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ON THE VALUE FUNCTION OF THE M/Cox(r)/1 QUEUE

SANDJAI BHULAI,∗ Vrije Universiteit Amsterdam

Abstract

We consider a single-server queueing system at which customers arrive according to
a Poisson process. The service times of the customers are independent and follow a
Coxian distribution of order r . The system is subject to costs per unit time for holding a
customer in the system. We give a closed-form expression for the average cost and the
corresponding value function. The result can be used to derive nearly optimal policies in
controlled queueing systems in which the service times are not necessarily Markovian,
by performing a single step of policy iteration. We illustrate this in the model where a
controller has to route to several single-server queues. Numerical experiments show that
the improved policy has a close-to-optimal value.
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1. Introduction

The application of Markov decision theory to the control of queueing systems is to a
large extent hindered by two things. First, in most practical situations the state space of the
Markov decision process is enormous, and renders it almost impossible to derive optimal
policies with standard techniques and algorithms. This phenomenon is known as ‘the curse of
dimensionality’. Second, handling non-Markovian systems within the framework of Markov
decision theory is not straightforward. Consequently, there is clear motivation to develop
approximation methods to avoid these problems.

Two approximation methods that deal with the first aspect of the problem are one-step
policy improvement and reinforcement learning. One-step policy improvement dates back to
Norman [13]. The method requires an explicit expression of the value function, which can be
obtained by solving the dynamic programming optimality equations for a fixed policy. The
result is then used in one step of the policy iteration algorithm from Markov decision theory, to
obtain an improved policy. The method has been successfully applied to derive nearly optimal
state-dependent policies in, e.g. [14], [16], and [20]. In reinforcement learning the value
function is approximated based on a certain functional form. However, choosing the initial
functional form such that the approximations are good is difficult. Successful applications of
this method to queueing systems include [10], [12], and [19]. It is clear that both one-step
policy improvement and reinforcement learning require insight into the structure of the value
function. Systematic studies of the structure of value functions for specific queueing models
can be found in [2] and [9].
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The second aspect of the problem can be dealt with by using Markovian approximations
to non-Markovian systems. A useful tool in this respect is the Coxian distribution. Coxian
distributions have the important feature that they are dense in the class of all nonnegative
distributions (see, e.g. [17]). This property makes them very useful in approximating general
nonnegative distributions. Note that non-Markovian systems can be formulated in a Markov
decision-theoretic framework by finding an embedded Markov chain (see, e.g. [8]). This
formulation makes the dynamic programming optimality equations more difficult to solve,
however, since the cost structure has to be altered accordingly. The Coxian distribution does
not change the cost structure, but does add supplementary variables to the state space, increasing
the dimensionality.

In this paper we study the M/Cox(r)/1 queue as a first step toward the application of the
above-mentioned ideas. The M/Cox(r)/1 queue can be described as a single-server queue at
which customers arrive according to a Poisson process, and where the service durations of the
customers are independent and follow a Coxian distribution of order r . Additionally, the system
is subject to costs per unit time for holding a customer in the system. The main result of this
paper is the explicit solution to the dynamic programming optimality equations, known as the
Poisson equations. This result is derived in Section 2 and some important special cases of it
are listed in Section 3.

The main contribution of our result with respect to reinforcement learning is the structure of
the value function. It provides theoretical insight into approximation choices for the functional
equation. Furthermore, the result can be directly used in the one-step policy improvement
method. This will be illustrated in Section 4, by means of a routeing problem to parallel
queues. We numerically show that the improved policy has a close-to-optimal value.

2. The M/Cox(r)/1 queue

Consider a single-server queueing system at which customers arrive according to a Poisson
process with parameter λ. The service times are independent, identically distributed, and follow
a Coxian distribution of order r . Thus, the service of a customer can last for up to r exponential
phases. The mean duration of phase i is µi , for i = 1, . . . , r . The service starts at phase 1.
After phase i the service ends with probability 1 − pi or enters phase i + 1 with probability pi ,
for i = 1, . . . , r − 1. The service is completed with certainty after phase r , if not completed at
an earlier phase. We assume that pi > 0 for i = 1, . . . , r − 1, to avoid trivial situations. Let

S = {(0, 0)} ∪ (N × {0, . . . , r − 1})
denote the state space, where, for (x, y) ∈ S, the component x represents the number of
customers in the system and y the number of completed phases of the service process.

