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Abstrat. This paper examines the validity of the two raster sequenes

distane transform algorithm, originally given by Rosenfeld and Pfaltz for

the distane d4, then extended to the weighted distanes by Montanari

and Borgefors. We show that the onvergene in two passes does not

hold for all hamfer masks, and we prove that the norm ondition is a

su�ient ondition of validity for the algorithm.

Keywords: disrete geometry · distane transforms · weighted distanes.

1 Introdution

Given a binary image A omposed of shape points and bakground points, a

Distane Transform (DT) of A is a opy where eah shape point is labelled to

its distane from the nearest bakground point. Both the omputation and the

result properties depend on the onsidered distane funtion. The omputation

of a DT is generally a global operation, whih an be quite expensive; however

for some distane funtions there are very e�ient algorithms based on loal

operations, using sequential or parallel approahes.

DTs have been extensively studied and have played an important role in Dis-

rete Geometry and Image Analysis sine the late 1960s. In the founding paper

[1℄, Rosenfeld and Pfaltz introdued the notion of DT, and presented a two raster

sequenes DT algorithm in 2D for the diret neighbourhood distane d4. They

also proved that for any given loal transformation on an image, the sequential

and parallel approahes are mathematially equivalent. Following that, the no-

tion of weighted (or hamfer) distanes has emerged in [2℄[3℄[4℄ together with a

rather straightforward extension of the DT algorithm.

We reall some de�nitions and hypotheses from [5℄. A weighting (~v, w) is a
displaement ~v 6= ~0 assoiated to a weight w > 0. A hamfer mask M is a non-

empty set of weightings, suh that the set of displaements ontains at least a

basis of the image points, and suh that ∀(~v, w) ∈ M, (−~v, w) ∈ M (entral-

symmetry). Two points P and Q are M-adjaent if there exists (~v, w) ∈ M

suh that

~PQ = ~v. Two points P and Q are M-onneted if there exists a

path of M-adjaent points joining them, that is, a sequene of distint points

⋆
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2 E. Thiel

P0 = P, P1, . . . , Pk = Q with Pi a M-neighbour of Pi−1, 1 ≤ i ≤ k. The ost of

the path is the sum of the weights of the displaements. The weighted distane

dM(P,Q) is the ost of a path having minimal ost:

dM(P,Q) = min
{

∑

λiwi :
∑

λi~vi = ~PQ, (~vi, wi) ∈ M, λi ∈ Z+

}

. (1)

Equivalently, we an onsider the weighted geometri graph (V,G), where
the set of verties V orresponds to the image points, and the set of edges G is

de�ned as follows: eah vertex P ∈ V is onneted to its M-neighbours P +~v by

an edge having the weight w, ∀(~v, w) ∈ M s.t. P +~v ∈ V . The weighted distane

dM is then the intrinsi distane of this weighted graph, and has always the

properties of a metri (positive de�nite, symmetri and triangular) sine the

graph is non oriented and the weights are stritly positive by hypothesis.

Let us go bak to the origins. The �rst weighted distanes d4 and d8 where

presented in [1℄; their mask orrespond respetively to the 4- and 8-neighbourhood

in Z
2
, eah displaement having the weight 1; they oinide with the norms

ℓ1(~x) = |x1|+ . . .+ |xn| and ℓ∞(~x) = max(|x1|, . . . , |xn|) in Z
n
.

In [2℄, Montanari has introdued a family of weighted distanes in Z
2
, where

a mask Mk is the set of the displaements ~v(x, y) in the (2k + 1) × (2k + 1)
neighbourhood (i.e. −k ≤ x, y ≤ k), suh that (x, y) is visible (from the origin),

i.e. gcd(x, y) = 1. The weight of any displaement ~v(x, y) is its Eulidean length

√

x2 + y2. The distane values obtained dMk
are no longer integers, but an give

a good approximation of the Eulidean distane dE (depending on k). The two

raster sequenes DT algorithm is extended to the masksMk and the onvergene

in two passes is shown.

The weighted distanes using integer weights, or hamfer distanes, has then

been popularized for Z
2
and Z

n
by Borgefors in [3℄[4℄. The merits of several

masks and weights are disussed so as to approximate dE in an e�ient manner,

and some onditions are given to hoose the weights in order to establish diret

distanes formulas. The two raster sequenes DT algorithm is presented in Z
n
.

