On the Value Functions of the Discrete-Time optimal feedback gains within different homogeneous negio
Switched LQR Problem of the state space. Although other researchers have also
suggested a piecewise affine structure for the optimal abntr
Wei Zhang, Jianghai Hu and Alessandro Abate law ([4], [7], [8]), the analytical expression of the optima
feedback gain and in particular its connection with the Riicc

. . ) ~equation of the classical LQR problem have not yet been
Abstract— In this paper, we derive some important properties explicitly presented.

for the finite-horizon and the infinite-horizon value functions Furth lother i . . f )
associated with the discrete-time switched LQR (DSLQR) prb- urthermore, several other interesting properties of &nee/

lem. It is proved that any finite-horizon value function of the —functions are derived. It is proved that, under some mild-con
DSLQR problem is the pointwise minimum of a finite number of  ditions, the family of the finite-horizon value functions thie
quadratic functions that can be obtained recursively usinghe so- DSLQR problem is homogeneous (of degree 2), is uniformly
called switched Riccati mapping. It is also shown that under some .\, qed over the unit ball, and converges exponentially fas
mild conditions, the family of the finite-horizon value functions he infinite-hori lue f . inallv. th ial

is homogeneous (of degree 2), is uniformly bounded over the t© the infinite-horizon value function. Finally, the expoia

unit ball, and converges exponentially fast to the infinitehorizon ~ convergence rate of the value iteration is characterized an
value function. The exponential convergence rate of the vaé lytically in terms of the subsystem matrices. These progert
iterations is characterized analytically in terms of the susystem gre not only of theoretical importance, but also play a @ici
matrices. role in the design and analysis of various efficient alganih

for solving the DSLQR problem. Some preliminary algorithms
developed based on the properties derived in this paperean b
) ) ) ~ found in [9], [10].

Optimal control of switched systems is a challenging This paper is organized as follows. The DSLQR problem

problem that has received much research attention in recRnfsrmylated in Section II. Its value function is charaied
years [1], [2], [3], [4]. Compared with the traditional ol 55 tically in Section IIl. Various interesting propesi of

control problems [5], the distinctive feature of the optiman- ¢ \a1ue function are derived in Section IV. The concluding
trol of switched systems lies in the possibility of selegtthe o marks are given in Section V.

mode sequenge_andl the SW't%h'”g |tr)13tants|_. l;or 3 fixed modgqtation: In this papern, p andM are some arbitrary finite
sequence, variational approach can be applied to dervaiiter ;e integersZ* denotes the set of nonnegative integers,

gradient-based algorithms for optimizing the correspogdiM 2 {1,... M)} is a set of subsystem indices, is the
switching i_nstant_s (1], [2]. However, finding the b?St m_od% X n id’entit’y matrix, || - || denotes the induced 2-norm in
sequence is a discrete optimization problem and is bellev]ﬁq, A denotes the set of all the positive semidefinite (p.s.d.)

to be NP hard in general [2]. Recent research attention ([ﬂ’atrices,)\min(-) and Apax(-) denote the smallest and the

[4], [6]) has been focused on the optimal control probleq et eigenvalues, respectively, of a given p.s.d. matri
of discrete-time switched linear systems with quadratist co

functions, which contains most of the interesting progsrti

of the optimal control problem for general switched systems Il. PROBLEM FORMULATION
while at the same time allows for efficient approaches to
optimize the mode sequences. This optimal control problem
can be viewed as an extension of the classical discrete-time

|I. INTRODUCTION

Consider the discrete-time switched linear system desdrib

LQR problem to the context of thg swnchgd Imeqr systems, 2(t+1) = Aypa(t) + Byul®), t € Ty, 1)

and are thus referred to as the discrete-time switched LOR

(DSLQR) problem. _ _ _ _ wherez(t) € R" is the continuous statey(t) € M £
This paper studies several interesting properties of thitefin {1 A7} is the switching control that determines the

horizon and the infinite-horizon value functions assodatgjiscrete modeu(t) € RP is the continuous control and
with the DSLQR problem. It is shown that any finite-horizoryy, 2 1o ... N — 1} is the control horizon with lengtiV