Assume that the system is subject to costs for holding a customer in the system. Without
loss of generality we assume that unit costs are incurred per unit time for holding a customer
in the system. Let ut (x) denote the total expected cost up to time t when the system starts in
state x. Let γ (i) = ∏i

k=1 pk for i = 0, . . . , r − 1, with the convention that γ (0) = 1. Note
that the Markov chain satisfies the unichain condition. Assume that the stability condition

r∑
k=1

γ (k − 1)
λ

µk

=
r∑

k=1

k−1∏
l=1

pl

λ

µk

< 1 (1)

holds, such that, consequently, the average cost,

g = lim
t→∞ ut (x)/t,
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is independent of the initial state x (due to Proposition 8.2.1 of [15, p. 337]). Therefore, the
dynamic programming optimality equations for the M/Cox(r)/1 queue are given by

g + λV (0, 0) = λV (1, 0),

g + (λ + µi)V (x, i − 1) = λV (x + 1, i − 1) + piµiV (x, i)

+ (1 − pi)µiV (x − 1, 0) + x, i = 1, . . . , r − 1,

g + (λ + µr)V (x, r − 1) = λV (x + 1, r − 1) + µrV (x − 1, 0) + x.

In this set of equations, known as the Poisson equations, the function V (x, y) is called the
(relative) value function. This function has the interpretation of the asymptotic difference in
total costs that results from starting the process in state (x, y) instead of some reference state.
Without loss of generality we take the reference state to be (0, 0). The value function will be
the main subject of interest, since it plays a central role in deriving (nearly) optimal policies in
control problems. In Section 4 we illustrate this for the problem of routeing to parallel queues.

When the state space is not finite, as is the case in our model, it is known that there are
many pairs of g and V that satisfy the Poisson equations (see, e.g. [3]). There is only one
pair that is the correct solution, however, and we refer to this as the unique solution. Finding
this pair involves constructing a weighted norm such that the Markov chain is geometrically
recurrent with respect to that norm. This weighted norm imposes extra conditions on the
solution to the Poisson equations, such that their unique solution can be obtained. Solving the
Poisson equations therefore requires two steps: first we have to find an expression that satisfies
the Poisson equations (existence), and then we have to show that it is the unique solution
(uniqueness). We separate these two steps in the proof of the following theorem.

Theorem 1. Let γ (i) = ∏i
k=1 pk for i = 0, . . . , r − 1, with the convention that γ (0) = 1.

Define

α =
∑r

k=1 γ (k − 1)/µk

1 − ∑r
k=1 γ (k − 1)λ/µk

, a0 =
r∑

k=1

1 − γ (k − 1)

µk

λα−
r∑

k=1

k−1∑
l=1

γ (l − 1)

µkµl

λ(1+λα).

The solution to the Poisson equations is given by the average cost g = λ(α + a0) and the
corresponding value function

V (x, y) = α
x(x + 1)

2
+

[
a0 +

[
1

γ (y)
− 1

]
α −

y∑
k=1

γ (k − 1)

γ (y)

1 + λα

µk

]
x

−
[
a0 +

r∑
k=y+1

γ (k − 1)

γ (y)

λ

µk

(k−1∑
l=1

γ (l − 1)

γ (k − 1)

1 + λα

µl

−
[

1

γ (k − 1)
− 1

]
α

)]
, (2)

for (x, y) ∈ S.

Before we prove Theorem 1, we first provide some insight into the structure of V (x, y). The
following argument shows that we could have guessed V (x, y) to be quadratic in the number
of customers, x, in the queue. Assume, without loss of generality, that the service discipline is
last-come–first-served. Let κy denote the waiting cost incurred by the first customer until he
completes service (and also by all customers who arrive while he is being served), and τy the
busy period duration of the other customers when starting in state (x, y). Note that κy and τy

are not equal in general, since the former takes the residual service time of the first customer
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into account. Since the cost in state (x, y) accumulates at rate x, the total cost of serving one
customer is xτy if x > 1 and κy if x = 1. Hence, the total cost incurred until the system is
empty is given by V (x, y) = ∑x−1

i=1 iτy + κy , showing that the structure of V (x, y) is indeed
of the form claimed in Theorem 1.

Note that the argument above implies that the value function for the M/G/1 queue is likely
to be quadratic as well. Moreover, suppose that the holding costs are given by a polynomial in
x of degree k. Then the argument shows that the value function V (x, y) will be a polynomial
in x of degree k + 1, with coefficients that, except for the coefficient of xk+1, depend on y.

To prove Theorem 1 we first develop recursive equations for the terms appearing in V (x, y).
These equations will be useful in showing that V (x, y) satisfies the Poisson equations. Addition-
ally, the recursive equations might be preferred in practical applications, from a computational
viewpoint.

