
Summary With the widespread application of eddy co-
variance technology, long-term records of hourly ecosystem
mass and energy exchange are becoming available for forests
around the world. These data sets hold great promise for testing
and validation of models of forest function. However, model
validation is not a straightforward task. The goals of this paper
were to: (1) review some of the problems inherent in model val-
idation; and (2) survey the tools available to modelers to im-
prove validation procedures, with particular reference to eddy
covariance data. A simple set of models applied to a data set of
ecosystem CO2 exchange is used to illustrate our points.

The major problems discussed are equifinality, insensitivity
and uncertainty. Equifinality is the problem that different
models, or different parameterizations of the same model, may
yield similar results, making it difficult to distinguish which is
correct. Insensitivity arises because the major sources of varia-
tion in eddy covariance data are the annual and diurnal cycles,
which are represented by even the most basic models, and the
size of the response to these cycles can mask effects of other
driving variables. Uncertainty arises from three main sources:
parameters, model structure and data, each of which is dis-
cussed in turn. Uncertainty is a particular issue with eddy
covariance data because of the lack of replicated measure-
ments and the potential for unquantified systematic errors such
as flux loss due to advection.

We surveyed several tools that improve model validation,
including sensitivity analysis, uncertainty analysis, residual
analysis and model comparison. Illustrative examples are used
to demonstrate the use of each tool. We show that simplistic
comparisons of model outputs with eddy covariance data are
problematic, but use of these tools can greatly improve our
confidence in model predictions.

Keywords: eddy flux, identifiability, model comparison, model
validation, residual analysis, sensitivity, uncertainty.

Introduction

Models of forest functioning have traditionally been tested
against temporally sparse data, such as annual values of vol-
ume increment (e.g., McMurtrie and Landsberg 1992). Re-
cently, however, micrometeorological techniques have devel-
oped to the point where hourly estimates of ecosystem carbon
and water exchange can be calculated, and an increasing num-
ber of ecosystems are being measured in this fashion (Bal-
docchi et al. 2001). These data hold great promise for forest
modelers because they allow models to be tested on a fine time
scale. They also allow representations of exchange processes,
such as gross primary productivity (GPP) and net ecosystem
exchange of CO2 (NEE) to be tested independently of those of
less well understood processes such as carbon allocation.

There has been much discussion and disagreement among
modelers as to what constitutes validation (Rykiel 1996). Sta-
tistical theory provides tools for validation and testing of, for
example, regression models that are fitted to data, but offers
little help for the validation of mechanistic models that aim to
predict system behavior from underlying principles (Berk et
al. 2002). As a consequence, many modelers use somewhat ad
hoc approaches to validation that are open to question (Mitch-
ell 1997). In the first part of this paper, we review some of the
difficulties inherent in model validation, with particular refer-
ence to eddy covariance data. We illustrate some of the flaws
in common validation procedures, using a set of simple mod-
els of ecosystem carbon exchange applied to an eddy co-
variance data set.

It is important to consider what is meant by “model valida-
tion.” Many authors argue that the term “validation” is inap-
propriate, because it implies that the model is being shown to
be correct, whereas models (as with hypotheses) can only be
falsified, not proved (Oreskes et al. 1994, Vanclay and Skovs-
gaard 1997). In fact, it can be difficult to falsify models as well,
as many comparisons of models show (Amthor et al. 2001,
Kramer et al. 2002).

Mayer and Butler (1993) defined validation as “comparison
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of the model’s predictions with the real world to determine
whether the model is suitable for its intended purpose.” This
definition highlights the need to specify the purpose of the
model before validation is carried out, a point stressed by
many authors (Rykiel 1996, Berk et al. 2002). Some potential
purposes for models validated against eddy covariance data in-
clude: identifying the driving variables of a particular ecosys-
tem; extrapolating from the measured system to estimate
regional fluxes; or modeling responses to changes in climate
(van Wijk et al. 2002). Models that are judged suitable for one
purpose may be unsuitable for another. Mayer and Butler’s
(1993) definition also highlights the need for criteria against
which to judge the model’s performance. How do we judge
whether a model is “suitable” or not? In some cases, the crite-
ria will be quantitative. If, for example, the aim is extrapola-
tion for regional estimation, the criteria may be based on the
uncertainty or overall error of model predictions as compared
to data. In other cases, the criteria may be more qualitative,
such as whether the model is able to reproduce responses to a
given driving variable.

Robinson and Ek (2000) argue that validation is the respon-
sibility of the model user, as the model developer will not nec-
essarily have the appropriate data or insight into the intended
applications. Equally, however, model users may not have suf-
ficient insight into the working of the model to validate it ade-
quately. We lean towards the viewpoint of Vanclay and
Skovsgaard (1997), who suggest that validation for a single
purpose is too limited in any case, and that modelers should
carry out a full evaluation of their model, providing as much
information as possible about the model’s behavior and pre-
dictive ability. This approach would then enable users to de-
cide how suitable the model is for their own purpose.

The full evaluation advocated by Vanclay and Skovsgaard
(1997) includes attempting to establish the following points
about the model. First, is its structure adequate, i.e., does it
represent the processes involved and capture responses to driv-
ing variables? Does it provide realistic predictions for its most
likely applications? Second, are the model parameters esti-
mated correctly for the evaluation data set, and how can they
best be estimated for another data set? Last what is the likely
error of a model application? In the second part of this paper,
we survey some of the main techniques available to modelers
to carry out such an evaluation of their models. The techniques
are illustrated on our set of example models, and we discuss
how each technique can be used to answer these questions
about model performance.

Illustrative example

In this section, we carry out a standard validation test of two il-
lustrative models against the data, and then give a critique of
the results.

We modeled NEE, which is given by the difference between
ecosystem respiration (RE) and gross primary productivity
(GPP). Gross primary productivity was modeled using a sim-
ple sun–shade model (Medlyn et al. 2000, 2003). Ecosystem

respiration was modeled using two alternative models. The
first is a Q10 relationship with soil temperature, which encap-
sulates the hypothesis that respiration is driven largely by tem-
perature. The second respiration model is a substrate-recy-
cling model (Dewar et al. 1999, Cannell and Thornley 2000).
This model is based on the hypothesis that respiration is lim-
ited by substrate availability in the longer term. It represents
two carbon pools, a “sucrose” pool and a “protein” pool. Pho-
tosynthate is assumed to enter the sucrose pool; a fraction of
the sucrose pool becomes protein, which is then recycled into
sucrose. The respiration rate depends on the recycling rate,
which is a function of both temperature and carbon availabil-
ity. The equations of the models used are given in Appendix A.

In what follows, Model 1 denotes the combination of the
GPP and Q10 submodels, and Model 2 denotes the combina-
tion of the GPP and substrate-recycling submodels. The mod-
els were run on a half-hourly time step. Model outputs were
compared to 1998 CO2 flux data from the Griffin forest, a
17-year-old Sitka spruce (P. sitchensis (Bong.) Carr.) planta-
tion in Scotland (Bernhofer et al. 2003, Clement 2004). The
aims of the exercise were to: (1) validate the sun–shade GPP
model; and (2) decide which is the better model of ecosystem
respiration.

The models were parameterized as far as possible with val-
ues from the literature, preferring values for Sitka spruce or
those from the Griffin site itself where available. A list of pa-
rameter values is given in Table 1. Sources for the parameter
values are described in the section on Uncertainty in Para-
meterization. Parameters for the respiration submodels could
not be estimated directly and, hence, were fitted to nighttime
CO2 flux data from the Griffin eddy covariance data set. Only
“good” data were used, that is, data judged reliable by the sys-
tem operator, and obtained under turbulent conditions. Non-
linear least squares was used for the fitting, using the package
PEST (http://www.sspa.com/pest/).

The model output was then compared with the CO2 flux
data. Note that the data set used was not gap-filled, which is the
practice of replacing missing or uncertain values using a fitted
empirical model (Falge et al. 2001). As noted by van Wijk and
Bouten (2002), the use of gap-filled data to test models would
very likely increase the correspondence between data and
model, since the gap-filling procedure is based on models that
are structurally similar to those being tested.

It is common practice to aggregate the data in some way
when making such comparisons. Aggregation reduces the data
set to a manageable size and smooths out much of the noise in-
herent in eddy covariance measurements (Moncrieff et al.
1996, Baldocchi and Wilson 2001). A common means of ag-
gregation is to calculate average values for each half-hour pe-
riod over a fortnight or a month to give ensembles or
bin-averaged data (Baldocchi and Wilson 2001). In Figure 1A,
outputs from Model 1 are compared with the monthly ensem-
bles of half-hourly CO2 flux data from Griffin. Such compari-
sons are often judged by the slope and intercept of the
regression, and the r2, shown in Figure 1. In this case, the com-
parison appears excellent, with a high r2, a slope close to 1 and
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an intercept close to zero. Such a result is often taken to imply
that the model performs well and is likely to give good predic-
tions of CO2 fluxes. However, this procedure can be criticized
on several grounds.