value function of the DSLQR problem is the pointwise mingpossibly infinite). The sequence of paifgu(t), v(t))} Vg
imum of a finite number of quadratic functions that cagp called thehybrid control sequenceFor eachi € M, A;
be obtained recursively using the so-calleditched Riccati and B; are constant matrices of appropriate dimensions and
mapping Explicit expressions are also derived for the optimahe pair (4,, B;) is called a subsystem. This switched linear
switching-control law and the optimal continuous-contewV,  system is time invariant in the sense that the set of availabl
both of which are of state-feedback form and are homogenemsystemgl(/h, B;)}M . is independent of time. At each
over the state space. In addition, the optimal continuougme ¢ ¢ Ty, denote b)_lft.zv 2 (N, veN) : R" — RP x M
control law is shown to be piecewise linear with differenge (state-feedback) hybrid-control lanf system (1), where
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by: with initial condition V5(z) = ¥(z), Yz € R™. Denote by
_ Vo (+) the pointwise limit (whenever it exists) of the sequence
2+ 1) = A @) + By @i (2(1). - (2) of functions{ V() }?2, generated by the value iterations. It is
For a given initial stater(0) = z € R", the performance well known [11, Chapter 3] that even ¥, (z) exists, it may
of the feedback policyry can be measured by the followingnot always coincide with the infinite-horizon value functio

cost functional: To emphasize its substantial difference from the finiteizoor

N—-1 value function, the infinite-horizon value function is siadly
Jan (2)=0(x(N))+ Z L(z(t), e, N (x(t)), ve N (2(t))), denoted byV*(z), i.e., V*(z) = inf,__en_, Jr (2)-

t=0

wherey : R* — RT andL : R®" x RP x M — RT 1. ANALYTICAL CHARACTERIZATION OF THE

are theterminal cost functiorand therunning cost function FINITE-HORIZON VALUE FUNCTION

respectively, given by: When M = 1, the DSLQR problem reduces to the clas-

b(x) = ITQfI, Lz, u,0) = 27 Quz + u” Ryu, sical LQR problem. Denote byA, B, @, R) the system and

. . _ o ~ weighting matrices associated with this simple instantés |
whereQ; = Q3 = 0 is the terminal-state weighting matrix,well known that whenV is finite, the value functions of this

andQ, = Q] = 0 and R, = R} - 0 are the running QR problem are of the following quadratic form:
weighting matrices for the state and the control, respelstiv

T
for subsystemv € M. When the control horizodV is infinite, Vi(2) = 2" Pgz, k=0,...,N, 4)
the terminal cost will never be incurred and the objectignere (P}, is a sequence of positive semidefinite
function, which might be unbounded, becomes: (p.s.d.) matrices satisfying the Difference Riccati Equa-

tion (DRE) ([12]):
Poi1=Q+ATP,LA-ATP.B(R+B"P,B)"'BTP.A, (5)

Denote bylly the set of all admissibleV-horizon policies. ith initial condition P, = Q. Some results of the classical
The discrete-time switched LQR problem (DSLQR) is formu-QR problem are summarized in the following lemma.

lated below. Lemma 1 ([13], [14]): Let {P,}_, be generated by the
Problem 1 (DSLQR problem)For a given initial state: € pRE (5), then

R™ and a possibly infinite positive integéy, find the N- 1) For each: = 0 N —1,if P, € A, thenP,,, € A;

horizon policyry € 11y that minimizes/, , (z) subjectto (2). 2) If (A.B) is stabilizable. therv: — V*(2) for all
To solve Problem 1, for each timee Ty, we define the ) 5 G(]R’" E)lslk - OOI.IZ ' k(z) (2)

T (2) = D L (t), pr,00 (@(1)), 1,00 (x(2)))-
t=0

value functionVi  : R" — R as: 3) LetQ = CTC. If (A, B) stabilizable andC, A) de-
N-1 tectable, then the optimal trajectory of the LQR problem
Vin(z)=  inf {¢($(N))+Z L(:v(j),u(j),v(j))‘ is exponentially stable.
u(J)tesﬂfgﬁ(fl)eM j=t In general, whenM > 2, the value functionV}(z) is no

longer of a simple quadratic form as in (4). Nevertheless, th
notion of the DRE can be generalized to the Switched LQR
The Vi n(z) so defined is the minimum cost-to-go startingproblem. The DRE (5) can be viewed as a mapping frdm
from statez at time ¢t. The minimum cost for the DSLQR to A depending on the matrices4, B, @, R). We call this
problem with initial stater(0) = z is simply Vp n(z). Due to mapping theRiccati Mappingand denote by; : A — A the

the time-invariant nature of the switched system (1), itsia Riccati Mapping of subsystere M, i.e.,

