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Abstract We explain the (non-)validity of close-to-equilibrium entropy production princi-
ples in the context of linear electrical circuits. Both the minimum and the maximum entropy
production principles are understood within dynamical fluctuation theory. The starting point
are Langevin equations obtained by combining Kirchoff’s laws with a Johnson-Nyquist
noise at each dissipative element in the circuit. The main observation is that the fluctua-
tion functional for time averages, that can be read off from the path-space action, is in first
order around equilibrium given by an entropy production rate.

That allows to understand beyond the schemes of irreversible thermodynamics (1) the
validity of the least dissipation, the minimum entropy production, and the maximum entropy
production principles close to equilibrium; (2) the role of the observables’ parity under time-
reversal and, in particular, the origin of Landauer’s counterexample (1975) from the fact
that the fluctuating observable there is odd under time-reversal; (3) the critical remark of
Jaynes (1980) concerning the apparent inappropriateness of entropy production principles
in temperature-inhomogeneous circuits.

Keywords Entropy production · Variational principles · Nonequilibrium fluctuations

1 Introduction

Fluctuation theory is a standard topic in equilibrium thermostatistics, and its relation to ther-
modynamic variational principles is very well understood. In nonequilibrium these studies
stem from the fundamental work of Onsager and Machlup, and its various generalizations
are nowadays a hot topic, [1, 5, 13]. The existence of a link between variational principles
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like that of least dissipation and the Onsager-Machlup Langrangians has been known for a
long time. However, recent progress in better understanding the role of time-reversal sym-
metry and its breaking (cf. fluctuation theorems, Jarzynski identity etc., see e.g. [5, 18])
allows to analyze this in a fresh and more systematic way, and to clean up some old am-
biguities and to reinterpret some of the existing formulations. That is the motivation of the
present paper.

A traditional way of illustrating how entropy production principles characterize the be-
havior of (non)equilibrium systems goes via the study of linear electrical circuits. The reason
is that they provide physically clear and mathematically simple testing grounds for these hy-
potheses. The minimum and maximum entropy production principles have a reputation of
being vague or of being at best only sometimes valid. In fact a well known counter ex-
ample was discussed by Landauer in 1975 showing that the minimum entropy production
principle (MinEP) may not be satisfied even close to equilibrium, [14, 15]. A more general
criticism was exposed by Jaynes, starting with the remark that the MinEP does not even
work when in a network the resistors are kept at different temperatures, [11]. Surprisingly,
it has not stopped people from applying MinEP in a variety of contexts and from inventing
new proofs for it, see e.g. [23] for a critical review.

In the present paper we illustrate our new understanding of these principles via dynamical
fluctuation theory. No longer is it solely a matter of verifying these entropy principles but of
explaining their origin and their approximate nature. More mathematical details are in [21].

There are two particular steps in our analysis. First we connect the discussion with more
recent work in nonequilibrium statistical mechanics, in particular as described in [18, 19].
We construct a Lagrangian governing the distribution of system trajectories; the entropy
production is identified with the source term of time-reversal breaking in that Lagrangian.
Secondly, we explain how the entropy production principles can be derived from the fluc-
tuation theory constructed from the Lagrangian. The basic input is the observation that the
rate function for certain stationary dynamical fluctuations is in a direct relation with the en-
tropy production rate, when close to equilibrium and under specific conditions. This yields
an extension of the classical work by Onsager and Machlup [24] which enables to system-
atically generate various variational characterizations of the stationary state. Among these
we discuss the validity of both the MinEP and of its counterpart in the maximum entropy
production principle (MaxEP). In particular we revisit Landauer’s counter example and we
show why the conditions for the validity of the MinEP are not verified.

The plan of the paper is as follows. In the next section we introduce the general frame-
work and formulate the main questions for which we give general answers. Afterwards we
discuss some generic linear electrical circuits to illustrate the main points of the theory.

The paper is part of a series of papers in which the entropy production principles are
revisited and extended, also in the light of recent advances in nonequilibrium statistical
mechanics, [2, 20, 21].

The number of references on entropy production principles is enormous, mostly however
within the formalism of irreversible thermodynamics. We mention some but only a tiny
fraction of them in the course of the paper. As is well known, much of the pioneering work
was of course done by Ilya Prigogine, see [9, 25]. As a discussion of some conceptual points,
we mention [11, 16].

2 Set-up and General Strategy

In the present paper we explain when entropy production principles can be expected to yield
correct physical information. That will be illustrated in the context of linear electrical cir-
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cuits. Given such a network there is often an immediate phenomenological expression of the
entropy production rate Ṡ(X, Ẋ) as a function of the relevant variables X = (Xα) (poten-
tials, currents), their time-derivatives Ẋ, and in terms of the network parameters (values of
the electrical elements). We do not give a general definition of Ṡ(X, Ẋ) but we will make it
explicit in each of the examples that follow.

