On the Validity of the Two Raster Sequences Distance Transform Algorithm.

Edouard Thiel

To cite this version:

Edouard Thiel. On the Validity of the Two Raster Sequences Distance Transform Algorithm.. 2022. hal-03643970

HAL Id: hal-03643970

https://hal.science/hal-03643970

Preprint submitted on 18 Apr 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On the Validity of the Two Raster Sequences Distance Transform Algorithm ${ }^{\star}$

Édouard Thiel
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
Edouard.Thiel@univ-amu.fr
https://pageperso.lis-lab.fr/~edouard.thiel/

Abstract

This paper examines the validity of the two raster sequences distance transform algorithm, originally given by Rosenfeld and Pfaltz for the distance d_{4}, then extended to the weighted distances by Montanari and Borgefors. We show that the convergence in two passes does not hold for all chamfer masks, and we prove that the norm condition is a sufficient condition of validity for the algorithm.

Keywords: discrete geometry • distance transforms • weighted distances.

1 Introduction

Given a binary image A composed of shape points and background points, a Distance Transform (DT) of A is a copy where each shape point is labelled to its distance from the nearest background point. Both the computation and the result properties depend on the considered distance function. The computation of a DT is generally a global operation, which can be quite expensive; however for some distance functions there are very efficient algorithms based on local operations, using sequential or parallel approaches.

DTs have been extensively studied and have played an important role in Discrete Geometry and Image Analysis since the late 1960s. In the founding paper [1], Rosenfeld and Pfaltz introduced the notion of DT, and presented a two raster sequences DT algorithm in 2D for the direct neighbourhood distance d_{4}. They also proved that for any given local transformation on an image, the sequential and parallel approaches are mathematically equivalent. Following that, the notion of weighted (or chamfer) distances has emerged in [2] [3] [4] together with a rather straightforward extension of the DT algorithm.

We recall some definitions and hypotheses from [5]. A weighting (\vec{v}, w) is a displacement $\vec{v} \neq \overrightarrow{0}$ associated to a weight $w>0$. A chamfer mask \mathcal{M} is a nonempty set of weightings, such that the set of displacements contains at least a basis of the image points, and such that $\forall(\vec{v}, w) \in \mathcal{M},(-\vec{v}, w) \in \mathcal{M}$ (centralsymmetry). Two points P and Q are \mathcal{M}-adjacent if there exists $(\vec{v}, w) \in \mathcal{M}$ such that $\overrightarrow{P Q}=\vec{v}$. Two points P and Q are \mathcal{M}-connected if there exists a path of \mathcal{M}-adjacent points joining them, that is, a sequence of distinct points

[^0]$P_{0}=P, P_{1}, \ldots, P_{k}=Q$ with P_{i} a \mathcal{M}-neighbour of $P_{i-1}, 1 \leq i \leq k$. The cost of the path is the sum of the weights of the displacements. The weighted distance $d_{\mathcal{M}}(P, Q)$ is the cost of a path having minimal cost:
\[

$$
\begin{equation*}
d_{\mathcal{M}}(P, Q)=\min \left\{\sum \lambda_{i} w_{i}: \sum \lambda_{i} \vec{v}_{i}=\overrightarrow{P Q},\left(\vec{v}_{i}, w_{i}\right) \in \mathcal{M}, \lambda_{i} \in \mathbb{Z}_{+}\right\} \tag{1}
\end{equation*}
$$

\]

Equivalently, we can consider the weighted geometric graph (V, G), where the set of vertices V corresponds to the image points, and the set of edges G is defined as follows: each vertex $P \in V$ is connected to its \mathcal{M}-neighbours $P+\vec{v}$ by an edge having the weight $w, \forall(\vec{v}, w) \in \mathcal{M}$ s.t. $P+\vec{v} \in V$. The weighted distance $d_{\mathcal{M}}$ is then the intrinsic distance of this weighted graph, and has always the properties of a metric (positive definite, symmetric and triangular) since the graph is non oriented and the weights are strictly positive by hypothesis.

Let us go back to the origins. The first weighted distances d_{4} and d_{8} where presented in [1]; their mask correspond respectively to the 4- and 8-neighbourhood in \mathbb{Z}^{2}, each displacement having the weight 1 ; they coincide with the norms $\ell_{1}(\vec{x})=\left|x_{1}\right|+\ldots+\left|x_{n}\right|$ and $\ell_{\infty}(\vec{x})=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$ in \mathbb{Z}^{n}.