:‘l:enctlon depends only on the number of remaining time Steps’pi(P):Qi—l-AlTPAi—AZTPBZ'(RZ'-FBZ-TPBi)_lB;FPAi.

subject to eq. (1) withr(t) = z}

Definition 1: Let 24 be the power set afl. The mapping

pum : 24 — 24 defined by:
for all z € R™ and all integersm > —t. In the rest of - q A
this paper, when no ambiguity arises, we will denote by pu(M) = {pi(P):ieMandP e H}, VH €27,

Vi(2) £ Vi~ (2) and&x £ &y kv the value function and s called theSwitched Riccati MappingSRM) associated with
the hybrid-control law, respectively, at time= N — k when prgblem 1.

Vin(2) = Videm,N+m(2),

there arek time steps left. With the new notations, t¢-  |n words, the SRM maps setof p.s.d. matrices to another
horizon policyr can also be written asy = {{n,..., &1} setof p.s.d. matrices and each matrix iy () is obtained
For any positive integek, the control law¢, can be thought py taking the classical Riccati mapping of some matrixHn
of as the first step of &-horizon policy. through some subsysteire M.

By a standard result of Dynamic Programming [11], for Definition 2: The sequence of sefé1,}_, generated iter-
any fmﬁe integerN, the value funct!onVN_ can be obtained atively by H;, 1 = pur(Hi) with initial conditionHy = {Q}
recursively using the one-stagelue iteration is called theSwitched Riccati Se{SRSs) of Problem 1.

Vir1 (2) = inf{L(z, u, v) + Vi(Aypz + Byu)}, ¥z € R The SRSs always start from a singleton &t } and evolve
uw o ’ ’ according to the SRM. For any finit%, the setH consists



of at mostM "V p.s.d. matrices. An important fact about the Mode 2 <
DSLQR problem is that its value functions are completely

characterized by the SRSs. /Mode 1
Theorem 1:For k = 0,..., N, the value function for the
DSLQR problem at timeV — k, i.e., with k& time steps left, is
Vi(2) = min 27 Pz, (6) M(_)de 2
PeH) gain 1
Furthermore, for € R™ andk =1,..., N, if we define
(Pi(2),ij(2)) = argmin  z7p;(P)z, () Mode 2
(PEHK—1,i€EM) .
gain 2
then the optimal hybrid-control law at state and time —
t = N —Fkis &(z) = (up(2),vi(2)), where uj(z) = Mode 2
—Ki: () (Pi(2))z and vj(2) = if(z). Here, K;(P) is the ode
optimal-feedback gain for subsystenwith matrix P, i.e., gain 1
Ki(P) £ (Ri + BZTPBi)_leTPAi- (8) Fig. 1. Typical optimal decision regions of a two-switchedtem, where

mode 1 is optimal within the white region and mode 2 is optimihin the
gray region. The optimal mode region is divided into smallemogeneous

Proof: The theorem is proved by induction. It is obviougegions, each of which corresponds to a different optiraatiback gain.
that for k& = 0 the value function isVy(z) = 27Q¢z,
satisfying (6). Now suppose equation (6) holds for s6me  ,mnared with the classical LQR problem, the value func-

. o s o
N —1,i.e.,Vi(z) = minpep, z° Pz. We shall show that it is 4o of the DSLQR problem is no longer a single quadratic
also true fork + 1. By the principle of dynamic programming,nction; it becomes the pointwise minimum of a finite number

and noting thatV (") .repres_ents the value function afc timeyg guadratic functions. At each time step, instead of having
N —k, the value function at imé/— (k-+1) can be recursively a single optimal-feedback gain for the entire state space,

computed as the optimal state feedback gain becomes state dependent.
Vigr(z) = inf [7Qiz +uT Riu+ Vi(A;z + Biu)] Furthermore, the minimizefP; (=), i} (z)) of equation (7) is

i€EM,u€RP radially invariant, indicating that at each time step alé th
= inf [zT(Qi + ATPA;)z points along the same radial direction have the same optimal
i€M, PEH ;,u€RP hybrid-control law. These properties are illustrated ig.FL

