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On the validity of indeterminate factor scores

PETER H. SCHONEMANN and JAMES H. STEIGER
Purdue University, Lafayette, Indiana 47907

A partition of the vector space of all deviation score vectors for fixed sample size N is used
to show that the (indeterminate) factors of the factor model can always be constructed so as to
predict any criterion perfectly. including all those that are entirely uncorrelated with the
observed variables.

dim Sp(V) =dim Sp(VI) + dim Sp(V,). (4)

We call any vector x E RN a "vector of deviation scores" if it
is in the null space of 1', so that:

In general, Sp(V,) is not uniquely defined by Sp(V), Sp(VI ) in
Equation 3. If one defines Sp(V,) as an "orthogonal comple
ment of Sp(V.)" [relative to Sp(V)] and writes

iff VI ESp(VI), v, ESp(V,)-vl'v, =0, then Sp(V,) is
uniquely defined in terms of Sp(V) and Sp(VI)' as is well
known . We therefore could define Sp simply as the orthogonal
complement ofSp(J) in RN:

(5)

(3)

(2)

(1)

(6)

J'x =0,

Sp(V.) 1 Sp(V,)

J' =(I, I, .. . , 1).

THE FACTOR MODEL

Sp(V) =Sp(VI ) <IISp(V, )

RN =Sp <II Sp(J), Sp 1 Sp(J)

iff v E Sp(V) => v =VI + v, . with VI E Sp(VI), v, E Sp(V,), and
for a given V, VI' V" and v, the vectors VI and v, are uniquely
defined. We call Sp(V) the direct sum of Sp(Vk), k =1,2. It is
well known that in this case the dimensions add,

that is, its sample mean is x = ~XfjN =J'xjN =0. As is well
known, this null space (i.e., the! space of all deviation score
vectors for fixed sample size N) has dimension N - 1. Wedenote
this space "Sp" and write Sp C RN to indicate that it is a proper
subspace of RN.

If VI , . .. vr are the r columns of an N x r matrix V =(VI' . . .
vr) , we denote its column space (i.e., the set of all linear combi
nations of its columns) by Sp(V). We write, for VI E Sp(V),
V, ESp(V): .

will be summarized in this section , together with some elementary
but useful results from the algebra of vector spaces.

Let RN be the vector space of ordered N-tuples x = (Xi),
i =I,N , with real-valued components Xi. Let J ERN denote the
column vector of N ones, so that its transpose is:

The latent variables of the factor model, the
"factors," are not uniquely defmed by the observed
variables. This peculiar property of the factor model is
called "factor indeterminacy." Some have argued that
the implications of this indeterminacy are "trivial,"
because the covariance relations of the observed
variables with the common and unique factors remain
unchanged for all possible assignments of the factors,
But if this were not the case, we would not have an
indeterminacy .

Whether or not the consequences of indeterminacy
are trivial cannot be decided in the abstract, but rather
depends on what one wants to do with the factors.
Presumably, one uses factor analysis to learn something
about the given variables that could not be learned
without it. Since the interrelations among the given
variables are, by definition , known, this additional
knowledge must pertain to their relation with other
variables (e.g., criteria) that are not observed at the time
of the analysis.

Once one accepts the fact that the factors are not
uniquely defined by the model, one faces the question
of how the indeterminate increment that is needed to
define them can possibly enhance our knowledge of
other variables. In the past, opinions were divided on
this question. Some have argued that factor analysis
is superior to component analysis, which defines new
variables simply as linear combinations of the observed
variables, precisely because the factors, in contrast
to components, "go beyond the test space."

The purpose of this note is to lay the ground for a
rational study of this question, which, on the surface,
concerns the relation between factor indeterminacy and
external prediction, and which, in the final analysis,
concerns the purpose of factor analysis as a scientific
method.