In [2], Montanari has introduced a family of weighted distances in \mathbb{Z}^{2}, where a mask \mathcal{M}_{k} is the set of the displacements $\vec{v}(x, y)$ in the $(2 k+1) \times(2 k+1)$ neighbourhood (i.e. $-k \leq x, y \leq k$), such that (x, y) is visible (from the origin), i.e. $\operatorname{gcd}(x, y)=1$. The weight of any displacement $\vec{v}(x, y)$ is its Euclidean length $\sqrt{x^{2}+y^{2}}$. The distance values obtained $d_{\mathcal{M}_{k}}$ are no longer integers, but can give a good approximation of the Euclidean distance d_{E} (depending on k). The two raster sequences DT algorithm is extended to the masks \mathcal{M}_{k} and the convergence in two passes is shown.

The weighted distances using integer weights, or chamfer distances, has then been popularized for \mathbb{Z}^{2} and \mathbb{Z}^{n} by Borgefors in [3] [4]. The merits of several masks and weights are discussed so as to approximate d_{E} in an efficient manner, and some conditions are given to choose the weights in order to establish direct distances formulas. The two raster sequences DT algorithm is presented in \mathbb{Z}^{n}. But the problem is that the convergence in two passes is not actually shown; and if we look closer, it cannot be deduced from the Rosenfeld and Pfaltz or Montanari proofs for all chamfer masks.

For these reasons, we propose to study the validity of the DT according to the mask, see some counter-examples, and give a sufficient condition of convergence.

The remainder of the paper is organized as follows: the section 2 first recalls the principle of the parallel and sequential DT algorithm for d_{4} and d_{8}; we then examine in section 3 the original proof of [1], by completing it with a missing hypothesis; the section 4 presents an adaptation of the sequential DT algorithm for chamfer masks in \mathbb{Z}^{n}, in order to check the number of passes necessary for the convergence; in section 5, we study a counter-example which shows that the convergence does not always hold in two passes; after that in section 6 we show that the sequential DT algorithm always converges in two passes when using chamfer norms, and conclude in section 7 .

2 Distance transformations in \mathbb{Z}^{2} for d_{4} and d_{8}

Let $A=\left(a_{i, j}\right)$ be an input image, where $a_{i, j}$ denotes the value of the point at row $i(1 \leq i \leq m)$ and column $j(1 \leq j \leq n)$; the foreground points have value 1 and the background points 0 . Given a chamfer mask \mathcal{M}, the goal is to compute the DT $D=\left(d_{i, j}\right)$ where $d_{i, j}$ is the distance $d_{\mathcal{M}}$ to the set of 0 's (supposed non-empty) coming from A. For any weighting $(\vec{v}, w) \in \mathcal{M}$ we denote by $\left(v_{i}, v_{j}\right)$ the coordinates of \vec{v}.

Here is the naive parallel algorithm to compute DT. At step 0 , let B^{0} be a copy of A, where the 1 's are set to ∞, or a sufficient large value. We compute for each step $k>0$ the image $B^{k}=\left(b_{i, j}^{k}\right)$, where

$$
b_{i, j}^{k}=\min \left\{b_{i+v_{i}, j+v_{j}}^{k-1}+w:(\vec{v}, w) \in \mathcal{M}, \begin{array}{l}
1 \leq i+v_{i} \leq m \tag{2}\\
1 \leq j+v_{j} \leq n
\end{array}\right\}
$$

The process is repeated until no point value changes; the number of iterations is bounded by the maximal number of displacements in a minimal \mathcal{M}-path, and can be quite large.

The same method can be processed in an iterative manner on a single image B. The order in which we compute the $b_{i, j}$ is arbitrary, and the convergence rate can be greatly increased by a clever choice of the order. The sequential DT algorithm of Rosenfeld and Pfaltz takes advantages of this idea, an converges in only two raster sequences on the image. Here is their original algorithm, presented in [1] for the distance d_{4}.