But the problem is that the onvergene in two passes is not atually shown;

and if we look loser, it annot be dedued from the Rosenfeld and Pfaltz or

Montanari proofs for all hamfer masks.

For these reasons, we propose to study the validity of the DT aording to the

mask, see some ounter-examples, and give a su�ient ondition of onvergene.

The remainder of the paper is organized as follows: the setion 2 �rst realls

the priniple of the parallel and sequential DT algorithm for d4 and d8; we then

examine in setion 3 the original proof of [1℄, by ompleting it with a missing

hypothesis; the setion 4 presents an adaptation of the sequential DT algorithm

for hamfer masks in Z
n
, in order to hek the number of passes neessary for

the onvergene; in setion 5, we study a ounter-example whih shows that the

onvergene does not always hold in two passes; after that in setion 6 we show

that the sequential DT algorithm always onverges in two passes when using

hamfer norms, and onlude in setion 7 .
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2 Distane transformations in Z
2
for d4 and d8

Let A = (ai,j) be an input image, where ai,j denotes the value of the point at

row i (1 ≤ i ≤ m) and olumn j (1 ≤ j ≤ n); the foreground points have value 1

and the bakground points 0. Given a hamfer mask M, the goal is to ompute

the DT D = (di,j) where di,j is the distane dM to the set of 0's (supposed

non-empty) oming from A. For any weighting (~v, w) ∈ M we denote by (vi, vj)
the oordinates of ~v.

Here is the naive parallel algorithm to ompute DT. At step 0, let B0
be a

opy of A, where the 1's are set to ∞, or a su�ient large value. We ompute

for eah step k > 0 the image Bk = (bki,j), where

bki,j = min

{

bk−1

i+vi,j+vj
+ w : (~v, w) ∈ M,

1 ≤ i+ vi ≤ m,

1 ≤ j + vj ≤ n

}

. (2)

The proess is repeated until no point value hanges; the number of iterations

is bounded by the maximal number of displaements in a minimal M-path, and

an be quite large.

The same method an be proessed in an iterative manner on a single image

B. The order in whih we ompute the bi,j is arbitrary, and the onvergene

rate an be greatly inreased by a lever hoie of the order. The sequential DT

algorithm of Rosenfeld and Pfaltz takes advantages of this idea, an onverges

in only two raster sequenes on the image. Here is their original algorithm,

presented in [1℄ for the distane d4.

The forward san proesses the image row by row in the raster sequene

a1,1, . . . , a1,n, a2,1, . . . , a2,n, . . ., am,1, . . . , am,n; the bakward san proesses

the points in the reverse order. During the forward san the funtion f1 is applied

on A to obtain the image B, then during the bakward san the funtion f2 is

applied on B to get the image C. These funtions are de�ned by:

f1(bi,j) = 0 if ai,j = 0 ,
= min (bi−1,j + 1 , bi,j−1 + 1) if ai,j = 1 and (i, j) 6= (1, 1) ,
= µ if ai,j = 1 and (i, j) = (1, 1) ;

f2(ci,j) = min (bi,j , ci+1,j + 1 , ci,j+1 + 1) .

The value µ is hosen to be an unattainable distane value in the image, e.g.m+n

(in the paper) or ∞, and is set as an initialization for the top left point (1, 1).
The min's are only evaluated on the neighbours inside the image; an alternative

option is to onsider the value µ for neighbours who are outside the image.

The algorithm an be easily adapted to d8 by adding the indiret neighbours

(i− 1, j − 1) and (i− 1, j + 1) in the min for f1, and (i+ 1, j − 1), (i+ 1, j + 1)
in the min for f2.

Figure 1 shows an example with d4 and Figure 2 with d8. For simpliity, we

have onsidered in the min's that µ+ x = µ, ∀x ≥ 0.
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1 1 1 1 1

1 1 0 1 1

1 1 1 1 1

f1
−−→

µ µ µ µ µ

µ µ 0 1 2

µ µ 1 2 3

f2
−−→

3 2 1 2 3

2 1 0 1 2

3 2 1 2 3

Fig. 1. Two raster sequenes DT algorithm for d4 on a 3× 5 image.