Lemma 1. Let the constantsα anda0 and the value function V (x, y)be defined as in Theorem 1.
The value function can then be written as

V (x, y) = α
x(x + 1)

2
+ ayx + by

for (x, y) ∈ S. Moreover, the terms ay and by satisfy the recursions

ay = ay−1

py

+ (1 − py)µy(α − a0) − (1 + λα)

pyµy

,

by = by−1

py

+ λ(a0 − ay−1) + (1 − py)µya0

pyµy

,

for y = 1, . . . , r − 1, with b0 = 0.

Proof. Let y ∈ {0, . . . , r − 1} and consider ay . From (2) it follows that

ay = a0 +
[

1

γ (y)
− 1

]
α −

y∑
k=1

γ (k − 1)

γ (y)

1 + λα

µk

(3)

= a0

γ (y)
+

y∑
k=1

γ (k)

γ (y)

(1 − pk)µk(α − a0) − (1 + λα)

pkµk

. (4)

The second line follows from rearranging terms in the first line and using the fact that γ (k) =
γ (k − 1)pk . From (4), the recursive formula for ay immediately follows. Now, let y ∈
{0, . . . , r − 1} and consider by . From (2) it follows that

by = −
[
a0 +

r∑
k=y+1

γ (k − 1)

γ (y)

λ

µk

(k−1∑
l=1

γ (l − 1)

γ (k − 1)

1 + λα

µl

−
[

1

γ (k − 1)
− 1

]
α

)]

=
y∑

k=1

γ (k − 1)

γ (y)

λ

µk

(k−1∑
l=1

γ (l − 1)

γ (k − 1)

1 + λα

µl

−
[

1

γ (k − 1)
− 1

]
α

)
+

[
1

γ (y)
− 1

]
a0

=
y∑

k=1

γ (k)

γ (y)

λ(a0 − ak−1)

pkµk

+
[

1

γ (y)
− 1

]
a0 (5)

=
y∑

k=1

γ (k)

γ (k)

λ(a0 − ak−1) + (1 − pk)µka0

pkµk

. (6)
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The second line follows from the first by adding and subtracting a0/γ (y), using the definition
of a0 in Theorem 1. The third line follows from observing that the quantity in parentheses
equals a0 − ak−1, and by using the fact that γ (k) = γ (k − 1)pk . The last line follows from
rearranging terms in the third line. From (6), both b0 = 0 and the recursive formula for by

immediately follow.

Recall that V (x, y) has the interpretation of the asymptotic difference in total costs that
results from starting the process in state (x, y) instead of some reference state. Since we
assumed the reference state to be (0, 0) it follows that V (0, 0) = b0 should equal 0. Lemma 1
shows that this requirement is indeed met.

We will next show that V (x, y) satisfies the Poisson equations.

Proof of Theorem 1. (Existence.) Consider the optimality equation for state (0, 0). We have

g + λV (0, 0) − λV (1, 0) = λ(α + a0) + λb0 − λ(α + a0 + b0) = 0.

Next consider state (x, y) ∈ N × {1, . . . , r − 1}. For this we have

g + (λ + µy)V (x, y − 1) − λV (x + 1, y − 1)−pyµyV (x, y)−(1 − py)µyV (x − 1, 0) − x

= g − λ[V (x + 1, y − 1) − V (x, y − 1)] − pyµy[V (x, y) − V (x, y − 1)]
+ (1 − py)µy[V (x, y − 1) − V (x − 1, 0)] − x

= λ(α + a0) − λ[α(x + 1) + ay−1] − pyµy[(ay − ay−1)x + (by − by−1)]
+ (1 − py)µy[αx + (ay−1 − a0)x + a0 + by−1] − x

= [µyay−1 + (1 − py)µy(α − a0) − (1 + λα)]x − pyµyayx

+ [µyby−1 + λ(a0 − ay−1) + (1 − py)µya0] − pyµyby.

By substituting the recursion relations from Lemma 1 for ay and by , it follows that the last
quantity equals 0. Finally consider the state (x, r − 1), with x ∈ N. We have

g + (λ + µr)V (x, r − 1) − λV (x + 1, r − 1) − µrV (x − 1, 0) − x

= g − λ[V (x + 1, r − 1) − V (x, r − 1)] + µr [V (x, r − 1) − V (x − 1, 0)] − x

= λ(α + a0) − λ[α(x + 1) + ar−1] + µr [αx + (ar−1 − a0)x + a0 + br−1] − x

= [(µr − λ)α + µr(ar−1 − a0) − 1]x + [(λ + µr)a0 − λar−1 + µrbr−1].