The forward scan processes the image row by row in the raster sequence $a_{1,1}, \ldots, a_{1, n}, a_{2,1}, \ldots, a_{2, n}, \ldots, a_{m, 1}, \ldots, a_{m, n}$; the backward scan processes the points in the reverse order. During the forward scan the function f_{1} is applied on A to obtain the image B, then during the backward scan the function f_{2} is applied on B to get the image C. These functions are defined by:

$$
\begin{array}{rlrl}
f_{1}\left(b_{i, j}\right) & =0 & & \text { if } a_{i, j}=0 \\
& =\min \left(b_{i-1, j}+1, b_{i, j-1}+1\right) & & \text { if } a_{i, j}=1 \text { and }(i, j) \neq(1,1) \\
& =\mu & & \text { if } a_{i, j}=1 \text { and }(i, j)=(1,1) \\
f_{2}\left(c_{i, j}\right) & =\min \left(b_{i, j}, c_{i+1, j}+1, c_{i, j+1}+1\right) . &
\end{array}
$$

The value μ is chosen to be an unattainable distance value in the image, e.g. $m+n$ (in the paper) or ∞, and is set as an initialization for the top left point $(1,1)$. The min's are only evaluated on the neighbours inside the image; an alternative option is to consider the value μ for neighbours who are outside the image.

The algorithm can be easily adapted to d_{8} by adding the indirect neighbours $(i-1, j-1)$ and $(i-1, j+1)$ in the min for f_{1}, and $(i+1, j-1),(i+1, j+1)$ in the min for f_{2}.

Figure 1 shows an example with d_{4} and Figure 2 with d_{8}. For simplicity, we have considered in the min's that $\mu+x=\mu, \forall x \geq 0$.

$$
\begin{array}{|l|l|l|l|l}
\hline 1 & 1 & 1 & 1 & 1 \\
\hline 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array} \left\lvert\, \xrightarrow{f_{1}} \begin{array}{|l|l|l|l|l}
\mu & \mu & \mu & \mu & \mu \\
\hline \mu & \mu & 0 & 1 & 2 \\
\hline \mu & \mu & 1 & 2 & 3
\end{array} \xrightarrow{f_{2}} \begin{array}{|l|l|l|l|l|}
\hline 3 & 2 & 1 & 2 & 3 \\
\hline 2 & 1 & 0 & 1 & 2 \\
\hline 3 & 2 & 1 & 2 & 3 \\
\hline
\end{array}\right.
$$

Fig. 1. Two raster sequences DT algorithm for d_{4} on a 3×5 image.

$$
\begin{array}{|l|l|l|l|l}
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1
\end{array} \xrightarrow{f_{1}} \begin{array}{|l|l|l|l|l}
\mu & \mu & \mu & \mu & \mu \\
\mu & \mu & 0 & 1 & 2 \\
\hline \mu & 1 & 1 & 1 & 2
\end{array} \xrightarrow{f_{2}} \begin{array}{|l|l|l|l|l|}
\hline 2 & 1 & 1 & 1 & 2 \\
2 & 1 & 0 & 1 & 2 \\
\hline 2 & 1 & 1 & 1 & 2 \\
\hline
\end{array}
$$

Fig. 2. Two raster sequences DT algorithm for d_{8} on a 3×5 image.

3 Original proof for the two raster sequences DT

The original proof in [1, §4.2] is rather compact; we will develop it and show that there was a missing hypothesis. The proof is constructed by induction for d_{4} in \mathbb{Z}^{2}; the goal is to show that after applying f_{1} and f_{2}, the obtained image C satisfies $C=D$ (using the notations of section (2).

On the base case it is noted that if $a_{i, j}=1$ and a direct neighbour inside the image is 0 , evidently $c_{i, j}=1$, and conversely.

The original induction hypothesis is: suppose for a given $k>1$ that

$$
\begin{equation*}
c_{i, j}=d_{i, j} \quad \forall i, j \text { s.t. } d_{i, j}<k \tag{3}
\end{equation*}
$$

Hence $\forall i, j$ we have

$$
\begin{equation*}
d_{i, j}<k \quad \Rightarrow \quad c_{i, j}=d_{i, j} \tag{4}
\end{equation*}
$$

but this does not exclude the existence of cases such as

$$
\begin{equation*}
d_{i, j} \geq k \quad \text { and } \quad c_{i, j}<k \tag{5}
\end{equation*}
$$

In fact, for the rest of the proof, we will have to exclude these cases in two places. The (extended) induction hypothesis has thus to be: suppose for a given $k>1$ that

$$
\begin{equation*}
c_{i, j}=d_{i, j} \quad \forall i, j \text { s.t. } d_{i, j}<k \text { or } c_{i, j}<k . \tag{6}
\end{equation*}
$$