From a statistical viewpoint, the procedure is flawed in
many ways. First, as many authors have pointed out, the use of
the r2 statistic to judge model performance is incorrect, be-
cause it fails to account for model bias (Mayer and Butler
1993, Mitchell 1997). Several alternatives to this statistic are
available, including the normalized mean average error
(NMAE) and root mean squared error (RMSE), both of which
measure the mean deviation of the model predictions from
data, and the model efficiency (ME), given by:
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which estimates the proportion of variance of the data ex-
plained by the 1:1 line (Mayer and Butler 1993). Another ap-
proach is to test for model bias, by testing whether the
regression line is significantly different from the 1:1 line. Such
a test assumes, however, that data are independent and nor-
mally distributed, and neither of these assumptions holds for
eddy covariance data. It can also be shown that it is always
possible to obtain a significant difference between data and
model as long as sufficient data are available (Robinson et al.
2005). Finally, several alternative statistical tests can be used
to test for bias, and these may not be consistent in outcome
(Yang et al. 2004).

In addition to these statistical issues, there are several im-
portant practical problems with this approach to validation.
Equifinality (Franks et al. 1997) occurs when different para-
meterizations or formulations of a model give similar results.
Thus, obtaining a good fit between model and data does not
imply that the model is “correct,” because other parameteri-
zations or formulations may lead to an equally good fit. Part of
this problem is the identifiability of parameters, which is anal-
ogous to collinearity in regression. If a model is over-para-
meterized, some parameters may compensate for each other,
or model output may be insensitive to them. A comparison
with data does not allow these parameters to be estimated (in
the case of fitted models) or tested (in the case of literature-
based parameters) accurately. One criterion for a good regres-
sion model is that the parameters be identifiable (Reichert and
Omlin 1997). However, for ecological models, the need to rep-
resent mechanisms in the model means that over-parame-
terization and poor identifiability are common. There is an
analogous problem with model structure. Models may be said
to represent hypotheses about system functioning. Good
agreement between a model and data does not mean that we
can accept the hypothesis embodied in the model, because al-
ternative hypotheses and model structures may agree with data
just as well. To test a hypothesis, it is necessary to formulate
different models that do and do not include that hypothesis,
and observe whether the data can be used to discriminate be-
tween the different formulations.

Insensitivity of the validation test is another problem, as for
example in Figure 1A. The data used for comparison are
monthly ensembles of half-hourly data over the course of
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Table 1. Initial parameter set. For the gross primary productivity (GPP) model, parameters were obtained from the literature (see text for sources).
For the respiration (RE) models, parameters were fitted using nonlinear least squares to nighttime CO2 flux data obtained under turbulent
conditions.

Parameter Definition Value

GPP Model
Jmax25 Mean maximum electron transport rate at 25 °C 79.5 µmol m–2 s–1

EaJ Activation energy of Jmax 50.03 kJ mol–1

EdJ De-activation energy of Jmax 201 kJ mol–1

∆SJ Entropy factor for Jmax 660.13 J mol–1 K–1

Vcmax25 Mean maximum Rubisco activity at 25 °C 43 µmol m–2 s–1

EaV Activation energy of Vcmax 59.45 kJ mol–1

αJ Quantum yield of electron transport 0.385 mol mol–1

g1 Ball-Berry stomatal conductance parameter 8.2
a Leaf absorptance 89.5%
k Canopy light extinction coefficient 0.5 m2 m–2

LAI Leaf area index 6.5 m2 m–2

RE Model 1
R0 Ecosystem respiration rate at 0 °C 1.033 µmol m–2 s–1

Q10 Q10 of ecosystem respiration 6.44

RE Model 2
kc Turnover rate of “sucrose” pool 3.97
kp Turnover rate of “protein” pool 0.884
ap Allocation to “protein” pool 0.984
Yp Fraction of “sucrose” turnover not lost to respiration 0.955
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1 year. The main causes of variability in such data are the sea-
sonal and diurnal variability in fluxes, and any remotely real-
istic model will capture this variability (Loehle 1997, Mitchell
1997). Thus, a reasonably good regression result may be ex-

pected of any model and may be misleading. Important diver-
gences between model and data may be overlooked simply
because the model is predicting CO2 efflux at nighttime and
uptake during the day, which may be enough to give a statisti-
cally significant regression with high r2.

Uncertainty is a third important practical problem. The vali-
dation test in Figure 1A does not take uncertainty into account,
and hence gives little idea of the magnitude of the error associ-
ated with model predictions. There are three main sources of
uncertainty in modeling exercises (Chatfield 1995): the pa-
rameter values; the model structure; and the data used to build
or validate the model. In a model application to eddy co-
variance data, all three of these are likely to be important. Un-
certainty in data is a particular issue, since estimation of errors
in the data is difficult owing to the lack of spatially replicated
measurements, and because the methodology used to derive
flux data from measurements is still developing, especially for
non-ideal sites (Finnigan et al. 2003).

Some of these issues are illustrated in Figures 1B and 1C. In
Figure 1B, an error was made in entering parameters. The
model parameters EaJ, EdJ and EaV were accidentally entered
in kJ mol –1 rather than J mol –1 as required by the model, and
thus were 1,000 times too small. At the same time, values of
Jmax25 and Vcmax25 were slightly lower, having not been cor-
rected to 25 °C from the measurement temperature of 22 °C,
and αJ was set to 0.3 rather than 0.385, a value used by
A. Ibrom et al., Risø National Laboratory, Denmark (unpub-
lished results) for the Griffin site. Despite the gross error in the
temperature parameters, the comparison of the model output
with data still looks extremely good. This example illustrates
the problem of compensating errors among parameter values,
and also shows the insensitivity to gross errors in para-
meterization of regression of modeled against predicted val-
ues. This error was made by the senior author of this paper
(Medlyn 2004) and was only found through residual analysis
as described below.

In Figure 1C, we show the results of the comparison of
Model 2 with the CO2 flux data. Again, the comparison ap-
pears excellent. The slope of the regression between model
and data is lower than that for Model 1, but the r2 is higher. The
RMSE is marginally higher for Model 1 (1.196 cf. 1.189) and
the model efficiency is the same for both models (0.966). It is
not immediately obvious which of Models 1 and 2 gives the
better fit to the data. Either model could be accepted as “valid.”
However, while the two models appear to give similar results
for current environmental conditions at Griffin, the model pre-
dictions diverge greatly if temperatures (T ) are assumed to rise
by 2 °C, as shown in Figure 2. Under Model 1, respiration rates
increase considerably with increasing T. The annual predicted
NEE of the forest is reduced from 660 g C m –2, under ambient
conditions, to 97 g C m –2. On the other hand, under Model 2,
respiration rates are determined by photosynthetic uptake,
rather than temperature, and do not change greatly. The annual
predicted NEE stays essentially the same, changing from 513
to 503 g C m –2. Thus, the use of different models, each “vali-
dated” by data, leads to dramatically different conclusions
about the effect of increasing temperature on the carbon stor-
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Figure 1. Comparison of modeled with measured monthly ensembles
of half-hourly net ecosystem exchange of CO2 (NEE) for the Griffin
forest in 1998. (A) Model 1 (sun–shade gross primary productivity
(GPP) model with Q10 respiration model) with parameters given in
Table 1. (B) Model 1 with incorrect temperature response parameters
(see text). (C) Model 2 (sun–shade GPP model with substrate-recy-
cling respiration model) with parameters given in Table 1. Solid lines
in each figure indicate best-fit line.
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age by the forest. It is important to distinguish between these
models if possible. This example also illustrates why a model
which performs well under current conditions may be unreli-
able when used to predict responses to future conditions, and
highlights the need to specify the purpose of the model when
carrying out the validation.

We have shown that a simple comparison between model
output and flux data as a test of model validity is open to criti-
cism. In the following sections, we describe some of the tools
that can be used by modelers to evaluate model performance
more critically. We begin by considering the parameterization
of the model. We first estimate the error due to uncertainty in
parameterization. We then evaluate the sensitivity of the model
to individual parameters, and use identifiability analysis to
work out which parameters are really tested by a comparison
with data. Uncertainty in the data is then discussed and esti-
mated. We fit parameters to the data, taking uncertainty into
account, and show how the fitted parameters can be used to
evaluate the values obtained from the literature. Finally, we
consider two methods used to test model structure: residual
analysis and comparison of different model structures.

