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Abstract—This paper examines the validity of the widely
used parabolic effective-mass approximation for computing the
current–voltage ( – ) characteristics of silicon nanowire transis-
tors (SNWTs). The energy dispersion relations for unrelaxed Si
nanowires are first computed by using an 3 5 tight-binding
(TB) model. A seminumerical ballistic field-effect transistor model
is then adopted to evaluate the – characteristics of the (n-type)
SNWTs based on both a TB dispersion relation and parabolic
energy bands. In comparison with the TB approach, the parabolic
effective-mass model with bulk effective-masses significantly
overestimates SNWT threshold voltages when the wire width is
3 nm, and ON-currents when the wire width is 5 nm. By

introducing two analytical equations with two tuning parameters,
however, the effective-mass approximation can well reproduce the
TB – results even at a 1 36-nm wire width.

Index Terms—Bandstructure, effective-mass, field-effect tran-
sistor (FET), nanowire, nonparabolicity, quantum confinement,
tight binding.

I. INTRODUCTION

AS MOSFET gate lengths enter the sub-50-nm regime,
short-channel effects become increasingly severe [1].

To further scale down MOSFETs, device structures with new
gate configurations are preferred to provide better electrostatic
control than planar structures. For this reason, silicon nanowire
transistors (SNWTs), which allow multigate or gate-all-around
structures, are being extensively explored by different experi-
mental groups [2]–[5]. Rapid experimental progress in SNWTs
has shown their potential applications in future electronics.

To understand the device physics of SNWTs and to assess
their performance limits, simulation work is important. Re-
cently, three-dimensional quantum mechanical simulations
of (n-type) SNWTs [or Fin field-effect transistors (FETs)]
have been accomplished based on the parabolic effective-mass
approximation [6]–[8]. Due to the two-dimensional quantum
confinement, however, the bulk crystal symmetry is not pre-
served in Si nanowires. For this reason, quantitative results
obtained from the parabolic effective-mass approximation
are expected to suffer errors when the nanowire diameter is
small. In this paper, we explore the validity of the parabolic
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Fig. 1. (a) Atomic structure of a square nanowire (D = 1:36 nm) with a
[100] transport direction. (b) A unit cell of the square nanowire illustrated in
(a). (c) The schematic diagram of the cross section of the square nanowire. D
demotes the edge length of the square cross section and the four faces of the
square are all along the equivalent h100i axes. (d) A schematic diagram of the
simulated gate-all-around nanowire transistors.

effective-mass approximation for the current–voltage ( – )
calculation of silicon nanowire transistors. We first compute
the energy dispersion ( - ) relations of Si nanowires by a
semiempirical nearest-neighbor tight-binding (TB)
approach [9]–[12]. The – characteristics of n–type SNWTs
are then evaluated by a seminumerical ballistic FET model
[13]–[15] using both the tight–binding – relations and para-
bolic energy bands. By comparing the results for the two types
of – relations, the validity of the parabolic effective-mass
approximation is examined.

This paper is divided into the following sections. Section II
describes the TB approach and illustrates the calcu-
lated atomistic nanowire bandstructures. In Section III, we first
examine the validity of the parabolic effective-mass approxima-
tion for n-type SNWT simulations and then propose a tuning

0018-9383/$20.00 © 2005 IEEE
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Fig. 2. Tight-binding E-k relations and the corresponding density-of-states (DOS) for the simulated Si nanowire structures with (a) D = 1:36 nm and (b) D =
5:15 nm. The conduction band for the thinner wire (D = 1:36 nm) displays significant band splitting at the � point.

Fig. 3. Splitting energy (at the � point) versus wire width (D) for the
simulated Si nanowires. The closed circles are for the wires with an odd
number of atomic layers while the open circles are for the ones with an even
number of atomic layers. The splitting energy fluctuates with D and the
envelope decreases according to �D .

procedure to modify the effective-mass approach for a better
agreement with the TB calculation. Section IV summarizes key
findings of this paper.

II. TB CALCULATION OF BANDSTRUCTRES

Fig. 1 shows an example of the simulated nanowire structures
in this paper. The transport orientation of the wire is along the
[100] direction [see Fig. 1(a)], the shape of the cross section is
square, and the faces of the square are all along the equivalent

axes [see Fig. 1(c)]. Fig. 1(b) illustrates a unit cell of the
nanowire crystal, which consists of four atomic layers along the

(transport) direction and has a length of . It should
be noted that although Fig. 1 is only for a nanowire with a wire
width nm, nanowires with various wire widths (from
1.36 to 6.79 nm) are explored in this paper.