Let us study the coefficient of x and the constant separately. The coefficient of x is

(µr − λ)α + µr(ar−1 − a0) − 1

= (µr − λ)α + µr

[
1

γ (r − 1)
− 1

]
α − µr

r−1∑
k=1

γ (k − 1)

γ (r − 1)

1 + λα

µk

− 1

= µr

γ (r − 1)

[
1 −

r∑
k=1

γ (k − 1)

µk

λ

]
α −

r∑
k=1

γ (k − 1)

γ (r − 1)

µr

µk

= 0.
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The second line follows from (3) and the third line follows from rearranging the terms in the
second line. The constant in the optimality equation for state (x, r − 1) is

(λ + µr)a0 − λar−1 + µrbr−1

= µra0 + λ(a0 − ar−1) +
r−1∑
k=1

γ (k)

γ (r − 1)

µr

µk

λ

pk

(a0 − ak−1) + µr

[
1

γ (r − 1)
− 1

]
a0

= µr

γ (r − 1)

[
a0 +

r∑
k=1

γ (k − 1)

µk

λ(a0 − ak−1)

]

= µr

γ (r − 1)

[
a0 −

r∑
k=1

γ (k − 1)

µk

λ

([
1

γ (k − 1)
− 1

]
α +

k−1∑
l=1

γ (l − 1)

γ (k − 1)

(1 + λα)

µl

)]

= µr

γ (r − 1)

[
a0 −

r∑
k=1

1 − γ (k − 1)

µk

λα +
r∑

k=1

k−1∑
l=1

γ (l − 1)

µkµl

λ(1 + λα)

]
= 0.

The second line follows from (5), and by rearranging terms we obtain the third line. The fourth
line follows from (3) and, after simplifying, yields the last line.

As mentioned before, there are many pairs of g and V that satisfy the Poisson equations when
the state space is not finite. Hence, we need to show that the solution proposed in Theorem 1
is unique. Consider a function w : S → [1, ∞), which we shall refer to as a weight function.
Define the weighted w-norm of a real-valued function u defined on S by

‖u‖w = sup
(x,y)∈S

|u(x, y)|
w(x, y)

.

The approach we shall adopt in proving uniqueness is summarized in the next theorem.

Theorem 2. (Lemma 1 and Theorem 4 of [3].) Consider a stable and aperiodic Markov cost
chain. Let M ⊂ S be finite and let w be a weight function such that the Markov chain is
w-geometrically recurrent, i.e.

∑
(x′,y′)/∈M

P(x,y)(x′,y′)w(x′, y′)
w(x, y)

< 1 (7)

for all (x, y) ∈ S, where P is the transition matrix of the Markov chain. Assume that the
cost function satisfies ‖c‖w < ∞. A pair (g, V ) satisfying the Poisson equations is the unique
solution when ‖g‖w < ∞ and ‖V ‖w < ∞.

Note that the geometric recurrence condition is somewhat stricter than necessary. Dekker [4]
required the more general geometric ergodicity condition, and Hernández-Lerma and Lasserre
[7, pp. 11–17] generalized this even further. In the sequel we shall use the geometric recurrence
condition, however, since in practice it is hard to verify that the other two conditions are satisfied.

Proof of Theorem 1. (Uniqueness.) Note that, from (1), the Markov chain of the M/Cox(r)/1
queue is stable. Furthermore, (1) also ensures that g < ∞ and, hence, that ‖g‖w < ∞ for
any weight function w. Assume, without loss of generality, that λ + µi < 1 for i = 1, . . . , r;
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this can always be obtained through scaling. The M/Cox(r)/1 queue then has the following
transition rate matrix for (x, y) ∈ S:

P(x,y)(x+1,y) = λ,

P(x,y)(x,y+1) = py+1µy+1 1(x > 0, y < r − 1),

P(x,y)(x−1,0) = [1 − py+1 1(y < r − 1)]µy+1 1(x > 0),

P(x,y)(x,y) = 1 − P(x,y)(x+1,y) − P(x,y)(x,y+1) − P(x,y)(x−1,0).

Observe that the Markov chain is aperiodic, since P(x,y)(x,y) > 0 for (x, y) ∈ S. Let M =
{(0, 0)} and assume that w(x, y) = (1 + k)x for some k > 0. Now consider (7), the left-hand
side of which is given by

λ(1 + k), x = 0, y = 0,

λ(1 + k) + py+1µy+1 + (1 − λ − µy+1), x = 1, y = 0, . . . , r − 2,

λ(1 + k) + (1 − λ − µr), x = 1, y = r − 1,

λ(1 + k) + py+1µy+1 + (1 − py+1)µy+1

1 + k
+ (1 − λ − µy+1), x > 1, y = 0, . . . , r − 2,

λ(1 + k) + µr

1 + k
+ (1 − λ − µr), x > 0, y = r − 1.