1 1 1 1 1

1 1 0 1 1

1 1 1 1 1

f1
−−→

µ µ µ µ µ

µ µ 0 1 2

µ 1 1 1 2

f2
−−→

2 1 1 1 2

2 1 0 1 2

2 1 1 1 2

Fig. 2. Two raster sequenes DT algorithm for d8 on a 3× 5 image.

3 Original proof for the two raster sequenes DT

The original proof in [1, �4.2℄ is rather ompat; we will develop it and show

that there was a missing hypothesis. The proof is onstruted by indution for

d4 in Z
2
; the goal is to show that after applying f1 and f2, the obtained image

C satis�es C = D (using the notations of setion 2).

On the base ase it is noted that if ai,j = 1 and a diret neighbour inside the

image is 0, evidently ci,j = 1, and onversely.

The original indution hypothesis is: suppose for a given k > 1 that

ci,j = di,j ∀i, j s.t. di,j < k . (3)

Hene ∀i, j we have

di,j < k ⇒ ci,j = di,j ; (4)

but this does not exlude the existene of ases suh as

di,j ≥ k and ci,j < k . (5)

In fat, for the rest of the proof, we will have to exlude these ases in two plaes.

The (extended) indution hypothesis has thus to be: suppose for a given k > 1
that

ci,j = di,j ∀i, j s.t. di,j < k or ci,j < k . (6)

We therefore further assumed that

ci,j < k ⇒ ci,j = di,j . (7)

Remark. By (4) we have di,j < k ⇒ ci,j < k , thus

ci,j ≥ k ⇒ di,j ≥ k ; (8)
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moreover, by (7) we have ci,j < k ⇒ di,j < k , so di,j ≥ k ⇒ ci,j ≥ k ; hene

ci,j ≥ k ⇔ di,j ≥ k . (9)

We ontinue the indution by studying the ase where ci,j = k. By (8) we

have di,j ≥ k. If di,j = k then ci,j = di,j and the proof is done. Let us suppose

that ci,j = k and di,j > k. By de�nition of d4, sine di,j > k, the four diret

neighbours are ≥ k :

di−1,j ≥ k

di,j−1 ≥ k di,j > k di,j+1 ≥ k

di+1,j ≥ k

. (10)

Thanks to the extended hypothesis, we have by (9)

di,j+1 ≥ k ⇒ ci,j+1 ≥ k ,

di+1,j ≥ k ⇒ ci+1,j ≥ k ,
(11)

hene during the omputation of ci,j by f2 in bakward sequene we have

ci,j = min







bi,j
ci,j+1 + 1 (≥ k + 1)
ci+1,j + 1 (≥ k + 1)

, (12)

thus ci,j = k ⇒ bi,j = k. However, when alulating bi,j by f1 in forward

sequene we have applied

bi,j = min

{

bi−1,j + 1
bi,j−1 + 1

, (13)

thus bi,j = k ⇒ bi−1,j = k − 1 or bi,j−1 = k − 1. Suppose that the former

holds, that is bi−1,j = k − 1. During the alulation of ci−1,j by f2 we have

ci−1,j = min







bi−1,j (= k − 1)
ci−1,j+1 + 1
ci,j + 1

(14)

therefore ci−1,j ≤ k−1; but di−1,j ≥ k by (10) so di−1,j 6= ci−1,j , in ontradition

with the extended hypothesis sine ci−1,j < k. ⊓⊔

This proof an be easily extended for d8 by adding the four indiret neigh-

bours in the min's. More generally, the algorithm and the proof an be extended

in Z
n
for the distanes d1 and d∞ indued by the ℓ1 and ℓ∞ norms.

It should be noted that the algorithm an also be adapted to hamfer masks

in Z
n
(see [4℄), but we will show further with a ounter-example that the on-

vergene in two sans is not always guaranteed for any hamfer mask. At the

proof level, we an see that this proof annot be extended either, beause the

inequations are performed on (i, j)-neighbours only, and they use the fat that

the distane values are onseutive integers.
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4 Sequential DTs for hamfer masks in Z
n

We present an adaptation of the sequential DT in Z
n
whih is a bit hardened to

handle ounter-examples masks.

The masks need to be split in two parts for the forward and bakward sans.

Using oordinates (x1, . . . , xn) ∈ Z
n
, let us onsider the forward raster sequene

in asending order: for xn, for xn−1, . . . , for x1 .

