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Abstract
Elliott and Müller (2006) considered the problem of testing for general types of

parameter variations, including infrequent breaks. They developed a framework that
yields optimal tests, in the sense that they nearly attain some local Gaussian power
envelop. The main ingredient in their setup is that the variance of the process gener-
ating the changes in the parameters must go to zero at a fast rate. They recommended
the so-called ˆqLL test, a partial sums type test based on the residuals obtained from
the restricted model. We show that for breaks that are very small, its power is indeed
higher than other tests, including the popular sup-Wald test. However, the differences
are very minor. When the magnitude of change is moderate to large, the power of
the test is very low in the context of a regression with lagged dependent variables or
when a correction is applied to account for serial correlation in the errors. In many
cases, the power goes to zero as the magnitude of change increases. The power of the
sup-Wald test does not show this non-monotonicity and its power is far superior to the
ˆqLL test when the break is not very small. We claim that the optimality of the ˆqLL
test does not come from the properties of the test statistics but the criterion adopted,
which is not useful to analyze structural change tests. Instead, we use fixed-break size
asymptotic approximations to assess the relative efficiency or power of the two tests.
When doing so, it is shown that the sup-Wald test indeed dominates the ˆqLL test and,
in many cases, the latter has zero relative asymptotic efficiency.
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1 Introduction

The problem of testing for structural changes has been an active area of theoretical and

applied research for over 50 years (see Perron, 2006). In the last fifteen years or so, substantial

advances have been made to cover models at a level of generality that allows a host of

interesting practical applications in the context of unknown change points. These include

models with general stationary regressors and errors that can exhibit temporal dependence

and heteroskedasticity. In this respect, Andrews (1993) considered the limit distribution

of the so-called Sup-type tests, which are based on the maximal value of some statistic

over possible break dates within a pre-specified set that excludes some proportion of the

data near the beginning or the end of the sample. Bai and Perron (1998) generalized this

approach to the case of multiple structural changes in the context of the linear model.

Andrews and Ploberger (1994) developed an asymptotic analysis based on a local asymptotic

framework, whereby the parameters under the alternative hypothesis are made local to the

null value. These tests are optimal in the sense that they maximize a weighted average of

the local asymptotic power envelop. More recently, Elliott and Müller (2006) (henceforth

EM) considered the problem of testing for general types of parameter variations, including

infrequent breaks. They developed a framework that yields optimal tests, in the sense that

they (nearly) attain some local Gaussian power envelop. The main ingredient in their setup is

that the variance of the process generating the changes in parameters must go to zero at a fast

rate. This allows them to show that all small sample efficient tests for parameter instability

are asymptotically equivalent. Hence, one does not need to specify the exact nature of the

alternative hypothesis to have a test that is efficient and optimal against any such particular

alternative hypothesis. The dramatic implication is that one can choose any such small

sample efficient test and it will be so-called optimal when some conditions are satisfied,

the most important being that the breaks are local to zero as the sample size increases.

Accordingly, they recommend the ˆqLL test, an extension of the most powerful invariant

test in a Gaussian unobserved component model as analyzed by Franzini and Harvey (1983)

and Shively (1988). They show the validity of their test under general conditions including

dynamic models and models with serially correlated errors provided it is “robustified” to

account for this correlation. In the terminology of Perron (2006), the ˆqLL test is a partial

sums type test, as initially proposed by Gardner (1969). It is based on the residuals obtained

from the model restricted to satisfy the null hypothesis of no change.

This result appears quite impressive as one can make a very wide class of tests to be
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“optimal”. Moreover, the literature that uses the ˆqLL indeed labels it as an “optimal” test

for changes in parameters. Our claim in this paper is that the framework EM adopt to yield

an optimality criterion is rather useless, in the sense that it labels as optimal a test with

very bad finite sample properties when confronted with practically relevant types of breaks.

The main problem is the adoption of a framework in which the breaks are local to zero.

Such a setup used to derive optimality criteria has already been shown to be inadequate in

other contexts. Deng and Perron (2008) considered the CUSUM and CUSUM of squares

tests (Brown, Durbin and Evans, 1975) and showed that the local asymptotic theoretical

framework can give a very unreliable guide to the finite power function, especially when

dynamics are involved with the errors and a correction is applied to account for this. Kim

and Perron (2009) also criticized the local asymptotic framework used by Andrews and

Ploberger (1994). They compared the asymptotic relative efficiency of the Exp, Mean, and

Sup functionals of the Wald, LM and LR tests for structural change using the criterion of

the relative approximate Bahadur slopes of the tests. They showed that tests based on the

Mean functional are inferior to those based on the Sup and Exp when the same base statistic

is used. Also, for a given functional, the Wald-based test dominates the LR-based test,

which dominates the LM-based test. They also compared tests based on the Wald and LM

statistics modified with a HAC estimator. In this case, the inferiority of the LM-based tests

is especially pronounced. They assessed the relevance of these theoretical results in finite

samples via simulations. The results are in contrast to those of Andrews and Ploberger

(1994), based on a local asymptotic framework, and revealed its potential weaknesses in the

context of structural change problems.

In this paper, we analyze the power of the ˆqLL test. We show that for very small breaks,

its power is indeed higher than other tests, including the popular sup-Wald test. However,

the differences are very minor. Conversely, when the magnitude of change is moderate to

large, we show that the power of the test is very low in the context of a regression with lagged

dependent variables or when a correction is applied to account for serial correlation in the

errors. In many cases, the power goes to zero as the magnitude of change increases. The

power of the sup-Wald test does not show this non-monotonicity and its power is far superior

to the ˆqLL test when the break is not very small. The same can be said of the UDmax test

of Bai and Perron (1998). Overall, the results show that the ˆqLL test permits very modest

gains in power in a static regression with serially uncorrelated errors and small breaks but

has serious deficiencies in dynamic models or when a correction for serial correlation is

applied. According to the framework EM adopt to define the optimality criterion used, the
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sup-Wald test is not optimal while the ˆqLL test is. In this sense, the claims of optimality

do not come from the properties of the test statistics but the criterion adopted. Hence, we

argue that such a framework to analyze structural change test is inadequate 1. As in Deng

and Perron (2008), we use asymptotic approximations for fixed break sizes to assess the

relative efficiency of two tests. We show that the sup-Wald test has higher power than the
ˆqLL test unless the break size is very small and, in many cases, the latter has zero relative

asymptotic efficiency, in the sense that its power goes to zero when the break is large. An

earlier version of this paper used the concept of relative Bahadur (1960) efficiency to compare

the two tests, as in Kim and Perron (2009). To simplify the exposition we resort to fixed-

break asymptotic approximations. The conclusions are identical since both tests have the

same tail behavior and the Bahadur efficiency measure reduces to comparing the limit values

(properly scaled) under the alternative hypothesis. We show that the fixed-break asymptotic

framework delivers better predictions about the finite sample properties compared to a local

asymptotic framework, and that according to this criterion the sup-Wald is more efficient

(powerful) in most cases.

It is important to note that we make no claim about any optimality property for the

sup-Wald. Andrews and Ploberger (1995) showed that the sup-Wald is optimal (in some

sense) against distant alternatives. But this result is of little comfort since they also showed

the sup-LM to enjoy the same properties. As shown in Kim and Perron (2009), the power

properties of the sup-LM are dramatically inferior those of the sup-Wald in the context

of a regression with lagged dependent variables or when a correction is applied to account

for serial correlation in the errors. This discrepancy again occurs because Andrews and

Ploberger (1995) also adopt a local asymptotic framework.

The paper is organized as follows. Section 2 presents the model and tests considered.

Section 3 motivates the problems to be analyzed with some empirical examples and we

show that the ˆqLL test fails to reject while the sup-Wald test gives p-values close to zero.

Section 4 presents simulation evidence on the finite sample properties of the tests for four

types of parameters changes including those used by EM. Section 5 provides an asymptotic

comparison of the ˆqLL and sup-Wald tests using the fixed-break asymptotic approximations.

Section 6 offers brief concluding remarks and an appendix contains technical derivations.

1For an early example of the potential pitfalls of local asymptotic analyses in the context of tests with
non-monotonic power, see Nelson and Savin (1990).
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2 The model and tests considered

The problem of interest is the following. We have a linear regression model given by:

yt = X 0
tβt + et, (1)

for t = 1, ..., T . Under the null hypothesis, the parameter vector β of dimension k is constant

throughout the sample, i.e., H0 : βt = β̄ for all t. Under the alternative hypothesis, there is

at least one change in β occurring within the sample, i.e., H1 : βt 6= β̄ for some t.

We now describe the test statistics to be analyzed. The ˆqLL test statistic of EM is

constructed as follows:

Step 1. Compute the OLS residuals {êt} from regressing {yt} on {Xt}.

Step 2. Construct a consistent estimator V̂X of the k×k long-run covariance matrix of
{Xtet}. If et can be assumed serially uncorrelated, a natural choice is a heteroskedas-
ticity robust estimator. For the more general case of possibly autocorrelated errors,

many such estimators have been suggested; see, e.g., Newey and West (1987) and

Andrews (1991).

Step 3. For each t = 1, ..., T , compute {ût} = {V̂X−1/2Xtêt} and denote the k elements of
{ût} by {ût,i}, i = 1, ..., k.

Step 4. For each series {ût,i}, compute a new series {ω̂t,i}, where ω̂t,i = r̄ω̂t−1,i +∆ût,i and

ω̂1,i = û1,i, with r̄ = 1− c/T and c = 10.

Step 5. Compute the sum of squared residuals from OLS regressions of {ω̂t,i} on {r̄t} for
each i and sum these over i = 1, ..., k.

Step 6. Multiply this sum of sum of squared residuals by r̄, and subtract
Pk

i=1

PT
t=1û

2
t,i to

obtain the test statistic ˆqLL.

The sup-Wald test statistic is the maximal value of the Wald test statistics over the

permissible break dates, i.e., SW = supλ∈Λ�WT (λ), where Λ� = [�, 1 − �] is the set of the

possible break fractions. For the linear regression model with i.i.d. errors, the Wald test

statistic is given by

WT (λ) = T

µ
SSRTr − SSRT (λ)

SSRT (λ)

¶
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where SSRTr and SSRT (λ) are the restricted and the unrestricted sum of squared residuals,

respectively. The latter is obtained from the regression

yt = X1(λ)
0
tβ1 +X2(λ)

0
tβ2 + et(λ), (2)

where X1(λ)
0
t = Xt if t < [Tλ] and 0 otherwise, while X2(λ)

0
t = Xt if t ≥ [Tλ] and 0

otherwise. When correcting for possible serial correlation in the errors,

WT (λ) =
1

T

µ
T − 2k

k

¶
β̂
0
H 0(HV̂ (β̂)H 0)−1Hβ̂,

where β̂ = (β̂1, β̂2) is the OLS estimate from (2), H is the conventional matrix such that

(Hβ̂)0 = (β̂
0
1 − β̂

0
2), and V̂ (β̂) is an estimate of the variance covariance matrix of β̂ that is

robust to serial correlation and heteroskedasticity, i.e.,

V̂ (β̂) = T (X̄ 0X̄)−1V̂X(X̄ 0X̄)−1 (3)

where X̄ = [X1(λ),X2(λ)]. Whenever a correction for serial correlation is needed, we shall

use Andrews’ (1991) method, so that

V̂X = Γ̂0 +
T−1X
j=1

κ(j,m)[Γ̂j + Γ̂0j]

where Γ̂j = T−1
PT

t=j v̂tv̂t−j and κ(j,m) is a kernel function with bandwidthm, v̂t = Xtêt for

the ˆqLL test and for the sup-Wald test, v̂t = Xtê(λ)t, with ê(λ)t the OLS residuals from the

unconstrained regression (2). Below, we use the Bartlett window and choose the bandwidth

using the method of Andrews (1991) with an AR(1) approximation. In the scalar case, the

method implies that m = 1.1447(αT )1/3, where α = 4ρ̂/(1− ρ̂2)2 and ρ̂ is the OLS estimate

from a first-order autoregression applied to v̂t (the results are qualitatively similar using

other windows). If only a correction for heteroskedasticity is applied, then V̂X = Γ̂0.

Throughout, we use tests with a 5% nominal size so that with one coefficient allowed to

change, the decision rule for the ˆqLL is to reject when the statistic is less than 8.36 (see

EM) and that for the Wald test, using a trimming � = 0.15, is to reject when the statistic is

greater than 8.85 (see Andrews, 1993). The choice of the trimming is dictated by the desire

to have tests with roughly the same critical values so that the relative power properties can

be properly evaluated. If anything, it favors the ˆqLL since its critical value is less in absolute

terms.
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3 Motivation

It is useful to start with empirical examples to illustrate the main issues involved. We first

consider the US (ex-post) real interest rate series over the period 1961:1-1986:3 (the three-

month treasury bill rate, deflated by the CPI inflation rate taken from the Citibase data

bank). It is the same series analyzed by Garcia and Perron (1996) and Bai and Perron

(2003). We reproduce the series in Figure 1. Garcia and Perron (1996) argued that the

series was basically a white noise process around a mean that exhibited two changes, one

in 1972:3 and one in 1980:3. Using more sophisticated procedures, Bai and Perron (2003)

argued for the presence of a third small break in 1966:4. As can be seen from the figure, the

change in 1980:3 is very large (7.44%), the change in 1972:3 is moderate (2.67%) and the

change in 1966:4 is small (0.95%). This series therefore fits the framework of EM quite well,

in the sense that one can view the changes in mean occurring with some small probability

and random magnitude.

This is a simple problem of changes in mean so that the relevant regressor is a constant. It

is important first to check if the residuals are correlated under the null hypothesis since this

dictates the appropriate versions of the tests to use. To do so here, one must simply assess

whether the demeaned series shows evidence of autocorrelation. The Lagrange Multiplier

test statistic for serial correlation up to order four is highly significant with a value of 54.42

(the first-order serial correlation of the estimated residuals is 0.628). We therefore need to

correct any statistic used for the presence of serial correlation in the errors. We apply non-

parametric corrections, the so-called robust versions of the tests as described in the previous

section. The value of the ˆqLL test is -6.51, which is insignificant, even at the 10% level. On

the other hand, the value of the sup-Wald test is 74.50, which is highly significant with a

p-value 2 less than 0.001 3.

Another example of similar results can be found in Giacomini and Rossi (2006). They

considered testing for structural change in a regression of the growth rate of industrial

production on the difference between long-term and short-term interest rates. Their model

implies serially correlated errors so that a correction is needed. Even though they fix the

bandwidth a priori, the results show overwhelming rejections with Wald-type tests and non-

rejections with the ˆqLL and LM-type tests.

2Throughout, p-value refers to “asymptotic p-value”.
3The value of the sup-Wald test for two changes considered in Garcia and Perron (1996) and Bai and

Perron (1998) is 48.26, also highly significant. The UDmax test of Bai and Perron (1998) is also highly
significant with a value of 56.53.
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Consider now an example involving a regression with a lagged dependent variable so

that if the model is well specified, the errors are uncorrelated and there is no need for a

correction. Musso, Stracca and van Dick (2009) study instability and nonlinearity in the

Euro Area Phillips curve. A specification they consider is the following simple model:

πt = μ+ απt−1 + βxt + et (4)

where πt is the inflation rate (here the GDP Deflator) and xt is a measure of the output gap
4 (the data are quarterly for the period 1970:1 and 2005:4, see Musso et al., 2009, for more

details 5). Lags of ∆πt and∆xt can be added but the results reported below are qualitatively

similar. Using a time varying parameter model, Musso et al. (2009) argue that a large change

in the mean of inflation μ and a small change in the slope parameter β have occurred, and

that once these changes are accounted for, there is no evidence of changes in the persistence

parameter α. We applied the ˆqLL and sup-Wald tests to this regression to test for a change

in μ. The ˆqLL test is unable to reject the null hypothesis of no change (the value is -5.255,

so that the p-value is well above 10%). On the contrary, and in accordance with the results

of Musso et al. (2009), the sup-Wald test overwhelmingly rejects the null hypothesis (the

value is 129.31, so that the p-value is well below 0.001). With the specification (4), neither

of the tests are able to reject the null hypothesis of no change in β. However, if three lags of

∆πt are added to the regression, both reject at the 5% level despite the fact that the change

is modest (the values are -14.192 for the ˆqLL and 10.57 for sup-Wald).