—l—uT(Ri—l—BiTPBi)u—i—2zTA;fFPBiu] (9) using an example iR? with 2 subsystems: at each time
step, the state space is decomposed into several homogeneou
Since the quantity inside the bracket is quadraticuinthe decision regions each of which corresponds to a pair of
optimal u* can be easily found to be optimal mode and optimal-feedback gain. In addition, ad th
. T 15T . gray homogeneous regions have the same optimal mode, say
w = —(Ri+ B/ PBi)" B/ PAiz = —Ki(P)z,  (10) mode 2. It is worth mentioning that in a higher dimensional
whereK;(P) is the matrix defined in (8). Substituting into  state space, the homogeneous decision regions may become
(9), we obtainVy 1 () = min;em per, 2”7 pi(P)z. Observing nonconvex and rather complicated. A salient feature of the
that {p;(P) : i € M, P € Hi} = pm(Hr) = Hr+1, we DSLQR problem is that all these complex decision regions
haveV1(z) = minpey,,, 27 Pz. In addition, letP;(z) and are completely encoded in a finite number of matrices in the
i;(z) be defined as in (7). Then it can easily be seen from ti¥RSs.
above derivation that — K= ,y(PF,,(2))z,i5,,(2)) is the
optimal decision at fi‘([mé\f—k(yfl—i(—l)) tr]:;tlachievelg%he r)ninimum IV. PROPERTIES OF THEVALUE FUNCTIONS
cost Viy1(2). u In this section, we will derive various important prop-
Remark 1: Theorem 1 is not a trivial variation of the resultserties for the family of the finite-horizon value functions
in [4], [15], which deal with piecewise affine systems, wheréVn (2)}%>o and the infinite-horizon value function™(z).
the mode sequence(t) is determined by the evolution of These properties are crucial in the design and analysis of
the continuous state instead of being a decision variaiiicient algorithms for solving the DSLQR problems [9].
independent of the continuous state as in the present DSLQRVe first introduce some notations. Defing, =
problem. min;ep{ Amin (Qi)}, @dAT = Anax(Qy). Denote byz? v (1)
Remark 2:The piecewise quadratic structure of the valut®r 0 < ¢ < N an optimal trajectory originating fromat time
function has also been suggested in [3] for the infinitedwi 0 and denote byu} y(t),v; (t)) the corresponding optimal
DSLQR problem. Compared with [3], the contribution ofybrid-control sequence.
Theorem 1 lies in the explicit characterization of the value
function in terms of the SRM and its connection to the optimaf®: Homogeneity and Boundedness
feedback gain and the Riccati equation of the classical LQRLemma 2 (HomogeneityFor anyz € R", A € RandN €
problem. Z*, we haveV*(\z) = \2V*(z) and Vi (\z) = A2V (2).



The homogeneity o’y is clear from Theorem 1. The ho-Thus,
mogeneity oft’* follows from the linearity of the subsystems
and the quadratic nature of the objective function (3).

@) < 1 5O Ot P T o S (12
The properties of the value functions presented in tI%PfC =570 < (HQ”H”QH'F RlF”) (Z 142l ) :
rest of this section are based on the following stabilizghbil -

assumption. Note that the formula of the geometric series does not dyrect
apply here, as the 2-norm of a stable matrix may not be
strictly less than 1 in general. However, it is shown in Ceapt
5 of [16] thatlimy_ ||A¥||*/F = p(A;) < 1, wherep(:)
denotes the spectral radius of a given matrix. This guaeante
that || 4| < (1 — €)/ for some smalle > 0 and all large;.
Therefore,>~°2 || 4] ||* < oo and the proposition is proved.