We therefore further assumed that

$$
\begin{equation*}
c_{i, j}<k \quad \Rightarrow \quad c_{i, j}=d_{i, j} \tag{7}
\end{equation*}
$$

Remark. By (4) we have $d_{i, j}<k \Rightarrow c_{i, j}<k$, thus

$$
\begin{equation*}
c_{i, j} \geq k \quad \Rightarrow \quad d_{i, j} \geq k \tag{8}
\end{equation*}
$$

moreover, by (7) we have $c_{i, j}<k \Rightarrow d_{i, j}<k$, so $d_{i, j} \geq k \Rightarrow c_{i, j} \geq k$; hence

$$
\begin{equation*}
c_{i, j} \geq k \quad \Leftrightarrow \quad d_{i, j} \geq k . \tag{9}
\end{equation*}
$$

We continue the induction by studying the case where $c_{i, j}=k$. By (8) we have $d_{i, j} \geq k$. If $d_{i, j}=k$ then $c_{i, j}=d_{i, j}$ and the proof is done. Let us suppose that $c_{i, j}=k$ and $d_{i, j}>k$. By definition of d_{4}, since $d_{i, j}>k$, the four direct neighbours are $\geq k$:

$$
\begin{array}{l|c|l}
& d_{i-1, j} \geq k & \tag{10}\\
\hline d_{i, j-1} \geq k & d_{i, j}>k & d_{i, j+1} \geq k \\
\hline & d_{i+1, j} \geq k &
\end{array} .
$$

Thanks to the extended hypothesis, we have by (9)

$$
\begin{align*}
d_{i, j+1} \geq k & \Rightarrow \quad c_{i, j+1} \geq k \tag{11}\\
d_{i+1, j} \geq k & \Rightarrow \quad c_{i+1, j} \geq k
\end{align*}
$$

hence during the computation of $c_{i, j}$ by f_{2} in backward sequence we have

$$
c_{i, j}=\min \begin{cases}b_{i, j} & \tag{12}\\ c_{i, j+1}+1 & (\geq k+1) \\ c_{i+1, j}+1 & (\geq k+1)\end{cases}
$$

thus $c_{i, j}=k \Rightarrow b_{i, j}=k$. However, when calculating $b_{i, j}$ by f_{1} in forward sequence we have applied

$$
b_{i, j}=\min \left\{\begin{array}{l}
b_{i-1, j}+1 \tag{13}\\
b_{i, j-1}+1
\end{array}\right.
$$

thus $b_{i, j}=k \Rightarrow b_{i-1, j}=k-1$ or $b_{i, j-1}=k-1$. Suppose that the former holds, that is $b_{i-1, j}=k-1$. During the calculation of $c_{i-1, j}$ by f_{2} we have

$$
c_{i-1, j}=\min \left\{\begin{array}{l}
b_{i-1, j} \tag{14}\\
c_{i-1, j+1}+1 \\
c_{i, j}+1
\end{array} \quad(=k-1)\right.
$$

therefore $c_{i-1, j} \leq k-1$; but $d_{i-1, j} \geq k$ by (10) so $d_{i-1, j} \neq c_{i-1, j}$, in contradiction with the extended hypothesis since $c_{i-1, j}<k$.

This proof can be easily extended for d_{8} by adding the four indirect neighbours in the min's. More generally, the algorithm and the proof can be extended in \mathbb{Z}^{n} for the distances d_{1} and d_{∞} induced by the ℓ_{1} and ℓ_{∞} norms.

It should be noted that the algorithm can also be adapted to chamfer masks in \mathbb{Z}^{n} (see [4]), but we will show further with a counter-example that the convergence in two scans is not always guaranteed for any chamfer mask. At the proof level, we can see that this proof cannot be extended either, because the inequations are performed on (i, j)-neighbours only, and they use the fact that the distance values are consecutive integers.

4 Sequential DTs for chamfer masks in \mathbb{Z}^{n}

We present an adaptation of the sequential DT in \mathbb{Z}^{n} which is a bit hardened to handle counter-examples masks.

The masks need to be split in two parts for the forward and backward scans. Using coordinates $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$, let us consider the forward raster sequence in ascending order: for x_{n}, for x_{n-1}, \ldots, for x_{1}.