Uncertainty in parameterization

We begin with a set of tools that evaluate the adequacy of
parameter values. Our first concern is to evaluate the uncer-
tainty introduced into model predictions due to uncertainty in
the parameter values. A standard approach used to quantify the
effects of parameter uncertainty is Monte Carlo simulation,
whereby probability density functions (pdfs) are specified for
each parameter value and the model is run many times over,
sampling the parameters from these pdfs, to generate a pdf for
the model outputs. The idea behind this approach is fairly
straightforward; the key problems in implementation are: (1)
the computing time required to run many simulations (al-

though evidently this is becoming less onerous); and (2) speci-
fying the parameter probability density functions.

The first step needed to specify the pdfs is to define the do-
main of reference. Here, we shall concentrate on determining
the uncertainty of model predictions for Sitka spruce forests in
Scotland. An alternative domain of reference might be conifer-
ous forests in northern Europe, for example; in that case, we
would need to include a much wider range of studies when de-
termining the uncertainty in parameter values.

We used several methods described by Radtke et al. (2001)
to generate parameter pdfs. One standard method, however,
was ruled out by the narrowness of our domain of reference.
This method involves collating parameter values from many
different studies and fitting pdfs to the distribution of these pa-
rameters. In this case, there have been insufficient studies on
Scottish Sitka spruce to use this approach. Instead, where pos-
sible, the uncertainty is based on the variability observed
within individual experiments. The pdfs obtained are given in
Table 2.

For example, to estimate mean canopy maximum electron
transport rate (Jmax), we took the mean of six values of Jmax

measured at different heights (i) in a Sitka spruce canopy by
Meir et al. (2002). Each value Jmax,i was derived from an A–Ci

(photosynthesis–leaf intercellular CO2 concentration) curve
and, hence, had a standard error (SEi) associated with it. The
variance of each value was calculated as ni iSE2 where ni was
the number of points in the A–Ci curve. The variance of the
mean of the six values was then calculated as:

Var Var
= 1

6

( ) ( )max max,J J i
i

= ∑1

62
(2)

A similar procedure was followed for Vcmax.
The Ball-Berry parameter, g1, was estimated from a regres-

sion of stomatal conductance against the term, ARH/Ca, where
RH is relative humidity and Ca is ambient CO2 concentration.
The data used in the regression were obtained from branch
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Figure 2. Modeled daily net ecosystem exchange (NEE) for the Grif-
fin site with air and soil temperatures increased by 2 °C. Solid line =
Model 1 (sun–shade gross primary productivity (GPP) model with
Q10 respiration model); and dashed line = Model 2 (sun–shade GPP
model with substrate-recycling respiration model).

Table 2. Probability density distributions for model parameter values
used in uncertainty assessment. See Table 1 for definitions of the pa-
rameters.

Parameter Distribution type Distribution parameters

Jmax25 Normal µ = 79.5, σ = 3.7
EaJ Uniform min = 50, max = 70
EdJ Constant 200
∆SJ Uniform min = 630, max = 670
Vcmax25 Normal µ = 43, σ = 5.7
EaV Uniform min = 55, max = 65
αJ Uniform min = 0.3, max = 0.4
g1 Normal µ = 8.2, σ = 0.25
a Uniform min = 0.88, max = 0.91
k Uniform min = 0.4, max = 0.6
LAI Normal µ = 5.9, σ = 0.212
R0 Normal µ = 1.0334, σ = 0.023
Q10 Normal µ = 0.1863, σ = 0.0027
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bags established at the Griffin site (Wingate 2003). The stan-
dard error of the parameter g1 was used as an estimate of its
standard deviation.

For leaf area index (LAI), estimates based on basal area
were made for forty-six 10 × 10-mm plots across the fetch of
the tower (Wingate 2003). The parameter required by the
model is mean LAI. We assumed that the variance of the mean
of these data was the variance of the data divided by the sample
size.

For the respiration parameters, which are fitted to the night-
time CO2 flux data, we assumed that the variance was given by
the square of the standard error of the parameters.

For the other model parameters, little information was di-
rectly available on variance. In such cases, it is common prac-
tice to assume a uniform distribution, with bounds based on
expert opinion. That approach was used here for the parame-
ters EaJ, EdJ, ∆SJ, EaV, k, a and α J.

The temperature response parameters were estimated from
the temperature dependence of light-saturated photosynthesis
of Sitka spruce given by Neilson et al. (1972). No uncertainty
values were available for these data. Instead, bounds for the
uniform distribution were obtained from a review of these
parameters for conifers (Medlyn et al. 2002). Uncertainty
bounds were not specified for the parameter EdJ because it was
held constant in that review.

The light extinction coefficient, k, was assumed, in the ab-
sence of any data, to take the typical value of 0.5. The foliage is
neither erectophile nor planophile, so this coefficient was as-
signed conservative bounds of 0.4 and 0.6. Leaf absorptance
was roughly estimated by Norman and Jarvis (1974), and does
not vary greatly, so a small range of values was assumed.

The uncertainty in the quantum yield parameter αJ was the
most difficult to specify. The value of 0.385 given in Table 1 is
the theoretical value for the quantum yield of electron trans-
port given by Farquhar and Wong (1984). However, some
much lower values have been obtained empirically from
light-response curves. For Sitka spruce, a value of 0.3 was esti-
mated from photosynthetic light-response curves by Ibrom et
al. (unpublished results); a value of 0.22 was obtained for de-
ciduous trees by Harley and Baldocchi (1995); and Porté and
Loustau (1998) give 0.2 for maritime pine. Comparison of
these values is complicated by the fact that the value obtained
from a light-response curve depends on the form of the curve
fitted to the data (Friend 1998), so that the parameter is not, in
fact, model invariant. Here we specified bounds on the param-
eter as (0.3, 0.4), the lower bound based on the value from
Ibrom et al. (unpublished results) and the upper bound just
above the theoretical maximum.

Using the pdfs specified in Table 2, 1000 parameter samples
were generated by the Latin hypercube sampling strategy, and
Model 1 was run with these samples. A histogram of total an-
nual NEE is shown in Figure 3. The minimum and maximum
values of annual NEE were –713 g C m– 2 and +132 g C m– 2,
respectively. The 95% confidence interval was (–583, +23) g C
m– 2, and the mean across all the simulations was –280 g C
m– 2. These figures compare with a best estimate from the data

of –590 g C m– 2 (Clement 2004) and a best estimate from the
model of –664 g C m– 2. Note that the best estimate from the
model is not the same as the mean over the Monte Carlo simu-
lations because some of the parameter pdfs are not centered on
the best parameter estimates (αJ and ∆SJ; compare Tables 1
and 3). This analysis illustrates the range in possible model
outputs given plausible parameter values, and gives some idea
of the potential error in model prediction arising from uncer-
tainty in parameter values.

It is useful to investigate which parameters contribute most
to the uncertainty, because the accuracy of model predictions
will be most improved by reducing the uncertainty in those pa-
rameters. The partial correlation coefficients between the pa-
rameter values and simulated results give an approximate idea
of the parameters contributing the most to uncertainty. These
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Figure 3. Uncertainty analysis of Model 1. Parameter values were
sampled with the probability density functions given in Table 3 and
used in 1000 simulation runs of the model. Figure shows a histogram
of the frequencies of totals of annual net ecosystem exchange (NEE).

Table 3. Partial correlation coefficients for uncertainty analysis. Each
value is the Pearson correlation coefficient (r) for the outputs of 1000
model simulation runs against the corresponding parameter values.
Parameters are presented in descending order of the absolute value of
the correlation with annual NEE. See Table 1 for definitions of the pa-
rameters. Abbreviations: GPP = gross primary productivity; RE =
ecosystem respiration; and NEE = net ecosystem exchange.

Parameter Annual GPP Annual RE Annual NEE

αJ 0.528 –0.010 –0.515
∆SJ 0.496 0.008 –0.478
EaJ –0.508 –0.085 0.469
LAI 0.254 –0.064 –0.263
Q10 0.002 0.663 0.174
R0 0.025 0.724 0.169
Jmax25 0.179 0.023 –0.168
Vcmax25 0.135 –0.039 –0.141
k 0.104 –0.052 –0.115
a 0.074 –0.013 –0.076
EaV –0.028 0.049 0.040
g1 0.013 0.002 –0.013
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coefficients were calculated from our simulation runs and are
presented in Table 3. This analysis suggests that the largest
sources of uncertainty are the parameters of the temperature
response of Jmax and the quantum yield parameter.