From Ṡ(X, Ẋ) we can still construct other entropy production variables, e.g. by substi-
tuting a dynamical law for Ẋ one obtains a typical entropy production rate at state X. The
question is now when and why the correct physical values for the potentials and/or the cur-
rents minimize or perhaps maximize these entropy production rates, in whatever form. The
question and part of the answer will become more clear below. We will then give examples
of networks, write down the relevant entropy production and show how it can serve, if at all,
as a variational functional.

Our treatment of electrical circuits relies on the use of Kirchoff equations that them-
selves assume a quasi-stationary regime of the Maxwell equations, thus forgetting about the
dynamics of the electromagnetic field. The resulting differential equations are well known
and their stationary solutions are in the standard textbooks. Obviously our goal is not to
study linear electrical networks; in the present paper we use them merely as an example to
illustrate why and how nonequilibrium behavior can or cannot be obtained from variational
principles for the entropy production. We refer to e.g. [10] for other and further illustrations
of the use of electrical networks in studies of nonequilibrium physics, also using stochastic
methods.

For that purpose, Kirchoff’s differential equations will be embedded in stochastic equa-
tions whose averaged behavior reproduces the deterministic equation. Not only does that
enable the use of stochastic methods but there is also a good physical reason to include extra
noise, at least when the circuit is small. In accord with the fluctuation-dissipation theorem,
the thermal agitations in a resistor are related to the distribution of the random electric field
acting upon the electrons. As a consequence, a random voltage emerges and can be mea-
sured at the ends of the resistor (Johnson effect). That voltage can be described as a random
process U

f
t given by the Nyquist formula:

U
f
t dt =

√
2R

β
dWt, or U

f
t =

√
2R

β
ξt (2.1)

with R the resistance, Wt a standard Wiener process and more formally, ξt a standard white
noise; the prefactor is of course very small by the presence of Boltzmann’s constant in
β−1 = kBT , at least when compared to macroscopic voltage values. Hence, every ‘real’
resistor can be equivalently represented as an ideal resistor in series with the random voltage
source U

f
t . Using such a representation for all resistors present, we can study fluctuations in

an arbitrary electrical circuit. The resistors in the network are the only source of fluctuations
and of steady dissipation. Apart from the transient contributions coming from capacitances
or inductances, each resistor R through which a current I flows and which is kept in thermal
contact with a reservoir at temperature β−1, contributes a steady term βRI 2 to the entropy
production. Having thus determined the entropy production rate Ṡ(X, Ẋ) for the electrical
circuit, we must understand how it gives rise to a variational principle for the variables in
the network.

The following can be skipped at first reading and one can choose to go directly to the
examples in Sect. 3.
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2.1 Diffusion Process

The line of reasoning will be as follows. For a given electrical circuit we write down (first
law) the conservation of charge, that the sum of all currents equals zero at every node, and
(second law) the conservation of energy, that the sum of all potential differences over any
loop equals zero. In those we take care to add with every resistor the random process U

f
t for

an additional fluctuating potential difference. The basic variables are then the potentials and
the currents satisfying linear stochastic differential equations of the generic form

Ẋα(t) = fα +
∑

γ

cα,γ Xγ (t) +
√

2

vα

ξα(t), (2.2)

where the ξα(t) are mutually independent standard white noises; the Xα represent the fluc-
tuating variables (currents and potentials that can be chosen freely); the constants vα, cα,γ

are determined from Kirchoff’s laws and from the Nyquist formula (2.1) and the fα is the
external “force” (such as from an external source or battery). We will see (2.2) specified in
(3.2), (3.8), (3.16), and (3.24).

That stochastic dynamics induces a probability distribution P on histories ω, where for
each time t , ωt = (Xα(t))α states the values of the potentials and of the currents, see e.g. [8].
The action in P is readily computed from Itô-stochastic analysis:

P(ω) ∝ exp

[
−

∫
dtL(ωt , ω̇t )

]

with Onsager-Machlup Lagrangian, formally,

L(X, Ẋ) = 1

4

∑
α

vα

(
Ẋα − fα −

∑
γ

cα,γ Xγ

)2

. (2.3)

From a mathematical point of view, such expressions are justified within the Freidlin-
Wentzell theory of stochastic perturbations of deterministic evolutions [4]. See also Sect. 2
in [7] for a mathematical description and Sect. 9.5 in [26] for a gentle introduction.