The goal of this paper is to explain why in all three examples, the ˆqLL test has no power

against large parameter changes while the sup-Wald has high power and why both have

similar power against small changes.

4 Some simulation results

We start with simulation experiments to illustrate the problems to be addressed. The sim-

ulations are based on a simple regression with one regressor (k = 1). The data generating

process is

yt = μ+ xtβt + et, (5)

4We used the first principle component of the following six indicators: the three versions of the output
gap estimates based on the production function approach using three varieties of unobserved components
models and the three types of filtered real GDP estimates using three different filters. See Musso et al.
(2007) for more details, who also use other measures. We also tried, as they suggest, a simple average of
these six indicators with no change in qualitative results.

5We are grateful to Dick van Dijk for supplying us with the data.
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with et ∼ N(0, σe), and where the regressor xt is a simple AR(1) process of the form

xt = zt + κ,

zt = ρzt−1 + vt,

with vt ∼ i.i.d. N(0, σ2v). We set κ = 5, μ = 0, ρ = 0.5 and σe = σv = 1 in all cases. The

results are robust to variations in the DGP but it is important that the mean of the regressor

κ be non-zero. We consider the power of the ˆqLL test, the sup-Wald test, the UDmax test

of Bai and Perron (1998), as well as Nyblom’s (1989) test Ny defined by

Ny =
1

T 2σ̂2
tr[Q−1

TX
t=1

StS
0
t],

where St =
PT

j=tXtêt, Q = T−1
PT

t=1XtX
0
t, and σ̂2 = T−1

PT
t=1 ê

2
t . We consider four types

of parameter variations for the coefficient βt, given by the following models:

Model A: βt = βt−1 + εt, εt ∼ i.i.d.N(0, σ2), β0 = 0,

Model B: βt = θIt>[Tλc],

Model C: βt = ηIt>[Tλrc ], η ∼i.i.d. N(0, σ2),

Model D: βt =

[T/20]X
i=2

ηiI[20(i−1)<t≤20i], ηi ∼ i.i.d. N(0, σ2),

where λc = 0.5, λ
r
c is uniformly distributed on the unit interval, and ti = 1, ..., [T/20]. Model

A specifies a random walk behavior for the coefficient; Model B, a one time break of fixed

magnitude θ at a fixed date [Tλc]; Model C, a one time break of some random magnitude at

some random date; and Model D, a break of random magnitude every 20 observations. Note

that Models A, C, and D can be viewed as satisfying the conditions stated in EM for the
ˆqLL test to be viewed as optimal. Here, the parameter that indexes the magnitude of the

break is σ2, the variance of the shocks affecting βt. Model B does not satisfy the conditions

for the ˆqLL to be optimal given that the break is non-random, but we include it since the

sup-Wald test is especially designed for this case. Also, Models C and D are those used by

EM to document the finite sample performance of their test. Unless otherwise indicated,

T = 100 and throughout, the results are obtained from 3,000 replications. We computed

both rejection frequencies and size-adjusted power. But given that the size distortions are

very small (as will be shown in the figures), the conclusions are the same using either measure

of power and we report only raw power.
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We compute the power function of four tests: the ˆqLL, the sup-Wald, Nyblom’s test

(5% critical value xxx), and the UDmax test of Bai and Perron (1998) with the maximum

number of breaks set to 5 (with a 15% trimming so that the 5% critical value is xxx). We

consider three versions for each test: a) the “static case” for which the investigator assumes

a priori that the errors are serially uncorrelated and homoskedastic and hence, the regression

is (5) and the non-robust versions of the tests are used 6; b) the “robust case” for which no

such assumption about the nature of serial correlation in the errors is made and, hence, the

robust versions of the tests are used, as described in Section 2; and c) the “dynamic case”

where a lagged dependent variable is included, either as part of the model or to account for

serial correlation in a more parametric fashion and the non-robust versions of the tests are

applied to the regression

yt = αyt−1 + xtβt + et. (6)

The fact that we set α = 0 and, hence, that the lagged dependent variable is an irrelevant

regressor is completely inconsequential. With a non-zero value, the power loss of the ˆqLL

reported below would simply occur earlier and be exacerbated.

The results for Models A and B are presented in Figure 2, while those for Models C and

D are presented in Figure 3. We plot the power of the tests as a function of σ for Models

A, C, and D, and as a function of θ for Model B. Consider first the static case presented in

the top panels. For Models A, C, and D with very small breaks, the test ˆqLL indeed has

the highest power. For larger breaks, the power of all tests is basically the same. For Model

B, the sup-Wald is slightly more powerful, as expected. But again the differences are minor

and vanish as the magnitude of the break increases. The results for Models C and D are

consistent with those reported in EM. It should be noted that the differences between the
ˆqLL and the sup-Wald tests are very minor so one could draw the conclusion that, though

not a member of the family of optimal tests as considered by EM, the sup-Wald test is

nevertheless nearly as efficient.

Things are very different when considering the robust versions of the tests, which correct

for potential serial correlation. These results are presented in the second panels. In all cases,

the power of the ˆqLL test initially increases with the magnitude of the breaks but quickly

decreases (sometimes to zero) subsequently. This is also the case for Nyblom’s test. But the

power of the sup-Wald test does not show this non-monotonicity and its power is far superior

to the ˆqLL test when the break is not very small. The same can be said of the UDmax test,

6We also considered assuming a priori no serial correlation but applying a correction for heteroskedasticity.
The results are similar to those of the “static case” and, hence, are not reported.
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which has the best overall performance. Similar results are obtained when considering the

“dynamic case” in which the regression has a lagged dependent variable, given in the third

panel.

Overall, the results show that the ˆqLL test permits modest gains in power in the “static

case” but has serious deficiencies in dynamic models or when correcting for serial correlation.

Some may argue that the relevant case is that of the “static regression”. But we argue this is

not so. Indeed, a careful investigator would rarely use a static regression with no correction

for serial correlation because if breaks are present, the estimated residuals will exhibit serial

correlation. Take the simple case of a single change, random or fixed. Then the residuals

will exhibit a change in mean. As shown in Perron (1990), this change will cause an increase

in the sum of the autoregressive coefficients in an autoregression fitted to the series (here

the fitted residuals). Hence, a test for serial correlation applied to the estimated residuals

will be significant unless the break is very small. A similar logic applies to multiple breaks,

including a random walk process. To document this, Figures 4 and 5 present the power of the

LM test for serial correlation up to order 4 in the residuals for each of the four models when

estimating the static regression. In all cases, the power increases as the magnitude of the

breaks increases. We also present the mean of the estimates of the autoregressive coefficient

in an AR(1) model applied to the fitted residuals. The results show that it increases rapidly

and flattens out at a level below one (see Perron, 1990, for an explanation in the single break

case). Thus, an investigator who has no prior knowledge about the presence or absence

of serial correlation in the residuals would, upon performing a test for serial correlation,

conclude that the robust version is needed when the breaks are not very small. The top

panels of Figures 4 and 5 present the power of the hybrid version of the ˆqLL test. By

“hybrid”, we mean that if a test for serial correlation in the residuals does not reject, the

non-robust version is used, otherwise the robust version is used. As expected, the power

initially increases but quickly drops as the magnitude of change increases. So the good finite

sample performance of the ˆqLL test as reported in EM crucially depends on prior knowledge

that the errors are not serially correlated, knowledge that is unavailable in practice.

These simulation results go a long way in explaining the empirical findings reported in

the previous section. For the real interest rate series, there is at least one very large change

in mean. This break contaminates the estimated residuals when fitting a restricted model

that allows only for an intercept, as required to construct the ˆqLL test. Accordingly, it

biases the estimate of the long-run variance to correct for serial correlation in a way that

reduces power to a very low level. The simulation results also explain the lack of power when
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the regressors include a lagged dependent variable and the break is large, as in the example

discussed in Section 3. The loss of power in the case of a model with a lagged dependent

variable is especially interesting. It shows that the problem of the ˆqLL does not occur solely

because it does not get the right scaling pertaining to get the correction for serial correlation

as in the robust case. The sup-Wald does not get it right either (except for a one time break)

and yet does not suffer from such problems in both the robust and dynamic cases.

In the next section, we provide a theoretical analysis of the properties of the ˆqLL and sup-

Wald tests based on fixed-break asymptotic approximations. These will show that indeed,

in all cases, the ˆqLL test has zero asymptotic efficiency compared to the sup-Wald test when

a correction for serial correlation in the errors is applied or when a dynamic regression is

involved. With a static regression and the prior knowledge of no serial correlation, the two

tests have similar properties and in some cases, the sup-Wald actually dominates.

5 Asymptotic comparisons using fixed-break asymptotic approximations

We carry the theoretical analysis for the random walk Model A, Model B involving a one-

time change of non-random magnitude at some fixed date, as well as for a random level

shift model for the parameters, which is suitable for Models C and D. Throughout, we shall

maintain (1) as the data-generating process and impose the following high-level assumptions

on the regressors and errors as in Kim and Perron (2009), where as a matter of notation,

kXk denotes the L2-norm of a random matrix X, i.e., ||X|| = (Pi

P
j E |Xij|2)1/2.

Assumption 1 Let vt = etXt, E(vtv0t−j) = Γj, and Σ = Γ0+
P∞

j=1(Γj +Γ0j). Then E(vt) =

0, supj∈{0,...,LT } supr∈[0,1] ||T−1
P[Tr]

t=1 vtv
0
t−j−rΓj|| = op(1) for LT = o(T ) (Γ−j = Γ0j), and the

partial sums of vt satisfy the functional central limit theorem T−1/2
P[Tr]

t=1 vt ⇒ Σ1/2Wk(r),

where Wk(r) is a k-dimensional Wiener process defined on [0, 1]. Note that if the errors vt
are uncorrelated, then Σ = Γ0.

Assumption 2 The regressors are such that

sup
j∈{0,...,LT }

sup
r∈[0,1]

||T−1
[Tr]P

t=j+1

XtX
0
t−j − rQj|| = op(1), (7)

where LT = o(T ), Q−j = Q0
j, and Qj is some non-singular fixed matrix bounded uniformly

in j, i.e., sup|j|≤LT ||Qj|| ≤ c <∞.
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Assumption 3 T−1
PT

t=1 kXtX
0
tk2 = Op(1), and with LT = o(T ),

sup
r∈[0,1]

||T−1
[Tr]P

t=j+1

XtX
0
tXtX

0
t − rMM 0|| = op(1),

sup
j∈{0,...,LT }

sup
r∈[0,1]

||T−1
[Tr]P

t=j+1

XtX
0
tXtX

0
t−j − rMjM

0
j|| = op(1),

sup
j∈{0,...,LT }

sup
r∈[0,1]

||T−1
[Tr]P

t=j+1

XtX
0
tXt−jX 0

t−j − rMjjM
0
jj|| = op(1),

where M , Mj, and Mjj are some fixed matrices bounded uniformly in j.

5.0.1 The random walk model

In this first case, we suppose that βt is generated by a random walk process, i.e.,

βt = βt−1 + εt, (8)

with εt is a k-dimensional i.i.d. vector process with E(εt) = 0, E(εtε0t) = Λ and E(εtet−j) = 0

for all j. Also, εt is uniform mixing with mixing coefficient φ of size −r/(2r − 2) or strong
mixing with mixing coefficient α of size −r/(r − 2), r > 2. We also assume that εt and Xt

are uncorrelated so that the following functional central limit theorem holds:

T−3/2
[Tr]X
t=1

XtX
0
tβt ⇒ QΛ

Z r

0

W (s)ds,

where W (s) is the k-dimensional standard Wiener process and “ ⇒ ” denotes weak con-

vergence under the Skorohod topology. We also define the Ornstein-Uhlenbeck process

Wc(s) ≡ W (s) − c
R s
0
e−c(s−λ)W (λ)dλ. We start with the case of the static regression for

which the investigator has prior knowledge that the errors are serially uncorrelated. Note

that here and throughout the paper, the symbol Op(1) stands for a variable that is stochas-

tically bounded but is not op(1).

Theorem 1 Assume that the ˆqLL and sup-Wald (SW ) tests are constructed from the static

regression (5) with no correction for serial correlation and that the data are generated by (1)

with βt specified by the random walk (8), then:

T−1qL̂L⇒ tr[V̄
−1/2
X QΛΞΛ0Q0V̄ 0−1/2

X ] = Op(1)

12



uniformly in kΛk, where

V̄X ≡MΛ[
R 1
0
WW 0 − R 1

0
W
R 1
0
W 0]Λ0M 0

and

Ξ ≡ R 1
0
WcW

0
c −

R 1
0
WW 0 +

R 1
0
W
R 1
0
W 0 − 2c

1− e−2c
R 1
0
e−crW

R 1
0
e−crW 0.

Also,

T−1SW ⇒ SSRr∗ − SSR∗(λ̄)
SSR∗(λ̄)

= Op(1),

uniformly in kΛk, where

SSRr∗ ≡ R 1
0
W 0Λ0QΛW − R 1

0
W 0Λ0QΛ

R 1
0
W,

SSR∗(λ) ≡ R 1
0
W 0Λ0QΛW − 1

λ

R λ
0
W 0Λ0QΛ

R λ
0
W − 1

1− λ

R 1
λ
W 0Λ0QΛ

R 1
λ
W,

and λ̄ is the value of λ that minimizes SSR∗(λ) over the set [�, 1− �].

Consider the case with a single regressor that is a constant. The tests then amount

to distinguishing between an i.i.d. process and a IMA(1, 1) process. The expressions in

Theorem 1 reduce to

T−1 ˆqLL⇒
hR 1

0
W 2dr − (R 1

0
Wdr)2

i−1
Ξ (9)

and

T−1SW⇒ SSRr∗ − SSR∗(λ̄)
SSR∗(λ̄)

, (10)

where

SSR∗(λ) =
R 1
0
W 2dr − 1

λ
(
R 1
0
Wdr)2 +

2

λ

R 1
0
Wdr

R 1
λ
Wdr − 1

λ(1− λ)
(
R 1
λ
Wdr)2,

SSRr∗ =
R 1
0
W 2dr − (R 1

0
Wdr)2,

and again λ̄ is the value of λ that minimizes SSR∗(λ) over the set [�, 1− �].