STATEMENT OFTHE PROBLEM

Let Y =(Yj) be any set of p observed, linearly independent
deviation scored vectors. They span a subspace Sp(Y) E Sp of
exactly p dimensions, for which Y is a basis. Suppose Y can be
written

VECTOR SPACE NOTATION

In studying the relationship between factor indeterminacy
and external validity, it will be convenient to use the language
of abstract vector spaces. The needed definitions and notation

Y=XA'+ZU (7)
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for some p X m (m < p - 1) full column rank matrix A and
some positive definite (p.d.) diagonal matrix U' of order p X p,
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and X(N X m) and ZeN X p) contain column vectors of deviation
scores that jointly satisfy

In this case, we say "Y satisfies the factor model with common
factor pattern A, unique factor pattern U, common factor scores
X, and unique factor scores Z." The definitions of the factor
model (Equations 7 and 8) imply at once that the observed
sample variance-covariance matrix

in the construction of the factor score matrices X,Z is an ortho
gonalized basis of an arbitrarily chosen subspace Sp(Sm) of m
dimensions of the N - P - I dimensional null space SpeS) c Sp
of (Y,l). If S is a basis of this null space, we have[i] (X,Z)/N =Ip +m · (8)

and hence ,

[;] S =0,

Sp = Sp (Y) III SpeS), Sp(Y) 1 SpeS).

(15)

(16)

Equation 10 has been called the "fundamental theorem of
factor analysis." It states a necessary condition for the model
(Equations 7 and 8) to hold for any observed Y. It has been
used in practice to falsify this factor model for a hypothesized
number of common factors mf p - I). Recently, Schonemann
and Steiger (1976) have proven that this empirical check at the
variance-covariance level does not suffice to validate the factor
model (Equations 7 and 8) at the random variable level, because
other (Uregression component") decompositions of Y exist that
also imply Equation 10, but that are quite different from the
factor model , because they violate Equation 8. These regression
component decompositions are falsifiable exactly to the same
extent that the factor model is, and hence, they are empirically
indistinguishable from it . They have the advantage that they do
not suffer from the indeterminacy problems that result as a
consequence of the full rank condition (Equation 8) of the
factor model A PARTITION OFSp ANDTHE ASSOCIATED

ORTHOGONAL PROJECTORS

As long as N - 1 exceeds p + m, there is considerable leeway
for the definition of Sm' and thus X and Z in Equation 12. To
measure the extent of this "factor indeterminacy" for a given
factor score column Xj in X, Guttman (1955) proposed the
minimum correlation between the corresponding columns xi~

xj of two equivalent matrices X, X* under variation of all
Sm' This correlation is given by

where aj is the jth column in the common factor pattern A in
Equation 7. Schonemann and Wang (1972) found that this
correlation is in practice frequently negative, confirming what
Guttman had suspected 20 years earlier : "It seems that the
sought for traits are not very distinguishable from radically
different possible alternative traits, for the identical factor
loadings" (1955, p.74) . This possibility has not been unduly
disquieting for most practitioners of factor analysis in the past.
They simply ignored the indeterminacy altogether.

(17)min rx.x'" = 2al~C-' aj - 1,
S I Im

(9)

(10)

C= Y'Y/N

C = AA' +U'.

must be of the form

FACTORINDETERMUNACY A

Using X in Equation 14, we define Sp(Yo) by

Wilson (1928), upon reviewing Spearman's (1927) The
Abilities of Man, commented that the definitions of the factor
model, Equations 7 and 8, imply that the "latent" random
variables (i.e., in the sample, the factor score matrices X,Z in
Equations 7 and 8) are not uniquely defmed in terms of the
observed information in Y that satisfies Equation 10 at the
variance-covariance level. It was shown subsequently by several
authors (Guttman, 1955; Kestelman, 1952; Piaggio, 1931) that
many different pairs of deviation score matrices X,Z can be
constructed for the same observed score matrix Y, and the same
fixed pattern A,U, so that Equations 7 and 8 are met when
Equation 10 is. If P is an arbitrary gram factor of I - A'C-' A,
that is, is defmed (within rotations) by

A A
Sp(Y) = Sp(X) III Sp(Y0)' Sp(X) 1 Sp(Y0)' (18)

and using Sm in Equation 12, we define Sp(So) by

SpeS) = Sp(Sm) III Sp(So), Sp(Sm) 1 Sp(So) ' (19)

In view of Equation 16, we thus decompose the space of all
deviation score vectors Sp into four subspaces that are pairwise
orthogonal:

A

Sp = Sp(X) III Sp(Y0) III Sp(Sm) III Sp(So)' (20)

For the dimensions, we have

PI" = I - A'C-' A, (11)
dim Sp(X) = dim Sp(Sm) = m, (21)

then any (X,Z) computed as

rI" -I"A'U-']
(X,Z) = (Sm,Y)T = (Sm'Y) I<:-, A C-' U (12)

and

dim Sp(Y0) = p - m, dim Sp(So) = N - P - m - 1.

will satisfy Equations 7 and 8 if C satisfies Equation 10,
provided the N X m matrix of deviation scores Sm satisfies

None of these subspaces will be empty if

0< m < p < m + p < N - 1, (22)

(13)
as we shall assume. From Equation 12, we find

These conditions mean that Sm' which is needed in Equation 12
to complete the "determinate parts"

A A
X= YC-' A, Z= YC-'U (14)

Sp(X) = Sp(Sml" + YC-' A)
A A A

= Sp(X + Sml") C Sp(Sm'X) = Sp(Sm) III Sp(X).