The half-space constituted by the mask points after the origin in the raster sequence is $\mathcal{H}^{n}=\cup_{1 \leq k \leq n}\left\{x_{n}=0, \ldots, x_{k+1}=0, x_{k}>0\right\}$. Given a chamfer mask $\mathcal{M}=\left\{(\vec{v}, w): \vec{v} \in \mathbb{Z}^{n}\right\}$, we define the half-mask $\mathcal{M}^{h}=\left\{(\vec{v}, w) \in \mathcal{M}: \vec{v} \in \mathcal{H}^{n}\right\}$. During the sequential DT, the forward raster sequence will then use the halfmask $\mathcal{M} \backslash \mathcal{M}^{h}$, whereas the backward sequence will use \mathcal{M}^{h}.

The computation of one sequential DT scan is presented in Figure3, for convenience in Python language in \mathbb{Z}^{2}. To extend the function in higher dimension it is sufficient to add coordinates and loops for the additional dimensions.

```
def compute_one_DT_scan (img, half_mask, scan_num) :
    forward = scan_num % 2 == 1
    if forward :
        i_start = 0 ; i_end = img.m # 0 to m-1
        j_start = 0 ; j_end = img.n ; step = 1 # 0 to n-1
    else :
        i_start = img.m-1 ; i_end = -1 # m-1 to 0
        j_start = img.n-1 ; j_end = -1 ; step = -1 # n-1 to 0
    changed = False
    for i in range (i_start, i_end, step) :
        for j in range (j_start, j_end, step) :
            if img.mat[i][j] == 0 : continue
            min_w = -1 if scan_num == 1 else img.mat[i][j]
            for p_i, p_j, p_w in half_mask :
                q_i = i - p_i*step ; q_j = j - p_j*step
                if not img.is_inside (q_i, q_j) : continue
                if img.mat[q_i][q_j] == -1 : continue
                q_w = img.mat[q_i][q_j] + p_w
                if min_w == -1 or q_w < min_w : min_w = q_w
            if img.mat[i][j] != min_w : changed = True
            img.mat[i][j] = min_w # can be -1
    return changed
```

Fig. 3. Computation of one sequential DT scan in \mathbb{Z}^{2} with $\mu=-1$.

The input and output image is img. The coordinates are $0 \leq i<i m g . m$ for x_{2} (or y) and $0 \leq \mathrm{j}<\mathrm{img} . \mathrm{n}$ for x_{1} (or x); the point values are accessed by img.mat[i][j]. The method img.is_inside(i,j) returns True if the coordinates are inside the image. The parameter half_mask stores the \mathcal{M}^{h} weightings as a list of tuples. The direction of the scan (forward or backward) is deduced
from the scan number scan_num line 2 . The loop step value is also used line 15 to compute the displacements of the half mask for the current scan direction.

The function is written with the special value $\mu=-1$ (in red). It indicates the unattainable distance value for the min's, as well as the non currently affected point values in the image.

The computation of the DT in two raster sequences is done by calling twice the function compute_one_DT_scan with the scan number, see the function compute_sequential_DT_in_two_scans in Figure 4.

```
def compute_sequential_DT_in_two_scans (img, half_mask) :
    compute_one_DT_scan (img, half_mask, 1)
    compute_one_DT_scan (img, half_mask, 2)
def compute_sequential_DT_multi_scans (img, half_mask) :
    scan_num = 1
    while True :
        if compute_one_DT_scan (img, half_mask, scan_num) :
            scan_num += 1
        else : break
    return scan_num
```

Fig. 4. Sequential DT algorithms in \mathbb{Z}^{2}.

As for the parallel DT computation, the sequential DT can be performed scan by scan until no point value changes (all paths are propagated and convergence is reached). For this purpose, the function compute_one_DT_scan returns a boolean value changed, which is used to stop the loop in the function compute_sequential_DT_multi_scans in Figure 4 .

5 Counter-example for the two raster sequences DT

We present now a simple counter-example, which shows that the convergence of the DT in only two raster sequences does not hold for all chamfer masks.