Observe that vα = O(β) in the electrical circuits and vαf
2
α is a very high frequency for

not too high temperatures; therefore the typical trajectories are Ẋα = fα + ∑
γ cα,γ Xγ and

β−1 can be taken as a perturbation parameter in the theory.
Each time in the examples below, we will explicitly write down that Lagrangian, see

(3.4), (3.9), (3.17), and (3.25).
When applying the general model (2.2) to a particular physical problem, we always have

to satisfy a consistency condition: that the antisymmetric term under time-reversal in L is
the physically correct entropy production Ṡ(X, Ẋ), usually a priori known from the context.
It means the entropy production must satisfy

L(εX,−εẊ) −L(X, Ẋ) = Ṡ(X, Ẋ) (2.4)

with (εX)α = εαXα for parities εα = ±1, labelling the (anti)symmetry under kinematical
time-reversal. E.g., εα = 1 (or −1) if Xα is a voltage (or current). The relation (2.4) is some-
times referred to as local detailed balance or even as an instance of the fluctuation theorem,
see e.g. [3, 12, 17] for further details. Yet it follows quite generally from the identification
of entropy production as source term of time-reversal breaking, see (2.3) in [18] or [19] for
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a derivation starting from a microcanonical set-up. In our linear electrical circuits, (2.4) is
ensured by satisfying the fluctuation-dissipation relation by taking (2.1) as noise terms, in
combination with a suitable choice of variables or of the level of description.1 Relation (2.4)
will be checked in each example below where indeed Ṡ(X, Ẋ) is unambiguous, see (3.7),
(3.13), (3.18), and (3.25).

When we substitute the typical trajectory Ẋα = fα + ∑
γ cα,γ Xγ into (2.4) we get the

typical (or expected) entropy production rate

σ(X) = Ṡ

(
X,Ẋ = f +

∑
γ

c·,γ Xγ

)
. (2.5)

When there is no driving (no external force nor battery nor differences in temperature, . . . )
the dynamics certainly reduces to that of an equilibrium system in which case the entropy
production rate (2.4) must be a total time derivative:

∫ t1

t0

dt Ṡ(X(t), Ẋ(t)) = β[H(X(t1)) − H(X(t0))] (2.6)

for some energy function H(X) and some inverse temperature β . Equation (2.6) formulates
the condition of detailed balance.

2.2 Stationary Entropy Production Principles

A systematic way to obtain meaningful nonequilibrium variational principles is to consider
dynamical large deviations. The transient case is postponed to the Appendix. For the sta-
tionary regime, we obtain a variational functional by simply putting Ẋα = 0 in the La-
grangian (2.3) to get

J (X) = 1

4

∑
α

vα

(
fα +

∑
γ

cα,γ Xγ

)2

. (2.7)

Since the constant trajectory, Xα(t) = x for all t , is the most probable strategy for the em-
pirical average

∫ T

0 X(t)dt/T to take the value x over a large time span T , we conclude that
J (x) is also the large deviation functional for that empirical average:

P
[

1

T

∫ T

0
X(t)dt � x

]
∼ exp[−TJ (x)] (2.8)

in the asymptotic sense, i.e., both sides become equal in the limit T ↑ ∞ after taking the
logarithm and dividing by T . The functional (2.7) thus also governs the dynamical fluctua-
tions in the steady state. The mathematical theory of such large deviations was initiated by
Donsker and Varadhan, see [4, 6, 26].

1The latter point is subtle: using a too coarse grained level of description one can easily ‘become blind’ to
some contributions to the total entropy production. In other words, relation (2.4) is not a definition but a basic
observation within fluctuation theory.
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2.2.1 Even Variables

When all fluctuating variables are even under time-reversal (all ε = +1), then it is easy to
verify from (2.5–2.7) that

J (X) = 1

4
σ(X). (2.9)

Thus, in that case, we get the typical (equilibrium) values for the X by minimizing the
entropy production σ(X), which becomes zero in equilibrium. The most basic example is in
Sect. 3.1.

2.2.2 Odd Variables

Including variables that are odd under time-reversal is necessary in order to obtain a truly
nonequilibrium stationary state in the present framework. We first investigate what happens
when we have only odd variables.

The basic idea is always that we must minimize J (X) but now it differs from the physical
entropy production. That is in accord with a general observation that for odd variables the
minimum entropy production principle does not apply. Instead, minimizing J (X) can now
be understood as a certain maximum entropy production principle. The reason is that for
odd variables

2J (X) = 1

2
σ(X) − Ṡ(X,0) + 1

2

∑
α

vαf
2
α . (2.10)

Hence, we need to minimize

1

2
σ(X) − Ṡ(X,0). (2.11)

In the stationary case, we have σ(X) = Ṡ(X,0). Thence, minimizing J (X) amounts to
maximizing the entropy production σ(X) under the constraint that σ(X) = Ṡ(X,0).