According to the TB approach adopted in this paper, 20 or-
bitals, consisting of an basis with spin-orbital coupling,
are used to represent each atom in the nanowire Hamiltonian.
The orbital-coupling parameters we use are from [9], which
have been optimized by Boykin et al. to accurately reproduce

Fig. 4. Illustration of the essential aspects of the seminumerical ballistic FET
model. The E (x) curve represents the lowest electron subband in the device.

the bandgap and effective-masses of bulk Si (within a % de-
viation from the target values [9]). (It should be mentioned that
bulk bond lengths are assumed in this paper. In real nanowires,
the crystal structures will relax to obtain a minimum energy
[16]. We expect that the general results of this study will also
apply to relaxed structures while some quantitative differences
may appear.) At the Si surfaces, a hard wall boundary condition
for the wavefunction is applied and the dangling bonds at these
surfaces are passivated using a hydrogen-like termination model
of the hybridized interface atoms. As demonstrated in [17],
this technique successfully removes all the surface states from
the semiconductor band gap.

Fig. 2 shows the - relations (left column) and the corre-
sponding density-of-states (right column) for the simulated Si
nanowires with wire widths (a) nm and (b)

nm. It is clear that the six equivalent valleys in the bulk
Si conduction band split up into two groups due to quantum con-
finement. Four unprimed valleys, , and ,
are projected to the point in the one-dimensional
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Fig. 5. I versus V curves for a square SNWT with D = 1:36 nm in both (a) a semilogarithmic scale and (b) a linear scale. The oxide thickness is 1 nm, the
temperature is 300 K, and the drain bias is 0.4 V. The dashed lines are for the results based on the TB E-k relations while the solid lines for the pEM results.

wire Brillouin zone to form the con-
duction band edge. Two primed valleys (i.e., [100] and ),
located at in the bulk Brillouin zone, are
zone-folded to in the wire Brillouin zone to
form the off- states. A similar observation has been reported
in [10] and [11] for square Si nanowires with a [100] transport
direction and four confinement directions along the equivalent

axes. In the density-of-states (DOS) versus energy plots
(right column), peaks corresponding to each energy minimum
(maximum) in the wire conduction (valence) band are clearly
observed.

As in a Si quantum well, the degeneracy of the fourfold
valleys in a [100] oriented square wire can be lifted by the in-
teraction between the four equivalent valleys, which is so called
“band splitting” [18]–[20]. It is clearly seen in Fig. 2 that the
band splitting is more significant in the thinner wire (

nm) than in the thicker wire ( nm). Fig. 3 plots the
wire width dependence of the splitting energy, defined as
the difference between the highest and the lowest energy (at the

point) of the four split conduction bands. The splitting energy
is seen to fluctuate as a function of the number of atomic layers
and the envelope decreases with the wire width according to

, analogous with the band splitting observed in Si quantum
wells [18]–[20].

III. VALIDITY OF THE PARABOLIC

EFFECTIVE-MASS APRROACH

In this section, we adopt a seminumerical ballistic FET model
to calculate the - characteristics of n-type SNWTs based on
both TB - relations and parabolic energy bands. The main
features of the ballistic FET model are illustrated in Fig. 4. Three
capacitors , and are employed to describe the elec-
trostatic couplings between the top of the barrier and the gate,
source, and drain terminals, respectively. The potential at the top
of the barrier is obtained as

(1)

Fig. 6. I versus V curves for a square SNWT withD = 6:79 nm in both
a (left) semilogarithmic scale and a (right) linear scale . The oxide thickness is
1 nm, the temperature is 300 K, and the drain bias is 0.4 V. The circles are for the
results based on the TB E–k relations while the solid lines for the pEM results.

where , and are the applied biases at the gate, the
source, and the drain, respectively, and is the mobile
charge at the top of the barrier, which is determined by ,
the source and drain Fermi levels ( and ) and the -
relation for the channel material. To be specific, the group
velocity of each state is calculated from the tabulated –
data of the nanowire, and the carrier density is then evaluated
by assuming that the states with a positive (negative) group
velocity are in equilibrium with the source (drain) reservoir.
After self-consistency between and is achieved, the
drain current is readily obtained from the known populations
of all the states in the energy bands of the wire. In previous
paper, this model was used to evaluate the – characteristics
of ballistic Si MOSFETs [13] and HEMTs [14] with parabolic
energy bands and Ge MOSFETs with numerical - relations
[15]. A detailed description of the model can be found in [13]
and the Matlab scripts of this model are available [21].