Sensitivity and identifiability analysis

Sensitivity analysis is a basic tool used by modelers to evaluate
the response of model output to changes in parameter values.
In this section, we compare three approaches to sensitivity
analysis. Each is applied to Model 1 and the results are com-
pared in Table 4.

The most common sensitivity analysis is the constant frac-
tion analysis, which involves quantifying the change in model
output following a small change in the parameter values from
an initial parameter set. Here, the sensitivities were calculated
by increasing each parameter by 10%, re-running the model,
and calculating the difference in modeled annual NEE. The
model is considerably more sensitive to some parameters, such
as R0, Q10 and αJ, than others, such as Jmax25 and Vcmax25. This
type of sensitivity analysis can be extended by evaluating the
model outputs at a wider range of parameter values, rather than
one small increment (e.g., Williams et al. 1998), an approach
that is particularly useful for highlighting nonlinearities in the
model response to different parameters.

Constant fraction analysis is useful because it highlights the
parameters that have most influence on model outputs. From
the point of view of making good predictions, it is useful to
know the most sensitive parameters, as more effort may be de-
voted to determining them accurately. From the point of view
of model validation, the values of the most sensitive parame-
ters may be most stringently tested, whereas the values of in-
sensitive parameters may not be tested at all.

There are several limitations to this analysis, however. First

the perturbation of each parameter by a constant fraction is
misleading, because some parameters are more uncertain than
others. The model may be highly sensitive to a particular pa-
rameter, but if that parameter has a narrow range, it will have
little influence on the model outcome. Second, the sensitivity
analysis tests responses to parameters individually and does
not indicate collinearity, or compensating effects, between pa-
rameters. Both limitations can be overcome by identifiability
analysis, which can rank parameters by their influence on the
model and identify sets of compensating parameters. This
analysis was developed for the situation in which parameters
are fitted to data using nonlinear regression and is intended to
identify the subsets of parameters that can be fitted with any
confidence to a given data set, but is also useful in the situation
where we have taken parameters from the literature and wish
to know how well-bounded these parameters are by compari-
son with data.

Here, we apply the formal identifiability analysis proposed
by Brun et al. (2001, 2002), using the associated software
package UNCSIM (available at http://www.uncsim.eawag.
ch). The mathematical details of the analysis are presented
briefly in Appendix B. We note that this analysis is essentially
a formalization of the method used by Wang et al. (2001) to es-
timate parameters of a surface exchange model from eddy
covariance data obtained above a wheat canopy.

The identifiability analysis involves the calculation of three
different indices. Sample values of these indices for subsets of
parameters from our illustrative model are given in Tables 4
and 5. The first index is a sensitivity measure, δ j

msqr . This mea-
sure differs from the constant fraction analysis in Table 4 be-
cause it is weighted by the prior uncertainty range of the
parameter, ∆pj, here obtained from the uncertainty analysis
described above. The sensitivity of the model to highly uncer-
tain parameters is increased. The two sensitivity measures are
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Table 4. Comparison of three approaches to sensitivity analysis. In each analysis, parameters are ranked in order of importance. For the constant
fraction sensitivity analysis, parameters were increased by 10% and the total change in net ecosystem exchange (NEE) over the year is given. The
identifiability sensitivity measure is calculated according to Equation B2, from the uncertainty ranges given in the column ∆pj. Details of the
Hornberger-Spear analysis are given in the text. Column p gives the probability that the parameter distribution for good predictive simulations is
the same as that for poor predictive simulations.

Constant fraction sensitivity analysis Identifiability sensitivity measure Hornberger-Spear sensitivity analysis

Parameter ∆NEE Parameter ∆pj δ j
msqr Parameter p

Q10 126.47 αJ 0.1 0.416 αJ < 2E–16
αJ –100.77 LAI 2 0.396 ∆SJ < 2E–16
a –100.77 EaJ 10 0.239 EaJ 3E–11
EdJ 90.47 EaV 10 0.216 Vcmax25 1.8E–06
R0 79.73 Q10 0.01863 0.205 LAI 2E–05
LAI –69.58 EdJ 20 0.173 Jmax25 0.04
EaV 67.19 Vcmax25 15 0.164 R0 0.07
EaJ 59.01 g1 4 0.110 k 0.11
∆SJ –15.03 R0 0.10334 0.109 a 0.13
Jmax25 –15.03 Jmax25 20 0.096 Q10 0.17
Vcmax25 –12.18 a 0.02 0.036 EaV 0.20
g1 –10.42 k 0.1 0.032 g1 0.75
k –10.13 ∆SJ 20 0.012 – –
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compared in Table 4, and we see that, for example, the parame-
ter αJ is identified as sensitive by both approaches, whereas the
parameter Q10 has a large sensitivity but a low uncertainty, and
so has a low δ j

msqr . The comparison of model output with data
provides a much better bound for the higher-ranked parame-
ters than for the lower-ranked ones.

The second index, γ, indicates the degree of collinearity of a
subset of parameters. Brun et al. (2001) suggest that subsets
with a collinearity index above a threshold of 10 have a high
degree of collinearity. Table 5 shows that, for Model 1, the
collinearity indices are extremely high for the two pairs of pa-
rameters Jmax and ∆S, and αJ and a, indicating that the struc-
ture of the model is such that these pairs of parameters
compensate strongly for each other. Indeed, inspection of
Equation (A1) shows that αJ and a are multiplicative; com-
monly they are combined into one parameter known as the ef-
fective quantum yield. There is also a fairly high degree of
collinearity among some subsets of three parameters.

The third index, ρ, indicates the identifiability of a subset of
parameters and combines the sensitivity and collinearity mea-
sures. If this index is high (where “high” is a relative term in
this case (Brun et al. 2001)), the subset is said to be highly
identifiable because the model is sensitive to these parameters
and there is a low degree of collinearity among them. Accord-

ing to the analysis in Table 5, the maximum number of
parameters that can be identified for the sun–shade model
from the Griffin data set is four. There are some subsets of four
parameters that have a high ρ and yet a γ less than 10, but sub-
sets of five parameters all have a high degree of collinearity.
The subset of parameters likely to be best identified by the data
is the subset (Jmax25, Vcmax25, αJ, LAI).

In summary, the identifiability analysis highlights how sen-
sitive the model is to each parameter, and indicates the extent
to which parameters compensate for each other within the
model. Only four parameters can be identified by the data, in-
dicating that a test against data gives us a good bound on those
parameters, but little further information about the other pa-
rameters.

The identifiability analysis can be carried out on any model
irrespective of the system to which it is to be applied. An alter-
native type of sensitivity analysis, which takes into account the
predictive ability of the model, was proposed by Hornberger
and Spear (1981). This approach makes use of the Monte
Carlo uncertainty analysis described above. The Monte Carlo
simulations are divided into those that do or do not adequately
predict system behavior, and the distributions of the parameter
values in each category are compared. This approach high-
lights the parameters whose values are important in modeling
a particular system behavior. As with constant fraction analy-
sis, this approach does not take into account compensatory ef-
fects between parameters; an algorithm for dealing with these
effects is given by Hornberger and Cosby (1985), but is not im-
plemented here.

For this example, we defined a simulation with adequate
predictive ability as one where the model efficiency was
greater than 0.85 when simulations were compared with indi-
vidual data points. Of our 1000 Monte Carlo runs, 142 fell into
this category. The distributions of the parameter values of
these 142 simulations were compared with the distributions
for the other simulations, and a Kolmogorov-Smirnov statistic
used to test whether the distributions were the same. The prob-
ability levels of these tests are given in Table 4, where the re-
sults of this sensitivity analysis are compared with the other
sensitivity analyses described above. The importance ranking
of parameters in this sensitivity analysis is somewhat different
from that in previous analyses. The quantum yield αJ is high-
lighted as important by all three analyses, but the temperature
parameter ∆SJ is found to be far more important in this ap-
proach. We can conclude that, although the model is not highly
sensitive to ∆SJ, the value of this parameter is important when
attempting to simulate this particular data set.

Error and uncertainty in data

Eddy covariance measurements are subject to both uncer-
tainty, due to random natural fluctuations in the system under
study, and error, which can arise through instrumentation
or through assumptions inherent in the eddy covariance
technique. Ideally, both should be taken into account in
model–data comparisons, but quantification presents a num-
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Table 5. Selection of results from identifiability analysis. The sensitiv-
ity measure was calculated for all parameters. Collinearity and identi-
fiability indices were calculated for subsets of parameters of the GPP
model only, because parameters of the respiration model have already
been fitted to nighttime data. See text for further details. Definitions of
the parameter are shown in Table 1.