Note that, appropriately scaled, the limits of the ˆqLL and sup-Wald tests are random

in this case. Also, in the case of a single regressor, they do not depend on any nuisance

parameters. This is because in the limit, the random walk component dominates. Since the

power depends on the relative variances of the shocks et and those affecting βt, we should not

expect a good finite sample approximation for small breaks. Nevertheless, it is instructive to

compare the mean of the limit random variables in both cases. To that effect, we simulated

the random variables in (9) and (10) using 1,000 steps to approximate the Wiener process
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and 1,000 replications. The negative of the mean of the random variable in (9) is 1.13. The

mean of the random variable in (10) depends on the trimming used to search for the break

dates that minimizes the sum of squared residuals. For � = 0.15, the value is 2.01. We

performed a similar analysis of the DGP used in the simulations of Section 4. In this case,

the mean of the limit distribution of the sup-Wald test is essentially the same, while the

mean of the limit distribution of the ˆqLL test is somewhat smaller at 0.76. These values are

large enough to imply that both tests reject when T = 100 at a size of 5%. The cdf of the

limit distribution of the sup-Wald test almost uniformly dominates that of the ˆqLL test even

when Λ = 1, a small value (the limiting cdf of (minus) the ˆqLL test is to the right only for

the extreme left tail). But the numerical results predict that both tests will have good (and

similar) finite sample power as documented in the simulations [xxx Get the probabilities that

each test rejects when T = 100 for various values of Λ].

We now turn to the case where one accounts for possible serial correlation in the errors

using a non-parametric correction. In the case of the ˆqLL test, this amounts to replacing the

variance estimate V̂X by ˆh(0), i.e., an estimate of the spectral density function at frequency

zero. Typically, it is obtained using a weighted sum of the autocovariances of {v̂t = Xtêt}
so that

ˆh(0) = Γ̂0 +
T−1X
j=1

κ(j,m)[Γ̂j + Γ̂0j] (11)

where Γ̂j = T−1
PT

t=j v̂tv̂
0
t−j and κ(·) is a kernel function with bandwidth m. Suppose we

use the Bartlett kernel for κ(·) and Andrews’ (1991) data dependent method for selecting
the bandwidth based on an AR(1) approximation then the following results hold.

Theorem 2 Assume that the ˆqLL and sup-Wald (SW ) tests are constructed from the static

regression (5) and that the process is generated by (1) with βt specified by the random walk

(8). Suppose the serial correlation in the errors is accounted for using an estimate of the form

(11) with the Bartlett kernel and the bandwidth chosen by Andrew’s (1991) data dependent

method based on an AR(1) approximation. a) If {M −M11}ii = 0 for all i, where {Z}ii is
the ith diagonal element of the matrix Z, then

qL̂L⇒ tr[h̄(0)−1/2QΛΞΛ0Q0h̄(0)0−1/2] = Op(1)

uniformly in kΛk, where h̄(0) ≡ limT→∞ T−1
PT

j=−T κ(j,mT )Γ̄j, with mT ≡ 1.1447(ᾱT )1/3,
ᾱ ≡ φ−2, Γ̄j ≡MjjΛ[

R 1
0
WW 0 − R 1

0
W
R 1
0
W 0]Λ0M 0

jj, Ξ as defined in Theorem 1, and

φ ≡ −W (1)
2 − (R 1

0
W )2 +W (1)

R 1
0
WR 1

0
W 2 − (R 1

0
W )2

.
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Also,

SW ⇒ (
1

λ∗
Λ
R λ∗
0
W − 1

1− λ∗
Λ
R 1
λ∗W )

0Q0[h̄1(0) + h̄2(0)]
−1Q

×( 1
λ∗

Λ
R λ∗
0
W − 1

1− λ∗
Λ
R 1
λ∗W ) = Op(1)

uniformly in kΛk, where λ∗ is the value of λ that maximizes the limit of the Wald test

over the set [�, 1− �], h̄i(0) ≡ limT→∞ T−1
PT

j=−T κ(j,mi,T )Γ̄i,j (i = 1, 2), with mi,T ≡
1.1447(ᾱiT )

1/3, ᾱi ≡ φ−2i ,

Γ̄1,j ≡ MjjΛ[
R λ∗
0
WW 0 − R λ∗

0
W
R λ∗
0
W 0]Λ0M 0

jj,

Γ̄2,j ≡ MjjΛ[
R 1
λ∗WW 0 − R 1

λ∗W
R 1
λ∗W

0]Λ0M 0
jj,

φ1 ≡
−W (λ∗)2 − (R λ∗

0
W )2 +W (λ∗)

R λ∗
0
W

(
R λ∗
0
W 2)− (R λ∗

0
W )2

,

and

φ2 ≡
−(W (1)−W (λ∗))2 − (R 1

λ∗W )
2 + (W (1)−W (λ∗))

R 1
λ∗WR 1

λ∗W
2 − (R 1

λ∗W )
2

.

b) If {M −M11}ii 6= 0 for some i, then

T−2/3qL̂L⇒ tr[h̄(0)−1/2QΛΞΛ0Q0h̄(0)0−1/2] = Op(1)

uniformly in kΛk, where h̄(0) ≡ limT→∞ T−1/3
PT

j=−T κ(j,mT )Γ̄j, with Γ̄j, Ξ and mT as

define in part (a), ᾱ ≡ 4ρ̄2/[(1− ρ̄2)2], and ρ̄ ≡M2
11/M

2. Also,

T−2/3SW ⇒ (
1

λ∗
Λ
R λ∗
0
W − 1

1− λ∗
Λ
R 1
λ∗W )

0Q0 £h̄1(0) + h̄2(0)
¤−1

Q

×( 1
λ∗

Λ
R λ∗
0
W − 1

1− λ∗
Λ
R 1
λ∗W ) = Op(1)

uniformly in kΛk, where λ∗ is the value of λ that maximizes the limit of the Wald test over
the set [�, 1− �], h̄i(0) ≡ limT→∞ T−1/3

PT
j=−T κ(j,mi,T )Γ̄i,j (i = 1, 2), with Γ̄i,j, mi,T , ᾱ and

ρ̄ as defined directly above for the limit of the qL̂L test.

Though the results are quite complex, we can simulate these limit distributions. Note

that we approximate h̄(0) with a scaled average where T = 100. Similarly mT is evaluated

at T = 100. We ran simulations for the DGP considered in the simulations of Section 4, as

specified by (5). This is a case where part (b) of Theorem 2 applies since M 6= M11. The

means, as a function of Λ, are presented in Figure 6. The figure shows that the limit is
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invariant to Λ, as in the static case with i.i.d. errors. But, we can use these limit results to

see what the theory predicts about the likelihood of a rejection. For a given sample size T , a

rejection will occur if the realization of the limit random variable is above the critical values

divided by T 2/3 (using − ˆqLL). As in the simulations, we considered 5% tests. The relevant

critical values are plotted as the dotted line in each panel. The results predict that on average

the ˆqLL test will not reject, while the sup-Wald will. To get a better description in terms

of the probability of rejecting, the second panel in Figure 6 presents the cdfs of the limit

random variables. The results clearly show that the ˆqLL test has a very small probability

of rejecting when Λ = 1 and nearly none if Λ = 15, while the sup-Wald test has large

rejection probabilities in both cases. These theoretical predictions are in accordance with

the simulations. Though, these results are DGP specific, we found that the same features

hold for other specifications.

Suppose now that we use a dynamic regression of the form (6) with a lagged dependent

variable as a regressor. The results are stated in the next theorem.

Theorem 3 Assume that the ˆqLL and sup-Wald (SW ) tests are constructed from a dynamic

regression of the form (6), with a lagged dependent variable as a regressor, and the process

is generated by (1), with βt specified by the random walk (8). Then,

T−1qL̂L⇒ tr[V̄
−1/2
X [Q− ᾱQ1]ΛΞΛ

0[Q− ᾱQ1]
0V̄ 0−1/2

X ] = Op(1)

uniformly in ||Λ||, where Ξ is as defined in Theorem 2, and

ᾱ ≡ {R 1
0
W 0Λ0QΛW − R 1

0
W 0Λ0Q0

1Q
−1Q1Λ

R 1
0
W}−1{R 1

0
W 0Λ0Q1ΛW −

R 1
0
W 0Λ0Q1Λ

R 1
0
W},

and

V̄X = MΛ[
R 1
0
WW 0 − R 1

0
W
R 1
0
W 0]Λ0M 0 + ᾱ2MQ−1Q1Λ

R 1
0
W
R 1
0
W 0Λ0Q0

1Q
0−1M 0

+ᾱ2M11Λ
R 1
0
WW 0Λ0M 0

11 − 2ᾱM1Λ[
R 1
0
WW 0 − R 1

0
W
R 1
0
W 0]Λ0M 0

1

−ᾱ2M1Q
−1Q1Λ

R 1
0
W
R 1
0
W 0Λ0M 0

1 − ᾱ2M1Λ
R 1
0
W
R 1
0
W 0Λ0Q0

1Q
0−1M 0

1.

Also,

T−1SW ⇒ SSRr∗ − SSR∗(λ̄)
SSR∗(λ̄)

= Op(1)

uniformly in ||Λ||, where λ̄ is the value of λ that minimizes SSR∗(λ) over the set [�, 1− �],

SSRr∗ ≡ (1 + ᾱ2)
R 1
0
W 0Λ0QΛW − 2ᾱ R 1

0
W 0Λ0Q1ΛW

− R 1
0
W 0Λ0[Q− ᾱQ1]

0Q−1[Q− ᾱQ1]Λ
R 1
0
W,
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and

SSR∗(λ) ≡ (1 + ᾱ2u)
R 1
0
W 0Λ0QΛW − 2ᾱu

R 1
0
W 0Λ0Q1ΛW

−1
λ

R λ
0
W 0Λ0[Q− ᾱuQ1]

0Q−1[Q− ᾱuQ1]Λ
R λ
0
W

− 1

1− λ

R 1
λ
W 0Λ0[Q− ᾱuQ1]

0Q−1[Q− ᾱuQ1]Λ
R 1
λ
W,

with

ᾱu ≡ {R 1
0
W 0Λ0QΛW − 1

λ

R λ
0
W 0ΛQ0

1Q
−1Q1Λ

R λ
0
W − 1

1− λ

R 1
λ
W 0ΛQ0

1Q
−1Q1Λ

R 1
λ
W}−1

×{R 1
0
W 0Λ0Q1ΛW − 1

λ

R λ
0
W 0Λ0Q1Λ

R λ
0
W − 1

1− λ

R 1
λ
W 0Λ0Q1Λ

R 1
λ
W}.

and ᾱ as defined above.

The above expressions are quite complex. Consider the mean shift model with Xt = {1}
for all t. Then,

T−1qL̂L⇒ c2Λ2
R 1
0
W 2

c − cΛ2 − 2cσ2e − (2cΛ2/(1− e−2c))[Wc(1)− c
R 1
0
e−crWc]

2

Λ2 + 2σ2e
= Op(1)

and

T−1SW ⇒ {−2(ᾱ− ᾱu)[
1

2
Λ2 (W (1)− 1)− σ2e] + Λ2W (1)2 − Λ2W (λ)2 − Λ2W (1− λ)2

−ᾱ2Λ2 R 1
0
W 2 + ᾱ2u

1

λ
Λ2(
R λ
0
W )2 + ᾱ2u

1

1− λ
Λ2(
R 1
λ
W )2}/(Λ2 + 2σ2e) = Op(1),

where

ᾱ ≡ [(1/2)(W (1)2 − 1)− σ2e/Λ
2 −W (1)

R 1
0
W ]/[

R 1
0
W 2 − (R 1

0
W )2]

and

ᾱu ≡
(1/2)(W (1)2 − 1)− σ2e/Λ

2 −W (λ)(1/λ)
R λ
0
W −W (1− λ)

R 1
λ
W/(1− λ)R 1

0
W 2 − (1/λ)(R λ

0
W )2 − (R 1

λ
W )2/(1− λ)

We again simulated these limit distributions for the DGP specified by (5). The means,

as a function of Λ, are presented in the first panel of Figure 7 along with the critical values

pertaining to a 5% test and T = 100. The results predict that on average the ˆqLL test

will not reject while the sup-Wald will. The second and third panels present the cdfs of the

limit random variables for Λ = 1 and Λ = 15. The results clearly show that the ˆqLL test

has again a near-zero probability of rejecting and that this probability is not affected by the

value of Λ, while the sup-Wald has a large probability of rejecting for both values. These

theoretical predictions are in accordance with the simulations discussed above.
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5.1 Infrequent Breaks Model

We now consider a model that specifies relatively rare occurrences of shifts in the parameters

that is suitable for Models C and D. The specification is as follows:

βt =
tX

j=1

δT,j, δT,t = πT,tηt (12)

Here, ηt ∼ i.i.d. (0,Λ) and πT,t is a binomial variable that takes value 1 with probability p/T

and value 0 with probability (1− p/T ), i.e. πT,t ∼ i.i.d. B(p/T, 1). We also assume that the

components πT,t and ηt are mutually independent. Note that the parameter p is independent

of the sample size T . Hence, as T increases, the level shifts become relatively rare. This is

an important ingredient that will allow us to derive interesting results. Intuitively, we need

this specification to model structural changes, i.e., relatively infrequent events that affect the

time series properties of the parameters in a permanent fashion. If p/T converges to some

value in (0, 1), the model is best construed as depicting a standard unit root process. This

model is the most interesting to analyze since it bridges the gap between the two extremes

of random walk parameter variations and a single change at some known date. Also, it does

not suffer from the discontinuity problem present in the random walk model. Finally, it is

more in line with the type of processes for which the ˆqLL is especially designed.

A crucial ingredient used here is a Functional Central Limit Theorem for the cumulative

level shifts process uT,t. This has been considered by Georgiev (2002) and Leipus and Viano

(2003). The results relevant to our analysis are stated in the following lemma.

Lemma 1 (Georgiev, 2002; Leipus and Viano, 2003) Consider βt specified by (12) with

0 < p < ∞ and define uT (s) =
P[Ts]

t=1 δT,t, then uT (s) ⇒ J(s), where J(s) is a compound

Poisson process defined by J(s) =
PN(s)

j=0 ηj with N(s) being a Poisson process with jump

intensity p, independent of ηj for all j.

We have the following theorem for the three scenarios considered.

Theorem 4 a) Assume that the ˆqLL and sup-Wald (SW ) test statistics are constructed

from the static regression (5) with no correction for serial correlation and that the process is

generated by (1) with βt specified by the random level shift model (12), then

T−1qL̂L⇒ tr[V̄
−1/2
X QΛΨΛ0Q0V̄ 0−1/2

X ] = Op(1)
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uniformly in kΛk, where Ψ is a function of J(r) defined by (A.14) in the appendix and

V̄X ≡ σ2eQ+MΛ[
R 1
0
JJ 0 − R 1

0
J
R 1
0
J 0]Λ0M 0.

Also,

T−1SW ⇒ SSRr∗ − SSR∗(λ̄)
SSR∗(λ̄)

= Op(1),

where

SSRr∗ ≡ σ2e +
R 1
0
J 0Λ0QΛJ − R 1

0
J 0Λ0QΛ

R 1
0
J,

SSR∗(λ) ≡ σ2e +
R 1
0
J 0Λ0QΛJ − 1

λ

R λ
0
J 0Λ0QΛ

R λ
0
J − 1

1− λ

R 1
λ
J 0Λ0QΛ

R 1
λ
J,

and λ̄ is the value of λ that minimizes SSR∗(λ) over the set [�, 1− �].

We again considered simulating the limit random variables to assess the relative efficiency

of the two tests for the DGP used in Section 4. The results are presented in Figure 8, which

reports the means and cdfs of the limit random variables pertaining to the qL̂L and sup-

Wald tests for p/T = 0.05, 0.10, and 0.50 (along with the critical values corresponding to

a 5% size test with T = 100). Looking at the cdfs of the limit distributions, the sup-Wald

and qL̂L are nearly as powerful for small alternatives (Λ = 1). On the other hand, the

sup-Wald dominates the qL̂L for large alternatives [xxGet some numbers on the power of

the two test for T = 100, Λ = 1, 15 and p/T = 0.05, 0.10, and 0.50]. What transpires from

these results is the fact that both tests will perform well in the static case, with good power

that is monotonic as documented in the simulations.