One can imagine any kind of mask, see for instance [5, p. 42] for a gallery. In the literature, the most common category of studied masks are grid-symmetrical (8-symmetrical in $\mathbb{Z}^{2}, 48$ - in $\mathbb{Z}^{3},\left(2^{n} n!\right)$ - in \mathbb{Z}^{n}). The weightings are chosen in the first octant (also called generator) $0 \leq x_{n} \leq \ldots \leq x_{1}$, then the grid symmetries are performed to populate the mask. For efficiency, the weightings are usually chosen among the visible points, because each visible point will generates its periods if the mask has the good properties (see further).

In \mathbb{Z}^{2}, the first visible points in the first octant are denoted by $\mathbf{a}=(0,1)$ (still using coordinates in the order $\left.\left(x_{2}, x_{1}\right)\right), \mathbf{b}=(1,1), \mathbf{c}=(1,2), \mathbf{d}=(1,3)$, $\mathbf{e}=(2,3)$, etc. A grid-symmetrical mask constituted by a set of weightings ($\mathbf{v}, w)$ where \mathbf{v} is a visible point is denoted by $\langle(\mathbf{v}, w), \ldots\rangle$. For instance, the mask for
d_{4} is denoted by $\langle(\mathbf{a}, 1)\rangle$, the mask for d_{8} is $\langle(\mathbf{a}, 1),(\mathbf{b}, 1)\rangle$, the mask for the chamfer distance $5,7,11[4]$ is $\langle(\mathbf{a}, 5),(\mathbf{b}, 7),(\mathbf{c}, 11)\rangle$, and so on.

To find counter-examples it is sufficient to choose some displacements, loop on several weights, and compute the DTs on images of several sizes, where all points have value 1, except one point which has value 0 in the centre of the image. For each trial we can compare the results for the parallel algorithm and those of compute_sequential_DT_in_two_scans, or run the function compute_sequential_DT_multi_scans and check if it returns a number of scans >3.

We have found a very simple counter-example using only knight moves, which is the mask $\langle(\mathbf{c}, 1)\rangle$, for any image size larger then 3×3. The Figure 5 shows the full mask and the two half masks.
(a)

(b)

(c)

Fig. 5. Mask $\langle(\mathbf{c}, 1)\rangle$ around the origin O : (a) full mask, (b) forward mask, (c) backward mask.

The mask $\langle(\mathbf{c}, 1)\rangle$ is a chamfer mask because the basis vector $(0,1)$ can be obtained using the symmetrical displacements of \mathbf{c}, by $(-1,-2)+(-1,2)+$ $(2,1)=(0,1)$, and the same by symmetry for $(1,0)$.

The Figure 6 shows the parallel passes for a 3×4 image; 6 passes are necessary to reach the correct DT values. On figure 7 we can see that the raster sequences DT algorithm also needs 6 passes: 5 to converge and the sixth to detect no changes and stop.

(a) | | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 1 | |
| 1 | 1 | 1 | 1 | |
| | | | | |
| | | | | |

(e) | 1 | 2 | 3 | μ |
| :---: | :---: | :---: | :---: |
| μ | μ | 0 | 3 |
| 1 | 2 | 3 | μ |

(b) | μ | μ | μ | μ |
| :--- | :--- | :--- | :--- |
| μ | μ | 0 | μ |
| μ | μ | μ | μ |

(c) | 1 | μ | μ | μ |
| :---: | :---: | :---: | :---: |
| μ | μ | 0 | μ |
| 1 | μ | μ | μ |

(d) | 1 | 2 | μ | μ |
| :---: | :---: | :---: | :---: |
| μ | μ | 0 | μ |
| 1 | 2 | μ | μ |

(f) | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 4 | μ | 0 | 3 |
| 1 | 2 | 3 | 4 |
| | | | |
| | | | |

(g) | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 4 | 5 | 0 | 3 |
| 1 | 2 | 3 | 4 |

(h) | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 4 | 5 | 0 | 3 |
| 1 | 2 | 3 | 4 |

Fig. 6. Parallel DT for $\langle(\mathbf{c}, 1)\rangle$: (a) original image, (b) initialization, (c-h) passes 1-6.