The half-spae onstituted by the mask points after the origin in the raster se-

quene is Hn = ∪1≤k≤n {xn = 0, . . . , xk+1 = 0, xk > 0 }. Given a hamfer mask

M = { (~v, w) : ~v ∈ Z
n }, we de�ne the half-maskMh = { (~v, w) ∈ M : ~v ∈ Hn }.

During the sequential DT, the forward raster sequene will then use the half-

mask M\Mh
, whereas the bakward sequene will use Mh

.

The omputation of one sequential DT san is presented in Figure 3 , for on-

veniene in Python language in Z
2
. To extend the funtion in higher dimension

it is su�ient to add oordinates and loops for the additional dimensions.

1 def ompute_one_DT_san (img, half_mask, san_num) :

2 forward = san_num % 2 == 1

3 if forward :

4 i_start = 0 ; i_end = img.m # 0 to m-1

5 j_start = 0 ; j_end = img.n ; step = 1 # 0 to n-1

6 else :

7 i_start = img.m-1 ; i_end = -1 # m-1 to 0

8 j_start = img.n-1 ; j_end = -1 ; step = -1 # n-1 to 0

9 hanged = False

10 for i in range (i_start, i_end, step) :

11 for j in range (j_start, j_end, step) :

12 if img.mat[i℄[j℄ == 0 : ontinue

13 min_w = -1 if san_num == 1 else img.mat[i℄[j℄

14 for p_i, p_j, p_w in half_mask :

15 q_i = i - p_i*step ; q_j = j - p_j*step

16 if not img.is_inside (q_i, q_j) : ontinue

17 if img.mat[q_i℄[q_j℄ == -1 : ontinue

18 q_w = img.mat[q_i℄[q_j℄ + p_w

19 if min_w == -1 or q_w < min_w : min_w = q_w

20 if img.mat[i℄[j℄ != min_w : hanged = True

21 img.mat[i℄[j℄ = min_w # an be -1

22 return hanged

Fig. 3. Computation of one sequential DT san in Z
2
with µ = −1.

The input and output image is img. The oordinates are 0 ≤ i < img.m for

x2 (or y) and 0 ≤ j < img.n for x1 (or x); the point values are aessed by

img.mat[i℄[j℄. The method img.is_inside(i,j) returns True if the oordi-

nates are inside the image. The parameter half_mask stores the Mh
weightings

as a list of tuples. The diretion of the san (forward or bakward) is dedued
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from the san number san_num line 2. The loop step value is also used line 15

to ompute the displaements of the half mask for the urrent san diretion.

The funtion is written with the speial value µ = −1 (in red). It indiates the

unattainable distane value for the min's, as well as the non urrently a�eted

point values in the image.

The omputation of the DT in two raster sequenes is done by alling twie

the funtion ompute_one_DT_san with the san number, see the funtion

ompute_sequential_DT_in_two_sans in Figure 4 .

1 def ompute_sequential_DT_in_two_sans (img, half_mask) :

2 ompute_one_DT_san (img, half_mask, 1)

3 ompute_one_DT_san (img, half_mask, 2)

4

5 def ompute_sequential_DT_multi_sans (img, half_mask) :

6 san_num = 1

7 while True :

8 if ompute_one_DT_san (img, half_mask, san_num) :

9 san_num += 1

10 else : break

11 return san_num

Fig. 4. Sequential DT algorithms in Z
2
.

As for the parallel DT omputation, the sequential DT an be performed

san by san until no point value hanges (all paths are propagated and on-

vergene is reahed). For this purpose, the funtion ompute_one_DT_san re-

turns a boolean value hanged, whih is used to stop the loop in the funtion

ompute_sequential_DT_multi_sans in Figure 4 .

5 Counter-example for the two raster sequenes DT

We present now a simple ounter-example, whih shows that the onvergene of

the DT in only two raster sequenes does not hold for all hamfer masks.

One an imagine any kind of mask, see for instane [5, p. 42℄ for a gallery. In

the literature, the most ommon ategory of studied masks are grid-symmetrial

(8-symmetrial in Z
2
, 48- in Z

3
, (2nn!)- in Z

n
). The weightings are hosen in the

�rst otant (also alled generator) 0 ≤ xn ≤ . . . ≤ x1, then the grid symmetries

are performed to populate the mask. For e�ieny, the weightings are usually

hosen among the visible points, beause eah visible point will generates its

periods if the mask has the good properties (see further).