Consider now the case where a correction for serial correlation is applied. We then have

the following results.

Theorem 5 Assume that the ˆqLL and sup-Wald (SW ) tests are constructed from the static

regression (5) and that the process is generated by (1) with βt specified by the random level

shift model (12). If the serial correlation in the errors is accounted for using an estimate of

the form (11) with the Bartlett kernel and the bandwidth chosen by Andrew’s (1991) data

dependent method based on an AR(1) approximation. Then, a) If {M −M11}ii = 0 for all

i, where {Z}ii is the ith diagonal element of the matrix Z, then

T−2/3qL̂L⇒ tr[h̄(0)−1/2QΛΞΛ0Q0h̄(0)0−1/2] = Op(kΛk−4/3)
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uniformly in kΛk, where h̄(0) ≡ limT→∞ T−1/3
PT

j=−T κ(j,mT )Γ̄j with mT ≡ 1.1447(ᾱT )1/3,
ᾱ ≡ 4ρ̄2/(1− ρ̄2)2, Γ̄j ≡MjjΛ[

R 1
0
JJ 0 − R 1

0
J
R 1
0
J 0]Λ0M 0

jj, and

ρ̄ ≡ M2Λ2[
R 1
0
J2 − (R 1

0
J)2]

σ2eQ+M2Λ2[
R 1
0
J2 − (R 1

0
J)2]

.

Also,

T−2/3SW ⇒ (
1

λ∗
Λ
R λ∗
0
J − 1

1− λ∗
Λ
R 1
λ∗ J)

0Q0[h̄1(0) + h̄2(0)]
−1Q

×( 1
λ∗

Λ
R λ∗
0
J − 1

1− λ∗
Λ
R 1
λ∗ J) = Op(kΛk−4/3)

uniformly in kΛk, where λ∗ is the value of λ that maximizes the limit of the Wald test

over the set [�, 1− �], h̄i(0) ≡ limT→∞ T−1/3
PT

j=−T κ(j,mi,T )Γ̄i,j (i = 1, 2) with mi,T ≡
1.1447(ᾱiT )

1/3, ᾱi ≡ 4ρ̄2i /(1− ρ̄2i )
2,

Γ̄1,j ≡ MjjΛ[
R λ∗
0
JJ 0 − R λ∗

0
J
R λ∗
0
J 0]Λ0M 0

jj,

Γ̄2,j ≡ MjjΛ[
R 1
λ∗ JJ

0 − R 1
λ∗ J

R 1
λ∗ J

0]Λ0M 0
jj,

ρ̄1 ≡
M2Λ2

h
[
R λ∗
0
J2 − (R λ∗

0
J)2
i

σ2eQ+M2Λ2
h
[
R λ∗
0
J2 − (R λ∗

0
J)2
i ,

and

ρ̄2 ≡
M2Λ2[

R 1
λ∗ J

2 − (R 1
λ∗ J)

2]

σ2eQ+M2Λ2[
R 1
λ∗ J

2 − (R 1
λ∗ J)

2]
.

b) If {M −M11}ii 6= 0 for some i, then

T−2/3qL̂L⇒ tr[h̄(0)−1/2QΛΞΛ0Q0h̄(0)0−1/2] = Op(1)

uniformly in kΛk, where h̄(0) and Ξ are as defined in part (a) with

ρ̄ ≡ M2
11Λ

2[
R 1
0
J2 − (R 1

0
J)2]

σ2eQ+M2Λ2[
R 1
0
J2 − (R 1

0
J)2]

.

Also,

T−2/3SW ⇒ (
1

λ∗
Λ
R λ∗
0
J − 1

1− λ∗
Λ
R 1
λ∗ J)

0Q0[h̄1(0) + h̄2(0)]
−1Q

×( 1
λ∗

Λ
R λ∗
0
J − 1

1− λ∗
Λ
R 1
λ∗ J) = Op(1)
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uniformly in kΛk, where λ∗ is the value of λ that maximizes the limit of the Wald test over
the set [�, 1− �] and h̄i(0) is as defined in part (a) with

ρ̄1 ≡
M2
11Λ

2[
R λ∗
0
J2 − (R λ∗

0
J)2]

σ2eQ+M2Λ2[
R λ∗
0
J2 − (R λ∗

0
J)2]

,

and

ρ̄2 ≡
M2
11Λ

2
h
[
R 1
λ∗ J

2 − (R 1
λ∗ J)

2
i

σ2eQ+M2Λ2[
R 1
λ∗ J

2 − (R 1
λ∗ J)

2]
.

The results show that when {M −M11}ii = 0 for all i, as in the mean shift case, both tests
will eventually exhibit zero power as the magnitude of the variance of the shocks increases

since the limit values tend to zero (though for a fixed kΛk both tests are consistent). Things
are more interesting when {M −M11}ii 6= 0 for some i, as for the DGP used in the simulations
presented in Section 4. Here, both tests are again consistent but their scaled limit values

are increasing in kΛk, but they are Op(1) uniformly in kΛk. The question of interest for
assessing relative efficiency is how the limit distributions compare as a function of kΛk. This
is too complex to do for the general case so we again present results based on simulating

the limit distributions for the DGP considered in Section 4 (the method described in the

previous section is used to approximate h̄(0)). The results are presented in Figure 9, which

report the means and cdfs of the limit random variables pertaining to the qL̂L and sup-Wald

tests for p/T = 0.05, 0.10, and 0.50. Consider first the results for the qL̂L test. The mean

of the limit distribution initially increases (in absolute value) as Λ increases but quickly

drops down to a value below the critical value associated with a 5% test using a sample

with 100 observations. This decrease is quicker and more pronounced as the intensity of

the level shifts p/T increases. Hence, the theory predicts that on average the qL̂L test will

reject for small values of Λ but will not for larger values especially as the level shift intensity

increases. Things are similar for the sup-Wald test but there is one important difference. As

Λ increases, the mean of the limit random variable stabilizes to a value implying a rejection

for all values of Λ that are not very small. We plotted the cdf for a small (Λ = 1) and large

(Λ = 15) value of the variance of the shocks. The figures make clear that the probability of

rejecting the null hypothesis with the qL̂L test is small and shrinks as Λ increases or as the

intensity of the level shifts increases. On the other hand, the probability of rejecting with

the sup-Wald test is nearly one in all cases.

The next theorem pertains to the case with a lagged dependent variable as a regressor.
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Theorem 6 Assume that the ˆqLL and sup-Wald (SW ) tests are constructed from a dynamic

regression of the form (6) with a lagged dependent variable as a regressor and the process is

generated by (1) with βt specified by the random level shift model (12), then

T−1qL̂L⇒ tr[V̄
−1/2
X [Q− ᾱQ1]ΛΨΛ

0[Q− ᾱQ1]
0V̄ 0−1/2

X ] = Op(1)

uniformly in kΛk, where Ψ is defined by (A.14) in the appendix,

ᾱ ≡ {σ2e + [
R 1
0
J 0Λ0QΛJ ]− R 1

0
J 0Λ0Q0

1Q
−1Q1Λ

R 1
0
J}−1{R 1

0
J 0Λ0Q1ΛJ −

R 1
0
J 0Λ0Q1Λ

R 1
0
J},

and

V̄X = (1 + ᾱ2)σ2e +MΛ[
R 1
0
JJ 0 − R 1

0
J
R 1
0
J 0]Λ0M 0 + ᾱ2MQ−1Q1Λ

R 1
0
J
R 1
0
J 0Λ0Q0

1Q
0−1M 0

+ᾱ2M11Λ
R 1
0
JJ 0Λ0M 0

11 − 2ᾱM1Λ[
R 1
0
JJ 0 − R 1

0
J
R 1
0
J 0]Λ0M 0

1

−ᾱ2M1Q
−1Q1Λ

R 1
0
J
R 1
0
J 0Λ0M 0

1 − ᾱ2M1Λ
R 1
0
J
R 1
0
J 0Λ0Q0

1Q
0−1M 0

1.

Also,

T−1SW ⇒ SSRr∗ − SSR∗(λ̄)
SSR∗(λ̄)

= Op(1),

where λ̄ is the value of λ that minimizes SSR∗(λ) over the set [�, 1− �],

SSRr∗ ≡ (1 + ᾱ2)σ2e + (1 + ᾱ2)
R 1
0
J 0Λ0QΛJ − 2ᾱ R 1

0
J 0Λ0Q1ΛJ

− R 1
0
J 0Λ0[Q− ᾱQ1]

0Q−1[Q− ᾱQ1]Λ
R 1
0
J,

and

SSR∗(λ) ≡ (1 + ᾱ2u)σ
2
e + (1 + ᾱ2u)

R 1
0
J 0Λ0QΛJ − 2ᾱu

R 1
0
J 0Λ0Q1ΛJ

−1
λ

R λ
0
J 0Λ0[Q− ᾱuQ1]

0Q−1[Q− ᾱuQ1]Λ
R λ
0
J

− 1

1− λ

R 1
λ
J 0Λ0[Q− ᾱuQ1]

0Q−1[Q− ᾱuQ1]Λ
R 1
λ
J

with

ᾱu = {σ2e +
R 1
0
J 0Λ0QΛJ − 1

λ

R λ
0
J 0ΛQ0

1Q
−1Q1Λ

R λ
0
J − 1

1− λ

R 1
λ
J 0ΛQ0

1Q
−1Q1Λ

R 1
λ
J}−1

×{R 1
0
J 0Λ0Q1ΛJ − 1

λ

R λ
0
J 0Λ0Q1Λ

R λ
0
J − 1

1− λ

R 1
λ
J 0Λ0Q1Λ

R 1
λ
J}.

Again, the theoretical expressions are quite complex and do not lend themselves easily to

allow a comparison of the tests under general conditions. So we present simulations of the
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means and cdfs of the limit random variables for the DGP used in the simulations of Section

4. The results are presented in Figure 10, again for p/T = 0.05, 0.10 and 0.50. The results

are qualitatively similar to the case with no lagged dependent variable and a correction for

serial correlation. The mean of the limit random variable of the qL̂L test statistic initially

increases (in absolute value) with Λ but quickly starts decreasing as Λ increases and at a

lower value of Λ than for the case with a correction for serial correlation. The decrease in

the case of p/T = 0.50 happens so quickly that on average, the qL̂L test does not reject

for any value of Λ. On the other hand, the mean of the limit value of the sup-Wald test

does not decrease as Λ increases but stabilizes to a level that implies a clear rejection. This

becomes more pronounced as the intensity of the level shifts p/T decreases. The cdfs of the

limit random variables are presented for Λ = 1 and Λ = 15. When Λ = 1 and p/T is small,

the values imply a lower probability of rejection for the qL̂L than for the sup-Wald. When

Λ = 1 and p/T = 0.5 or when Λ = 15, the cdf corresponding to the sup-Wald test is much

further to the right of that of (minus) the qL̂L test so that the sup-Wald test has much

higher power, in accordance with the simulations.

5.2 Single break model

We now consider the case where the parameters exhibit a single break of fixed magnitude at

some fixed date:

βt = θIt>[Tλc], (13)

where θ is a vector of constants representing the magnitudes of the break, I is the indicator

function and λc ∈ [0, 1] represents the break fraction. The probability limits of the scaled
statistics are stated in the following theorem for the three scenarios considered. We first

consider the case where one imposes a priori the assumption that the errors are serially

uncorrelated.

Theorem 7 Assume that the ˆqLL and sup-Wald (SW ) tests are constructed from the static

regression (5) with no correction for serial correlation and that the process is generated by

(1) with βt specified by (13), then

p lim
T→∞

T−1qL̂L = tr[ξV̄
−1/2
X Qθθ0Q0V̄ 0−1/2

X ] = Op(1)

uniformly in kθk, where
V̄X ≡ σ2eQ+ λc(1− λc)Mθθ0M 0,
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and

ξ = λc(λc − 1) + 1
c
(1− λc +

1

2
λ2c)−

1

c
(1− λc)

2e−c

− 1
2c
(1− λc)

2e−2c − 1
c
(1− λc)e

−cλc +
1

c
(1− λc)e

c(λc−2) − 1

2c
e2c(λc−1)

− 1

2c(1− e−2c)

£
λc − 1 + (1− λc)e

−2c + e−cλc − ec(λc−2)
¤2
.

Also,

p lim
T→∞

T−1SW =
λc(1− λc)

σ2e
θ0Qθ = Op(kθk2)

so that SW dominates qL̂L for sufficiently large ||θ||.

The results in this case are qualitatively different from those of the other models in that

the limit values are non-stochastic functions of kθk and other parameters of the DGP. The
results reveal that the sup-Wald test dominates the qL̂L test for large enough values of the

magnitude of the shifts kθk, irrespective of the other features of the DGP (within the class
considered). This is so because the limit value of the sup-Wald test is an increasing function

of kθk while the limit value of the qL̂L test is uniformly bounded in kθk. For most DGPs
however, the limit values of both test statistics imply a rejection of the null hypothesis when

kθk is not too small. Nonetheless, it is interesting to compare the limit values as a function of
the magnitude of change. We do so again for the DGP considered in Section 4. The results

are presented in Figure 11 for θ ranging between 0 and 5. It turns out that the sup-Wald

test is far more efficient than the qL̂L test unless the magnitude of change is very small

(in which case, the probability of rejection is small). In particular, the limit value of the

qL̂L test flattens out as θ increases while that of the sup-Wald test increases exponentially.

The implication for the finite sample power of the two tests is that if a 5% test is used

both tests will have good and monotonic power (as documented in the simulations), but if a

(unrealistic) very small size was used the qL̂L would have lower power than the sup-Wald.

The next theorem covers the case where a non-parametric correction for serial correlation

in the errors is applied.

Theorem 8 Assume that the ˆqLL and sup-Wald (SW ) tests are constructed from the static

regression (5) and that the process is generated by (1) with βt specified by (13). If potential

serial correlation in the errors is accounted for using an estimate of the form (11) with the

Bartlett kernel and the bandwidth chosen by Andrew’s (1991) data dependent method based
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on an AR(1) approximation. a) If θ0(M11 −M)θ = 0 as kθk→∞, then

p lim
T→∞

T−1qL̂L = tr[ξh̄(0)−1/2Qθθ0Q0h̄(0)0−1/2] = Op(kθk−4/3)

uniformly in kθk, where h̄(0) ≡ limT→∞ T−1/3
PT

j=−T κ(j,mT )Γ̄j with mT ≡ 1.1447(ᾱT )1/3,
ᾱ ≡ 4ρ̄2/(1− ρ̄2)2, Γ̄j ≡ λc(1− λc)Mjjθθ

0M 0
jj, and

ρ̄ ≡ λc(1− λc)M
2θ2

σ2eQ+ λc(1− λc)M2θ2
.

b) If θ0(M11 −M)θ 6= 0, as kθk→∞, then

p lim
T→∞

T−1qL̂L = tr[ξh̄(0)−1/2Qθθ0Q0h̄(0)0−1/2] = Op(1)

uniformly in kθk, where h̄(0) is defined as above and

ρ̄ ≡ λc(1− λc)M
2
11θ

2

σ2eQ+ λc(1− λc)M2θ2
.

For the sup-Wald test, since Γ̂j
p→ 0 for j 6= 0 because the test uses unrestricted residuals in

the construction of ĥ(0), the results stated in Theorem 8 continue to apply so that in both

cases, SW dominates qL̂L for sufficiently large ||θ||.