Collinearity and identifiability γ ρ

Subsets of two parameters
Jmax25, ∆SJ 945008 0.004
αJ, a 496789 0.020
EdJ, EaV 8.489 7.715
EaV, LAI 8.091 11.951
EaJ, Vcmax25 1.071 19.331
Jmax25, Vcmax25 1 12.316

Subsets of three parameters
Most identifiable (highest ρ)
Vcmax25, αJ, LAI 3.812 19.485
EaJ, αJ, LAI 4.494 19.103
EaJ, αJ, Vcmax25 2.972 19.005
Most collinear (highest γ)
Vcmax25, EdJ, LAI 17.741 9.089
Vcmax25, EdJ, EaV 17.067 7.577
EdJ, EaV, g1 14.569 6.230

Subsets of four parameters
Most identifiable (highest ρ)
Jmax25, Vcmax25, αJ, LAI 4.20911 14.6689
EaJ, Vcmax25, αJ, LAI 8.68471 14.0044

Subsets of five parameters
Most identifiable (highest ρ)
Jmax25, Vcmax25, αJ, LAI, EaJ 17.333 9.952
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ber of problems.
The uncertainty due to random natural fluctuations can be

estimated from short-term measurements. For example, Law
et al. (1999) estimated the standard deviation of a half-hour
measurement from the standard deviation of the six 5-min
measurements during that half-hour. This calculation is
straightforward, but unfortunately is rarely published, so the
magnitude of this uncertainty is generally poorly known.

The sources of error in eddy covariance measurements are
described in detail by Moncrieff et al. (1996) and Aubinet et al.
(2000). The major instruments required for eddy covariance
measurements are the sonic anemometer, gas analyzer and
software, each having associated errors. For example, both the
sonic anemometer and gas analyzer must have sufficiently
high frequency responses to capture all turbulent fluctuations.
Drift in the calibration of the gas analyzer and inaccuracy of
the sonic anemometer will contribute errors. In general, the
magnitude of the errors associated with instrumentation can be
easily estimated from a working knowledge of instrument per-
formance (Moncrieff et al. 1996). For example, Anthoni et al.
(1999) estimated the overall uncertainty of daytime CO2 flux
due to instrumentation of their system as ± 12% of the flux.

The errors associated with the assumptions of the eddy
covariance technique are considerably more difficult to esti-
mate. These errors include departures from the assumptions of
steady-state conditions, homogenous terrain and no advection
(Moncrieff et al. 1996). Failure to account for low-frequency
turbulence is also a potential source of error (Finnigan et al.
2003). For latent heat and sensible heat fluxes, the magnitude
of error can be estimated by calculating the energy balance of
the system, but there is no equivalent constraint that can be
used to test the CO2 flux (Moncrieff et al. 1996).

For modeling purposes, we can estimate the uncertainty in
the CO2 flux from replicates of measurements. This uncer-
tainty will include random natural fluctuations and some error.
Errors with the eddy covariance technique can be classified as
either random or systematic (Moncrieff et al. 1996). Random
errors will be included, but not systematic errors, which are
extremely difficult to quantify.

Replicate eddy covariance measurements are rarely made,
but one exception is at the Howland forest (Hollinger et al.
2004) where two towers were established 800 m apart. The
towers were in similar forest areas but did not have overlap-
ping fetches. From these measurements, Hollinger et al.
(2004) calculated the standard deviation of CO2 fluxes and
showed that it varied with the magnitude of the flux. From the
graphs presented therein, the standard deviation was approxi-
mately 0.9 + 0.3Fc µmol m–2 s–1 for positive CO2 fluxes (Fc),
and 1.5 – 0.1Fc µmol m–2 s–1 for negative fluxes. Standard de-
viation also decreased with increasing wind speed, suggesting
that system error decreases with increasing turbulence.

At other sites, where only one tower has been established,
“replicate” measurements can be obtained by binning mea-
surements made under similar conditions. For example, Ber-
bigier et al. (2001) fitted a relationship between daytime CO2

uptake and incident photosynthetically active radiation (PAR)
and calculated the error in CO2 uptake as a function of the re-

siduals of this relationship. Van Wijk and Bouten (2002)
binned CO2 fluxes under similar conditions and calculated the
variance of each bin. The latter authors obtained an estimate of
daily variance of CO2 flux of 0.4 Fc + 20 g CO2 m –2 day –1

(M. van Wijk, Wageningen University, The Netherlands, per-
sonal communication).

Here, we followed the approach suggested by van Wijk and
Bouten (2002). Carbon dioxide measurements were divided
into daytime and nighttime measurements. Measurements can
be binned in several ways: we chose to bin daytime measure-
ments by incident PAR and nighttime measurements by soil
temperature, as fluxes showed strong relationships with both
these variables. The mean and standard deviation of the fluxes
associated with each bin were calculated and are shown in Fig-
ure 4. Daytime standard deviation was approximately 2.7 –
0.16 Fc µmol m –2 s–1, whereas nighttime standard deviation
was approximately 0.36 + 0.27 Fc µmol m–2 s–1. These error
estimates are somewhat higher than those found by van Wijk
and Bouten (2002), but are comparable to those of Hollinger et
al. (2004).

We also derived the following relationships between the
standard deviation of the daytime flux, Fc,d, and incident PAR
and Q, and between the standard deviation of nighttime flux,
Fc,n, and friction velocity, U*:

SD c,d( ) { . . .F Q Q= − × + × +− −2 5 10 5 71 10 2 46 2 3

mol m sQ < − −1200 2 1µ

mol m s{ .5 7 1200 2 1Q ≥ µ − −

(3)

SD c,n( ) . . *F U= −2 61 0 678 (4)

These relationships were used to estimate a standard devia-
tion associated with each flux measurement. The standard de-
viations can then be used as an estimate of measurement error,
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Figure 4. Error estimates for CO2 flux data. Data were separated into
daytime (�) and nighttime (�) measurements. Daytime measure-
ments were binned by incident photosynthetically active radiation,
whereas nighttime measurements were binned by friction velocity.
The figure shows bin standard deviation (SD) plotted against bin
mean flux.
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although it should be borne in mind that the data may be sub-
ject to further errors not captured by this analysis. This esti-
mate of measurement error can be used by modelers in several
ways, including confidence testing of the model fit to data, as
suggested by Loehle (1997), and the maximum likelihood
methods discussed below.

Comparing the literature and best-fit parameters

Parameter values can either be obtained from the literature, as
in Table 1, or fitted to data. In general, only one of these ap-
proaches is used, as they are seen as serving different pur-
poses. If the aim is to link the model output to underlying
mechanistic processes, or to use the model to predict outcomes
in new situations, literature-based parameters are seen as most
appropriate, and modelers are often at pains to stress that their
model has not been “calibrated” to the data (e.g., Ibrom et al.,
unpublished results). If, on the other hand, the aim is to iden-
tify patterns in a given data set, or to predict outcomes for simi-
lar situations, then parameter values are commonly obtained
by fitting (Lloyd et al. 1995, Arneth et al. 1998).

It can be useful to combine these approaches, and compare
the literature-based parameter values with those obtained by
fitting. It is possible, for example, that the value used in the
model does not correspond exactly to the value derived from
measurements, particularly where the functions involved are
nonlinear. In our illustrative example, LAI varies considerably
over the fetch of the measurements. We use mean LAI as a pa-
rameter to the model, and thereby introduce bias to the model
because the response of GPP to LAI is nonlinear (Duursma
and Robinson 2003). It can be argued that we should use an
“effective” LAI rather than a mean LAI (Medlyn et al. 2003).
Fitting the parameters to the data gives an estimate of the ef-
fective LAI and hence indicates the error involved in using the
mean LAI instead.

In this section, therefore, we consider methods for fitting
models to data. The first point to consider is that, in general,
not all parameters are identifiable from data. As described
above, identifiability analysis can be used to select subsets of
parameters that can be fitted successfully to data. For our illus-
trative model, the identifiability analysis suggested that a max-
imum of four parameters can be fitted, and the most identifi-
able subset of four parameters is Jmax25, Vcmax25, αJ and LAI.

