 1), αf (t), . . . , αf (t− nQ+1)],

where

αf (t+ 1) = L(q−1)α(t+ 1). (74)

Eq. (72) will be used to develop the adaptation algorithms.

When the parameters of Q̂ evolve over time and neglecting the non-commutativity
of the time varying operators (which implies slow adaptation Anderson et al. (1986)
i.e., a limited value for the adaptation gain), equation (72) transforms into12

ν(t+ 1/θ̂(t+ 1) =
AM (q−1)G(q−1)

P0(q−1)L(q−1)
[θ − θ̂(t+ 1)]Tφf (t). (75)

Eq. (75) has the standard form of an ”a posteriori adaptation error equation”

12However, exact algorithms can be developed taking into account the non-commutativity of the time varying
operators - see I. D. Landau, Lozano, et al. (2011)
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I. D. Landau, Lozano, et al. (2011), which immediately suggests to use the follow-
ing parameter adaptation algorithm:

θ̂(t+ 1) = θ̂(t) + F (t)ψ(t)ν(t+ 1) (76a)

ν(t+ 1) =
ν0(t+ 1)

1 + ψT (t)F (t)ψ(t)
(76b)

F (t+ 1) =
1

λ1(t)



F (t)−
F (t)ψ(t)ψT (t)F (t)

λ1(t)
λ2(t)

+ ψT (t)F (t)ψ(t)



 (76c)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2;F (0) = αI;αmax > α > 0 (76d)

ψ(t) = φf (t) (76e)

where λ1(t) and λ2(t) allow to obtain various profiles for the adaptation gain F (t) (see
I. D. Landau, Lozano, et al. (2011)).

Two choices for the filter L will be considered:
Algorithm I L = Ĝ
Algorithm II

L =
ÂM

P̂0

Ĝ (77)

where

P̂0 = ÂMS0 − B̂MR0. (78)

Equation (75) for the a posteriori adaptation error has the form:

ν(t+ 1) = H(q−1)[θ − θ̂(t+ 1)]Tψ(t), (79)

where

H(q−1) =
AM (q−1)G(q−1)

P0(q−1)L(q−1)
, ψ = φf . (80)

Using the results of I. D. Landau, Lozano, et al. (2011) asymptotic stability will be
assured provided that the transfer funtion

H ′(z−1) = H(z−1)−
λ

2
, max

t
[λ2(t)] ≤ λ < 2 (81)

is a strictly positive real (SPR) transfer function.
Remark 1: For algorithm II, the stability condition (81) for λ2 = 1 can be trans-

formed into Ljung and Söderström (1983)

∣

∣

∣

∣

∣

∣

(

AM (e−jω)

ÂM (e−jω)
·
P̂0(e

−jω)

P0(e−jω)
·
G(e−jω)

Ĝ(e−jω)

)

−1

− 1

∣

∣

∣

∣

∣

∣

< 1 (82)
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for all ω, which is always true provided that the estimates of M and G are close to
the true values (the differences between P0 and P̂0 depend only upon the estimation

errors of M̂).

4.3. Comparison with IIR adaptive feedforward compensators

Lets focus now on the differences between the IIR adaptive compensator given in
I. Landau et al. (2011) and the YK adaptive compensator. Without going into the
details, using a standard adaptive feedforward compensator there is also a strictly
positive real condition to be satisfied in order to guarantee asymptotic stability. This
condition has the form of eq. (81) where H will be given by:

H(q−1) =
AM (q−1)G(q−1)

P (q−1)L(q−1)
, ψ = φf . (83)

where P is given by

P = ÂMS − B̂MR. (84)

and R and S are the numerator and denominator of the IIR compensator. Therefore
a filter L similar to the one used above will be considered, but it will depend on the
estimations of R and S.

Remark 1: For YK FIR the filter L depends on R0 and S0 which are known a priori
while for IIR feedforward compensators the filter L depends on estimates of R and S
requiring a specific procedure for starting the algorithm (initialization horizon) I. Lan-
dau et al. (2011).
Remark 2: For IIR adaptive compensators, provided that the SPR condition is satis-
fied, the poles of the internal ”positive” loop will be asymptotically stable but they
can be very close to the unit circle (they can be inside of a circle of radius 0.99999..).
This may induce some numerical problems in practice (when using truncation or fixed
point arithmetic).

Remark 3: The central YK controller allows to assign the poles of the internal closed
loop. Therefore one can impose that all the poles of the internal loop be inside of a
circle of radius 1− δ, δ > 0 (δ takes care of the numerical approximations).