Fig. 5 plots the versus curves for a square SNWT with
nm in both (a) a semilogarithmic scale and (b) a linear

scale. The dashed lines are for the results based on the TB –
relations while the solid lines are for the parabolic effective-mass
(pEM) results. In the parabolic effective-mass approach, all
six conduction-band valleys in bulk Si are considered, and
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Fig. 7. Wire width dependence (D) of the errors, V � V in (a) and (I � I )=I in (b), associated with the effective-mass approximations. The
solid lines with circles are for the pEM approximation while the dashed lines with diamonds are for the tEM approach.

Fig. 8. (a) Conduction band edges E for the simulated wires with different wire widths. The solid line with squares is for the values for the square wires
obtained from the TB E–k relations and the dashed line is for the corresponding pEM results. For comparison, the TB values for the circular wires with a [100]
wire orientation are also shown (circles). (b) The wire width (D) dependence of the transport effective-mass, m , at the � point in the wire conduction band
(extracted from the TB energy bands by m = �h =(@ E=@ k ), where �h is the Plank constant). The solid line with squares is for the square wires while circles
are for the circular wires. For comparison, the bulk value of m for the unprimed valleys (used in pEM) is shown by the dash-dot line.

the effective-masses used in the calculation (
and ) are extracted from the bulk – relation
evaluated by our TB approach with the parameters obtained
from [9]. (By doing this, the % deviation in bulk Si
effective-masses caused by the TB parameters [9] are prevented
from affecting our comparison between TB and pEM.) If we
define a threshold voltage as

(2)

and an ON-current of SNWTs as

(3)

we find that pEM significantly overestimates the threshold
voltage by V and the ON-current by

% as compared with the TB results.
Fig. 6 compares pEM (solid) versus TB (circles) for the -
calculation of a thicker SNWT with nm. It is
clear that pEM provides nearly identical - characteristics
as TB except for a small overestimation of ON-current by

%. The solid lines with circles in Fig. 7 show the wire
width dependence of the errors, in (a) and

in (b), associated with pEM. It is clear
that pEM starts to overestimate threshold voltage by

V when scales below 3 nm and ON-current by %
when is nm.

To understand the above observations, we plot the depen-
dence of the wire conduction band-edges and the transport
effective-mass at the point in the wire conduction band
(Fig. 8). (Note that the square wires are the nominal structures
we focus on in this paper. For comparison, we also show the
results for circular wires with the same ([100]) wire orienta-
tion. The results illustrate that the energy dispersion relations are
nearly invariant when the cross-sectional shape changes from
square to circular, indicating that the conclusions in this paper
also apply to wires with a circular cross section.) As we can see
in Fig. 8(a), when nm (area nm ), the obtained
from the TB calculations (solid with squares) is well reproduced
by pEM (dashed). (In pEM, the wire conduction band-edge is
determined by the lowest subband level of the four unprimed
valleys). At smaller wire widths, however, pEM overestimates

due to the nonparabolicity [22]–[25] of the bulk Si bands.
This overestimation of by pEM directly leads to the over-
valued threshold voltages of the simulated SNWTs. The solid
line with squares in Fig. 8(b) shows an increasing (extracted
from the TB - relations) with a decreasing , which is also a
result of the nonparabolicity of the bulk Si – relations. When

nm (Area nm ), extracted from TB is %
larger than the corresponding bulk value used in pEM. Since the
electron thermal velocity is inversely proportional to the square
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Fig. 9. (a) Quantum confinement energy computed by parabolic effective-mass (E ) versus that obtained from the TB calculation (E ). (b) The ratio of
the transport effective-mass, m to the bulk value, m versus the quantum confinement energy calculated by the TB approach (E ). In both plots, the circles
are for the data points extracted from the TB and parabolic E-k relations, and the corresponding wire width for each point from left to right is D = 6:79, 5:15,
3:53, 1:90, and 1:36 nm, respectively. The solid lines are for the analytical fit based on (4) and (5).

root of the transport effective mass, the pEM calculations, which
adopt a smaller than the TB approach, overestimate the
carrier injection velocity and consequently the SNWT ON-cur-
rents. In short, the nonparabolicity of the bulk Si bands plays
an important role when quantum confinement is strong (small

). The use of parabolic energy bands overestimates the wire
conduction band-edge and underestimates the transport effec-
tive-mass, and consequently provides a higher SNWT threshold
voltage and ON-current as compared with the TB approach.