The second point for consideration is the choice of method
for fitting. Typically, nonlinear least-squares minimization is
used (Wang et al. 2001). This method minimizes the sum of
squares of the residuals:

( � )y yi i
i

n

−
=
∑ 2

1

(5)

where yi is the observation and �yi is the model output. An alter-
native, more general, approach is maximum likelihood. Likeli-
hood theory argues that some of the possible values of model
parameters are more likely, or are more strongly suggested by
the observed data than others. The goal is to find the values for

the parameters that are the most likely given the observations:
the maximum likelihood estimates (Pawitan 2001). These two
methods, least squares and maximum likelihood, give identi-
cal results if the data values are normally distributed and have
homogeneous variances, and the model residuals are inde-
pendent. As noted above, the variances of eddy covariance
data are not homogeneous, but tend to increase with the mag-
nitude of the flux. The maximum likelihood approach will thus
give different, and arguably better, parameter estimates. This
approach involves minimizing the sum of squares of residuals,
weighted by an estimate of the variance of the corresponding
measurement error (van Wijk and Bouten 2002), i.e. mini-
mizing:

1
2

2

1 σ i
i i

i

n

y y( � )−
=
∑ (6)

This is effectively a weighted least squares approach, where
the weights decrease with the variance of the flux, thus giving
more weight to more accurate measurements when fitting pa-
rameters. We compared these two approaches visually by cal-
culating contour plots of the likelihood profiles of pairs of
parameters (holding all other parameters fixed). Examples of
these plots are shown in Figure 5. The unweighted plots show
the solution assuming constant variance, which is the same as
the least-squares solution, whereas the weighted plots show
the solution with variable variance. These plots show how the
shape of the function to be minimized is affected by the intro-
duction of variable weights.

We used PEST, the nonlinear parameter estimation package,
to obtain best estimates of the parameters for both approaches.
The estimates of standard deviation derived in Equation 7
were used for the maximum likelihood approach. The maxi-
mum likelihood parameters can also be calculated using
Monte Carlo methods (van Wijk and Bouten 2002, Hollinger
et al. 2004). PEST calculates 95% confidence intervals for pa-
rameter estimates for nonlinear models by treating the model
as though it were locally linear, that is, linear in the region of
the best parameter estimates. This requires a Taylor-series ap-
proximation of the function, evaluated at the best parameter
estimates. The approximation is then treated as a linear model
for estimating standard errors and confidence intervals, which
require the usual regression assumptions to be true, to be rea-
sonable. Fitted parameters and their confidence intervals are
compared with the literature values in Table 6. These confi-
dence intervals are somewhat misleading because they imply
that the parameters are uncorrelated, whereas it is clearly
shown in Figure 5 that the correlation between parameters af-
fects the shape of the confidence limits. However, it is difficult
to visualize four-dimensional confidence limits, so we use the
linear model confidence intervals to give a rough idea of the
uncertainty of each fitted parameter.

The maximum likelihood parameters are largely similar to
the nonlinear least squares parameters, and both are similar to
the parameter values obtained from the literature. In particular,
literature estimates of Jmax25 and Vcmax25 are close to those ob-
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tained by fitting the model, giving confidence in those parame-
ter estimates. The fitted value of αJ is somewhat less than the
literature value. As noted above, our confidence in this litera-
ture value was poor, and the results of the fitting suggest that a
smaller value may be more appropriate. On the other hand, the
fitted value of LAI was higher than the literature value, a result
that is somewhat surprising. Because the actual LAI varies

greatly within the fetch, and the response of GPP to LAI is
convex, it was anticipated that the effective (fitted) value of
LAI would be lower than the mean value.

We suggested above that maximum likelihood estimates of
parameters were better than least-squares estimates because
they take into account that the variances of the eddy covariance
data are not identical. However, maximum likelihood esti-
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Table 6. Parameters derived from the literature compared with parameters fitted to data using nonlinear least squares (NLLS) and maximum likeli-
hood (ML) approaches.  See Table 1 for definitions of the parameters.

Parameter Literature value NLLS Value and 95% CI ML Value and 95% CI

GPP Model
Jmax25 (µmol m–2 s–1) 79.5 78.8 (43.0, 114.6) 78.6 (–6.7, 163.9)
Vcmax25 (µmol m–2 s–1) 43 µmol m–2 s–1 43.6 (24.3, 63.0) 44.1 (–2.2, 90.5)
αJ 0.385 mol mol–1 0.363 (0.343, 0.382) 0.334 (0.298, 0.370)
LAI 6.5 m2 m–2 7.04 (3.77, 10.3) 7.55 (–0.75, 15.8)

RE Model 1
R0 – 1.033 (0.988, 1.079) 1.05 (1.006, 1.095)
Q10 – 6.44 (6.12, 6.78) 6.36 (6.04, 6.70)

RE Model 2
kc – 3.97 (–0.8, 8.7) 3.98 (–0.34, 8.31)
kp – 0.884 (0.08, 1.69) 0.787 (0.15, 1.42)
αp – 0.984 (0.96, 1.01) 0.983 (0.96, 1.00)
Yp – 0.955 (0.90, 1.01) 0.949 (0.90, 1.00)

Figure 5. Contour plots for nonlinear
least squares (unweighted) and maxi-
mum likelihood (weighted) fits of pairs
of parameters to the data set. (A) Mean
maximum electron transport rate at
25 °C (Jmax25) and mean maximum
Rubisco activity at 25 °C (Vcmax25) fit-
ted, while other parameters were held
constant; (B) quantum yield of electron
transport (αJ) and leaf area index (LAI)
fitted. The dot is the highest point of
the surface, and the innermost ring is
the approximate 95% confidence inter-
val; numbers show the value of the ob-
jective function being maximized.
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mates also assume that residuals are independent, a second as-
sumption which is not met by eddy covariance data. It can be
shown that fits of this model to half-hourly flux data have
autocorrelated residuals, with a lag of one half hour. Statistical
methods do exist to treat this situation, but are outside the
scope of this paper.

Residual analysis

We now turn to methods of testing model structure, as opposed
to parameter values. As noted above, testing goodness-of-fit
between model output and data can be a fairly insensitive test
of model structure, especially where the main source of vari-
ability in the data is annual and diurnal variation. Residual
analysis is a useful tool for investigating the performance of
model structure more closely. Although there are some formal
techniques for residual analysis (Cook and Weisberg 1982,
Draper and Smith 1998), most of these involve assumptions
that are not met by eddy covariance data, such as normality.
The techniques most useful for the analysis of fitting of
models to eddy covariance data mainly involve informal inter-
pretation of graphs of model residuals. However, use of these
techniques is complicated by the large quantities of data in-

volved and correlations between driving variables, so they
must be applied with care.

The residuals are the difference between model output and
data at each time point. The residuals can first be used to test
for model bias by plotting the residuals against the predicted
values (Draper and Smith 1998). In an unbiased model, this
plot will show no correlation, as in Figure 6A.

Secondly, the residuals can be plotted over time, to attempt
to identify the periods when the model performs particularly
well or badly. It is common to plot the model output and data
together, rather than the residuals. However, as shown by
Mayer and Butler (1993), this type of graph can be deceptive,
because the eye is drawn to the closest distance between two
lines, rather than the perpendicular distance. A plot of residu-
als is less open to misinterpretation. Plots of residuals over
time are most informative when environmental conditions
show progressive change. For example, Williams et al. (1998)
modeled CO2 flux in an Amazonian forest over a period of
7 weeks encompassing the transition from dry to wet periods.
Incident radiation and temperature did not vary greatly over
this period. There was a consistent overestimation in the first
part of the period, allowing them to identify soil water avail-
ability as the likely cause of the overestimation.
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Figure 6. Residual analysis. (A) Checking Model 1 residuals for bias: plot of daytime residuals (measured–modeled flux) against modeled fluxes.
(B) Modeled (�) and measured (�) daytime CO2 fluxes plotted against air temperature. (C) Residual net ecosystem exchange (NEE) of incor-
rectly parameterized Model 1 plotted against air temperature. The r2 of the fitted line is 0.06. (D) As for Figure 5C, but data are shown separately
for photosynthetically active radiation (PAR) < 100 µmol m–2 s–1 (�, r2 = 0.003) and PAR > 1000 µmol m–2 s–1 (�, r2 = 0.103).

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/article/25/7/839/1673665 by guest on 20 August 2022



In many cases, however, environmental drivers (such as in-
cident PAR, temperature and vapor pressure deficit) co-vary,
making it difficult to identify any particular driver as the main
cause of large residuals. Plotting residuals, or model output
and data, against individual driving variables (as recom-
mended by Draper and Smith (1998)) can be helpful. For ex-
ample, Figure 6B illustrates output of Model 1 and data plotted
against air temperature. It can be seen that the model overesti-
mates the magnitude of the flux below temperatures of about
1 °C. Above that temperature, however, the large number of
data points make the graph extremely difficult to interpret. It is
possible to fit a mean response of the data to any given driver
and observe deviations of the model around this mean re-
sponse. This approach is useful for highlighting gross discrep-
ancies between models and data (Kramer et al. 2002) but,
again, is complicated by correlations between environmental
variables.