In Z
2
, the �rst visible points in the �rst otant are denoted by a = (0, 1)

(still using oordinates in the order (x2, x1)), b = (1, 1),  = (1, 2), d = (1, 3),
e = (2, 3), et. A grid-symmetrial mask onstituted by a set of weightings (v, w)
where v is a visible point is denoted by 〈(v, w), . . .〉. For instane, the mask for
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d4 is denoted by 〈(a, 1)〉, the mask for d8 is 〈(a, 1), (b, 1)〉, the mask for the

hamfer distane 5,7,11 [4℄ is 〈(a, 5), (b, 7), (, 11)〉, and so on.

To �nd ounter-examples it is su�ient to hoose some displaements, loop

on several weights, and ompute the DTs on images of several sizes, where

all points have value 1, exept one point whih has value 0 in the entre of

the image. For eah trial we an ompare the results for the parallel algo-

rithm and those of ompute_sequential_DT_in_two_sans, or run the fun-

tion ompute_sequential_DT_multi_sans and hek if it returns a number of

sans > 3.
We have found a very simple ounter-example using only knight moves, whih

is the mask 〈(, 1)〉, for any image size larger then 3× 3. The Figure 5 shows the
full mask and the two half masks.

(a)

· 1 · 1 ·

1 · · · 1

· · O · ·

1 · · · 1

· 1 · 1 ·
(b)

· 1 · 1 ·

1 · · · 1

· · O

()

O · ·

1 · · · 1

· 1 · 1 ·

Fig. 5.Mask 〈(, 1)〉 around the origin O: (a) full mask, (b) forward mask, () bakward

mask.

The mask 〈(, 1)〉 is a hamfer mask beause the basis vetor (0, 1) an be

obtained using the symmetrial displaements of , by (−1,−2) + (−1, 2) +
(2, 1) = (0, 1), and the same by symmetry for (1, 0).

The Figure 6 shows the parallel passes for a 3×4 image; 6 passes are neessary

to reah the orret DT values. On �gure 7 we an see that the raster sequenes

DT algorithm also needs 6 passes: 5 to onverge and the sixth to detet no

hanges and stop.

(a)

1 1 1 1

1 1 0 1

1 1 1 1

(b)

µ µ µ µ

µ µ 0 µ

µ µ µ µ
()

1 µ µ µ

µ µ 0 µ

1 µ µ µ
(d)

1 2 µ µ

µ µ 0 µ

1 2 µ µ

(e)

1 2 3 µ

µ µ 0 3

1 2 3 µ
(f)

1 2 3 4

4 µ 0 3

1 2 3 4

(g)

1 2 3 4

4 5 0 3

1 2 3 4

(h)

1 2 3 4

4 5 0 3

1 2 3 4

Fig. 6. Parallel DT for 〈(, 1)〉: (a) original image, (b) initialization, (�h) passes 1�6.
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(a)

1 1 1 1

1 1 0 1

1 1 1 1

(b)

µ µ µ µ

µ µ 0 µ

1 µ µ µ
()

1 2 µ µ

µ µ 0 µ

1 µ µ µ
(d)

1 2 µ µ

µ µ 0 3

1 2 3 µ

(e)

1 2 3 4

4 µ 0 3

1 2 3 µ
(f)

1 2 3 4

4 5 0 3

1 2 3 4

(g)

1 2 3 4

4 5 0 3

1 2 3 4

Fig. 7. Sequential DT for 〈(, 1)〉: (a) original image, (b�g) passes 1�6, (b,d,f) forward

passes, (,e,g) bakward passes.

Finally, we remark for the mask 〈(, 1)〉 taken as a ounter-example, that

� the neessary sequential passes number depends on the image size, and may

derease a little bit when the size grows;

� the passes number does not depend on the hosen  weight;

� we an replae  by any visible point (1, 2k), k ≥ 1 and still get a hamfer

mask, sine k(−1,−2k) + k(−1, 2k) + (2k, 1) = (−2k, 0) + (2k, 1) = (0, 1).

6 Validity holds for hamfer norms

A metri d in Z
n
indues a norm g de�ned by g(q − p) = d(p, q) if d satis�es

the property of homogeneity over Z. A hamfer norm is a norm indued by a

hamfer mask.