We need to choose k such that these expressions are all strictly less than 1. Note that if
the fourth expression is less than 1, then the second expression is less than 1, and that if
the fifth expression is less than 1, then the third expression is less than 1. The first expression
immediately gives k < (1−λ)/λ. The fourth expression shows that 0 < k < [(1−pi)µi −λ]/λ
for i = 1, . . . , r − 1. The last expression yields 0 < k < (µr − λ)/λ. Define

k∗ = min{1, (1 − p1)µ1, . . . , (1 − pr−1)µr−1, µr} − λ

λ
.

Observe that k∗ > 0, and that for any k, 0 < k < k∗, the Markov chain is geometrically
recurrent. Furthermore, the cost function c(x) = x satisfies ‖c‖w < ∞. Moreover, the value
function defined in Theorem 1, which is a quadratic polynomial in x, satisfies ‖V ‖w < ∞.
Hence, by Theorem 2 the value function defined in Theorem 1 is the unique solution to the
Poisson equations.

3. Special cases

In this section we consider important special cases of the M/Cox(r)/1 queue. This includes
queues with the hyper-exponential (Hr ), the hypo-exponential (Hypor ), the Erlang (Er ), and
the exponential (M) distributions.

3.1. The M/Hr/1 queue

The single-server queue with hyper-exponential-distributed service times of order r is ob-
tained by letting the service times consist of only one exponential phase, with parameter µi with
probability qi for i = 1, . . . , r . Note that the hyper-exponential distribution has the property that
the coefficient of variation is greater than or equal to 1. Unfortunately, the hyper-exponential
distribution is not directly obtained from the Coxian distribution through interpretation, but
rather from showing that the Laplace transforms of the distribution functions are equal for
specific parameter choices. For r = 2 this result follows from, e.g. Appendix B of [18]. The
general case is obtained in the following theorem.

https://doi.org/10.1239/jap/1152413728 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413728


370 S. BHULAI

Theorem 3. Under the assumption that µ1 > · · · > µr , a Coxian distribution with
parameters (p1, . . . , pr−1, µ1, . . . , µr) is equivalent to a hyper-exponential distribution with
parameters (q1, . . . , qr , µ1, . . . , µr) when the probabilities pi are defined by

pi =
∑r

j=i+1 qj

∏i
k=1(µk − µj )

µi

∑r
j=i qj

∏i−1
k=1(µk − µj )

(8)

for i = 1, . . . , r − 1.

Proof. Note that the probability pi can be written as pi = h(i)/[µih(i − 1)], where h(i) =∑r
j=i+1 qj

∏i
k=1(µk − µj ) with h(0) = 1. Also observe that the Coxian distribution has

exactly i exponential phases with probability
∏i−1

j=1 pj (1 − pi) for i = 1, . . . , r , with pr = 0.
Therefore, the Laplace transform of the Coxian distribution is given by

F ∗(s) =
r∑

i=1

i−1∏
j=1

pj (1 − pi)

i∏
l=1

µl

µl + s

=
r∑

i=1

h(i − 1)

µ1 · · · µi−1
(1 − pi)

i∏
l=1

µl

µl + s

=
r∑

i=1

µih(i − 1) − h(i)

µ1 · · · µi

i∏
l=1

µl

µl + s
.

The final equality is obtained by substituting for pi using (8). Note that

µih(i − 1) − h(i) =
r∑

j=i

qjµj

i−1∏
m=1

(µm − µj ) =
r∑

j=i

qjµj (−1)i−1
i−1∏
m=1

(µj − µm).

Expanding the last product in F ∗(s) into partial fractions (see Section XI.4 of [5]) yields

i∏
l=1

µl

µl + s
= (−1)i+1

i∑
k=1

µ1 · · · µi∏i
m=1, m	=k(µk − µm)(µk + s)

.

By combining the two expressions we obtain

F ∗(s) =
r∑

i=1

r∑
j=i

qjµj

i∑
k=1

∏i−1
m=1(µj − µm)∏i

m=1, m	=k(µk − µm)

1

µk + s

=
r∑

k=1

r∑
j=k

qjµj

j∑
i=k

∏i−1
m=1(µj − µm)∏i

m=1, m	=k(µk − µm)

1

µk + s
.

