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On the Value Functions of the Discrete-Time
Switched LQR Problem

Wei Zhang, Jianghai Hu and Alessandro Abate

Abstract— In this paper, we derive some important properties
for the finite-horizon and the infinite-horizon value functions
associated with the discrete-time switched LQR (DSLQR) prob-
lem. It is proved that any finite-horizon value function of the
DSLQR problem is the pointwise minimum of a finite number of
quadratic functions that can be obtained recursively usingthe so-
called switched Riccati mapping. It is also shown that under some
mild conditions, the family of the finite-horizon value functions
is homogeneous (of degree 2), is uniformly bounded over the
unit ball, and converges exponentially fast to the infinite-horizon
value function. The exponential convergence rate of the value
iterations is characterized analytically in terms of the subsystem
matrices.

I. I NTRODUCTION

Optimal control of switched systems is a challenging
problem that has received much research attention in recent
years [1], [2], [3], [4]. Compared with the traditional optimal
control problems [5], the distinctive feature of the optimal con-
trol of switched systems lies in the possibility of selecting the
mode sequence and the switching instants. For a fixed mode
sequence, variational approach can be applied to derive certain
gradient-based algorithms for optimizing the corresponding
switching instants [1], [2]. However, finding the best mode
sequence is a discrete optimization problem and is believed
to be NP hard in general [2]. Recent research attention ([3],
[4], [6]) has been focused on the optimal control problem
of discrete-time switched linear systems with quadratic cost
functions, which contains most of the interesting properties
of the optimal control problem for general switched systems,
while at the same time allows for efficient approaches to
optimize the mode sequences. This optimal control problem
can be viewed as an extension of the classical discrete-time
LQR problem to the context of the switched linear systems,
and are thus referred to as the discrete-time switched LQR
(DSLQR) problem.

This paper studies several interesting properties of the finite-
horizon and the infinite-horizon value functions associated
with the DSLQR problem. It is shown that any finite-horizon
value function of the DSLQR problem is the pointwise min-
imum of a finite number of quadratic functions that can
be obtained recursively using the so-calledswitched Riccati
mapping. Explicit expressions are also derived for the optimal
switching-control law and the optimal continuous-controllaw,
both of which are of state-feedback form and are homogeneous
over the state space. In addition, the optimal continuous-
control law is shown to be piecewise linear with different
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optimal feedback gains within different homogeneous regions
of the state space. Although other researchers have also
suggested a piecewise affine structure for the optimal control
law ([4], [7], [8]), the analytical expression of the optimal
feedback gain and in particular its connection with the Riccati
equation of the classical LQR problem have not yet been
explicitly presented.

Furthermore, several other interesting properties of the value
functions are derived. It is proved that, under some mild con-
ditions, the family of the finite-horizon value functions ofthe
DSLQR problem is homogeneous (of degree 2), is uniformly
bounded over the unit ball, and converges exponentially fast
to the infinite-horizon value function. Finally, the exponential
convergence rate of the value iteration is characterized ana-
lytically in terms of the subsystem matrices. These properties
are not only of theoretical importance, but also play a crucial
role in the design and analysis of various efficient algorithms
for solving the DSLQR problem. Some preliminary algorithms
developed based on the properties derived in this paper can be
found in [9], [10].

This paper is organized as follows. The DSLQR problem
is formulated in Section II. Its value function is characterized
analytically in Section III. Various interesting properties of
the value function are derived in Section IV. The concluding
remarks are given in Section V.

Notation: In this paper,n, p andM are some arbitrary finite
positive integers,Z+ denotes the set of nonnegative integers,
M , {1, . . . ,M} is a set of subsystem indices,In is the
n × n identity matrix, ‖ · ‖ denotes the induced 2-norm in
R

n, A denotes the set of all the positive semidefinite (p.s.d.)
matrices,λmin(·) and λmax(·) denote the smallest and the
largest eigenvalues, respectively, of a given p.s.d. matrix.