(a) | 1 | 1 | 1 | 1 | |
| :---: | :---: | :---: | :---: | :---: |
| | 1 | 1 | 0 | 1 |
| | 1 | 1 | 1 | 1 |

(a)

(b) | μ | μ | μ | μ |
| :---: | :---: | :---: | :---: |
| μ | μ | 0 | μ |
| 1 | μ | μ | μ |

(c) | 1 | 2 | μ | μ |
| :---: | :---: | :---: | :---: |
| μ | μ | 0 | μ |
| 1 | μ | μ | μ |

(d) | 1 | 2 | μ | μ |
| :---: | :---: | :---: | :---: |
| μ | μ | 0 | 3 |
| 1 | 2 | 3 | μ |
| | | | |
| | | | |
| | | | |

(e) | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 4 | μ | 0 | 3 |
| 1 | 2 | 3 | μ |

(f) | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 4 | 5 | 0 | 3 |
| 1 | 2 | 3 | 4 |

(g) | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 4 | 5 | 0 | 3 |
| 1 | 2 | 3 | 4 |

Fig. 7. Sequential DT for $\langle(\mathbf{c}, 1)\rangle$: (a) original image, (b-g) passes 1-6, (b,d,f) forward passes, (c,e,g) backward passes.

Finally, we remark for the mask $\langle(\mathbf{c}, 1)\rangle$ taken as a counter-example, that

- the necessary sequential passes number depends on the image size, and may decrease a little bit when the size grows;
- the passes number does not depend on the chosen \mathbf{c} weight;
- we can replace \mathbf{c} by any visible point $(1,2 k), k \geq 1$ and still get a chamfer mask, since $k(-1,-2 k)+k(-1,2 k)+(2 k, 1)=(-2 k, 0)+(2 k, 1)=(0,1)$.

6 Validity holds for chamfer norms

A metric d in \mathbb{Z}^{n} induces a norm g defined by $g(q-p)=d(p, q)$ if d satisfies the property of homogeneity over \mathbb{Z}. A chamfer norm is a norm induced by a chamfer mask.

For instance, the masks $\langle(\mathbf{a}, 1)\rangle\left(\right.$ for $\left.d_{4}\right),\langle(\mathbf{a}, 1),(\mathbf{b}, 1)\rangle\left(\right.$ for $\left.d_{8}\right),\langle(\mathbf{a}, 3),(\mathbf{b}, 4)\rangle$ and $\langle(\mathbf{a}, 5),(\mathbf{b}, 7),(\mathbf{c}, 11)\rangle$ all induce distance norms, but $\langle(\mathbf{c}, 1)\rangle$ clearly not (no homogeneity: let $P=(0,1)$, then $d(O, P)=3$ and $d(O, 2 \cdot P)=2 \neq 2 \cdot d(O, P))$.

The chamfer norms have remarkable properties: they allow to completely characterize the geometry of the distance balls, to give direct distance formulas, and to determine the structure of minimal paths. Several conditions for being a chamfer norm in \mathbb{Z}^{n} have been established in [5, §4.3.4] and [6, §4.3.2]. Given a chamfer mask \mathcal{M}, we call rational ball the set

$$
\begin{equation*}
\mathcal{B}_{\mathcal{M}}^{\mathbb{Q}}=\operatorname{conv}\left(\frac{\vec{v}}{w}:(\vec{v}, w) \in \mathcal{M}\right) \tag{15}
\end{equation*}
$$

then \mathcal{M} induces a norm if and only if it exists a triangulation of $\mathcal{B}_{\mathcal{M}}^{\mathbb{Q}}$ in unimodular cones of apex O. Now suppose that \mathcal{M} induces a norm and let \mathcal{C} be such a cone, then \mathcal{C} is bounded by a subset of n weightings of \mathcal{M}, denoted by $\left.\mathcal{M}\right|_{\mathcal{C}}=\left\{\left(\vec{v}_{i}^{\prime}, w_{i}^{\prime}\right), 1 \leq i \leq n\right\} ;$ moreover, for each point P in \mathcal{C}, there is a minimal path from O to P which is a linear combination $\lambda_{1} \vec{v}_{1}^{\prime}+\ldots+\lambda_{n} \vec{v}_{n}^{\prime}, \lambda_{i} \in \mathbb{Z}_{+}$of displacements from $\left.\mathcal{M}\right|_{\mathcal{C}}$, and whose intermediate points are all included in \mathcal{C}.

Proposition 1. Let \mathcal{M} be a chamfer norm mask, then the two raster sequences $D T$ algorithm provides the correct $D T$ values for $d_{\mathcal{M}}$.