Although we have shown that the pEM approach does not
perform well at small wire widths, it is still interesting to know
whether it is possible to modify the effective-mass approach
to obtain a better agreement with the TB calculation, since the
effective-mass approximation significantly reduces computa-
tion time as compared to atomistic treatments. To do this, we
first define a quantum confinement energy as the difference
between the wire conduction band-edge, and that for bulk
Si ( eV). Fig. 9(a) shows the quantum confine-
ment energy computed by pEM versus that obtained
from the TB calculation . It is evident that for small wire
widths, the data points (circles) stand above the curve,
indicating that pEM overestimates the quantum confinement
energy when it is large. Inspired by the expressions for the
nonparabolicity of the bulk Si bands [22], [23], we propose the
following quadratic equation to analytically describe the
versus relation

(4)

where is treated as a fitting parameter and eV is
used for the solid line in Fig. 9(a) for the best agreement with
the extracted data. Similarly, the dependence of the trans-
port effective-mass at the point [Fig. 9(b)] can also be
described by the following equation:

(5)

where is the transport effective-mass
in the unprimed valleys in bulk Si and eV is chosen
to achieve the best match between the extracted data points (cir-
cles) and the analytical expression (solid) up to eV,
which is sufficient for the - calculation of the simulated Si
nanowire transistors.

After knowing (4) and (5), the effective-mass approximation
can be tuned for a better fit with TB in the following steps.

Step 1) Calculate the quantum confinement energy,
by the parabolic effective-mass approach with the
bulk effective-masses (i.e., and ).

Step 2) Solve (4) to obtain the updated quantum confine-
ment energy as

(6)

Step 3) Evaluate the tuned transport effective-mass at the
point by (5),

(7)

Step 4) Use the computed and for the - calcu-
lation of SNWTs.

It should be noted that the above tuning process is only
necessary for the four unprimed valleys because: 1) at large
wire widths, the quantum confinement energy is small and
nonparabolicity is insignificant in both unprimed and primed
valleys, so the parabolic effective-mass approach performs well
and 2) at small wire widths, the two primed valleys are well
separated from the unprimed ones due to stronger quantum
confinement (smaller effective-masses in the and directions)
in these primed valleys, so the electron density and current
contributed by the primed valleys are negligible (e.g., when

eV, over 97% electrons are distributed in the
unprimed valleys).

The dashed lines with diamonds in Fig. 7 show the wire
width dependence of the errors, in (a) and

in (b), associated with the tuned effec-
tive-mass approximation. For wire widths ranging from 1.36
to 6.79 nm, the tuned effective-mass approach provides an
excellent match with the TB calculation—less than 10-mV
error for and less than 5% error for . So far, we have
shown that the effective-mass approximation can be modified
by introducing two -independent parameters, and , to
accurately reproduce the – results computed by TB. It must
be mentioned that the values of and used in this paper were
obtained for SNWTs with one particular channel orientation
(i.e., [100]) and one specific cross-sectional shape (i.e., square
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with all faces along the equivalent axes). The important
point is that for - calculation it is possible to simply tune
the effective-mass approach to fit the TB model. We expect
that this conclusion may apply to other SNWTs with different
transport directions and cross sections while the values of the
tuning parameters ( and ) are subject to change.

IV. CONCLUSION

By using an TB approach as a benchmark, we exam-
ined the validity of the parabolic effective-mass approximation
for the I–V calculation of n-type silicon nanowire transistors.
It was found that the simple parabolic effective-mass approach
with bulk effective-masses significantly overestimates SNWT
threshold voltages when the wire width is nm, and
ON-currents when nm. However, by introducing two
analytical equations with two tuning parameters, the effec-
tive-mass approximation can well reproduce the TB - results
over a wide range of wire widths—even at nm. In
conclusion, bandstructure effects begin to manifest themselves
in silicon nanowires with small diameters, but with a simple
tuning procedure, the parabolic effective-mass approximation
may still be used to assess of the performance limits of silicon
nanowire transistors.
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