The required modification of the MinEP (to minimizing (2.11)) when dealing with odd
variables is also how Landauer’s counter example [14, 15] should be understood. The details
are in Sect. 3.2.

2.2.3 Even and Odd

The above equations (2.9–2.10) have been obtained for dynamical variables that are either
all even or all odd under time-reversal. We can make that more general. Suppose our La-
grangian includes both time-reversal even and odd variables: {Xα} = {X+

i ,X−
i }, where it

is understood that the X+
i are even and that the X−

i are odd under time-reversal. The La-
grangian (2.3) now takes the form (in obvious notation):

L(X, Ẋ) = 1

4

∑
i+

v+
i

(
Ẋ+

i − f +
i −

∑
j+

c++
ij X+

j −
∑
j−

c+−
ij X−

j

)2

+ 1

4

∑
i−

v−
i

(
Ẋ−

i − f −
i −

∑
j+

c−+
ij X+

j −
∑
j−

c−−
ij X−

j

)2

. (2.12)
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Remember that from the beginning we restrict ourselves to external driving forces which are
even under time-reversal; for odd driving forces already (2.4) needs a modification but an
analogous reasoning applies.

Let us first consider the entropy production rates. After some calculation, we find for the
expected entropy production (2.5):

σ(X+,X−) =
∑
i+

v+
i

(
f +

i +
∑
j+

c++
ij X+

j

)2

+
∑
i−

v−
i

(∑
j−

c−−
ij X−

j

)2

. (2.13)

From this we can further construct a function of the even and a function of the odd variables.
We thus get two additional, even and odd, expected entropy production rates σ+(X+) and
σ−(X−) given as

σ+(X+) = σ(X+,X−(X+)),

σ−(X−) = σ(X+(X−),X−),
(2.14)

where for the first (even) case we insert X− = X−(X+) from solving the stationary condition

f −
i +

∑
j+

c−+
ij X+

j +
∑
j−

c−−
ij X−

j = 0

and likewise, for the second (odd) case we substitute X+ = X+(X−) as found from

f +
i +

∑
j+

c++
ij X+

j +
∑
j−

c+−
ij X−

j = 0.

That will be explicitly visible and done in (3.22–3.23).
The large deviation rate function (2.7) can also be calculated:

4J (X+,X−) =
∑
i+

v+
i

[(
f +

i +
∑
j+

c++
ij X+

j

)2

+
(∑

j−
c+−
ij X−

j

)2

+ 2

(
f +

i +
∑
j+

c++
ij X+

j

)(∑
j−

c+−
ij X−

j

)]

+
∑
i−

v−
i

[(
f −

i +
∑
j+

c−+
ij X+

j

)2

+
(∑

j−
c−−
ij X−

j

)2

+ 2

(
f −

i +
∑
j+

c−+
ij X+

j

)(∑
j−

c−−
ij X−

j

)]
.

To simplify the structure, we make here the (nontrivial) assumption that the even and the
odd variables do not mix in J . Hence, we require that

J (X+,X−) = J +(X+) +J −(X−) (2.15)

(i.e., the cross terms are zero), with
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4J +(X+) =
∑
i+

v+
i

(
f +

i +
∑
j+

c++
ij X+

j

)2

+
∑
i−

v−
i

(
f −

i +
∑
j+

c−+
ij X+

j

)2

(2.16)

and analogously for J −(X−), see below in (2.18). That decoupling of the even from the odd
variables in the rate function J , implies the relation

4J +(X+) = σ+(X+) (2.17)

which is a generalization of (2.9).
Remember now that we must minimize J (here of the form (2.15)) to obtain the typical

stationary values. Hence, if indeed the time-symmetric and time-antisymmetric variables in
J decouple, then (2.17) tells that we should minimize the expected entropy production σ+.
We will see an example below in Sect. 3.3.

There is also a MaxEP principle in the above setting. Write J − as

4J − =
∑
i+

v+
i

(∑
j−

c+−
ij X−

j

)2

+
∑
i−

v−
i

(∑
j−

c−−
ij X−

j

)2

+ 2
∑
i+

v+
i f +

i

∑
j−

c+−
ij X−

j + 2
∑
i−

v−
i f −

i

∑
j−

c−−
ij X−

j

= σ−(X−) − 2P(f,X−), (2.18)

where P can be interpreted as the power input from the external forces f . Suppose we
take the constraint σ− = P meaning that the delivered work is completely dissipated and
there is no accumulation of internal energy (true indeed in the stationary state when Ẋ = 0).
Minimizing J −(X−) under the constraint σ− = P is equivalent to maximizing σ− under
the same constraint. That MaxEP principle was used similarly in [28].