When θ0(M11−M)θ = 0, as is the case in the mean shift model, the limit of the sup-Wald
test is an increasing function of kθk while that of the qL̂L test is decreasing in kθk. Hence
for kθk large enough, the sup-Wald test dominates the qL̂L test. Things are different when
θ0(M11−M)θ 6= 0, as is the case in the DGP used in Section 4 with an AR(1) process as the
regressor. Here, the limit of the sup-Wald test increases as kθk increases while the limit of
the qL̂L test is uniformly bounded in kθk. To get an idea of the implications of this, Figure
12 presents the limit values of the qL̂L and sup-Wald tests as functions of kθk for the DGP
of Section 4. It is clear that the limit value of the sup-Wald test increases rapidly with kθk.
However, the limit value of the qL̂L test initially increases with kθk but rapidly decreases
to stabilize at a low value, implying non-rejection. Hence, the qL̂L test will only reject for

small values of kθk while the sup-Wald test will reject for any value except, of course, very
small ones.

The last theorem covers the case with a lagged dependent variable as a regressor.

Theorem 9 Assume that the ˆqLL and sup-Wald (SW ) tests are constructed from a dynamic

regression of the form (6) with a lagged dependent variable as a regressor and the process is
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generated by (1) with βt specified by (13). Then,

p lim
T→∞

T−1qL̂L = tr[ξV̄
−1/2
X [Q− ᾱQ1]θθ

0[Q− ᾱQ1]
0V̄ 0−1/2

X ] = Op(1)

uniformly in kθk, where ξ is as defined in Theorem 7,

ᾱ ≡ £σ2e + (1− λc)θ
0Qθ − (1− λc)

2θ0Q1Q
−1Q1θ

¤−1
[λc(1− λc)θ

0Q1θ] ,

and

V̄X ≡ (1 + ᾱ2)σ2eQ+ ᾱ2(1− λc)M11θθ
0M 0

11

+(1− λc)M [λcθθ
0 + ᾱ2(1− λc)Q

−1Q1θθ
0Q0
1Q

−10]M 0

−ᾱ(1− λc)M1[2λcθθ
0 + ᾱ(1− λc)[Q

−1Q1θθ
0 + θθ0Q0

1Q
−10]]M 0

1.

Also,

p lim
T→∞

T−1SW =

µ
SSRr∗ − σ2e

σ2e

¶
= Op(kθk2),

where

SSRr∗ ≡ (1 + ᾱ2)σ2e + (1− λc)(1 + ᾱ2)θ0Qθ − 2(1− λc)ᾱθ
0Q1θ

−(1− λc)
2θ0[Q− ᾱQ1]

0Q−1[Q− ᾱQ1]θ

so that SW dominates qL̂L for sufficiently large ||θ||.

Here the results are qualitatively similar to the case with no lagged dependent variable

and a correction for serial correlation when θ0(M11 −M)θ 6= 0. Both statistics diverge at

rate T but the limit value of the qL̂L is uniformly bounded in kθk while that of the sup-
Wald test is an increasing function of kθk. Hence, for large enough kθk, the sup-Wald test
dominates. Though the theoretical expressions are complex, one can easily obtain numerical

values. This is done again for the case of the DGP of Section 4. The limit values as functions

of kθk are plotted in Figure 13. Again, this function is rapidly increasing as kθk increases
for the sup-Wald test so that it rejects for all but very small values of kθk. On the other
hand, while the limit value of the qL̂L initially increases with kθk, it quickly reverts back to
stabilize at a small value implying non-rejection. Hence, the sup-Wald dominates the qL̂L,

even for relatively small values of kθk.
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6 Conclusion

The usual methodology used to analyze the power of test statistics and suggest tests with

“optimal” properties relies on a local asymptotic framework where the magnitude of change

shrinks towards zero as the sample size increases. This approach was adopted by Andrews

and Ploberger (1994) who considered optimal tests based on maximizing some weighted

average of the local asymptotic power function. It was also the approach adopted by EM to

devise so-called optimal tests for general parameter variations. Our simulations have shown

that the ˆqLL test, labelled as optimal under this criterion, has very poor finite sample

properties. It offers gains over the sup-Wald test, which is not an optimal test under this

criterion, that are trivial when the break is small and there is no evidence of serial correlation

in the residuals of the regression. This minor gain is achieved at the expense of very large

power losses when considering models with serially correlated errors or dynamic models

including a lagged dependent variable. Our simulation results are corroborated by the use of

an alternative asymptotic framwork whereby the break sizes are fixed. Under this criterion,

the sup-Wald test dominates the ˆqLL test, which in some cases has zero relative asymptotic

efficiency (i.e., power goes to zero as the break size increases).

Our research, in conjunction with other work, has several implications. First, it implies

that one should abandon the use of a local asymptotic framework where the breaks are local to

zero in delivering optimality criteria. These type of frameworks do not yield useful predictions

about the finite sample properties of tests. Second, as argued in Perron (2006), one should

also abandon partial-sums type tests for which only a model restricted to satisfy the null

hypothesis of no change is used. These include the CUSUM, LM and ˆqLL tests, among

many others. These tests are plagued by the problem of a non-monotonic power function

such that the power of the test can go to zero as the magnitude of change increases. There is

no available alternative other than attempting to model, as best as possible, the nature of the

changes present in the data. The sup-Wald test does this to a first approximation by taking

the largest break into account. The UDmax test of Bai and Perron (1998) improves upon

the sup-Wald test by taking more breaks into account. It may be the case that these tests

are prone to size-distortions under the null hypothesis. Nevertheless, this is not a reason to

abandon them in favor of tests with poor power properties. On the contrary, our work and

others show that research should be directed at alleviating such size distortion problems.

For progress in this direction see, e.g., Diebold and Chen (1996), Hansen (2000), Kejriwal

(2009) and Prodan (2008).
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Appendix

Preliminaries for Theorems 1-9: Let ût = V̂
−1/2
X Xtêt and η̂t be a k×1 vector of residuals

whose ith component is the residual from a regression of {ω̂t,i} on {r̄t}, as defined in Step 5.
Then from the definition in Step 6 we have qL̂L = tr(Q̂), where

Q̂ = r̄
TP
t=1

η̂tη̂
0
t −

TP
t=1

ûtû
0
t

= r̄
TP
t=1

[ω̂t − (
TP
t=1

r̄2t)−1(
TP
t=1

r̄tω̂t)r̄
t][ω̂t − (

TP
t=1

r̄2t)−1(
TP
t=1

r̄tω̂t)r̄
t]0 −

TP
t=1

ûtû
0
t

=
TP
t=1

ω̂tω̂
0
t −

TP
t=1

ûtû
0
t −

c

T

TP
t=1

ω̂tω̂
0
t − (

TP
t=1

r̄2t)−1(
TP
t=1

r̄tω̂t)(
TP
t=1

r̄tω̂t)
0, (A.1)

with r̄ = 1− c/T . Using the fact that ω̂s = r̄ω̂s−1 + ûs − ûs−1, we have

ω̂s = ûs − c

T

s−1P
j=1

r̄j−1ûs−j (A.2)

for s = 2, ..., T and ω̂1 = û1. Summing from 1 through t− 1 gives
t−1P
s=1

ω̂s =
t−1P
s=1

r̄s−1ût−s. (A.3)

We can then show that the first two terms of (A.1) are given by

TP
t=1

ω̂tω̂
0
t −

TP
t=1

ûtû
0
t =

c2

T 2

TP
t=1

[
t−1P
s=1

r̄s−1ût−s][
t−1P
s=1

r̄s−1ût−s]0

− c

T

TP
t=1

ût[
t−1P
s=1

r̄s−1ût−s]0 − c

T

TP
t=1

[
t−1P
s=1

r̄s−1ût−s]û0t. (A.4)

For the fourth term of (A.1), we have

TP
t=1

r̄tω̂t =
TP
t=1

r̄tût − c

T

TP
t=1

r̄t
t−1P
s=1

r̄s−1ût−s. (A.5)

Since ût = V̂
−1/2
X Xtêt, it is useful to derive an expression in terms of v̂t = Xtêt, separating

V̂X from ût. By substituting (A.4) and (A.5) into (A.1) we obtain

Q̂ = V̂
−1/2
X

£
c2A1,T − c[A2,T +A02,T ]− cA3,T

−A−16,T × [A4,T − cA5,T ][A4,T − cA5,T ]
0¤ V̂ 0−1/2

X + τ t, (A.6)

where τ t is of lower order than the other terms uniformly in ||Λ||, V̂X = T−1
PT

t=1 v̂tv̂
0
t,

A1,T = T−2
PT

t=1[
Pt−1

s=1 r̄
s−1v̂t−s][

Pt−1
s=1 r̄

s−1v̂t−s]0, A2,T = T−1
PT

t=1 v̂t[
Pt−1

s=1 r̄
s−1v̂t−s]0, A3,T =
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T−1
PT

t=1 v̂tv̂
0
t, A4,T = T−1/2

PT
t=1 r̄

tv̂t, A5,T = T−3/2
PT

t=1 r̄
t
Pt−1

s=1 r̄
s−1v̂t−s, and A6,T =

T−1
PT

t=1 r̄
2t p→ (1/2c) [1− e−2c]. Our task is then to derive the limits of V̂X and Ai,T ,

i = 1, ..., 5.

For the proofs of Theorems 2-4 we shall use the following Lemma, whose results are by
now standard (e.g., Phillips, 1988).

Lemma A.1 Let yt =
Pt

i=1 (1− (c/T ))t−i εi and assume that εt is uniform mixing with
mixing coefficient φ of size −r/(2r − 2) or strong mixing with mixing coefficient α of size
−r/(r − 2), r > 2. Suppose further that E|ε| < ∆ < ∞ and E(εt) = 0 for t = 1, 2....
If {εt} is globally covariance stationary with nonsingular global covariance matrix Λ =

limT→∞ var(T−1/2
PT

t=1 εt), then a) T
−1/2y[Tr] ⇒ ΛWc(r); b) T−3/2

PT
t=1 yt ⇒ Λ

R 1
0
Wc(r)dr;

c) T−2
PT

t=1 yty
0
t ⇒ Λ

R 1
0
Wc(r)Wc(r)

0drΛ; and d) T−1
P[Tr]

t=1 (1− (c/T ))s
P[Tr]−s

t=1 εj ⇒ (1/c)Λ[W (r)−
Wc(r)], where Wc(r) =W (r)− c

R r
0
e−cςW (r − ς)dς.

Proof of Theorem 1 (random walk parameters, i.i.d. errors assumed): Under H0,
the OLS estimate of β is β̂ = [T−1

PT
t=1XtX

0
t]
−1[T−1

PT
t=1XtX

0
tβt+T−1

PT
t=1Xtet], so that

T−1/2β̂ ⇒ Λ
R 1
0
W (r)dr. The OLS residuals are given by

êt = et +X 0
tβt −X 0

tβ̂, (A.7)

which implies that
v̂t = Xtet +XtX

0
tβt −XtX

0
tβ̂. (A.8)

Using these representations, we have the following limit results for the components of Q̂:

T−1V̂X

= T−2
TP
t=1

v̂tv̂
0
t

= T−2
TP
t=1

{XtX
0
tβtβ

0
tXtX

0
t −XtX

0
tβtβ̂

0
XtX

0
t −XtX

0
tβ̂β

0
tXtX

0
t +XtX

0
tβ̂β̂

0
XtX

0
t}+ op(1)

⇒ MΛ[
R 1
0
WW 0 − R 1

0
W
R 1
0
W 0]Λ0M 0 ≡ V̄X = Op(kΛk2),

T−2A1,T

= T−4
TX
t=1

[
t−1P
s=1

r̄s−1v̂t−s][
t−1P
s=1

r̄s−1v̂t−s]0

= T−4
TX
t=1

{[
t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s][

t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]

0

−[
t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s][

t−1P
s=1

r̄s−1Xt−sX 0
t−sβ̂]

0 − [
t−1P
s=1

r̄s−1Xt−sX 0
t−sβ̂][

t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]

0

+[
t−1P
s=1

r̄s−1Xt−sX 0
t−sβ̂][

t−1P
s=1

r̄s−1Xt−sX 0
t−sβ̂]

0}+ op(1)
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⇒ 1

c2
QΛ[

R 1
0
(W −Wc)(W −Wc)

0]Λ0Q0 − 1
c
QΛ

R 1
0

¡R r
0
e−cςdς

¢
(W −Wc)dr

R 1
0
W 0Λ0Q0

−1
c
QΛ

R 1
0
W [
R 1
0

¡R r
0
e−cςdς

¢
(W −Wc)dr]

0Λ0Q0 +QΛ
R 1
0

¡R r
0
e−cςdς

¢2
dr
R 1
0
W
R 1
0
W 0Λ0Q0

= Op(kΛk2),

T−2A2,T = T−3
TX
t=1

v̂t[
t−1P
s=1

r̄s−1v̂t−s]0

= T−3
TX
t=1

{XtX
0
tβt[

t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]

0 −XtX
0
tβt[

t−1P
s=1

r̄s−1Xt−sX 0
t−sβ̂]

0

−XtX
0
tβ̂[

t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]

0 +XtX
0
tβ̂[

t−1P
s=1

r̄s−1Xt−sX 0
t−sβ̂]

0}+ op(1)

⇒ 1

c
QΛ[

R 1
0
(WW 0 −WW 0

c)]Λ
0Q0 −QΛ

R 1
0

¡R r
0
e−cςdς

¢
Wdr

R 1
0
W 0Λ0Q0

−1
c
QΛ

R 1
0
W [
R 1
0
(W −Wc)]

0Λ0Q0 +QΛ
R 1
0

R r
0
e−cςdςdr

R 1
0
W
R 1
0
W 0Λ0Q0 = Op(kΛk2),

T−2A3,T → 0k×k,

T−1A4,T = T−3/2
TP
t=1

r̄tv̂t = T−3/2
TP
t=1

r̄tXtX
0
tβt − T−3/2

TP
t=1

r̄tXtX
0
tβ̂ + op(1)

⇒ QΛ
R 1
0
e−crW −QΛ

R 1
0
e−cr

R 1
0
W = Op(kΛk),

T−1A5,T = T−5/2
TP
t=1

r̄t
t−1P
s=1

r̄s−1v̂t−s

= T−5/2
TP
t=1

r̄t
t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s − T−5/2

TP
t=1

r̄t
t−1P
s=1

r̄s−1Xt−sX 0
t−sβ̂ + op(1)

⇒ 1

c
QΛ[

R 1
0
e−cr(W −Wc)]−QΛ

R 1
0
e−cr

R r
0
e−cςdςdr

R 1
0
W = Op(kΛk).

Collecting terms, by (A.6) we have, T−1qL̂L⇒ tr{V̄ −1/2X QΛΞΛ0Q0V̄ 0−1/2}, where

Ξ =
R 1
0
WcW

0
c −

R 1
0
WW 0 +

R 1
0
W
R 1
0
W 0 − 2c

1− e−2c
R 1
0
e−crW

R 1
0
e−crW 0.