(23)
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in view of Equations 6 and 29. Some other projectors of interest
are

so that x E Sp(V} - Ri.y = I, by Equation 26. Since Py is
symmetric,

By Lemma 1, P'P is p.d. Hence, R~2 • X > 0, q.e.d,
In short, some criteria that are entirely uncorrelated with the

observed information in Y are better predictable from suitably
defined common factors X then others that are perfectly
predictable from Y.

We now turn to the prediction of w from both X, the
common factor scores, and Z, the unique factor scores, jointly.
So far as we know, no one has seriously advocated using the
unique factor scores for external prediction. But neither can
we think of any a priori reason why one could not also include
Z in a regression equation to predict some criterion w. It would
not strike us as any more unreasonable than to base such a pre
diction on X alone, from what we now know. If X and Z were
both used to predict w, a result even more startling than
Theorem 1 can be achieved. To prove this result, we need:

Lemma 3: Sp(X,Z} = Sp(Sm,Y}.
Proof: The mapping from Sp(X,Z} onto Sp(Sm,Y} is

isomorphic since T in Equation 12, which represents this
mapping relative to the bases (X,Z) and (Sm,Y) has inverse

rank m. Since both pp' and P'P are Gramian by definition,
they are both p.d., q.e.d.

We now prove :
Theorem 1: If N - 1 > P + m, the factor model (Equations 7

and 8) implies the existence of criteria that, although perfectly
correlated with the observed scores Y (in a multiple-regression
sense), remain completely unpredictable from the common
factor scores X under all choices of Sm in Equation 12. It also
implies the existence of criteria that, although entirely uncorre
lated with the observed scores Y, are positively correlated with
suitably defined common factors X.

Proof: Let WI E Sp(Yo}' Sp(Y0) c Sp(Y) - R~ •y =1, by
Equatipn 29. Sp(Y0) 1 Sp(X}, Sp(Y0> 1 Sp(Sm}- Sply0) 1 Sp(X)
c Sp(X} e Sp(Sm) , by Equation 23. By Equation 28, WI 1 Sp(X}
- R~ 'X =0, for all Sm' Now let w, E Sp(S}. Sp(S} 1 Sp(Y)
- R~I -v =0, by Equation 28. We can use w, E Sp(S} to con-
struct'a basis Sm to define Sp(Sm) as follows: We use w2 as the
first basis vector and add m - 1 arbitrarily chosen nonnull
Sj E Sp(S) that satisfy ~W2 =0, sfSj =0, for i ""j , and ~Sj/N =1.
Then Sm =(w" s..... ,8m-I) satisfies Equation 13 and we
have w; Sm/N =b' =(1, 0, ... , 0) "" rJ>' . Using this Sm to con
struct X in Equation 12, we find

(29)

(28)

(27)

(30)

(26)

(25)

(24)w'wlN = I ,

p* = I - 11' IN,

R~.y =w'Pyw/N,

x 1 Sp(V) iff PyX =0,

x E Sp(V) iff PyX =x,

Py =V(V'V) -' V' =Ptr =P'y

Sp(V) =Sp(Vl) e Sp(V,),

whence x L Sp(V) - Ri.y =O. Moreover, if Sp(V) is decom
posed into orthogonal subspaces, one finds

Py = YC- I Y'/N, (3la)

Pi =YC- I A(A'C- I A}-I A'C- I vt«. (3Ib)

so that x E Sp(VI) - Ri.y =Ri:.y =1.
In the present case, wJ find that the orthogonal projector

for the total space of deviation scores, Sp, is given by

is the orthogonal projector onto Sp(V) c Sp, and V is the basis
for Sp(V). As is also well known (e.g., Pease, 1965, Chapter 11),

where

so that its sample variance is one . As is well known (e.g., Searle,
1966; Seber, I966), the squared multiple correlation of such a
w E Sp is regressed on any set of r linearly independent predic
tors VI • • • vr in V is simply