3 Examples

We demonstrate the above general theory on a few simple examples of linear circuits. In
particular we will see that close to equilibrium the rate function J can indeed be split in the
even and odd parts, and hence, depending on the choice of variables, we obtain MinEP or
MaxEP principle.

3.1 RC in Series

Consider a resistance R in series with a capacity C and with a steady voltage source E.
Write U = Ut for the variable potential difference over the capacitor. Kirchhoff’s second
law reads

RCU̇ = E − U + Uf . (3.1)

By inserting the white noise ξt following (2.1), we are to study the Langevin equation

U̇t = E − Ut

RC
+

√
2

βRC2
ξt . (3.2)
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There is no other free variable apart from U ; in particular, the current I = CU̇ . A standard
reasoning proves the consistency of this model: with the battery removed, E = 0, the dy-
namics is reversible with respect to the Gibbs distribution at inverse temperature β and with
energy function H(U) = CU 2/2. In particular, limt↑∞〈U 2

t 〉 = (βC)−1, in accordance with
the equipartition theorem.

Heuristically, the entropy production rate σ(U) as a function of the voltage U on the
capacitor is simply the Joule heating in the resistor R:

σ(U) = β
(E − U)2

R
. (3.3)

Apparently, its minimizer U ∗ = E coincides with the correct value for the stationary voltage,
verifying the MinEP principle.

We can understand that within our general framework. The Onsager-Machlup Lagrangian
L(U, U̇) of the process Ut is

L(U, U̇) = βRC2

4

(
U̇ − E − U

RC

)2

. (3.4)

From L we can derive the fluctuations of the empirical voltage UT = ∫ T

0 Ut dt/T . The sta-
tionary (T ↑ +∞) fluctuations of UT are given by (2.7–2.8):

P[UT � u] ∼ exp[−TJ (u)] (3.5)

with rate function

J (U) = L(U,0) = 1

4
σ(U). (3.6)

The fluctuation law (3.5) thus gives a variational principle for the stationary voltage just
coinciding with the MinEP principle: the most probable value for the time-averaged voltage
is obtained by minimizing J (U) = σ(U)/4.

In fact, this is just a particular example of the relation (2.9). To see that we still have to
check that our model is consistent with relation (2.4). Indeed,

Ṡ(U, U̇) = L(U,−U̇ ) −L(U, U̇) = βCU̇(E − U) (3.7)

is the physical entropy production rate, and its typical value (2.5) equals

Ṡ

(
U, U̇ = E − U

RC

)
= σ(U)

verifying (3.3) above. Hence, from the fluctuation point of view, the manifest validity of the
MinEP principle for this RC-circuit is nothing but a consequence of the invariance of the
voltage (or charge) with respect to time-reversal.

3.2 RL in Series

If the capacity in the previous section is replaced with an inductance L, the situation re-
markably changes. In that case, Kirchhoff’s second law for the current I becomes

RI − Uf + L
dI

dt
= E
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(where the minus sign is chosen for convenience only), or, inserting the white noise ξt

from (2.1),

İt = E − RIt

L
+

√
2R

βL2
ξt . (3.8)

That is again a linear Langevin equation, but now the fluctuations concern the current It

which is odd under time-reversal.
We can try to repeat the same as in the previous section. The Lagrangian now equals

L(I, İ ) = βL2

4R

(
İ − E − RI

L

)2

. (3.9)

The construction of the fluctuation rate J (I ) for the empirical current
∫ T

0 It dt/T can again
be done following (2.7–2.8) with the result

J (I ) = L(I, İ = 0) = βR

4

(
I − E

R

)2

. (3.10)

As generally true, the minimum of J over I is given by the correct stationary value. How-
ever, that J clearly differs from the physical entropy production the expected rate of which
is now

σ(I) = βRI 2. (3.11)

So while we can find the most probable current I ∗ = E/R by minimizing J (I ), it does
not correspond to a minimization of the entropy production. Indeed, our RL-circuit is the
classical example first given by Landauer through which we see that the MinEP principle
is not generally valid and ‘not reliable’ when applied to macroscopic systems, even in the
linear irreversible regime. We can now however understand what is the real cause of that
effect.