Let z(i, j) denote the term within the brackets. It can easily be checked using induction
that

∑j
i=k z(i, j) equals 1 for j = k and 0 for j > k. The latter follows by using the fact that

z(i + 1, j) = [(µj − µi)/(µk − µi+1)]z(i, j), whence the partial sums are given by∑j
i=l z(i, j) = [(µk − µl)/(µk − µj )]z(l, j). Substituting this into F ∗(s) yields the Laplace

transform of the hyper-exponential distribution,

F ∗(s) =
r∑

k=1

qk

µk

µk + s
.
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Hence, from Theorem 1 of Section XIII.1 of [6], it follows that the Coxian distribution with
parameters as defined in (8) is equivalent to a hyper-exponential distribution.

3.2. The M/Hypor/1 queue

The single-server queue with hypo-exponential-distributed service times of order r is ob-
tained by letting the service be the sum of r independent random variables that are exponentially
distributed with parameter µi in phase i, for i = 1, . . . , r . Thus, it can be obtained from the
M/Cox(r)/1 queue by letting p1 = · · · = pr−1 = 1. The optimality equations are given by

g + λV (0, 0) = λV (1, 0),

g + (λ + µi)V (x, i − 1) = λV (x + 1, i − 1) + µiV (x, i) + x, i = 1, . . . , r − 1,

g + (λ + µr)V (x, r − 1) = λV (x + 1, r − 1) + µrV (x − 1, 0) + x.

Define β(i) = ∑i
k=1(1/µk). The average cost is then given by

g = λβ(r)

1 − λβ(r)
− λ2

1 − λβ(r)

r∑
k=1

β(k − 1)

µk

and, under the assumption that λβ(r) < 1, the value function becomes

V (x, y) = β(r)x(x + 1)

2(1 − λβ(r))
− x

1 − λβ(r)

[
λ

r∑
k=1

β(k − 1)

µk

+ β(y)

]
+ λ

1 − λβ(r)

y∑
k=1

β(k − 1)

µk

.

3.3. The M/Er/1 queue

The single-server queue with Erlang-distributed service times of order r is obtained by letting
the service be the sum of r independent random variables having a common exponential distri-
bution. Thus, it can be obtained from the M/Cox(r)/1 queue by letting p1 = · · · = pr−1 = 1
and µ = µ1 = · · · = µr . Note that the Erlang distribution can also be seen as a special case
of the hypo-exponential distribution, and has coefficient of variation 1/r ≤ 1. The optimality
equations are given by

g + λV (0, 0) = λV (1, 0),

g + (λ + µ)V (x, i − 1) = λV (x + 1, i − 1) + µV (x, i) + x, i = 1, . . . , r − 1,

g + (λ + µ)V (x, r − 1) = λV (x + 1, r − 1) + µV (x − 1, 0) + x.

The average cost is given by

g = λr

µ − λr
− λ2r(r − 1)

2µ(µ − λr)

and, under the assumption that λr/µ < 1, the value function becomes

V (x, y) = rx(x + 1)

2(µ − λr)
− x

µ − λr

[
λr(r − 1)

2µ
+ y

]
+ λy(y − 1)

2µ(µ − λr)
.
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3.4. The M/M/1 queue

The standard single-server queue with exponentially distributed service times is obtained
by having only one phase in the M/Cox(r)/1 queue, i.e. r = 1. Let µ = µ1. The optimality
equations are then equivalent to

g + (λ + µ)V (x) = λV (x + 1) + µV ([x − 1]+) + x,

where [x]+ = max{x, 0}. The average cost is given by g = λ/(µ−λ) and, under the assumption
that λ/µ < 1, the value function becomes

V (x) = x(x + 1)

2(µ − λ)
.

4. Application to routeing problems

In this section we illustrate how the value function can be used to obtain nearly optimal
policies in controlled queueing systems. We show this by studying a routeing problem to
parallel single-server queues. The general idea is to start with a policy such that each queue
behaves as an independent single-server queue. By doing so, the average cost and the value
function can be readily determined from the results of the previous sections. Then one step
of policy iteration is performed, to obtain an improved policy without having to compute the
policy iteratively.

The distribution of the service times does not necessarily need to be Coxian. Since the
Coxian distributions are dense in the set of nonnegative distribution functions, we shall restrict
ourselves to general nonnegative distributions. The approach to handling such distributions is
to approximate these distributions with a Coxian distribution by using, e.g. the expectation-
maximization (EM) algorithm (see [1]). The EM algorithm is an iterative scheme that min-
imizes the information divergence given by the Kullback–Leibler information for a fixed
order r . For the cases we have considered, a Coxian distribution of order r = 5 was adequate
to describe the original distribution.