Remark 4: If a model based initial IIR compensator is available, it can not in
general be used to initialize the parameters of the IIR adaptive compensator since
often the number of parameters of the fixed compensator is higher than the number
of parameters of the adaptive IIR compensator. The situation is different for YK
adaptive compensator where any initial stabilizing compensator can be used whatever
its complexity is.

4.4. Adaptive feedforward compensation using IIR YK compensator

Adaptive feedforward compensators using an IIR YK parametrization have been also
developed and implemented. See I. D. Landau et al. (2013). The important questions
to be answered are related to the relative advantages of using FIR or IIR.
The number of adjustable parameters
The main advantage of the IIRYK adaptive feedforward compensators compared with
FIRYK adaptive compensators is that they require a significantly lower number of
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adjustable parameters for a given level of performance (a reduction by a factor of 2 in
the application reported in I. D. Landau et al. (2013)). This is without doubt a major
practical advantage in terms of implementation complexity.
The poles of the internal positive closed-loop
For FIRYK, the poles of the internal positive feedback loop are assigned by the cen-
tral stabilizing controller and they remain unchanged under the effect of adaptation.
For IIRYK, part of the poles of the internal positive feedback loop are assigned by
the central stabilizing controller but there are additional poles corresponding to the
denominator of the IIR YK filter. These poles will be asymptotically inside the unit
circle if the positive real condition for stability is satisfied.

Implementation of the filter L
For IIRYK adaptive compensators a filter L is also used, but it will depend on an
estimation of the denominator of the IIR YK filter, therefore an initialization procedure
is necessary (which is not the case for FIR YK adaptive compensators).

Influence of the initial stabilizing controller
The performances of IIRYK adaptive compensator are less sensitive than those of
FIRYK adaptive compensator with respect to the performances of the initial model
based stabilizing controller.

4.5. Combing adaptive feeforward and adaptive feedback compensation

Combining adaptive feedforward compensation with fixed feedback compensation
Alma, Landau, and Airimitoaie (2012) or with adaptive feedback compensation Airim-
itoaie and Landau (2018) lead to the improvement of the performances. However there
is a strong interaction between the feedback compensator and the adaptive feedforward
compensator. The filters used in the implementation of the parameter adaptation algo-
rithm for feedforward compensation will depend upon the current value of the feedback
controller parameters.

5. Experimental results

5.1. Feedback compensation of narrow band disturbances

There are many papers reporting results in using Youla Kucera parametrization for re-
jection of narrow band disturbances in active vibration control and in adaptive active
noise control. See Ben Amara et al. (1999b)Ben Amara et al. (1999a),I. D. Landau,
Alma, et al. (2011)Ficocelli and Ben Amara (2009)I. Landau et al. (2005),Martinez
and Alma (2012),I. Landau et al. (2016), Airimitoaie and Landau (2016), I. Landau,
Airimitoaie, and Castellanos Silva (2015) among other references.
To validate comparatively the various approaches to adaptive rejection of multiple
narrow band disturbances in active vibration control, a benchmark is available. The
synthesis of the results of the benchmarking can be found in I. Landau et al. (2013) as
well as in the references of the contributors: Aranovskiy and Freidovich (2013),Airimi-
toaie, Castellanos Silva, and Landau (2013),Castellanos-Silva, Landau, and Airimitoaie
(2013),Castellanos-Silva et al. (2016),de Callafon and Fang (2013),Chen and Tomizuka
(2013),Karimi and Emedi (2013),Wu and Ben Amara (2013).
A recent application paper using adpative Youla Kucera feedback compensation is
Wu, Zhang, Chen, and Wang (2018)
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5.2. Adaptive feedforward compensation of broad band disturbances

The use of Youla - Kucera parametrization in adaptive feedforward control being
more recent, there are less references available for experimental results. See Zeng and
de Callafon (2006),I. Landau et al. (2012),I. D. Landau et al. (2013).

6. Conclusions

The present paper has tried to survey the use of the Youla-Kucera parametrization
in active vibration and noise control. The advantages of using this parametrization
both in adaptive feedback configurations as well as in adaptive feedforward compen-
sation schemes have been enhanced. The developments and applications considered
have assumed that the compensatory path is characterized by a model with constant
parameters with small uncertainties. System identification allows to identify accurate
models which are used for design.
The challenging issue for some new potential applications is to explore the use of the
Youla-Kucera parametrization in the presence of large variations of the model of the
compensatory path. This involve as an intermediate step to assess the effect of plant
parameter uncertainties upon the current used schemes (see for example Mullhaupt
and Bonvin (2012)).
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