We now consider the limit of the sup-Wald test. The unrestricted OLS residuals allowing
for a single break at some λ ∈ [0, 1] are given by

ê(λ)t = et +X 0
tβt −X1(λ)

0
tβ̂1 −X2(λ)

0
tβ̂2, (A.9)
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where β̂1 and β̂2 are OLS estimates of β1 and β2. It is straightforward to show that T
−1/2β̂1 ⇒

(1/λ)Λ
R λ
0
W and T−1/2β̂2 ⇒ (1/(1 − λ))Λ

R 1
λ
W . Using (A.9), the unrestricted sum of

squared residuals is such that

T−2SSRT (λ) = T−2
TP
t=1

h
et +X 0

tβt −X1(λ)
0
tβ̂1 −X2(λ)

0
tβ̂2

i2
⇒ [

R 1
0
W 0Λ0QΛW ]− 1

λ

R λ
0
W 0Λ0QΛ

R λ
0
W − 1

1− λ

R 1
λ
W 0Λ0QΛ

R 1
λ
W

≡ SSR∗(λ) = Op(kΛk2),
while using (A.7), the restricted sum of squared residuals is such that

T−2SSRr
T = T−2

TP
t=1

h
et +X 0

tβt −X 0
tβ̂
i2

⇒ R 1
0
W 0Λ0QΛW − R 1

0
W 0Λ0QΛ

R 1
0
W ≡ SSRr∗ = Op(kΛk2).

By the continuous mapping theorem, the limit of the sup-Wald test is given by

T−1SW =

µ
T−2SSRr

T − T−2SSRT (λ̄T )

T−2SSRT (λ̄T )

¶
⇒
µ
SSRr∗ − SSR∗(λ̄)

SSR∗(λ̄)

¶
= Op(1),

where λ̄T is the value of λ that minimizes SSRT (λ) and λ̄ minimizes SSR∗(λ).

Proof of Theorem 2 (random walk parameters, correction for serial correlation):
If we take into account serial correlation in the errors, we replace V̂X with the heteroskedas-
ticity and autocorrelation robust estimate given by

ĥ(0) = V̂X + 2
T−1P
j=1

κ(j,m)Γ̂j,

where Γ̂j = T−1
PT

t=j+1 v̂tv̂
0
t−j. For the qL̂L test, this is constructed by using v̂t given in

(A.8). We first consider the limit of Γ̂j. We have,

T−1Γ̂j = T−2
TP

t=j+1

{XtX
0
tβtβ

0
t−jXt−jX 0

t−j −XtX
0
tβtβ̂

0
Xt−jX 0

t−j

−XtX
0
tβ̂β

0
t−jXt−jX 0

t−j +XtX
0
tβ̂β̂

0
Xt−jX 0

t−j}+ op(1)

⇒ MjjΛ[
R 1
0
WW 0 − R 1

0
W
R 1
0
W 0]Λ0M 0

jj ≡ Γ̄j = Op(kΛk2)
uniformly in j = o(T ). In the next step, we consider the case of a single regressor, for
simplicity. Andrews’s (1991) method is based on choosing the bandwidth such that, for the
Bartlett kernel m = 1.1447(αT )1/3, where α = 4ρ̂2/(1− ρ̂2)2 with ρ̂ the OLS estimate in an
AR(1) regression applied to v̂t. We have

ρ̂ = Γ̂1/Γ̂0 ⇒
M2
11Λ

2[
R 1
0
W 2 − (R 1

0
W )2]

M2Λ2[
R 1
0
W 2 − (R 1

0
W )2]

=
M2
11

M2
.
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If M11 =M , the limit value is one and

T (ρ̂− 1)⇒ −W (1)
2 − (R 1

0
W )2 +W (1)

R 1
0
WR 1

0
W 2 − (R 1

0
W )2

≡ φr = Op(1).

Hence, ρ̂ = 1−φr/T +op(1) so that α = Op(T
2) and m = Op(T

2/3T 1/3) = Op(T ). Therefore,
ĥ(0) = Op(kΛk2 T 2) and substituting its limit value instead of the limit value of V̂X gives the
stated result. If {M −M11}ii > 0 for some i, then ρ̂ converges to a random variable with
mean less than one. Hence, α = Op(1) and m = Op(T

1/3). Therefore ĥ(0) = Op(kΛk2 T 4/3)
giving the result in part(b) for the qL̂L test. For the sup-Wald test, we use the expression

Wald =
1

T

µ
T − 2k

k

¶
β̂
0
H 0(HV̂ H 0)−1Hβ̂,

where V̂ ≡ T (X̄ 0X̄)−1V̂X(X̄ 0X̄)−1. First, we have,

T−1/2β̂
0
H 0 = T−1/2β̂1 − T−1/2β̂2 ⇒

1

λ
Λ
R λ
0
W − 1

1− λ
Λ
R 1
λ
W = Op(1).

Second, T−1/3V̂ = diag(V 1, V 2), where

V 1 ≡ (T−1
[Tλ]P
t=1

XX)−1(T−4/3ĥ1(0))(T−1
[Tλ]P
t=1

XX)−1,

V 2 ≡ (T−1
TP

t=[Tλ]+1

XX)−1(T−4/3ĥ2(0))(T−1
TP

t=[Tλ]+1

XX)−1,

with ĥ1(0) the HAC robust variance estimator using

v̂1t =

½
Xtet +XtX

0
tβt −XtX

0
tβ̂1, for t < [Tλ],

0, otherwise

and ĥ2(0) using

v̂2t =

½
0, for t < [Tλ],

Xtet +XtX 0
tβt −XtX 0

tβ̂2, otherwise.

As in the proof for qL̂L, we can show that ĥ1(0) and ĥ2(0) are both Op(kΛk2 T 2) ifM11 =M .
In this case,

SW ⇒ (
1

λ∗
Λ
R λ∗
0
W − 1

1− λ∗
Λ
R 1
λ∗W )

0Q0

×[h̄1(0) + h̄2(0)]
−1Q(

1

λ∗
Λ
R λ∗
0
W − 1

1− λ∗
Λ
R 1
λ∗W ) = Op(1),

where λ∗ is the value of λ that maximizes the limit of the Wald test over the all permissible
λ. If {M11−M}ii 6= 0 for some i, the condition in the theorem does not hold ĥ1(0) and ĥ2(0)
are both Op(kΛk2 T 4/3) and T−2/3SW = Op(1).
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Proof of Theorem 3 (random walk parameters, lagged dependent variable): We
now consider the dynamic regression. Under the null hypothesis, the OLS residuals are

êt = et − α̂et−1 +X 0
tβt − α̂X 0

t−1βt−1 −X 0
tβ̂, (A.10)

and
v̂t = Xtet − α̂Xtet−1 +XtX

0
tβt − α̂XtX

0
t−1βt−1 −XtX

0
tβ̂, (A.11)

where the OLS estimates α̂ and β̂ have the following limits:

α̂⇒ {R 1
0
W 0Λ0QΛW − R 1

0
W 0Λ0Q0

1Q
−1Q1Λ

R 1
0
W}−1

× {R 1
0
W 0Λ0Q1ΛW −

R 1
0
W 0Λ0Q1Λ

R 1
0
W} ≡ ᾱ (A.12)

and T−1/2β̂ ⇒ Q−1[Q− ᾱQ1]Λ
R 1
0
W ≡ β̄. Consider first the qL̂L test. We take the limits of

the components of (A.6). We have, T−2A3,T → 0k×k,

T−1V̂X = T−2
TP
t=1

{XtX
0
tβtβ

0
tXtX

0
t − α̂XtX

0
tβtβ

0
t−1Xt−1X 0

t −XtX
0
tβtβ̂

0
XtX

0
t

−α̂XtX
0
t−1βt−1β

0
tXtX

0
t + α̂2XtX

0
t−1βt−1β

0
t−1Xt−1X 0

t + α̂XtX
0
t−1βt−1β̂

0
XtX

0
t

−XtX
0
tβ̂β

0
tXtX

0
t + α̂XtX

0
tβ̂β

0
t−1Xt−1X 0

t +XtX
0
tβ̂β̂

0
XtX

0
t}+ op(1)

⇒ MΛ
R 1
0
WW 0Λ0M 0 − ᾱM1Λ

R 1
0
WW 0Λ0M 0

1 −MΛ
R 1
0
Wβ̄

0
M 0 − ᾱM1Λ

R 1
0
WW 0Λ0M 0

1

+ᾱ2M11Λ
R 1
0
WW 0Λ0M 0

11 + ᾱM1Λ
R 1
0
Wβ̄

0
M 0
1 −Mβ̄

R 1
0
W 0Λ0M 0

+ᾱM1β̄
R 1
0
W 0Λ0M 0

1 +Mβ̄β̄
0
M 0

= MΛ[
R 1
0
WW 0 − R 1

0
W
R 1
0
W 0]Λ0M 0 + ᾱ2MQ−1Q1Λ

R 1
0
W
R 1
0
W 0Λ0Q0

1Q
0−1M 0

+ᾱ2M11Λ
R 1
0
WW 0Λ0M 0

11 − 2ᾱM1Λ[
R 1
0
WW 0 − R 1

0
W
R 1
0
W 0]Λ0M 0

1

−ᾱ2M1Q
−1Q1Λ

R 1
0
W
R 1
0
W 0Λ0M 0

1 − ᾱ2M1Λ
R 1
0
W
R 1
0
W 0Λ0Q0

1Q
0−1M 0

1

≡ V̄X = Op(kΛk2),

T−2A1,T

= T−4
TP
t=1

{[
t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]([

t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]

0 − α̂[
t−1P
s=1

r̄s−1Xt−sX 0
t−s−1βt−s−1]

0)

−[
t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]β̂

0
[
t−1P
s=1

r̄s−1Xt−sX 0
t−s]

0

−α̂[
t−1P
s=1

r̄s−1Xt−sX 0
t−s−1βt−s−1]([

t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]

0 − α̂[
t−1P
s=1

r̄s−1Xt−sX 0
t−s−1βt−s−1]

0)

+α̂[
t−1P
s=1

r̄s−1Xt−sX 0
t−s−1βt−s−1]β̂

0
[
t−1P
s=1

r̄s−1Xt−sX 0
t−s]

0

−[
t−1P
s=1

r̄s−1Xt−sX 0
t−s]β̂([

t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]

0 − α̂β̂[
t−1P
s=1

r̄s−1Xt−sX 0
t−s−1βt−s−1]

0)

+[
t−1P
s=1

r̄s−1Xt−sX 0
t−s]β̂β̂

0
[
t−1P
s=1

r̄s−1Xt−sX 0
t−s]

0}+ op(1)

35



⇒ 1

c2
[Q− ᾱQ1]Λ

R 1
0
(W −Wc)(W −Wc)

0Λ0[Q− ᾱQ1]
0

+[Q− ᾱQ1]Λ
R 1
0

¡R r
0
e−cςdς

¢2
dr
R 1
0
W
R 1
0
W 0Λ0[Q− ᾱQ1]

0

−1
c
[Q− ᾱQ1]Λ

R 1
0

¡R r
0
e−cςdς

¢
(W −Wc)dr

R 1
0
W 0Λ0[Q− ᾱQ1]

0

−1
c
[Q− ᾱQ1]Λ

R 1
0
W
R 1
0

¡R r
0
e−cςdς

¢
(W −Wc)dr

0Λ0[Q− ᾱQ1]
0 = Op(kΛk2),

T−2A2,T

= T−3
TP
t=1

XtX
0
t{βt[

t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]

0 − α̂βt[
t−1P
s=1

r̄s−1Xt−sX 0
t−s−1βt−s−1]

0

−βt[
t−1P
s=1

r̄s−1Xt−sX 0
t−sβ̂]

0 − β̂[
t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]

0 + α̂β̂[
t−1P
s=1

r̄s−1Xt−sX 0
t−s−1βt−s−1]

0

+β̂[
t−1P
s=1

r̄s−1Xt−sX 0
t−sβ̂]

0}− α̂T−3
TP
t=1

XtX
0
t−1{βt−1[

t−1P
s=1

r̄s−1Xt−sX 0
t−sβt−s]

0

−α̂βt−1[
t−1P
s=1

r̄s−1Xt−sX 0
t−s−1βt−s−1]

0 − βt−1[
t−1P
s=1

r̄s−1Xt−sX 0
t−sβ̂]

0}+ op(1)

⇒ 1

c
[Q− ᾱQ1]Λ

R 1
0
(WW 0 −WW 0

c)Λ
0[Q− ᾱQ1]

0

−[Q− ᾱQ1]Λ
R 1
0

¡R r
0
e−cςdς

¢
Wdr

R 1
0
W 0Λ0[Q− ᾱQ1]

0

−1
c
[Q− ᾱQ1]Λ

R 1
0
W
R 1
0
(W −Wc)

0Λ0[Q− ᾱQ1]
0

+[Q− ᾱQ1]Λ
R 1
0

R r
0
e−cςdςdr

R 1
0
W
R 1
0
W 0Λ0[Q− ᾱQ1]

0 = Op(kΛk2),

T−1A4,T = T−3/2
TP
t=1

r̄tXtX
0
tβt − α̂T−3/2

TP
t=1

r̄tXtX
0
t−1βt−1 − T−3/2

TP
t=1

r̄tXtX
0
tβ̂ + op(1)

⇒ [Q− ᾱQ1]Λ
R 1
0
e−crW − [Q− ᾱQ1]Λ

R 1
0
e−cr

R 1
0
W = Op(kΛk)

T−1A5,T = T−5/2
TP
t=1

r̄t
t−1P
s=1

r̄s−1{Xt−sX 0
t−sβt−s − α̂Xt−sX 0

t−s−1βt−s−1 −Xt−sX 0
t−sβ̂}+ op(1)

⇒ 1

c
[Q− ᾱQ1]Λ

R 1
0
e−cr(W −Wc)− [Q− ᾱQ1]Λ

R 1
0
e−cr

R r
0
e−cςdςdr

R 1
0
W = Op(kΛk).

Collecting terms according to (A.6) yields the stated result. We now consider the sup-Wald
test. The regression is

yt = αuyt−1 +X1(λ)
0
tβ1 +X2(λ)

0
tβ2 + et,
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and the OLS estimates are⎡⎣ α̂u

T−1/2[β̂1, β̂2]
0

⎤⎦ =
⎡⎣ T−2

PT
t=2 y

2
t−1 T−3/2

PT
t=2 yt−1X̄(λ)

0
t

T−3/2
PT

t=2 X̄(λ)tyt−1 T−1
PT

t=2 X̄(λ)tX̄(λ)
0
t

⎤⎦−1 ⎡⎣ T−2
PT

t=2 yt−1yt

T−3/2
PT

t=2 X̄(λ)tyt

⎤⎦
where X̄(λ)t = [X1(λ)t, X2(λ)t]. After some algebra, we obtain

α̂u ⇒ {R 1
0
W 0Λ0QΛW − 1

λ

R λ
0
W 0ΛQ0

1Q
−1Q1Λ

R λ
0
W − 1

1− λ

R 1
λ
W 0ΛQ0

1Q
−1Q1Λ

R 1
λ
W}−1

×{R 1
0
W 0Λ0Q1ΛW − 1

λ

R λ
0
W 0Λ0Q1Λ

R λ
0
W − 1

1− λ

R 1
λ
W 0Λ0Q1Λ

R 1
λ
W} ≡ ᾱu,(A.13)

and

T−1/2β̂1 ⇒
1

λ
ΛQ−1[Q− ᾱuQ1]

R λ
0
W,

T−1/2β̂2 ⇒
1

1− λ
ΛQ−1[Q− ᾱuQ1]

R 1
λ
W.