Now let w =(wi) E Sp be any criterion vector of N deviation
scores which is normed to satisfy

(3Ie)

(31c)

(3Id)

DISCUSSION
When Wilson (1928) discovered factor indeterminacy, the

problem received a fair amount of attention (see Steiger &

(32)[p A'JT- I -
- _U- 1 APU

as is easily verified q.e.d,
This observation enables us to prove:
Theorem 2: The common and unique factors of the factor

model (Equations 7 and 8) can always be constructed so as to
predict any given criterion w perfectly, including all those that
are entirely uncorrelated with the observed scores in Y.

Proof: In view of Equation 16, any wE Sp can be written
uniquely as w = Ws + wy, with Ws E Sp(S}, wy E Sp(Y},
W~Wy =O. If »« =rJ>, then R~'JNf)~ 1 by Equation 29 for all
Sm' Let Ws "" rJ>. Then w: =Ws wsws satisfies wtw:/N =1.
Since Ws E Sp(S} - w: E Sp(S}, vt can be used to construct a
basis Sm for Sp(Sm} as before by adjoining m - 1 nonnull
Sj E Sp(S} that satisfy sjw: =0, slSj =0 for i ""j , and ~Sj/N =1.
Sp(Sm} for this Sm contains Ws and Sp(Y} contains wy. Hence,
Sp(Y,Sm) = Sp(Y} e Sp(Sm) (by Equation 3) contains w =Ws
+ wy. Lemma 3 and Equation 27 then give ~.(x.Z) =1 q.e.d,

pYo =Py - pi,

Ps =P" - Py,

PSm =SmS~/N,

for all Sm which satisfy Equationl S,

Px =XX'/N =X,Sm> ~ ~pJ~~J/N, (310

To see what happens if one predicts an external criterion
wE Sp from the matrix of common factor scores, X, we need:

Lemma 1: If U' in Equation 10 is positive definite, then
PI", and hence 1"P are positive definite.

Proof: If U' is p.d. , one finds from Equation 11 that
PP'(I + A'U-' A) = 1m, Hence, PI", and thus also P, are of full

p(x.Z) =(XX' + ZZ'}/N, (3Ig)

p(y,Sm) =Py + PSm' (3Ih)

TWO RESULTS ON EXTERNAL FACTOR VALIDITY
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Schonernann, 1976). With the rise of the "Thurstone school"
of factor analysis in the 1940s and 1950s, factor analysts turned
away from the study of such theoretical issues and devoted
most of their energies to the development of computational
algorithms for fitting the factor model, regardless of any defects
the model may have. The present problem is whether it still
makes any sense to fit the factor model at all, because the model
has a built-in indeterminacy that has been ignored over the years.

It has often been said that "factor scores must be estimated
because they cannot be computed," or because "the theoretical
scores are not available (Tucker, 1971). That such justifications
cannot be valid follows from Equation 12, which shows how
factor scores can be computed if one wants to. It is, of course,
a different question whether they should be computed, and yet
another whether they should be "estimated." It is not clear
what exactly is meant by the word "estimate" when the
criterion for estimation is not uniquely defmed. When this
situation arises in statistics; for example, in connection with
the linear model of deficient rank, estimation is restricted to
precisely those linear functions of the indeterminate regression
weights that can be uniquely defmed, and those are called
"estimable."

In addition to the previous questions, what exactly is being
estimated, and what exactly is meant by the word "estimate"
in this context, we now confront a third question that cuts
even more deeply into the common-sense foundation of the
factor model. This new question is: Why would anyone want
to estimate factors with the absurd properties described in
Theorem 1 and Theorem 21 It has been said that factors are
superior to components because they "go beyond the test
space." Theorems 1 and 2 dramatize the arbitrariness of the
increment needed to construct factor scores X,Z in accordance
with the factor model (Equations 7 and 8). By Theorem 2, we
can always choose it so as to predict any criterion perfectly from
X,Z jointly, no matter how this criterion relates to the observed
variables. These counterintuitive properties of X,Z are direct

consequences of the definition of the factor model at the
random variable level. When Spearman (1927) first proposed
this model , his defmitions seemed plausible because he did not
know of the indeterminacy they implied . The present problem
is whether they remain plausible in the light of our current
knowledge.
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