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Abstract 

The Boltzmann equation for electrons moving in a neutral gas under the 

influence of an externally applied field is solved by expanding the electron distribution 

function in terms of Legendre and Sonine polynomials. The solution is given in 

terms of infinite matrices which have elements ordered by the Sonine polynomial 

index, and which are dependent upon the field strength. From the structure of the 

formulae, it is possible to infer that truncation of the Legendre polynomial expansion 

after two terms is a good approximation at all field strengths. This is supported 

by calculations of the electron drift velocity at low field strengths, which show 

that the error introduced by making the two-term approximation is small, even 

when the deviation from equilibrium is significant. The convergence of the Sonine 

polynomial expansion is shown to be strongly depende:r;J.t upon field strength, and 

large matrices are required in the drift velocity formula at even small field strengths. 

1. INTRODUCTION 

Theoretical analyses of the mobility and diffusion of electrons in neutral gases 

under the influence of an applied electric field have traditionally relied upon the 

so-called two-term approximation (Lorentz 1916; Davydov 1935; Morse, Allis, and 

Lamar 1935; Margenau 1946; Allis 1956), in which the distribution function is 

approximated by the first two terms of an expansion in Legendre polynomials, 

00 

j(c) = ~ l(c) PI (cos B), 
1=0 

cosB = (E. c)/Ec, 

The Boltzmann equation appropriate to this case, namely 

(e/m)E.oj/oc = J(fjo) 

with 

J(fjo) = I {f(c)jo(Co) -j(c') jo(co)}ga(g, x) d.Qdco, 

(1) 

(la) 

(2) 

(3) 

is thus reduced to two coupled differential equations for jO(c) andJ1(c). In equations 

(2) and (3) the 0 subscripts refer to the neutral gas while the other notation is standard. 

Solving for jO(c) gives the Davydov distribution, which in the limiting case of rigid

sphere interaction and high fields becomes the Druyvesteyn distribution (Allis 1956). 

* Department of Theoretical Physics, Research School of Physical Sciences, Australian 

National University, P.O. Box 4, Canberra, A.C.T. 2600. 

Aust. J. Phys., 1971,24, 835-40 



836 R. E. ROBSON AND KAILASH KUMAR 

This approximation is usually justified on physical grounds (Chapman and 

Cowling 1970): because of their small mass, electrons suffer relatively large directional 

changes in velocity but lose only l> small fraction (,...." 2 rn/mo) of their energy in colli

sions with the neutral atoms. (Collisions are assumed here to be elastic.) Thus, while 

the distribution of velocities may be non-Maxwellian, it would be expected to be 

nearly spherically symmetric in velocity space, that is,JO would be the dominant term 

in (1). Although, as is shown in Section II below, the smallness of m/mo provides the 

basic justification for using the two-term approximation, these arguments and others 

(Ginzburg and Gurevich 1960) do not fully justify the omission of higher order terms 

from (1). 

In view of the accuracy of present day experiments (Crompton, Elford, and 

Robertson 1970), it is of interest to estimate the importance ofj2,j3, .... A systematic 

method of approximating these terms is presented here and it is shown that they are 

insignificant. The amount of numerical work required increases with the field strength, 

but the structure of the formulae and the results for low fields, which are presented 

below, suggest that for the electrons the two-term approximation remains valid for 

all values of field strength. 

II. THEORY AND DISCUSSION 

The neutral gas is assumed to be in equilibrium at temperature To, 

jo(Co) = now(ao, co) , (4) 

and j l( c) is expanded further in terms of Sonine polynomials as 

(5) 

where 

The present paper follows the earlier work of Kumar (1967) in notation and in 

the transformation to matrix form. Substituting for j(c) and jo(co) in (2), we 

obtain an (infinite) homogeneous matrix equation for the expansion coefficients 

jvl. The existence of a summational invariant, corresponding to conservation of 

electron number, results in the vanishing of the determinant of the matrix of coeffi

cients (Kumar 1967), and a non-trivial solution is assured. Using the normalization 

condition 

(6) 

the homogeneous matrix equation is then reduced to a solvable inhomogeneous 

matrix equation of the form 

(7) 

where f is the unknown column vector, d is a known (constant) vector, and J and 

o are matrices labelled by v and l with v, l = 0,1, ... , except that v = 0 = l terms 
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do not occur. The field parameter E is defined in equation (9) below. Equation (7) 

may be written as a series of coupled equations for matrices labelled by v only, 

JO jO-ED!jl = 0, 

J1 jl-ED\J2-ED=-jO = -Ed, 

J2J2-ED~f3-ED~jl = 0, 

L--+w, 

(8a) 

(8b) 

(8c) 

(8d) 

where jl is a column vector with entries jvl, d is a fixed vector, and Jl and D~ are 

matrices labelled by v. These equations are directly comparable with the recurrence 

relations of Kihara (1953) and also have the same formal structure as the coupled 

integro-differential equations for jl(c) of equation (1) (Ginzburg and Gurevich 1960). 

The above matrix form allows calculations of the higher l corrections (dependence 

on cos 0) to be made more easily, although perhaps has some disadvantage as far as 

the determination of c-dependence is concerned. 

The quantities appearing in equations (7) and (8) have been made dimensionless 

by introducing the scale factor r which characterizes the range of the electron-atom 

interaction; their definitions are: 

d = dv = (47T/3)! ovo, 

D~ =0 (D~)VIV2 =0 {(l+I)/(2l+1)} (2vd 8V2 ,vl-1 , 

D"- =0 (D"-)VIV2 =0 -{l/(2l+1)} (2V1 +2l+1)' 8V2V1 ' 

where, for small m/mo, 

and 

l;?ol, 

with 

2 2 2, 2 2 
Y =0 a ao/(a +ao), 

and 

az(g) =0 27T f P1(cosX)a(g,X)sinXdX. 