Using these results, the limit of SSR(λ)T is given by:

T−2SSR(λ)T = T−2
TP
t=1

[X 0
tβt − α̂X 0

t−1βt−1 −X1(λ)
0
tβ̂1 −X2(λ)

0
tβ̂2]

2 + op(1)

⇒ (1 + ᾱ2u)
R 1
0
W 0Λ0QΛW − 2ᾱu

R 1
0
W 0Λ0Q1ΛW

−1
λ

R λ
0
W 0Λ0[Q− ᾱuQ1]

0Q−1[Q− ᾱuQ1]Λ
R λ
0
W

− 1

1− λ

R 1
λ
W 0Λ0[Q− ᾱuQ1]

0Q−1[Q− ᾱuQ1]Λ
R 1
λ
W ≡ SSR(λ)∗ = Op(kΛk2),

where ᾱu is defined by (A.13). The limit of the restricted sum of squared residuals is

T−2SSRr
T

= T−2
TP
t=1

[X 0
tβt − α̂X 0

t−1βt−1 −Xtβ̂]
2 + op(1)

⇒ (1 + ᾱ2)
R 1
0
W 0Λ0QΛW − 2ᾱ R 1

0
W 0Λ0Q1ΛW −

R 1
0
W 0Λ0[Q− ᾱQ1]

0Q−1[Q− ᾱQ1]Λ
R 1
0
W

≡ SSRr∗ = Op(kΛk2),
where ᾱ is defined by (A.12). By the continuous mapping theorem, the limit of the sup-Wald
test is given by

T−1SW =

µ
T−2SSRr

T − T−2SSRT (λ̄T )

T−2SSRT (λ̄T )

¶
⇒
µ
SSRr∗ − SSR∗(λ̄)

SSR∗(λ̄)

¶
= Op(1),

with λ̄T the value that minimizes SSRT (λ) and λ̄ minimizes SSR∗(λ). We next consider
the special case of a mean shift model when xt = 1 for all t with the dynamic regression.
For the restricted model, the regression equation is

yt = αyt−1 + β + et
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and the OLS estimates are such that

T (α̂− 1) =

T−1
TP
t=2

yt−1(εt + et − et−1)− [T−3/2
TP
t=2

yt−1][T−1/2
TP
t=2

(εt + et − et−1)]

T−2
TP
t=2

y2t−1 − [T−3/2
TP
t=2

yt−1]2

⇒
1
2
[W (1)2 − 1]− σ2e/Λ

2 −W (1)
R 1
0
WR 1

0
W 2 − (R 1

0
W )2

≡ ᾱ = Op(1),

T 1/2β̂ ⇒ −ᾱΛ R 1
0
W + ΛW (1) ≡ β̄.

For the unrestricted model, the regression equation is

yt = αuyt−1 + β1I
1
t + β2I

2
t + et,

where I1t = 1 if t < [Tλ] and 0 otherwise and I2t = 0 if t < [Tλ] and 1 otherwise. Let
It = [I

1
t , I

2
t ]. The OLS estimates are such that

T (α̂u − 1)

=

T−1
TP
t=2

yt−1(εt + et − et−1)− [T−3/2
TP
t=2

yt−1I 0t][T
−1

TP
t=2

ItI
0
t][T

−1/2
TP
t=2

It(εt + et − et−1)]

T−2
TP
t=2

y2t−1 − [T−3/2
TP
t=2

yt−1]2

⇒
1
2
[W (1)2 − 1]− σ2e/Λ

2 − 1
λ

R λ
0
WW (λ)− 1

1−λ
R 1
λ
WW (1− λ)R 1

0
W 2 − 1

λ
(
R λ
0
W )2 − 1

1−λ(
R 1
λ
W )2

≡ ᾱu = Op(1),

T 1/2β̂1 ⇒ −ᾱu
1

λ
Λ
R λ
0
W +

1

λ
ΛW (λ) ≡ β̄1,

T 1/2β̂2 ⇒ −ᾱu
1

1− λ
Λ
R 1
λ
W +

1

1− λ
ΛW (1− λ) ≡ β̄2.

Therefore, we have α̂, α̂u
p→ 1 and β̂, β̂1, β̂2

p→ 0. Also, T (α̂−α̂u)⇒ ᾱ−ᾱu and T (α̂
2−α̂2u)⇒

2(ᾱ− ᾱu). Consider first the qL̂L test. Since xt = 1 for all t, v̂t = êt and

v̂t = et − α̂et−1 + βt − α̂βt−1 − β̂.

The components in (A.6) are such that (since et and εt are uncorrelated)

V̂X = T−1
TP
t=2

v̂2t
p→ Λ2 + 2σ2e,

A1,T = T−2
TP
t=2

[
t−1P
s=1

r̄s−1(εt−s + et−s − et−s−1)]2 + op(1)⇒ Λ2
R 1
0
W 2

c ,

A2,T = T−1
TP
t=2

(εt + et − et−1)[
t−1P
s=1

r̄s−1(εt−s + et−s − et−s−1)] + op(1)⇒ 0,

A3,T = T−1
TP
t=2

v̂2t
p→ Λ2 + 2σ2e,
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A4,T = T−1/2
TP
t=2

r̄t(εt + et − et−1) + op(1)⇒ ΛWc(1),

A5,T = T−3/2
TP
t=2

r̄t
t−1P
s=1

(εt−s + et−s − et−s−1) + op(1)⇒ Λ
R 1
0
e−crWc.

Therefore,

qL̂L⇒ c2Λ2
R 1
0
W 2

c − cΛ2 − 2cσ2e − (2cΛ2/1− e−2c)[Wc(1)− c
R 1
0
e−crWc]

2

Λ2 + 2σ2e
.

We next consider the sup-Wald test, Wald(λ)T = (SSR
r
T − SSRT (λ))/T

−1SSRT (λ). Using
the expression for the restricted and the unrestricted residuals yields

SSRr
T − SSRT (λ)

=
TP
t=2

[yt − α̂yt−1 − β̂]2 −
TP
t=2

[yt − α̂uyt−1 − β̂1It<[Tλ] − β̂2It≥[Tλ]]
2 + op(1)

= (α̂2 − α̂2u)
TP
t=2

y2t−1 + Tβ̂
2 − [Tλ]β̂21 − (T − [Tλ])β̂

2

2

−2(α̂− α̂u)
TP
t=2

ytyt−1 − 2(1− α̂)β̂
TP
t=2

yt−1 + 2(1− α̂u)[β̂1
[Tλ]P
t=2

yt−1 + β̂2
TP

t=[Tλ]+1

yt−1] + op(1)

⇒ −2(ᾱ− ᾱu)[(1/2)Λ
2 (W (1)− 1)− σ2e] + Λ2W (1)2 − Λ2W (λ)2 − Λ2W (1− λ)2

−ᾱ2Λ2(R 1
0
W )2 + ᾱ2u

1

λ
Λ2(
R λ
0
W )2 + ᾱ2u

1

1− λ
Λ2(
R 1
λ
W )2

≡ N = Op(Λ
2)

and

T−1SSRT (λ) =
TP
t=2

[yt − α̂uyt−1 − β̂1It<[Tλ] − β̂2It≥[Tλ]]
2

= T−1y2T − 2α̂uT
−1 TP

t=2

yt−1(εt + et − et−1)

⇒ Λ2 + 2σ2e ≡ D = Op(Λ
2).

Therefore by the continuous mapping theorem SW ⇒ N/D.

Proof of Theorem 4 (infrequent break parameter; i.i.d. errors assumed) : For the
qL̂L test, the OLS estimate of β is given by

β̂ = (T−1
TP
t=1

XtX
0
t)
−1(T−1

TP
t=1

XtX
0
tβt + T−1

TP
t=1

Xtet)⇒
R 1
0
J(s)ds.

Using the expression (A.8) for v̂t, the limit of the variance is

V̂X = T−1
TP
t=1

v̂tv̂
0
t ⇒ σ2eQ+MΛ[

R 1
0
JJ 0 − R 1

0
J
R 1
0
J 0]Λ0M 0 ≡ V̄X = Op(kΛk2).
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The components of (A.6) are such that (again, T−1A3,T → 0k×k)

T−1A1,T

= T−3
TP
t=1

[
t−1P
s=1

r̄s−1v̂t−s][
t−1P
s=1

r̄s−1v̂t−s]0

⇒ QΛ
R 1
0
[
R r
0
e−cςJ(r − ς)dς][

R r
0
e−cςJ(r − ς)dς]0drΛ0Q0

−QΛ R 1
0

R r
0
e−cςdς

R r
0
e−cςJ(r − ς)dςdr

R 1
0
J 0Λ0Q0

−QΛ R 1
0
J
R 1
0

R r
0
e−cςdς

R r
0
e−cςJ(r − ς)0dςdrΛ0Q0 +QΛ

R 1
0

R r
0
e−cςdς2dr

R 1
0
J
R 1
0
J 0Λ0Q0

≡ QΛΨ1Λ
0Q0 = Op(kΛk2),

T−1A2,T = T−2
TP
t=1

v̂t[
t−1P
s=1

r̄s−1v̂t−s]0

⇒ QΛ
R 1
0
J(r)

R r
0
e−cςJ(r − ς)dςdrΛQ0 −QΛ

R 1
0

R r
0
e−cςdςJ(r)dr

R 1
0
J 0Λ0Q0

−QΛ R 1
0
J
R 1
0

R r
0
e−cςJ(r − ς)dςdr0Λ0Q0 +QΛ

R 1
0

R r
0
e−cςdςdr

R 1
0
J
R 1
0
J 0Λ0Q0

≡ QΛΨ2Λ
0Q0 = Op(kΛk2),

T−1/2A4,T = T−1
TP
t=1

r̄tv̂t ⇒ QΛ
R 1
0
e−crJ −QΛ

R 1
0
e−cr

R 1
0
J ≡ QΛΨ4 = Op(kΛk),

T−1/2A5,T = T−2
TP
t=1

r̄t
t−1P
s=1

r̄s−1v̂t−s

⇒ QΛ
R 1
0
e−cr

R r
0
e−cςJ(r − ς)dςdr −QΛ

R 1
0
e−cr

R r
0
e−cςdςdr

R 1
0
J

≡ QΛΨ5 = Op(kΛk).
Solving the integrals and collecting terms according to (A.6) yields

T−1qL̂L⇒ tr{V̄ −1/2X QΛΨΛ0Q0V̄ 0−1/2},
where

Ψ = c2Ψ1 − c(Ψ2 +Ψ0
2)−

2c

1− e−2c
[Ψ4 − cΨ5]

0 [Ψ4 − cΨ5] . (A.14)

We next consider the sup-Wald test. The unrestricted residuals are given by (A.9) and we
have β̂1 ⇒ (1/λ)Λ

R λ
0
J and β̂2 ⇒ (1/(1− λ))Λ

R 1
λ
J . Hence, after some algebra, we get

T−1SSR(λ)T ⇒ σ2e +
R 1
0
J 0Λ0QΛJ − 1

λ

R λ
0
J 0Λ0QΛ

R λ
0
J − 1

1− λ

R 1
λ
J 0Λ0QΛ

R 1
λ
J

≡ SSR∗(λ) = Op(kΛk2).
For the restricted regression,

T−1SSRr
T ⇒ σ2e +

R 1
0
J 0Λ0QΛJ − R 1

0
J 0Λ0QΛ

R 1
0
J ≡ SSRr∗ = Op(kΛk2).
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Therefore by the continuous mapping theorem,

T−1SW =

µ
T−1SSRr

T − T−1SSRT (λ̄T )

T−1SSRT (λ̄T )

¶
⇒
µ
SSRr∗ − SSR∗(λ̄)

SSR∗(λ̄)

¶
,

where λ̄T is the value of λ that minimizes SSRT (λ) and λ̄ is the value that minimizes
SSR∗(λ̄).

Proof of Theorem 5 (infrequent break parameter; correction for serial correla-
tion): We consider now the robust version of the test. For the qL̂L test, the limit of Γ̂j is
given by

Γ̂j = T−1
TP

t=j+1

XtX
0
tβtβ

0
t−jXt−jX 0

t−j − T−1
TP

t=j+1

XtX
0
tβt(

TP
s=1

β0s)Xt−jX 0
t−j + op(1)

⇒ MjjΛ
hR 1

0
JJ 0 − R 1

0
J
R 1
0
J 0
i
Λ0M 0

jj ≡ Γ̄j = Op(kΛk2)

uniformly in j = o(T ). To derive an expression for the bandwidth, we again consider for
simplicity the scalar case. With variables defined in the proof for the random walk case, we
have

ρ̂⇒ M2
11Λ

2[
R 1
0
J2 − (R 1

0
J)2]

σ2eQ+M2Λ2[
R 1
0
J2 − (R 1

0
J)2]

.

The term σ2eQ is dominated as kΛk increases, and if {M −M11}ii = 0 for all i, ρ̂ converges to
1. Therefore, α = Op(kΛk4) and m = Op(kΛk4/3 T 1/3). This yields ĥ(0) = Op(kΛk10/3 T 1/3).
Since V̂X = Op(kΛk2), the result follows. For the sup-Wald test, we construct ĥ(0) using the
unrestricted residuals and we have,

ρ̂⇒ M2
11Λ

2[
R 1
0
J2 − 1

λ
(
R λ
0
J)2 − 1

1−λ(
R 1
λ
J)2]

σ2eQ+M2Λ2[
R 1
0
J2 − 1

λ
(
R λ
0
J)2 − 1

1−λ(
R 1
λ
J)2]

.

Using similar arguments, ĥ(0) = Op(kΛk10/3 T 1/3). If the {M −M11}ii 6= 0 for some i, then
α = Op(1) and m = Op(T

1/3). This yields ĥ(0) = Op(kΛk2 T 1/3) for both the qL̂L and sup-
Wald tests. With these orders for ĥ(0), the rest of the proof is the same as for the random
walk case.

Proof of Theorem 6 (infrequent break parameter; lagged dependent variable):
We now consider the dynamic regression. As in the static case, the OLS residuals êt and v̂t
under the null are given by (A.7) and (A.8) and the limit of the OLS estimates α̂ and β̂ are
given by

α̂⇒ {σ2e +
R 1
0
J 0Λ0QΛJ − R 1

0
J 0Λ0Q0

1Q
−1Q1Λ

R 1
0
J}−1{R 1

0
J 0Λ0Q1ΛJ −

R 1
0
J 0Λ0Q1Λ

R 1
0
J}

≡ ᾱ (A.15)
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and β̂ ⇒ Q−1[Q − ᾱQ1]Λ
R 1
0
J . Consider first the qL̂L test. The components of (A.6) will

have the following limits (again, T−1A3,T
p→ 0k×k):

V̂X = T−1
TP
t=1

v̂tv̂
0
t

⇒ (1 + ᾱ2)σ2eQ+MΛ[
R 1
0
JJ 0 − R 1

0
J
R 1
0
J 0]Λ0M 0 + ᾱ2M11Λ[

R 1
0
JJ 0]Λ0M 0

11

≡ V̄X = Op(kΛk2),

T−1A1,T = T−3
TP
t=1

[
t−1P
s=1

r̄s−1v̂t−s][
t−1P
s=1

r̄s−1v̂t−s]0

⇒ [Q− αQ1]Λ
R 1
0
[
R r
0
e−cςJ(r − ς)dς][

R r
0
e−cςJ(r − ς)dς]0drΛ0[Q− αQ1]

0

+[Q− αQ1]Λ
R 1
0

R r
0
e−cςdς2dr

R 1
0
J
R 1
0
J 0Λ0[Q− αQ1]

0

−[Q− αQ1]Λ
R 1
0

R r
0
e−cςdς

R r
0
e−cςJ(r − ς)dςdr

R 1
0
J 0Λ0[Q− αQ1]

0

−[Q− αQ1]Λ
R 1
0
J
R 1
0

R r
0
e−cςdς

R r
0
e−cςJ(r − ς)dςdr0Λ0[Q− αQ1]

0 = Op(kΛk2),

T−1A2,T = T−2
TP
t=1

v̂t[
t−1P
s=1

r̄s−1v̂t−s]0

⇒ [Q− αQ1]Λ
R 1
0
J(r)

R r
0
e−cςJ(r − ς)dςdrΛ[Q− αQ1]

0

−[Q− αQ1]Λ
R 1
0

R r
0
e−cςdςJ(r)dr

R 1
0
J 0Λ0[Q− αQ1]

0

−[Q− αQ1]Λ
R 1
0
J
R 1
0

R r
0
e−cςJ(r − ς)dςdr0Λ0[Q− αQ1]

0

+[Q− αQ1]QΛ
R 1
0

R r
0
e−cςdςdr

R 1
0
J
R 1
0
J 0Λ0[Q− αQ1]

0 = Op(kΛk2),

T−1/2A4,T = T−1
TP
t=1

r̄tv̂t ⇒ [Q− αQ1]Λ
R 1
0
e−crJ − [Q− αQ1]Λ

R 1
0
e−cr

R 1
0
J = Op(kΛk),

T−1/2A5,T = T−2
TP
t=1

r̄t
t−1P
s=1

r̄s−1v̂t−s

⇒ [Q− αQ1]Λ
R 1
0
e−cr

R r
0
e−cςJ(r − ς)dςdr − [Q− αQ1]Λ

R 1
0
e−cr

R r
0
e−cςdςdr

R 1
0
J

= Op(kΛk).