[ |

(A1) At least one subsystem is stabilizable

Lemma 3 (Boundedness)inder assumption (Al), there
exists a finite constanB such thatVi(z) < pjJz|?, for
all k € Z* and z € R™. Furthermore, if the stabilizable
subsystem igA4;, B;) and F' is any feedback gain for which
A; & A; — B;F is stable, then one possible choice fis
given by:

B. Exponential Stability of the Optimal Trajectory

B=(1Qsll + Qi + FTR;F||) - Z [A72 | <oo. (11)  Inview of part 3) of Lemma 1, to ensure the stability of the
§=0 optimal trajectory, it is natural to assume that each subsys
Proof: Suppose subsystef4;, B;) is stabilizable. Let is stabilizable and detectable. Unfortunately, such a rahtu
{P, Z)},C o be the sequence of matrices generated by testension does not hold in the DSLQR case. As an example,

Riccati mapping using only subsystemi.e., P,ile pi(P")  consider the following DSLQR problem:

with PO(Z) = (@y. Since the switched system (1) can stay in 0 92 0 05
subsystem(4;, B;) all the time, the value function of the A1 = 0 0 } Ay = [ 05 O } ,

DSLQR problem must be no greater than the value function -
of the LQR problem for subsysterfd;, B;), i.e., Vi(z) < Q1 = 100 0 ] . Q= { 0 0 } ,

TP(i for all k € Z* andz € R™. Thus, it suffices to show L 0 0 0 100
that theﬁ given in (11) is an upper bound for the Euclidean . _ 0 } Q;=0,andB; =0,R;, =0, i=1,2.
norm of all the matrices m[P }k o- Let F' be a feedback L1 ’ ’ ’ ’

(13)
Let the horizon N be arbitrary (possibly infinite) and let
z*(-) be the optimal trajectory of this DSLQR problem with
(i) AT 5) T (i) _ initial condition 2*(0) = z¢. Notice that each subsystem is
P +ATPY A+ FTR;F, with P, . (12 N : =
ki1 =Qit + @ (12) stabilizable and detectable. However, it can be easilyfiedri
thatz*(¢) = [0,1]7 if ¢ is even and:*(t) = [2,0]T otherwise.

In the above equation, if' = Kz-(P,f)) for eachk, where o ) .
Ki(-) is defined in (8), thed” would coincide withP®. In Thus, to ensure the stability of the optimal trajectory, we
¢ ' k k- introduce the following assumption.

other words,ﬁ,ﬁl) defines the quadratic energy cost of using
the stabilizing feedback gaif instead of the time-dependent (A2) Q; > 0,YieM.
optimal-feedback gain of thé-horizon LQR problem. By a

standard result of the Riccati equation theory (Theorem 2.1Theorem 2:Under assumptions (Al) and (A2), thd-
in [13]), we haveP,El) = ]5,51) for all £ > 0. Thus, it suffices horizon optimal trajectory originating from at timet = 0,

gain for whichA; = A; — B;F is stable. Deflne{P l)}k:0
iteratively by

to showHP,Ei)H < 3 for eachk > 0. By (12), we have namely,z; y(-), satisfies the following inequalities:
_ * 2 ﬁ 2 _
0 _p(i) +Z PO _ o) I (1 < 3= el for £=1,... N -1
8 ()
= S and a2 w (V)| < Sen™ )
=P+ Z(Az Y (P = Py ) (A:)
kj:10 whereg is defined in Lemma 3,
=Qy + Z ATYHQp(A) T 1
=———— <1 and = A;—B;K; . (15
v ESCYE ¢=max| @)l (15)
k—1
+ Z ~ Qs+ FTR,F)(A;) In other words, the optimal trajectory is exponentiallybéta
) with a decay ratey.

i k oo . - Proof: For simplicity, fort =0, 1,---, N, definez(t) =
<(AD QAN + Y (AT Qi+ FTRF)AY a2 (1) and Vi, 2 V(2% y (1) Denote by(ii(), 5(-))
j=0 the optimal hybrid control sequence corresponding(tg. For



t=1,...,N, we have ” (t)”l !
XI)N" """~~~ -t/ e
Vn_(—1) = Vv—e = L(&(t — 1), a(t — 1),9(t — 1)) \