Alternative approaches that allow for correlation between
environmental variables include stratifying the data and using
added variable plots. Stratification can be carried out on indi-
vidual data points or on averaged data. An example is given in
Figures 6C and 6D. Here, the model predictions were obtained
by dividing the temperature response parameters EaJ, EdJ and
EaV by 1000—the error referred to earlier in this paper. The re-
siduals of model predictions against air temperature are shown
in Figure 6C and show only a slight bias. In Figure 6D, the re-
siduals are shown for half hours when incident PAR was
< 100 µmol m–2 s–1 and > 1000 µmol m–2 s –1. The residuals
are unbiased at low incident PAR but strongly biased at high
PAR, information that was used to identify the error in the pa-
rameters of the light-saturated temperature response. It can
also be useful to average stratified data. For example, Ogée et
al. (2003) calculate ensembles of data and model predictions
for environmental conditions classified according to season,
humidity and cloudiness. This approach allowed them to iden-
tify conditions under which their model performed best.

Added-variable plots are commonly discussed in texts on
residual analysis (Weisberg 1985, Draper and Smith 1998),
but have not, as far as we know, been applied to flux models.
These plots can be used to test whether an additional variable
will increase the explanatory power of the model, taking into
account correlations between the additional variable and those
variables already included in the model. As an example, we
consider soil water content (SWC) as an added variable for
Model 1. Soil water content measurements were made, in ad-
dition to all other flux measurements, at Griffin in 2001. We
ran the model, using the same parameter values, for the meteo-
rological conditions in 2001. To remove any covariance, SWC
was regressed against incident PAR, air and soil temperature,
and relative humidity, and the residuals of the regression cal-
culated. The residuals of Model 1 were separated into daytime
and nighttime and each was plotted against the regression re-
siduals (Figure 7). If the added variable has no explanatory
power, we would expect there to be no correlation in this plot.
In order to highlight the trend of the residuals, the plot was
simplified into a series of means and standard deviations. The
daytime model residuals are not correlated with the SWC re-

siduals, suggesting no influence of SWC on GPP during that
year, other than that already captured by the covariance of
SWC with PAR, air and soil temperature, and relative humid-
ity. However, the nighttime residuals show a correlation, with
the model underestimating measurements (residuals > 0)
where the SWC residuals are large in magnitude and negative.
This result suggests that modeled respiration rates could be
improved by including a dependence on soil water content.

Finally, we note that artificial neural networks have also
been used as a means of interpreting the complex patterns of
residuals of forest flux models (Dekker et al. 2001).

Uncertainty in model structure

We now turn to model comparison as a means of evaluating
model structure. Model structure is a major source of model
uncertainty, but this uncertainty is extremely difficult to quan-
tify (Chatfield 1995). A given model may provide a reasonable
fit to data, but there may exist many other models that give an
equally good, or better, fit. If we are interested only in extrapo-
lating the model to make predictions under similar conditions,
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Figure 7. Added-variable plots for (A) daytime and (B) nighttime data
in 2001. Residuals of net ecosystem exchange (NEE) from Model 1
are plotted against residuals of soil water content (SWC) obtained af-
ter linear regression against photosynthetically active radiation, air
temperature, soil temperature and relative humidity. Data are summa-
rized into mean and standard deviations of residual NEE to clarify
presentation.
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model uncertainty may be unimportant. If, however, the aim is
to extrapolate to different conditions, or to identify key drivers
of system behavior, then model uncertainty can be important.
This point is illustrated in Figures 1 and 2, where models as-
suming different drivers for respiration give similar results un-
der current conditions but dramatically different results when
environmental conditions are changed.

Model structure can be tested through residual analysis, as
described above, or by specifying alternative model structures
and comparing their performance. Residual analysis is useful
for finding differences between models and data, that is, for
identifying conditions under which the model does not per-
form well. However, it is difficult to use residual analysis to
demonstrate the overall acceptability of a model because such
a judgement is subjective, and it does not preclude other alter-
natives. For example, Grant et al. (2001) set out to test the hy-
pothesis, embodied in their model, that low ecosystem water
and CO2 exchange in boreal coniferous forests are caused by
slow nitrogen cycling. They compared model output to eddy
covariance data, found a reasonable fit between the two, and
therefore concluded that their hypothesis was supported. But
such a test is, strictly speaking, inconclusive: they have not
confirmed their hypothesis, merely failed to reject it. A better
test would be to encode an alternative to their hypothesis and
test which model gives a better fit to data. For example,
Baldocchi (1997) tested the hypothesis that stomatal conduc-
tance declines during a drought by comparing the performance
of models that do and do not include an effect of drought on
stomatal conductance. The model that includes the effect of
drought on stomatal conductance was clearly shown to per-
form better. We still cannot conclude that this model is “cor-
rect”—particularly as Baldocchi (1997) showed there are still
discrepancies between its output and the data, but progress has
been made, because the alternative model can definitely be re-
jected.

Having shown the usefulness of comparing alternative mod-
els, we now consider how such a comparison can be made, us-
ing our alternative Models 1 and 2 as an example. Essentially,
we want to know which model provides a better fit to data.
There are some inherent difficulties involved in such a com-
parison. Parameterization is one issue, since we want to be
sure that we are comparing model structures, not how well
each model is parameterized. Further, the model with more pa-
rameters may perform best simply because it has more degrees
of freedom. A second major issue is the uncertainty in the data,
which, ideally, should be taken into account when estimating
the goodness-of-fit of each model.

The simplest means of comparing the models is to compare
the goodness-of-fit of each model to data, using a statistic such
as root mean square error (RMSE) or model efficiency (ME).
These statistics are shown in Table 7 for the 1998 data set, con-
sidering all half hours or nighttime half hours only. Model 2
appears to perform marginally better than Model 1 in both
cases.

It is often argued that models should be parameterized and
tested on different data sets—a procedure known as data split-
ting or cross validation (Power 1993). The argument is that the

model best fitting a given data set will not necessarily give the
best predictions for the future behavior of the system. Here, we
tested the predictive validity of the two models by applying
both to data from a second year, 1999. Statistics of the compar-
ison with these data are given in Table 7 and show that the
models perform similarly at nighttime, but Model 1 performs
better on the full data set. However, this procedure may not be
appropriate here because, in this case, we are most interested
in which model structure can best explain the variability in the
data sets. We want to test model structure, rather than para-
meterization, and hence should be using parameter values that
have been fitted to the data.

One problem with comparing statistics such as RMSE and
ME is that Model 2 has more parameters than Model 1 (four
versus two) and may provide a better fit to data because it has
more degrees of freedom. There are some indices available for
model comparison that take the number of parameters of the
model into account. For example, Hilborn and Mangel (1997)
give the index ln(SSQk + 2k/n) where SSQk is the residual sum
of squares of a model with k parameters and n is the number of
points. This index was evaluated for both models for the 1998
data set and was marginally better (smaller) for Model 2. The
larger number of parameters is essentially irrelevant here be-
cause of the large number of data points used for fitting.

A second problem is the failure of any of these statistics to
take into account the uncertainty in the data. Our uncertainty
estimates can be used in another index, the Akaike Informa-
tion Coefficient (AIC), which is based on the maximum likeli-
hood calculations (Hilborn and Mangel 1997). The AIC is
given by the negative log-likelihood of the model plus twice
the number of its parameters. Here, we calculated the negative
log-likelihood of each model as:
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Table 7. Statistics of comparison between Model 1 (M1) and Model 2
(M2). Statistics in the first two columns were obtained by comparing
the model to the full data set, whereas those in the last two columns
were obtained with the nighttime data only. Abbreviations: n = num-
ber of points in each data set; RMSE = root mean squared error; ME =
mean error; SSQk = residual sum of squares of a model with k param-
eters; and AIC = Akaike Information coefficient.

Statistic M1 M2 M1 Night M2 Night

1998
n 9598 – 2535 –
RMSE 3.151 3.142 1.232 1.170
ME 0.844 0.845 0.667 0.7
ln(SSQk) 11.465 11.460 8.256 8.154

+ 2k/n
AIC 23082 23007 4671 4629

1999
n 8877 – 2335 –
RMSE 3.967 4.284 1.484 1.474
ME 0.809 0.778 0.621 0.626
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where the model outputs were calculated with the maximum
likelihood parameters given in Table 6 and the standard devia-
tions, σi, were calculated from Equation 7. The values are
given in Table 7 and again suggest that Model 2 is a marginally
better fit to the data, even when uncertainty estimates are taken
into account.