II. PROBLEM FORMULATION

Consider the discrete-time switched linear system described
by:

x(t+ 1) = Av(t)x(t) +Bv(t)u(t), t ∈ TN , (1)

where x(t) ∈ R
n is the continuous state,v(t) ∈ M ,

{1, . . . ,M} is the switching control that determines the
discrete mode,u(t) ∈ R

p is the continuous control and
TN , {0, . . . , N − 1} is the control horizon with lengthN
(possibly infinite). The sequence of pairs{(u(t), v(t))}N−1

t=0

is called thehybrid control sequence. For eachi ∈ M, Ai

andBi are constant matrices of appropriate dimensions and
the pair(Ai, Bi) is called a subsystem. This switched linear
system is time invariant in the sense that the set of available
subsystems{(Ai, Bi)}

M
i=1 is independent of timet. At each

time t ∈ TN , denote byξt,N , (µt,N , νt,N ) : R
n → R

p × M

the (state-feedback) hybrid-control lawof system (1), where
µt,N : R

n → R
p is called the(state-feedback) continuous-

control law andνt,N : R
n → M is called the(state-feedback)

switching-control law. A sequence of hybrid-control laws over
the horizonTN constitutes anN -horizon feedback policy:
πN , {ξ0,N , ξ1,N , . . . , ξN−1,N}. If system (1) is driven by
a feedback policyπN , then the closed-loop system is given
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by:

x(t+ 1) = Aνt,N (x(t))x(t) +Bνt,N (x(t))µt,N (x(t)). (2)

For a given initial statex(0) = z ∈ R
n, the performance

of the feedback policyπN can be measured by the following
cost functional:

JπN
(z)=ψ(x(N))+

N−1
∑

t=0

L(x(t), µt,N (x(t)), νt,N (x(t))),

where ψ : R
n → R

+ and L : R
n × R

p × M → R
+

are theterminal cost functionand therunning cost function,
respectively, given by:

ψ(x) = xTQfx, L(x, u, v) = xTQvx+ uTRvu,

whereQf = QT
f � 0 is the terminal-state weighting matrix,

and Qv = QT
v � 0 and Rv = RT

v ≻ 0 are the running
weighting matrices for the state and the control, respectively,
for subsystemv ∈ M. When the control horizonN is infinite,
the terminal cost will never be incurred and the objective
function, which might be unbounded, becomes:

Jπ∞
(z) =

∞
∑

t=0

L(x(t), µt,∞(x(t)), νt,∞(x(t))). (3)

Denote byΠN the set of all admissibleN -horizon policies.
The discrete-time switched LQR problem (DSLQR) is formu-
lated below.

Problem 1 (DSLQR problem):For a given initial statez ∈
R

n and a possibly infinite positive integerN , find theN -
horizon policyπN ∈ ΠN that minimizesJπN

(z) subject to (2).
To solve Problem 1, for each timet ∈ TN , we define the

value functionVt,N : R
n → R as:

Vt,N (z)= inf
u(j)∈Rp,v(j)∈M

t≤j≤N−1

{

ψ(x(N))+

N−1
∑

j=t

L(x(j), u(j), v(j))
∣

∣

∣

subject to eq. (1) withx(t) = z
}

.

The Vt,N (z) so defined is the minimum cost-to-go starting
from statez at time t. The minimum cost for the DSLQR
problem with initial statex(0) = z is simplyV0,N (z). Due to
the time-invariant nature of the switched system (1), its value
function depends only on the number of remaining time steps,
i.e.,

Vt,N (z) = Vt+m,N+m(z),

for all z ∈ R
n and all integersm ≥ −t. In the rest of

this paper, when no ambiguity arises, we will denote by
Vk(z) , VN−k,N (z) andξk , ξN−k,N the value function and
the hybrid-control law, respectively, at timet = N − k when
there arek time steps left. With the new notations, theN -
horizon policyπN can also be written asπN = {ξN , . . . , ξ1}.
For any positive integerk, the control lawξk can be thought
of as the first step of ak-horizon policy.