Collecting terms yields the stated results for the qL̂L test. For the sup-Wald test, the
restricted sum of squared residuals is such that

T−1SSRr
T = T−1

TP
t=1

h
et − α̂et−1 +X 0

tβt − α̂X 0
t−1βt−1 −Xtβ̂

i2
⇒ (1 + ᾱ2)σ2e + (1 + ᾱ2)

R 1
0
J 0Λ0QΛJ − 2ᾱ R 1

0
J 0Λ0Q1ΛJ

− R 1
0
J 0Λ0[Q− ᾱQ1]

0Q−1[Q− ᾱQ1]Λ
R 1
0
J ≡ SSRr∗ = Op(kΛk2),
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where ᾱ is given by (A.15). For the unrestricted regression the residuals are

ê(λ)t = et +X 0
tβt − α̂uet−1 − α̂uX

0
t−1βt−1 −X1(λ)

0
tβ̂1 −X2(λ)

0
tβ̂2,

where the estimates of the coefficients have the following limits:

α̂u ⇒ {σ2e +
R 1
0
J 0Λ0QΛJ − 1

λ

R λ
0
J 0ΛQ0

1Q
−1Q1Λ

R λ
0
J − 1

1− λ

R 1
λ
J 0ΛQ0

1Q
−1Q1Λ

R 1
λ
J}−1

×{R 1
0
J 0Λ0Q1ΛJ − 1

λ

R λ
0
J 0Λ0Q1Λ

R λ
0
J − 1

1− λ

hR 1
λ
J
i0
Λ0Q1Λ

hR 1
λ
J
i
} ≡ ᾱu, (A.16)

T−1/2β̂1 ⇒ (1/λ)ΛQ−1[Q − ᾱuQ1]
R λ
0
J and T−1/2β̂2 ⇒ (1/(1 − λ))ΛQ−1[Q − ᾱuQ1]

R 1
λ
J .

Therefore, the limit of SSR(λ)T is given by

T−1SSR(λ)T = T−2
TP
t=1

h
et +X 0

tβt − α̂uet−1 − α̂uX
0
t−1βt−1 −X1(λ)

0
tβ̂1 −X2(λ)

0
tβ̂2

i2
⇒ (1 + ᾱ2u)σ

2
e + (1 + ᾱ2u)

R 1
0
J 0Λ0QΛJ − 2ᾱu

R 1
0
J 0Λ0Q1ΛJ

−1
λ

R λ
0
J 0Λ0[Q− ᾱuQ1]

0Q−1[Q− ᾱuQ1]Λ
R λ
0
J

− 1

1− λ

R 1
λ
J 0Λ0[Q− ᾱuQ1]

0Q−1[Q− ᾱuQ1]Λ
R 1
λ
J ≡ SSR(λ)∗ = Op(kΛk2),

where ᾱu is given by (A.16). By the continuous mapping theorem, the limit of the sup-Wald
test is given by

T−1SW =

µ
T−1SSRr

T − T−1SSRT (λ̄T )

T−1SSRT (λ̄T )

¶
⇒
µ
SSRr∗ − SSR∗(λ̄)

SSR∗(λ̄)

¶
= Op(1),

where λ̄T is the value of λ that minimizes SSRT (λ) and λ̄ minimizes SSR∗(λ).

Proof of Theorem 7 (single break parameter; i.i.d. errors assumed): The OLS
estimate of β now has the following limit:

β̂ = [T−1
TP
t=1

XtX
0
t]
−1[T−1

TP
t=1

XtX
0
tβt + T−1

TP
t=1

Xtet]
p→ (1− λc)θ

and êt and v̂t are still given by (A.7) and (A.8). We now consider the limits of V̂X and Ai,T ,

i = 1, ..., 5 (again, T−1A3,T
p→ 0k×k).

V̂X = T−1
TP
t=1

v̂tv̂
0
t

p→ σ2eQ+ λc(1− λc)Mθθ0M 0 ≡ V̄X = Op(kθk2),

T−1A1,T = T−3
TP
t=1

[
t−1P
s=1

r̄s−1v̂t−s][
t−1P
s=1

r̄s−1v̂t−s]0

p→ R 1
λc

³R r−λc
0

e−cςdς
´2

drQθθ0Q0 + (1− λc)
2
R 1
0

¡R r
0
e−cςdς

¢2
drQθθ0Q0

−2(1− λc)
R 1
λc

³R r−λc
0

e−cςdς
´ ¡R r

0
e−cςdς

¢
drQθθ0Q0 = Op(kθk2),
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T−1A2,T = T−2
TP
t=1

v̂t[
t−1P
s=1

r̄s−1v̂t−s]0

p→ R 1
λc

³R r−λc
0

e−cςdς
´
drQθθ0Q0 + (1− λc)

2
R 1
0

R r
0
e−cςdςdrQθθ0Q0

−(1− λc)
R 1
λc

¡R r
0
e−cςdς

¢
drQθθ0Q0 − (1− λc)

R 1
λc

R r−λc
0

e−cςdςdrQθθ0Q0

= Op(kθk2),

T−1/2A4,T = T−1
TP
t=1

r̄tv̂t
p→ R 1

λc
e−crdrQθ − (1− λc)

R 1
0
e−crdrQθ = Op(kθk),

T−1/2A5,T = T−2
TX
t=1

r̄t
t−1X
s=1

r̄s−1v̂t−s

p→ R 1
λc
e−cr

R r−λc
0

e−cςdςdrQθ − (1− λc)
R 1
0
e−cr

R r
0
e−cςdςdrQθ = Op(kθk).

Collecting terms and using the representation (A.6) yields the following limit for the qL̂L
statistic:

T−1qL̂L
p→ ξtr{V̄ −1/2X Qθθ0Q0V̄ 0−1/2},

where

ξ = λc(λc − 1) + 1
c
(1− λc +

1

2
λ2c)−

1

c
(1− λc)

2e−c − 1

2c
(1− λc)

2e−2c − 1
c
(1− λc)e

−cλc

+
1

c
(1− λc)e

c(λc−2) − 1

2c
e2c(λc−1) − 1

2c(1− e−2c)
[λc − 1 + (1− λc)e

−2c + e−cλc − ec(λc−2)]2.

For the sup-Wald test, the sum of squared restricted residuals is such that

T−1SSRr
T = T−1

TX
t=1

h
et +X 0

tθt −X 0
tβ̂
i2 p→ σ2e + λc(1− λc)θ

0Qθ

and we can show that T−1SSRT (λ)
p→ σ2e. Hence, by the continuous mapping theorem

T−1SW =

µ
T−1SSRr

T − T−1SSRT (λ̄T )

T−1SSRT (λ̄T )

¶
p→ λc(1− λc)

σ2e
θ0Qθ,

where λ̄T minimizes SSRT (λ).

Proof of Theorem 8 (single break parameter; i.i.d. correction for serial corre-
lation): Consider now the robust version of the tests. The qL̂L test uses the restricted
residuals so that the autocovariances Γ̂j are such that

Γ̂j = T−1
TP

t=j+1

Xtetet−jX 0
t−j + T−1

TP
t=j+1

XtX
0
tβtβ

0
t−jX

0
t−jXt−j + T−1

TP
t=j+1

XtX
0
tβ̂β̂

0
X 0

t−jXt−j

−T−1
TP

t=j+1

XtX
0
tβtβ̂

0
X 0

t−jXt−j − T−1
TP

t=j+1

XtX
0
tβ̂β

0
t−jX

0
t−jXt−j + op(1)

p→ λc(1− λc)Mjjθθ
0M 0

jj = Op(kθk2).
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Next we consider the bandwidth m, where again we consider the scalar case for simplicity.
First,

ρ̂
p→ λc(1− λc)M1θ

2

σ2eQ+ λc(1− λc)Mθ2
.

As θ becomes larger, the term σ2eQ is dominated and when θ0(M11 −M)θ = 0 as kθk→∞,
ρ̂ approaches 1. Hence, α = Op(kθk4) and m = Op(kθk4/3 T 1/3). This yields ĥ(0) =

Op(kθk10/3 T 1/3). Since V̂X = Op(kθk2), the result follows. The sup-Wald test uses un-
restricted residuals in the construction of ĥ(0). Now, it is straightforward to show that when
λ = λc, Γ̂j

p→ 0 for j 6= 0, since E(etet−j) = 0 if j 6= 0. For the bandwidth, since ρ̂ p→ 0,
α = Op(1), and m = Op(T

1/3), so that ĥ(0) = Op(T
1/3) and the result follows.

Proof of Theorem 9 (single break parameter; lagged dependent variable): For the
model under the null hypothesis, the OLS residuals êt and v̂t are given by (A.10) and (A.11)
and the OLS estimates α̂ and β̂ have the following limits:

α̂
p→ [σ2e + (1− λc)θ

0Qθ − (1− λc)
2θ0Q1Q

−1Q1θ]
−1 [λc(1− λc)θ

0Q1θ] ≡ ᾱ (A.17)

and
β̂

p→ (1− λc)θ − ᾱ(1− λc)Q
−1Q1θ.

For the qL̂L test, the components of (A.6) have the following limits (again, T−1A3,T → 0k×k):

V̂X = T−1
TP
t=1

v̂tv̂
0
t

p→ (1 + ᾱ2)σ2eQ+ (1− λc)λcMθθ0M 0 + ᾱ2(1− λc)M11θθ
0M 0

11

−2ᾱ(1− λc)λcM1θθ
0M 0

1 + ᾱ2(1− λc)
2MQ−1Q1θθ

0Q0
1Q

−10M 0

−ᾱ2(1− λc)
2M1[Q

−1Q1θθ
0 + θθ0Q0

1Q
−10]M 0

1 ≡ V̄X = Op(kΛk2),

T−1A1,T = T−3
TP
t=1

[
t−1P
s=1

r̄s−1v̂t−s][
t−1P
s=1

r̄s−1v̂t−s]0
p→ R 1

λc
(
R r−λc
0

e−csds)2dr[Q− ᾱQ1]θθ
0[Q− ᾱQ1]

0

+(1− λc)
2
R 1
0
(
R r
0
e−csds)2dr[Q− ᾱQ1]θθ

0[Q− ᾱQ1]
0

−2(1− λc)
R 1
λc

R r−λc
0

e−csds
R r
0
e−csdsdr[Q− ᾱQ1]θθ

0[Q− ᾱQ1]
0 = Op(kθk2),

T−1A2,T = T−2
TP
t=1

v̂t[
t−1P
s=1

r̄s−1v̂t−s]0
p→ λc

R 1
λc

R r−λc
0

e−csdsdr[Q− ᾱQ1]θθ
0[Q− ᾱQ1]

0

−λc(1− λc)
R 1
λc

R r
0
e−csdsdr[Q− ᾱQ1]θθ

0[Q− ᾱQ1]
0

−λc(1− λc)
R 1
λc

R r−λc
0

e−csdsdr[Q− ᾱQ1]θθ
0[Q− ᾱQ1]

0 = Op(kθk2),

T−1/2A4,T = T−1
TP
t=1

r̄tv̂t
p→ R 1

λc
e−crdr[Q− ᾱQ1]θ− (1− λc)

R 1
0
e−crdr[Q− ᾱQ1]θ = Op(kθk),
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T−1/2A5,T = T−2
TP
t=1

r̄t
t−1P
s=1

r̄s−1v̂t−s
p→ R 1

λc
e−cr

R r−λc
0

e−csdsdr[Q− ᾱQ1]θ

−(1− λc)
R 1
0
e−cr

R r−λc
0

e−csdsdr[Q− ᾱQ1]θ = Op(kθk).
Then solving the integrals and collecting terms using (A.6) gives the result of the qL̂L test.
For the sup-Wald test, the restricted sum of squared residuals is such that

T−1SSRr
T = T−1

TP
t=1

ê2t
p→ (1 + ᾱ2)σ2e + (1− λc)(1 + ᾱ2)θ0Qθ − 2(1− λc)ᾱθ

0Q1θ

−(1− λc)
2θ0[Q− ᾱQ1]

0Q−1[Q− ᾱQ1]θ ≡ SSRr∗,

where ᾱ is given by (A.17). For the unrestricted regression

yt = αuyt−1 +X1(λ)
0
tβ1 +X2(λ)

0
tβ2 + et

we can show that for λ ≤ λc,

α̂u
p→ [σ2e + (1− λc)θ

0Qθ − (1− λc)
2

1− λ
θ0Q0

1Q
−1Q1θ]

−1[1− λc)θ
0Q1θ − (1− λc)

2

1− λ
θ0Q0

1θ] ≡ ᾱu,

β̂1
p→ 0k×1,

β̂2
p→ 1− λc
1− λ

Q−1[Q− ᾱuQ1]θ.

For λ > λc,

α̂u
p→ [σ2e + (1− λc)θ

0Qθ − (λ− λc)
2 + λ(1− λ)

λ
θ0Q0

1Q
−1Q1θ]

−1

×[(1− λc)θ
0Q1θ − (λ− λc)

2 + λ(1− λ)

λ
θ0Q0

1θ],

β̂1
p→ λ− λc

λ
Q−1[Q− ᾱuQ1]θ,

β̂2
p→ Q−1[Q− ᾱuQ1]θ.

More importantly, for λ = λc, α̂u
p→ 0, β̂1

p→ 0k×1, and β̂2
p→ θ. Now, SSR(λ)T will take a

minimum value at λ = λc so that

T−1SSR(λc)T = T−1
TP
t=1

ê(λc)
2
t = T−1

TP
t=1

e2t + op(1)
p→ σ2e.

Therefore, by the continuous mapping theorem,

T−1SW =

µ
T−1SSRr

T − T−1SSRT (λ̄)

T−1SSRT (λ̄)

¶
p→
µ
SSRr∗ − σ2e

σ2e

¶
= Op(kθk2),

where λ̄T minimizes SSRT (λ). For the special case with Xt = {1} for all t, it is clear that
ᾱ = 1 and Q− ᾱQ1 = 0 so that p limT→∞ T−1qL̂L = 0. For the sup-Wald test, the limit of
SSRr∗ reduces to 2σ2e, which implies p limT→∞ T−1SW = 1.
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