Similarly to (3.6–3.7), the variational functional J (I ) of (3.10) for the stationary current
satisfies

J (I ) = 1

4
[L(I,−İ ) −L(I, İ )]|İ= E−RI

L
(3.12)

but L(I,−İ ) − L(I, İ ) does not longer coincide with the variable entropy production Ṡ.
Since the current is odd under time reversal, the latter is rather, see (2.4),

Ṡ(I, İ ) = L(−I, İ ) −L(I, İ ) = βI (E − Lİ) (3.13)

in accordance with the phenomenology; note that the equilibrium dynamics (i.e. (3.8) with
E = 0) satisfies detailed balance with energy function H(I) = LI 2/2.

Via our fluctuation approach we thus understand the origin of the problem: the MinEP
principle is generally valid only for Markovian dynamical systems described via a collection
of observables that are symmetric under time-reversal. The Markovian property refers to the
first order (in time) of the dynamical equation and indicates that the variable in question thus
satisfies an autonomous equation.

Observe that we now see appear the ‘true’ variational principle for the stationary current
as was explained under (2.10–2.11): for odd observables the above argument proposes a
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different functional that replaces the entropy production σ(I) and that can here be chosen
as

1

2
σ(I) − Ṡ(I,0)

as follows from (3.10) written in the form

J (I ) = 1

4
σ(I) − 1

2
Ṡ(I,0) + βE2

4R
.

As the stationary value I ∗ satisfies σ(I ∗) = Ṡ(I ∗,0), we can also state the above vari-
ational principle as a maximum entropy production principle, although trivial in this case:
we must maximize σ(I) subject to the condition that Ṡ(I,0) = σ(I). A nontrivial stationary
MaxEP within our examples follows in Sect. 3.4.

3.3 RR in Series

Consider an electrical circuit consisting of a battery E coupled to resistors in series. Ap-
pending an independent Nyquist random voltage source U

f

k to all resistances Rk , we get
that the current I fluctuates according to

I
∑

k

Rk = E +
∑

k

U
f

k . (3.14)

Here, the current follows a singular Markov process of the form of a white noise. We can
however modify that singular dynamics so that it becomes a regular Markov process and
so that the (averaged) stationary current remains unchanged. An important addition to the
discussion is to see the effect of assigning different temperatures βk to the individual resis-
tors, as it was claimed that such an extension would again yield a counter example to the
MinEP, [11].

For regularization we choose to add an inductance in series with the resistors so that a
non-trivial transient regime can arise. However, adding only an inductance gives a too coarse
grained description, because as one can check, then (2.4) would not be satisfied with the
correct expression for the entropy production. That can be solved by adding a capacitance
in parallel with one of the resistors, see Fig. 1. We thus have an effective RLC-circuit with
two resistors in series and one external voltage. The two independent free variables are
the potential U over the first resistor and the current I through the second resistor. The
variational functional (2.7) or the expected entropy production (2.5) will not depend on the
auxiliary inductance L or on the capacitance C.

Fig. 1 The regularized
RR-circuit



736 J Stat Phys (2007) 129: 725–740

The dynamical equations are given by Kirchoff’s laws:

U̇ = I

C
− U

R1C
+ U

f

1

R1C
,

İ = E − R2I − U

L
+ U

f

2

L
,

(3.15)

where always from (2.1), U
f

1,2 dt =
√

2R1,2β
−1
1,2 dWt . The equilibrium dynamics (E =

0, β1 = β2 = β in (3.15)) can be written as

U̇ = 1

LC

∂H

∂I
− γ1

∂H

∂U
+

√
2γ1

β
ξ1,

İ = − 1

LC

∂H

∂U
− γ2

∂H

∂I
+

√
2γ2

β
ξ2

(3.16)

for energy function H(U, I) = (CU 2 + LI 2)/2 and friction coefficients γ1 = 1/(R1C
2),

γ2 = R2/L
2; the ξ1 and ξ2 are independent standard white noises. The first terms on the

right hand-side of (3.16) specify a Hamiltonian dynamics for the pair (U, I), while the other
terms balance the dissipation and the random forcing.