>E(t — 1) Qpu—)@(t — 1) > AgllE(t — 1)|1?
A5 A -

Q7 Q .
>—= > = ¥
=73 VN—(t-1) = 3 Vn_t. B ():
1
Hence, we havé/y_; < WVN*(H) fort=1,---,N. -

t

1 % i < N— T
1+AQ/ﬁ) V. Obviously, fort < N—1, 0 - v >
2

\ 4

ThereforeVa_; < (

1
1
1
S —_—
1
1
1

- ! t
V-t 2 &(t)" Qo) (t) = AgllZ(t)]|*. Thus, «— N ——3
1 1
t
||j(t)”2 < LVN_t < i # VN Fig. 2. lllustrating the proof of Lemma 4, where the dashdw represents
- é - )‘é 1+ ,\é/ﬂ the trajectoryz(-), the solid line represents the trajectoiy-) and the solid
. line together with the dashed line represents the trajyeet:r‘gfl\,1 ().
p 1 p
< TTo/5 121 = /\—_7t||2|\2~ (16)
Q Q Q

be bounded as follows:

Fort = N, by Theorem 1, we have that(N) = (A; — N N
y e nav (V) = ( VNN, (27§, (N2)) = ¥(27 N, (N2)) < Vi, (2) = Vi, (2)

B;K;(Qf))-Z(N —1) for somei € M. Therefore|z(N)|]? <

C2||#(N=1)||2, where( is defined in (15), and then the desired <V -, (2% n, (V2)) =¥ (27 n, (N2)). 17)
result follows from (16). m Proof: Let zp = 7} y,(N2). Define a newN;-horizon
Remark 3:1t is worth pointing out that the decay rate trajectoryi(:) as
given in (15) could be conservative. } z* o (1), t < N.
x(t)_{ e f-Ny), Na<t<h, 8
‘TZQ,leNz( 2), 2 <t < Vg
C. Exponential Convergence of Value Iteration As shown in Fig. 2 (the dashdot linejy(-) is obtained by

Some classical results on the convergence of the value itef{ESt following the N-horizon optimal trajectory and then the
tion of general DP problem can be found in [11]. Most of thesé¥1 — N2)-horizon optimal trajectory. Letu(-), o(-)) be the
results require either a discount factor with magnitudietyr hybrid controls corresponding t. Then by the definition of
less than 1 or that)(z) < V*(z) for all z € R". Neither is the value function, we have
true for the general DSLQR problem with a nontrivial ternhina Ni-1
cost. A more recent convergence result is given in [3], [6], Vi, (z) < Z L(z(t),a(t),o(t)) + (&(N1))
where the aforementioned assumptions are replaced witk som t=0
other conditions onl’*(z). Since the infinite-horizon value = 271
function V*(z) of the DSLQR problem is usually unknown, = L@} n, (1), uZ N, (1), 02 N, (1))
the conditions in [3], [6] are not easy to check. In view of =0
these limitations, a further study on the convergence of the " 27" i} .
value iteration of the DSLQR problem is necessary. + Z L@y 3y =N () 02 Ny =, (1), V25 3y -, (1))

By part 2) of Lemma 1, for the classical LQR problem, if tjo
the system is stabilizable, then the value iteration cayeto (@2, NN, (N1 = N2))
the infinite-horizon value function. For the DSLQR problem,=Vi, (2) — (x5 y,(N2)) + Vi, - n, (25 n, (N2)) (19)
however, Assumption (A1) alone is not enough to ensure %
convergence of the value functions. For example, consi ; . . : .

. ) ; prove the first one, define aw,-horizon trajectoryz(-) as
the DSLQR problem with matrices defined by (13) excepfi."soid line in Fig. 2 by taking the firs¥, steps Off(i)zvli
that Q; = I>. Although each subsystem is stable, it can b|.ee., #(t) = a% . (t) for 0 < t < N, and Iet(a(-),ﬁ(-)j be

easily seen thaVy (zo) is 2 if N is an odd number and is : ;
i - the corresponding hybrid control sequence. Then
1 otherwise. Thus, the limit o¥/y(xz¢) as N — oo does not P gny g
N271

exist.