Given that the service time distribution is adequately described by a Coxian distribution, the
control problem we study can be formalized as follows. Consider two parallel, infinite-buffer
single-server queues. The service times of server i are Cox-distributed with order ri , with
parameters (pi

1, . . . , p
i
ri−1, µ

i
1, . . . , µ

i
ri
) for i = 1, 2. Furthermore, queue i has holding cost

hi for i = 1, 2. An arriving customer can be sent to either queue one or queue two. The
objective is to minimize the average cost. Let xi be the number of customers in queue i and
yi the number of completed phases of the customer in service, if there is one, at queue i, for
i = 1, 2. The optimality equation for this system is then given by

g + (λ + 1 (x1 > 0)µ1
y1+1 + 1 (x2 > 0)µ2

y2+1)V (x1, y1, x2, y2)

= h1x1 + h2x2 + λ min{V (x1 + 1, x2, y1, y2), V (x1, x2 + 1, y1, y2)}
+ 1 (x1 > 0)µ1

y1+1[p1
y1+1V (x1, x2, y1 + 1, y2) + p̄1

y1+1V (x1 − 1, x2, 0, y2)]
+ 1 (x2 > 0)µ2

y2+1[p2
y2+1V (x1, x2, y1, y2 + 1) + p̄2

y2+1V (x1, x2 − 1, y1, 0)]

for (xi, yi) ∈ {(0, 0)} ∪ (N × {0, . . . , ri − 1}), with pi
ri

= 0 and p̄i
y = 1 − pi

y for i = 1, 2.
Take as initial control policy the Bernoulli policy with parameter η ∈ [0, 1], i.e. the policy

that splits the arrivals into two streams such that arrivals occur with rate ηλ at queue one and
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Table 1: Numerical results for r = 2 with p1 = 1 and µ1 = (2, 2).

Parameters for queue two gB g′ g∗

p2 = 2
3 , µ2 = (2, 4

3 ) 5.147 786 3.208 688 3.208 588

p2 = 1
2 , µ2 = (2, 1) 5.405 949 3.332 179 3.332 038

p2 = 2
5 , µ2 = (2, 4

5 ) 5.652 162 3.445 815 3.445 787

Table 2: Numerical results for r = 5 with p1 = (1, 1, 1, 1) and µ1 = (2, 3, 2, 3, 4).

Parameters for queue two gB g′ g∗

p2 = ( 9
10 , 4

5 , 7
10 , 3

5 ), µ2 = (2, 3, 2, 3, 4) 6.175 842 3.787 954 3.783 727

p2 = ( 3
5 , 7

10 , 4
5 , 9

10 ), µ2 = (2, 3, 2, 3, 4) 3.729 859 2.493 349 2.480 818

p2 = ( 2
5 , 1

5 , 4
5 , 1

2 ), µ2 = (3, 2, 4, 2, 3) 1.399 628 1.169 286 1.132 408

rate (1 − η)λ at queue two. Under the Bernoulli policy, the optimality equation is obtained by
replacing the term

λ min{V (x1 + 1, x2, y1, y2), V (x1, x2 + 1, y1, y2)}

with ηλV (x1 + 1, x2, y1, y2) + (1 − η)λV (x1, x2 + 1, y1, y2). Hence, it follows that the two
queues behave as independent single-server queues for which the average cost gi and the value
function Vi , for i = 1, 2, can be determined from Theorem 1. The average cost, g′, and the
value function, V ′, for the whole system are then given by the sum of the individual average
costs, g = g1 + g2, and the sum of the individual value functions, V ′ = V1 + V2, respectively.
Note that, for a specified set of parameters, the optimal Bernoulli policy obtained by minimizing
with respect to η is straightforward. We shall therefore use the optimal Bernoulli policy in the
numerical examples. The policy improvement step now follows from the minimizing action in

min{V ′(x1 + 1, x2, y1, y2), V
′(x1, x2 + 1, y1, y2)}.

The Coxian distribution allows for many interesting numerical experiments. Therefore, we
restrict ourselves to four representative examples that display the main ideas. We shall use the
notation gB, g′, and g∗ for the average costs obtained under the optimal Bernoulli policy, the
one-step improved policy, and the optimal policy, respectively. Moreover, we set h1 = h2 = 1,
with λ = 3

2 for the first example and λ = 1 for the other three examples.
We start with two queues having a Cox(2)-distribution. Queue one has an Erlang E2-

distribution with parameter µ = 2, such that the mean and the variance of the service time
equal 1 and 2, respectively. The parameters for queue two are chosen such that the mean
remains 1 but the variance increases to 3, 4, and 5, in the respective examples. In Table 1 we
summarize the results and show that the one-step improved policy has a close-to-optimal value.
The proportional extra cost, (g′ − g∗)/g∗, is practically 0 in all cases.