The (nonequilibrium) Lagrangian is obtained from (3.15) as

L(U, I ; U̇ , İ ) = β1R1C
2

4

(
U̇ − I

C
+ U

R1C

)2

+ β2L
2

4R2

(
İ + R2I

L
− E − U

L

)2

(3.17)

and the variable entropy production (2.4) is

Ṡ(U, I ; U̇ , İ ) = L(U,−I ;−U̇ , İ ) −L(U, I ; U̇ , İ )

= β1U(I − CU̇) + β2I (E − U − Lİ) (3.18)

as it should. One recognizes indeed the dissipation in each resistor; I − CU̇ is the current
through resistor 1 and E − U − Lİ is the voltage at resistor 2. Thus, the expected entropy
production (2.5) is

σ(U, I) = β1
U 2

R1
+ β2R2I

2. (3.19)

On the other hand, the true variational functional (2.7–2.8) is directly obtained from (3.17):

4J (U, I) = σ(U, I) + β1R1I
2 + β2

(E − U)2

R2

− 2[β1UI + β2(E − U)I ] (3.20)

and differs from the entropy production because we have both an even (the potential U ) and
an odd (the current I ) degree of freedom; compare with (2.9) and (2.10) valid in the case
of only even respectively only odd variables. So now we have to go to the formalism with
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mixed variables as in (2.12–2.18). Although J does not exactly split into even and odd parts
as in (2.15), it does so approximately close to equilibrium: if β = β1 = β2 + ε, we have

4J (U, I) = β

[
U 2

R1
+ (E − U)2

R2

]
+ β(R1 + R2)I

2 − 2βEI + O(ε) (3.21)

which is of the form (2.15). Since the even and the odd versions (2.14) of the entropy pro-
duction rate are

σ+(U) = β1
U 2

R1
+ β2

(E − U)2

R2
= β

[
U 2

R1
+ (E − U)2

R2

]
+ O(ε) (3.22)

and

σ−(I ) = β1R1I
2 + β2R2I

2 = β(R1 + R2)I
2 + O(ε) (3.23)

the minimization of J provides us with the next two variational principles:
First, the stationary voltage U ∗ is obtained from minimizing J +(U) = σ+(U)/4, which

is a (generalized) MinEP (2.17).
Second, minimizing J −(I ) = σ−(I )− 2βEI or, equivalently, maximizing σ− under the

constraint σ−(I ) = βEI yields the stationary current I ∗; this is an example of the MaxEP
(2.18).

An important remark is that the above derivation of the MinEP and the MaxEP was based
not only on the assumption that the temperature is approximately homogeneous but also on
the linearity of the stochastic model(s) under consideration. They should be really taken as
a (linear) approximation around detailed balance. In particular, also the current I and the
forces U and E should be considered of order O(ε), together with the assumed β1 = β2 + ε.
The above then means that the MinEP and MaxEP are only valid up to order O(ε2), i.e.
within the linear irreversible regime; see [21] for some more details.

In view of this remark we understand better why these principles do not carry over to
temperature-inhomogeneous circuits: in our simple circuits the temperature gradients are
redundant thermodynamic forces in the sense that they do not generate electric currents by
themselves; they only modify the dynamics of fluctuations. Hence, these gradients yield
corrections of order o(ε2), beyond the resolution of the MinEP/MaxEP. That solves the
remarks by Jaynes [11]. Apparently, the picture would get completely changed by adding
e.g. a thermocouple into the network.

3.4 RR in Parallel

For the sake of completeness, we finally consider two resistors in parallel and coupled with
an external voltage source E. The independent variables are the currents I1 and I2 through
the two resistors. To have a dynamics consistent with our condition (2.4) we again need
a regularization and for that we add two inductances in series with the resistances. The
resulting stochastic dynamics is

L1İ1 = E − R1I1 + U
f

1 ,

L2İ2 = E − R2I2 + U
f

2 .
(3.24)
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The Lagrangian, the entropy production rate, its expectation, and the stationary variational
functional are subsequently as follows:

4L = β1

R1
(L1İ1 + R1I1 − E)2 + β2

R2
(L2İ2 + R2I2 − E)2,

Ṡ(I1, I2; İ1; İ2) = β1I1(E − L1İ1) + β2I2(E − L2İ2),

σ (I1, I2) = β1R1I
2
1 + β2R2I

2
2 ,

4J (I1, I2) = σ(I1, I2) − 2Ṡ(I1, I2,0,0) + β1
E2

R1
+ β2

E2

R2
.

(3.25)

If β1 = β2 + ε, minimizing the rate function J results in minimizing σ(I1, I2) − 2βE(I1 +
I2) up to order ε. Note that this splits into two independent variational problems for I1

respectively I2 which comes as no surprise: the two currents are entirely dynamically de-
coupled. Yet, one can again formulate a single MaxEP principle in this case: the stationary
currents are obtained by maximizing the expected entropy production rate σ under the con-
straint σ(I1, I2) = βE(I1 + I2), the right hand side being just the total power input. This for-
mulation is equivalent with the MaxEP principle in [28]. Analogous remarks as in Sect. 3.2
apply here.