In the following we shall show that the value iteration will VN2 (2) = Z L(&(2), a(t), 0(t)) +(&(N2))

converge exponentially fast if both (A1) and (A2) are satisfi N1 =0

The following lemma provides a bound for the difference ‘< X X X X

between two value functions with different horizons and is ; L@z v (8, 1z i (8, 0% 3, (8) + (27 v, (N2))
=Vn, (2) = Vv —no (2% v, (N2)) + (27 v, (N2)),  (20)

the key in proving the convergence result.
Lemma 4:Let N; and N, be positive integers such that

N1 > Ns. For anyz € R", the difference between th®;- where the last step follows from the Bellman’s principle of

horizon value function and th&>-horizon value function can optimality, namely, any segment of an optimal trajectorysimu

uation (19) describes exactly the second inequality #).(1



be the optimal trajectory joining the two end points of théhat by (A2) we must haved*(z) = inf;_ens Jr (2),

segment. The desired result follows from (19) and (20)m wherell  denotes the set of all the infinite-horizon stabilizing
With a nontrivial terminal cost, thév-horizon value func- policies. Letr., be an arbitrary policy 15, and let(-)

tion Viy(z) may not be monotone a¥ increases. Neverthe-and(4(-),9(-)) be the corresponding trajectory and the hybrid

less, by Lemma 4, the difference betwéén, (z) andVx,(z) control sequence, respectively. Sintg) — 0 ast — oo, for

can be bounded by the quadratic functionscdfy (N2) and any e > 0, there always exists aiV; such thaty(z(t)) < e

T; N, (N2). By Theorem 2, we know both quantities convergor all ¢ > N;. Hence, for allN > Ny,

to zero asN; and N, grow to infinity. This will guarantee N_1

that by c_hoosing\fl andN; large (_enoggh, the upper and lower Vi (2) < L(&(t), a(t), o(t)) + ¥(E(N))

bounds in (17) can be made arbitrarily small. The convergenc

of the value iteration can thus be established. ;;,Ol
Theorem 3:Under assumptions (Al) and (A2), for any < L(z(t), 0(t), d(t) + € < Jp(2) + €
N7 > N3, we have o
[V, (2) = Vv, (2)] < ay™2 |22, (21) Let N — oo, we haveV(z) < Jr (2) + € Voo € II5..
, + Thus,Vx (z) < V*(2) 4+ € and the theorem is proved ads
wherea = max{1, %}wtif)ﬁ with 8, v < 1 and(¢ defined arbitrary. [ |
in (11) and (15). N Remark 4:Compared with the previous work [3], [11], our

Proof: By Theorem 2, for anyz ¢ R", we convergence result derived specially for the DSLQR problem
€ S Lo .
have |7 v, (M) < §T67N2||Z|‘2 and |7 v, (V)2 < ha§ seyeral d|s'F|nct|(_)ns. First, it aIIows.g_eneraI.termcrm;t,
QY which is especially important for the finite-horizon DSLQR
problems. In addition, the convergence conditions are ex-

LA™ 2|12, Hence,
Q . .
pressed in terms of the subsystem matrices rather than the

2122
VN, Ny (25 n (N2)) < Bllat y. (N2)||? < ﬂ'yMHzHQ, infinite-horizon value function [3], and thus become much
e - o T AQY easier to verify. Finally, by Theorem 3, for a given toleranc
)\}%425 on the optimal cost, the required number of iterations can be
(% ny (N2)) <A (|25 v, (N2)[|* < ?7N2||2H2, computed before the actual computation starts. This pesvid
2"?7 an efficient means to stop the value iteration with guarahtee
. ‘ g i :
Vv (v, (N2)) < Bl v, (N2) | < 5=y =, Suboptimal performance
Q
AF V. CONCLUSION
V(@ (N2) < Ak, (Vo) < =72 1212, , , ,
o o AQ A number of important properties of the value functions
of the DSLQR problem are derived. In particular, we have
Thus, by Lemma 4 we have . proved that any finite-horizon value function is the poirs®vi
¢ BEXB N minimum of a finite number of quadratic functions that can
Vv (2) = Vv (2)] < max{l’i}' o 7= be obtained recursively using the SRM. It has also been

shown that under some mild conditions, the family of the

finite-horizon value functions is homogeneous of degree 2, i

h By Theorem|3, assumptionsf(,:;l) ar|1d (.AZ) t_ogetlher implMniformly bounded over the unit ball and converges exponen-
the exponential convergence of the value iteration. In gene tially fast to the corresponding infinite-horizon value ¢tion.