For instane, the masks 〈(a, 1)〉 (for d4), 〈(a, 1), (b, 1)〉 (for d8), 〈(a, 3), (b, 4)〉
and 〈(a, 5), (b, 7), (, 11)〉 all indue distane norms, but 〈(, 1)〉 learly not (no

homogeneity: let P = (0, 1), then d(O,P ) = 3 and d(O, 2.P ) = 2 6= 2.d(O,P )).
The hamfer norms have remarkable properties: they allow to ompletely

haraterize the geometry of the distane balls, to give diret distane formulas,

and to determine the struture of minimal paths. Several onditions for being a

hamfer norm in Z
n
have been established in [5, �4.3.4℄ and [6, �4.3.2℄. Given a

hamfer mask M, we all rational ball the set

BQ
M = onv

(

~v

w
: (~v, w) ∈ M

)

; (15)

then M indues a norm if and only if it exists a triangulation of BQ
M in uni-

modular ones of apex O. Now suppose that M indues a norm and let C be

suh a one, then C is bounded by a subset of n weightings of M, denoted by

M|C = { (~v ′
i , w

′
i), 1 ≤ i ≤ n }; moreover, for eah point P in C, there is a minimal

path from O to P whih is a linear ombination λ1~v
′
1 + . . . + λn~v

′
n, λi ∈ Z+ of

displaements from M|C , and whose intermediate points are all inluded in C.
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Proposition 1. Let M be a hamfer norm mask, then the two raster sequenes

DT algorithm provides the orret DT values for dM.

Proof. Let P be a feature point urrently evaluated during a raster sequene, and

Q a losest bakground point. Consider the unimodular one C of apex P whih

ontains a minimal M-path P from P to Q, and the set M|C of weightings whih

are bounding C. Then P is a sequene of distint points P0 = P, P1, . . . , Pk = Q

with Pi a M|C-neighbour of Pi−1, 1 ≤ i ≤ k.

The one C is either (a) ontained in the half-spae P − Hn = {P −
−−→
OX :

X ∈ Hn } (the points before P in the forward san), see Figure 8 ; (b) in the

half-spae P +Hn
(the points before P in the bakward san); or () intersets

both half-spaes.

In the ase (a) eah Pi is ontained in the half-spae Pi−1 −Hn, 1 ≤ i ≤ k,

so during the forward san, eah Pi is evaluated before Pi−1. As Pk−1 is an

M|C-neighbour of Pk = Q, the min omputation will give the orret assoiated

weight value in the DT for Pk−1, an so on from Pk−1 to P0.

In the ase (b), the same reasoning an be made using Pi−1 +Hn
during the

bakward san.

In ase (), if Q ∈ P −Hn
, then a minimal path an be hosen suh that all

the path points are inluded in C ∩ (P −Hn), so we an revert to ase (a); the

same for Q ∈ P +Hn
and ase (b). ⊓⊔

Pk−1 −Hn

P −Hn

P2 −Hn

P +HnP

~v ′
2

~v ′
1

Pk−1

P1

P2

QC

Fig. 8. Case (a) for the proof of proposition 1 , here in Z
2
.

7 Conlusion and future work

In this paper, we have improved the proof of [1℄ for d1 and d∞, and proposed a

hardened raster sequene DT algorithm for the hamfer masks. We have shown
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with a ounter-example that the onvergene does not always hold in two passes

for all hamfer masks, and we have proved in proposition 1 that the two raster

sequenes DT algorithm provides the orret distane values for any hamfer

norm.

It an be pointed out that the norm ondition is su�ient but non neessary.

For instane, the algorithm holds for the following non-norm hamfer masks:

〈(a, 1), (b, 1), (, 1)〉, 〈(a, 1), (b, 3), (, 2)〉, 〈(a, 2), (b, 3), (, 4)〉, 〈(a, 1), (, 1)〉,
〈(a, 2), (, 3)〉.

In future works, it would be interesting to investigate if neessary onditions

ould be established on non-norms hamfer masks, to predit the number of

passes for their onvergene, and also to study the onvergene for the reverse

distane transform. This work on weighted distanes might be extended on semi-

regular grids, or other families of weighted geometri graphs. One ould �nally

relate this work to ns-weighted distanes, of whih weighted distanes are a

speial ase [6℄[7℄.
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