However, the similarity of all the figures given in Table 7
still leaves room for doubt that either model is substantially
better than the other, and for this reason, we report on a further
test. This test was proposed by Sun (1994) and allows for the
possibility that the models are indistinguishable with the data
at hand. The test suggests that Model 1 should only be rejected
in favor of Model 2 if the following inequality holds:
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where � ,yi 1 and � ,yi 2 are the outputs of Model 1 and 2, respec-
tively. The test thus states that Model 1 should only be rejected
if the difference between the outputs of the two models is
greater than the sum of the residuals of Model 2 and the obser-
vation error. For the 1998 nighttime data set, the left hand side
of this inequality is 34 and the right hand side is 59 + 109 =
168, and thus Model 1 should not be rejected. This test is there-
fore inconclusive: essentially, it states that the differences be-
tween the models are smaller than the uncertainty in the data,
making it impossible to distinguish between them.

All these tests apply to the full year’s data. It may be possi-
ble to distinguish between models if we can identify periods
when one model performs significantly better than the other.
Here we have plotted the residuals of Model 2 against Model 1
(Figure 8) in an attempt to identify such periods. The figure
demonstrates that the residuals are strongly correlated. The
underlying problem is that the major drivers in the alternative
models, temperature and GPP, are strongly correlated in this
data set. Hence, these data cannot be used to infer that one
model is better than another. To distinguish between these
models, a different data set with little or no correlation be-
tween temperature and GPP would be required. What we can
state is that a prediction of CO2 fluxes under increased temper-
ature for this system is subject to uncertainty due to model
structure.

Conclusions

We showed, in the first part of the paper, that standard methods
of evaluating model performance against eddy covariance data
are subject to several problems. Chief among these are equi-
finality, or the possibility that different models may yield simi-
lar results; the dominance of the effects of incident PAR over
annual and diurnal cycles; and the uncertainty inherent in pa-
rameters, data and model structure. In the second part of the

paper, we reviewed a number of methods for improving our
evaluation of model performance, and demonstrated them
with a set of simple models of ecosystem carbon exchange,
which included a model of GPP and two alternative models of
ecosystem respiration.

Our initial aims were to validate the GPP model and to de-
cide which of the two respiration models better represented the
data. Following the full evaluation of the model, we have con-
siderable confidence in the GPP model. We identified major
sources of uncertainty in the model, using sensitivity and un-
certainty analysis, and quantified the effect of uncertainty in
the parameter values. By comparing the literature-based pa-
rameters with fitted parameters, we demonstrated that several
key parameters were approximately correct. Residual analy-
sis, including added-variable plots, demonstrated that the ma-
jor environmental effects on GPP are adequately captured by
the model. However, we were unable to distinguish between
the two respiration models, despite careful comparison of their
performance. The two models give similar outputs for current
environmental conditions, but differ greatly under changed en-
vironmental conditions. We conclude that our simple models
are adequate for modeling CO2 exchange of Scottish Sitka
spruce forests under current conditions, but should not be used
to extrapolate into future conditions.
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Appendix A: Model Equations

The model of canopy GPP is a sun–shade type model, taken
from Medlyn et al. (2000). Leaf photosynthesis, P, is assumed
to be a non-rectangular hyperbolic function of incident radia-
tion, I:
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where α is the quantum yield of photosynthesis, a is the leaf
absorptance, and Amax is the maximum leaf photosynthetic
rate. The parameters α and Amax are based on the Farquhar et
al. (1980) model of leaf photosynthesis as follows:
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where α J is the quantum yield of electron transport, C i is the
intercellular CO2 concentration, Γ* is the CO2 compensation
point in the absence of mitochondrial respiration, Km is the Mi-
chaelis-Menten coefficient for carboxylation by Rubisco, Jmax

is the potential rate of electron transport, and Vcmax is the maxi-
mum Rubisco activity. The variables Γ*, Km, Jmax and Vcmax

have temperature dependences as given by Medlyn et al.
(2002) (see their Equations 5, 6, 12, 16 and 17). The
intercellular CO2 concentration is calculated from an adapta-
tion of the Ball-Berry stomatal conductance model (Ball et al.
1987) as follows:

C C
C

gi a
a

RH
= − − Γ* .1 6

1

(A4)

where Ca is the atmospheric CO2 concentration, RH is the rela-
tive humidity, and g1 is the stomatal conductance parameter.

Under the assumptions that leaves are either sunlit or shaded
and that the sunlit leaf fraction, incident diffuse radiation and
photosynthetic capacity all decrease exponentially through the
canopy with rate constant k, Equation (A1) can be integrated
over the canopy to give the following expression for canopy
GPP:

GPP c= − − + +
+
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(A5)

where Lc is the total canopy leaf area index, Amax0 is the
photosynthetic capacity at the top of the canopy, b = aα Ib k and
d = aα Id k, and Ib and Id are the beam and diffuse fractions of
incident radiation, respectively. The photosynthetic capacity
at the top of the canopy is given by:

A
A kL

kLmax
max

exp( )0 1
=

− −
c

c

(A6)

where Amax is the mean photosynthetic capacity of the canopy
and is given by Equation A3.

The first model of respiration is a simple exponential func-
tion of soil temperature, Ts:

R R k T= 0 exp( )R s (A7)

with parameters R0 and kR.
The second model of respiration is shown diagrammatically

in Figure A1. The model assumes two pools of substrate, a
“sucrose” pool, Wc, and a “protein” pool, Wp. The dynamics of
both pools are given by:

W W k f T W k f T Wc c p p c cGPP= + + −( ) ( ) (A8)

W W a Y k f T W k f T Wp p p p c c p p= + −( ) ( ) (A9)

and respiration is given by:

R Y k f T Wp c c= −( ) ( )1 (A10)

The temperature function f(T ) is assumed to be an exponen-
tial function of air temperature with Q10 fixed at 2.

Net ecosystem exchange is then calculated as:

NEE RE GPP= − (A11)

Figure A1. Diagrammatic representation of substrate-recycling model
of respiration (Dewar et al. 1999, Cannell and Thornley 2000).
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Appendix B: Identifiability Analysis

We give here a brief overview of the mathematical details of
the identifiability analysis of Brun et al. (2001, 2002); we refer
the reader to those articles for further details.

The identifiability analysis involves the calculation of three
different indices. The first index is a sensitivity measure that
takes into account the prior uncertainty of each parameter. A
sensitivity matrix S = {sij} is calculated, with:

s
p

p

wij
i

j

j

i

= ∂η
∂

∆
(B1)

where ∂η i /∂pj is the partial derivative of the ith model output
with respect to the jth parameter. The weighting factors, repre-
sented by w i, account for different scales of model outputs and
the ∆p j’s are prior uncertainties, that is, they give an uncer-
tainty range for each parameter based on expert opinion. Here,
the values for wi were set to one, as all outputs are in the same
units; but, for example, if both CO2 and water vapor fluxes
were used, these values might be set to the total standard devia-
tions of each type of measurement. The sensitivity measure is
then defined as:

δ j ij
i jn

smsqr = ∑1 2

,

(B2)

This measure can be used to rank the sensitivity of the model
to individual parameters.

The second index is a collinearity index for a subset of k pa-
rameters, defined as:

γ
λ

k

k

= 1
~ (B3)

where
~
λ k is the smallest eigenvalue of the matrix

~ ~
S SK

T
K .

~
SK is

the n × k submatrix of the k columns of
~
S corresponding to the

parameters in the subset, and
~
S is the matrix S with each ele-

ment normalized by ||sj||, the norm of the jth column of S. The
collinearity index measures the degree of near-linear depend-
ence of the k columns of

~
SK . It is 1 if the columns are orthogo-

nal and becomes infinity if the columns are linearly dependent.
Near-linearly dependent columns imply a high degree of
collinearity among parameters, and thus the potential for com-
pensatory effects. A threshold of approximately γk = 10 is sug-
gested by Brun et al. (2001) to identify subsets of parameters
with a high degree of collinearity.

Finally, Brun et al. (2001, 2002) define an identifiability in-
dex:

ρ λk j
j

k k

=










=
∏

1

1

2

(B4)

where λ j are the eigenvalues of
~ ~
S SK

T
K .This index combines the

sensitivity and collinearity measures defined above: a subset
of k parameters with high ρk is said to be highly identifiable be-
cause the model is sensitive to these parameters and there is a
low degree of collinearity among them.
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