the.Iimiting functionVoo(z) may not coingide with the infinite- Future research will focus on employing these properties
horizon value fun(_:t|orV (z). The following Theorem shows ;| efficiently solve the DLQRS problem with guaranteed
that the two functions agree for the DSLQR problem. ;
. suboptimal performance.
Theorem 4:Under assumptions (Al) and (A2 (z) =
V*(z) for eachz € R™.
Proof: For any finite N, we know that REFERENCES

[1] X. Xu and P. J. Antsaklis. Optimal control of switched ®mms based
% % % on parameterization of the switching instantlEEE Transactions on
Vn(z) = L@ n(t),uZ n (), 02 n(1) + ¥(aZ §(N)). Automatic Contral 49(1):2—16, 2004,
t [2] M. Egerstedt, Y. Wardi, and F. Delmotte. Optimal contodlswitching
. . times in switched dynamical system&EE Transactions on Automatic
By the optimality of V*(z), we have Control, 51(1):110-115, 2006,

2

Il
=)

N—-1 [3] B. Lincoln and A. Rantzer. Relaxing dynamic programmintEEE
* * * * %/ % Transactions on Automatic Contydb1(8):1249-1260, Aug. 2006.
14 (Z) < Z L(IzyN(t)vuzyN(t)vvzyN(t)) +V (Iz,N(N)) [4] F. Borrelli, M. Baotic, A. Bemporad, and M. Morari. Dynaen
t=0 programming for constrained optimal control of discreteet linear
= Vn(2) = (z* v(N)) + VH(x* (N)). hybrid systems Automatica 41:1709-1721, Oct. 2005.

N( ) 1/)( Z’N( )) ( Z’N( )) [5] F. L. Lewis and V. L. Syrmos.Optimal Control John Wiley & Sons,

By Theorem 3 and Theorem 2, a8 — oo, VN(Z) — [6] X]Clifntezil:mlg‘elj;ii?esd. dynamic programming in switchingteyns.|[EE
Voo (2), d’(sz(N)) — 0 and V*(Ii,N(N)) — 0. Therefore, Proceedings - Control Theory & Applicationd53(5):567 — 574, Sep.

V*(z) < V(z). We now prove the other direction. Notice  2006.



(7]

(8]

El

[10]

[11]
[12]

[13]

(14]

[15]

[16]

A. Bemporad, A. Giua, and C. Seatzu. Synthesis of segeifack
optimal controllers for continuous-time switched linegrstems. In
Proceedings of the IEEE Conference on Decision and Canpages
3182- 3187, Las Vegas, NV, Dec. 2002.

C. Seatzu, D. Corona, A. Giua, and A. Bemporad. Optimaities
of continuous-time switched affine systemdEEE Transactions on
Automatic Contrgl 51:726-741, May 2006.

W. Zhang, A. Abate, and J. Hu. Efficient suboptimal sauos of
switched LQR problems. IProceedings of the American Control
Conference St. Louis, MO, Jun. 2009.

W. Zhang, J. Hu, and A. Abate. A study of the discretetiswitched
LQR problem. Technical Report TR ECE 09-03, Electrical arain©
puter Engineering, Purdue University, 2009.

D. P. BertsekasDynamic Programming and Optimal Contralolume 2.
Athena Scientific, 2nd edition, 2001.

D. Kleinman. On an iterative technique for riccati etiom computa-
tions. IEEE Transactions on Automatic Contrdl3(1):114-115, 1968.
P. E. Caines and D. Q. Mayne. On the discrete time matiocd®i
equation of optimal controlinternation Journal of Contrgl12(5):785—
794, 1970.

S. Chan, G. Goodwin, and K. Sin. Convergence propedi¢ke Riccati
difference equation in optimal filtering of nonstabilizaldystemsIEEE
Transactions on Automatic Contya?9(2):110-118, 1984.

A. Rantzer and M. Johansson. Piecewise linear quadmptimal
control. IEEE Transactions on Automatic Contrq#):629 — 637, Apr.
2000.

R. Horn and C. JohnsomMatrix Analysis Cambridge University Press,
1985.