Next, we show the results of a similar experiment with r = 5. The service distribution at
queue one is a fixed hypo-exponential Hypo5-distribution with parameter µ = (2, 3, 2, 3, 4).
The one-step improved policy again performs quite well. Table 2 shows that the greatest
proportional extra cost is given by 0.03 (the third experiment).
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Two-moment fit
EM Cox(2) fit

EM Cox(10) fit
EM Cox(5) fit
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Figure 1: Lognormal (µ = 0.5, σ = 1) probability density.

Table 3: Lognormal distribution: numerical results with p1 = 1 and µ1 = (2, 2).

Approximation for queue two gB g′ g∗

Two-moment fit 4.617 707 3.021 571 2.976 950
EM algorithm with r = 2 4.554 838 2.982 955 2.933 345
EM algorithm with r = 5 4.526 013 2.965 625 2.919 847
EM algorithm with r = 10 4.527 392 2.963 318 2.917 011
EM algorithm with r = 20 4.527 040 2.963 311 2.917 169

In the third example we take an Erlang E2-distribution with parameter µ = 2 at queue one,
and a lognormal distribution with parameters µ = 0.5 and σ = 1 at queue two. Recall that the
probability density function, f , of the lognormal distribution is given by

f (x) = 1

x
√

2πσ
exp

[
−1

2

(
ln(x) − µ

σ

)2]

for x > 0. We variously approximate the lognormal distribution with Cox(r)-distributions of
order r = 2, 5, 10, 20 using the EM algorithm. We also compare this with a two-moment
fit of the Coxian distribution. Let X be a random variable having a coefficient of variation
cX ≥ 1

2

√
2. The following parameters were suggested in [11]: µ1 = 2/ E(X), p1 = 0.5/c2

X,
and µ2 = p1µ1.

The results of the EM algorithm and the two-moment fit are displayed in Figure 1. The fit
with the Cox(20)-distribution is omitted, since it could not be distinguished from the lognormal
probability density. Therefore, the optimal value when using the Cox(20)-distribution can be
considered representative of the optimal value when using the lognormal distribution. Note
that the EM approximation with the Cox(2)-distribution captures more characteristics of the
lognormal distribution than does the two-moment fit. This result is reflected in Table 3, since
the value of the policy for the Cox(20)-distribution is closer to g∗ than is the value of the policy
for the Cox(2)-distribution. The greatest proportional extra cost for the EM approximations is
given by 0.02 (EM fit with r = 2).
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Figure 2: Weibull (a = 1.8, b = 1) probability density.

Table 4: Weibull distribution: numerical results with p1 = 1 and µ1 = (2, 2).

Approximation for queue two gB g′ g∗

EM algorithm with r = 2 1.563 547 1.167 233 1.167 232
EM algorithm with r = 5 1.524 032 1.148 638 1.148 511
EM algorithm with r = 10 1.522 566 1.148 570 1.148 100
EM algorithm with r = 20 1.522 387 1.148 826 1.148 552

In the final example we take an Erlang E2-distribution with parameter µ = 2 at queue one,
and a Weibull distribution with parameters a = 0.3 and b = 0.107 985 at queue two. Recall that
the probability density function, f , of the Weibull distribution is given by

f (x) = axa−1 e−(x/b)a

ba

for x > 0. Note that the parameters a and b are chosen such that the Weibull distribution has
mean 1. We variously approximate the Weibull distribution with Cox(r)-distributions of order
r = 2, 5, 10, 20 using the EM algorithm. The results of the EM algorithm are depicted in
Figure 2. We again omit the fit of the Cox(20)-distribution, since it could not be distinguished
from the Weibull probability density. Moreover, since the coefficient of variation is less than
1
2

√
2, we have also omitted the two-moment fit. The results displayed in Table 4 again indicate

that the one-step improved policy has a close-to-optimal value, since the proportional extra cost
is practically 0.

The previous examples show that the one-step policy improvement method yields nearly
optimal policies, even when non-Markovian service distributions are approximated by a Coxian
distribution. For the lognormal and the Weibull distributions we studied, a Coxian distribution
of order r = 5 was already sufficient for an adequate approximation. Note that the one-step
improved policy can be easily obtained for more than two queues. In this section we have
restricted our attention to two queues, since the numerical computation of the value of the
optimal policy, g∗, becomes rapidly intractable for more than two queues. Observe that the
computational complexity is exponential in the number of queues, in contrast to a single step
of policy iteration, which has linear complexity.
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