Proof. Let P be a feature point currently evaluated during a raster sequence, and Q a closest background point. Consider the unimodular cone \mathcal{C} of apex P which contains a minimal \mathcal{M}-path \mathcal{P} from P to Q, and the set $\left.\mathcal{M}\right|_{\mathcal{C}}$ of weightings which are bounding \mathcal{C}. Then \mathcal{P} is a sequence of distinct points $P_{0}=P, P_{1}, \ldots, P_{k}=Q$ with P_{i} a $\left.\mathcal{M}\right|_{\mathcal{C}}$-neighbour of $P_{i-1}, 1 \leq i \leq k$.

The cone \mathcal{C} is either (a) contained in the half-space $P-\mathcal{H}^{n}=\{P-\overrightarrow{O X}$: $\left.X \in \mathcal{H}^{n}\right\}$ (the points before P in the forward scan), see Figure 8; (b) in the half-space $P+\mathcal{H}^{n}$ (the points before P in the backward scan); or (c) intersects both half-spaces.

In the case (a) each P_{i} is contained in the half-space $P_{i-1}-\mathcal{H}^{n}, 1 \leq i \leq k$, so during the forward scan, each P_{i} is evaluated before P_{i-1}. As P_{k-1} is an $\left.\mathcal{M}\right|_{\mathcal{C}}$-neighbour of $P_{k}=Q$, the min computation will give the correct associated weight value in the DT for P_{k-1}, an so on from P_{k-1} to P_{0}.

In the case (b), the same reasoning can be made using $P_{i-1}+\mathcal{H}^{n}$ during the backward scan.

In case (c), if $Q \in P-\mathcal{H}^{n}$, then a minimal path can be chosen such that all the path points are included in $\mathcal{C} \cap\left(P-\mathcal{H}^{n}\right)$, so we can revert to case (a); the same for $Q \in P+\mathcal{H}^{n}$ and case (b).

Fig. 8. Case (a) for the proof of proposition 1 , here in \mathbb{Z}^{2}.

7 Conclusion and future work

In this paper, we have improved the proof of [1] for d_{1} and d_{∞}, and proposed a hardened raster sequence DT algorithm for the chamfer masks. We have shown
with a counter-example that the convergence does not always hold in two passes for all chamfer masks, and we have proved in proposition 1 that the two raster sequences DT algorithm provides the correct distance values for any chamfer norm.

It can be pointed out that the norm condition is sufficient but non necessary. For instance, the algorithm holds for the following non-norm chamfer masks: $\langle(\mathbf{a}, 1),(\mathbf{b}, 1),(\mathbf{c}, 1)\rangle,\langle(\mathbf{a}, 1),(\mathbf{b}, 3),(\mathbf{c}, 2)\rangle,\langle(\mathbf{a}, 2),(\mathbf{b}, 3),(\mathbf{c}, 4)\rangle,\langle(\mathbf{a}, 1),(\mathbf{c}, 1)\rangle$, $\langle(\mathbf{a}, 2),(\mathbf{c}, 3)\rangle$.

In future works, it would be interesting to investigate if necessary conditions could be established on non-norms chamfer masks, to predict the number of passes for their convergence, and also to study the convergence for the reverse distance transform. This work on weighted distances might be extended on semiregular grids, or other families of weighted geometric graphs. One could finally relate this work to ns-weighted distances, of which weighted distances are a special case [6] [7].

References

1. Rosenfeld, A., Pfaltz, J.: Sequential operations in digital picture processing. Journal of ACM 13(4), 471-494 (1966)
2. Montanari, U.: A method for obtaining skeletons using a quasi-euclidean distance. Journal of ACM 15, 600-624 (1968)
3. Borgefors, G.: Distance transformations in arbitrary dimensions. Computer Vision, Graphics and Image Processing 27, 321-345 (1984)
4. Borgefors, G.: Distance transformations in digital images. Computer Vision, Graphics and Image Processing 34, 344-371 (1986)
5. Thiel, E.: Géométrie des distances de chanfrein. Habilitation à Diriger des Recherches, Université de la Méditerranée, Aix-Marseille 2 (Déc 2001), https://pageperso.lis-lab.fr/~edouard.thiel/hdr/
6. Normand, N.: Projections et distances discrètes. Habilitation à Diriger des Recherches, Université de Nantes (Nov 2012)
7. Strand, R and Normand, N.: Distance transform computation for digital distance functions. Theoretical Computer science 448, 80-93 (2012)

[^0]: * Submitted to DGMM 2022