4 Conclusions

Fluctuation theory naturally identifies the specific structure of dynamical fluctuations as the
underlying reason for the (variational) entropy production principles. It also explains their
validity conditions and limitations. Finally, it provides a natural and systematic way how to
search for new variational principles beyond trial-and-error methods, not available within
pure thermodynamics.

We summarize some general observations:
1. The set-up in the pioneering works of Prigogine [25] concerning MinEP typically

refers to some canonical thermodynamic structure. Yet, it is useful to broaden the view on
these variational principles; the MinEP principle is valid for mesoscopic systems (Markov-
ian, both with discrete and with continuous state space) where one does not a priori recog-
nize some canonical structure as is usually written in terms of forces and currents. We ex-
pect that dynamical fluctuation theory will present a more systematic avenue for evaluating
nonequilibrium behavior via variational methods, see [22] for some mesoscopic canonical
structure.

2. There is no fundamental difference between the nature and validity of the MinEP and
the MaxEP principles. Which one is to be used depends on the choice of thermodynamic
variables, whether they are symmetric or antisymmetric with respect to time-reversal. That
clear observation is a first concrete result that the fluctuation/statistical approach provides.

3. The present paper has considered electrical circuits to illustrate the basic points. No
further specific property beyond the linearity of the stochastic differential equations has
been used. Here one clearly knows the steady states explicitly, but the point of the paper was
to explain the origin and the validity of entropy production principles. In a more general
context, it remains useful to give a variational characterization of steady states, even when
they are known.
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Appendix Transient Entropy Production Principles

For the purpose of obtaining transient variational principles, we must look back at the La-
grangian (2.3). We can for example fix a history (Xα(s)) for times s ≤ t before some fixed
t and ask what is the most probable immediate future. Clearly, it amounts to finding the
(Ẋα(t)) that minimize L(X(t), Ẋ(t)), i.e., to minimize

D1(X, Ẋ) = 1

4

∑
α

vα

[
Ẋ2

α − 2Ẋα

(
fα +

∑
γ

cα,γ Xγ

)]
. (5.1)

That is traditionally called the least dissipation principle because when all variables are even,
εα = 1, it is easily checked that

2D1(X, Ẋ) = 1

2

∑
α

vαẊ
2
α − Ṡ(X, Ẋ) (5.2)

which can be traced back to mechanical and equilibrium analogues given by Rayleigh and
Onsager, see [24]; the expression

D(Ẋ) =
∑

α

vαẊ
2
α (5.3)

is sometimes called the dissipation function. The typical behavior Ẋα = fα + ∑
γ cα,γ Xγ as

expected from (2.2), can thus be characterized as the one minimizing (5.2) (still under the
condition that all εα = 1). We can rewrite that as a (transient) maximum entropy production
principle (discussed in e.g. [27]). Indeed, minimizing (5.2) over the Ẋ (for given X) is
equivalent with maximizing Ṡ(X, Ẋ) under the additional constraint that D(Ẋ) = Ṡ(X, Ẋ).

Alternatively, we can fix the Ẋα’s in (2.3) and we collect the free variable part of (2.3) in
what we call D2; we must then find the Xα’s minimizing

D2(X, Ẋ) = 1

4

∑
α

vα

[(∑
γ

cα,γ Xγ

)2

− 2(Ẋα − fα)
∑

γ

cα,γ Xγ

]
. (5.4)

The solution will give us the typical Xα’s. When now all the variables are odd, εα = −1,
that reduces to minimizing

2D2(X, Ẋ) = 1

2

∑
α

vα

(∑
γ

cα,γ Xγ

)2

− Ṡ(X, Ẋ). (5.5)

With the definition (2.5) of σ(X), the expression (5.5) can be rewritten as

2D2(X, Ẋ) = 1

2
σ(X) − Ṡ(X, Ẋ) (5.6)

which we have to minimize over the Xα’s or, alternatively, Ṡ(X, Ẋ) has to be maximized
under the constraint Ṡ(X, Ẋ) = σ(X).

Remark that if either (a) all variables are even and driving forces arbitrary, or (b) all
variables are odd and the forces absent, fα ≡ 0, then both the variational principles
D(Ẋ)/2 − Ṡ(·, Ẋ) = min (5.2) and σ(X)/2 − Ṡ(X, ·) = min (5.6) are valid and in a sense
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dual. The reason is that they are both corresponding to a relaxation to equilibrium with
Lagrangian taking the symmetric form

2L(X, Ẋ) = 1

2
D(Ẋ) − Ṡ(X, Ẋ) + 1

2
σ(X) (5.7)

a scenario originally considered by Onsager and Machlup [24]. However, that structure
needs a modification when a true nonequilibrium driving is present and/or when even and
odd variables mix with each other.
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