(9) 

(lOa) 

(lOb) 

(lIa) 

(lIb) 

(12) 

(13) 

Equation (8d) indicates that in practical situations the series has to be terminated 

at some maximum value, L, of l (equivalent to approximating the right-hand side of 
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(1) by the first L+ 1 terms). The first three terms in the formal solution may be written 

aB 

where 

10 = E(JO)-l. D~P , 

P = -EMil . d , 

12 = ENil.D~p, 

and, for successive truncations, 

L;? 1, 

L;? 2, 

(14a) 

(14b) 

(14c) 

(15) 

(16a) 

(16b) 

(16c) 

It should be noted that as E --+ 0, ML --+ Jl so that high l contributions are not 

important in this situation. Furthermore, because of the smallness of m/mo, in the 

second term of (15) the contribution from JO (defined in equation (lla)) always 

overshadows the higher l contributions which enter through N L. Hence, even for high 

fields, the contributions from l ;? 2 will not be important. Then, from (lla) and 

(14a), we may conclude that 110 I is always much larger than IPI. The validity of 

the two-term expansion is thus seen to derive from the smallness of the mass ratio 

m/mo and the form of the solutions (equations (14) and (15)).* 

In numerical calculations with the above equations, it is also necessary to 

truncate the infinite matrices Jl and D~ at some upper value, N, of v. The corrections 

introduced by increasing N are affected in a different way by the Bmall mass ratio. 

They are found to be strongly dependent on the field strength, i.e. the parameter E, 

although they do decrease if N is taken to be sufficiently large. The dimension of 

the matrices (determined by N) required to obtain convergence to a given accuracy 

increases rapidly with the field strength. (This is similar to previous experience in 

matrix calculations of related problems (Pekeris et al. 1962; Hochstim and Massel 

1969).) The physical reason behind this is the well-known non-Maxwellian nature 

of the distribution function in this situation; although it is nearly isotropic, a large 

number of Sonine polynomials are required for a good representation of the velocity 

dependence. 

In the numerical example considered in Section III, because of the slow con

vergence the whole experimentally available range of energy was not covered, but it 

appears that results of any accuracy could be obtained provided one were prepared 

to use sufficiently large matrices. 

* This conclusion is expected to be valid for the types of cross sections encountered in the 

present problem. The hard.sphere interaction considered in Section III has been used in a case 

where it agrees most satisfactorily with experiment and the results may be considered typical 

for this type of problem. 
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III. NUMERICAL EXAMPLE 

The drift velocity Wand the effective electron temperature T, as conventionally 

defined, are given here by 

W = (3j47T)!{f01(E)jrxE} E (17) 

and 

(18) 

The neutral gas was taken to be helium and a hard-sphere interaction potential of 

radius r was assumed. In this case, the partial cross sections (13) simplify to 
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Fig. I.-Drift velocity W of 

electrons in helium at 

To = 77 K calculated from 

truncated matrices for the 

indicated values of N (dashed 

curves) and compared with 

the usual two-term differential 

equation calculation (solid W 

curve). All curves coincide 

for low values of E/no. 

The calculated values of 

electron temperature T for 

N = 19 are also shown. 

(Note that 1 townsend (Td) 

~ = 1O-17Vcm2.) 

~ 

The values of parameters chosen were 7Tr2 = 5·4 X 10-16 cm2, m/mo = 1·371 X 

10-4, and To = 77 K. Figure 1 shows the effect of increasing the order N of the 

" truncation in the two-term approximation (L = 1) and also provides a comparison 

with the usual two-term calculation by numerical solution of differential equations. 

Clearly, the convergence becomes worse for higher values of Ejno, indicating that 

very large matrices would be required to cover the whole of the experimental range. 

Also shown in Figure 1 is a plot of the ratio of the electron temperature to the gas 

temperature for N = 19. It shows that with increasing field strengths the electron 

distribution must deviate strongly from the Maxwellian appropriate to To. 
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Because of the slow convergence with N, the present work was limited to low 

values of E/no in calculations showing the effect of convergence with L. Table 1 

shows the variation of the drift velocity with L = 1,2, and 3 for fixed N and different 

E/no in a region where the deviation from equilibrium is significant. It is seen that 

the relative magnitude of the correction from higher l terms is even smaller than may 

have been anticipated, i.e. less than m/mo. The values change somewhat for different 

values of N but the pattern remains the same. Similar results have been obtained 

for many different sizes of matrices and for different parameters. On this basis, it 

can be conjectured that, although very large matrices in the Sonine polynomial 

index v are needed at high fields, as far as the Legendre polynomial expansion 

(equation (1)) is concerned, inclusion of terms beyond the first two produces corrections 

of a relative order of magnitude not exceeding m/mo. 

TABLE 1 

VARIATION OF DRIFT VELOCITY WITH SUCCESSIVE ORDERS OF TRUNCATION 

IN LEGENDRE POLYNOMIAL INDEX 

Values are for N = 10 

Order of Truncation 

L 

Drift Velocity W (105 cms-1) 

Ejno = 0·01 0·02 0·04 Td 

1 

2 

3 

0·4080835 

0·4080756 

0·4080756 

0·6643601 

0·6643437 

0·6643437 
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