By a standard result of Dynamic Programming [11], for
any finite integerN , the value functionVN can be obtained
recursively using the one-stagevalue iteration:

Vk+1(z) = inf
u,v

{L(z, u, v) + Vk(Avz +Bvu)}, ∀z ∈ R
n,

with initial condition V0(z) = ψ(z), ∀z ∈ R
n. Denote by

V∞(·) the pointwise limit (whenever it exists) of the sequence
of functions{Vk(·)}∞k=0 generated by the value iterations. It is
well known [11, Chapter 3] that even ifV∞(z) exists, it may
not always coincide with the infinite-horizon value function.
To emphasize its substantial difference from the finite-horizon
value function, the infinite-horizon value function is specially
denoted byV ∗(z), i.e., V ∗(z) = infπ∞∈Π∞

Jπ∞
(z).

III. A NALYTICAL CHARACTERIZATION OF THE

FINITE-HORIZON VALUE FUNCTION

WhenM = 1, the DSLQR problem reduces to the clas-
sical LQR problem. Denote by(A,B,Q,R) the system and
weighting matrices associated with this simple instance. It is
well known that whenN is finite, the value functions of this
LQR problem are of the following quadratic form:

Vk(z) = zTPkz, k = 0, . . . , N, (4)

where {Pk}
N
k=0 is a sequence of positive semidefinite

(p.s.d.) matrices satisfying the Difference Riccati Equa-
tion (DRE) ([12]):

Pk+1 =Q+ATPkA−ATPkB(R+BTPkB)−1BTPkA, (5)

with initial conditionP0 = Qf . Some results of the classical
LQR problem are summarized in the following lemma.

Lemma 1 ([13], [14]): Let {Pk}
N
k=0 be generated by the

DRE (5), then

1) For eachk = 0, . . . , N − 1, if Pk ∈ A, thenPk+1 ∈ A;
2) If (A,B) is stabilizable, thenVk(z) → V ∗(z) for all

z ∈ R
n ask → ∞;

3) Let Q = CTC. If (A,B) stabilizable and(C,A) de-
tectable, then the optimal trajectory of the LQR problem
is exponentially stable.

In general, whenM ≥ 2, the value functionVk(z) is no
longer of a simple quadratic form as in (4). Nevertheless, the
notion of the DRE can be generalized to the Switched LQR
problem. The DRE (5) can be viewed as a mapping fromA
to A depending on the matrices(A,B,Q,R). We call this
mapping theRiccati Mappingand denote byρi : A → A the
Riccati Mapping of subsystemi ∈ M, i.e.,

ρi(P )=Qi+A
T
i PAi−A

T
i PBi(Ri+B

T
i PBi)

−1BT
i PAi.

Definition 1: Let 2A be the power set ofA. The mapping
ρM : 2A → 2A defined by:

ρM(H) = {ρi(P ) : i ∈ M andP ∈ H}, ∀H ∈ 2A,

is called theSwitched Riccati Mapping(SRM) associated with
Problem 1.

In words, the SRM maps asetof p.s.d. matrices to another
set of p.s.d. matrices and each matrix inρM(H) is obtained
by taking the classical Riccati mapping of some matrix inH
through some subsystemi ∈ M.

Definition 2: The sequence of sets{Hk}
N
k=0 generated iter-

atively byHk+1 = ρM(Hk) with initial conditionH0 = {Qf}
is called theSwitched Riccati Sets(SRSs) of Problem 1.

The SRSs always start from a singleton set{Qf} and evolve
according to the SRM. For any finiteN , the setHN consists
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of at mostMN p.s.d. matrices. An important fact about the
DSLQR problem is that its value functions are completely
characterized by the SRSs.

Theorem 1:For k = 0, . . . , N , the value function for the
DSLQR problem at timeN − k, i.e., withk time steps left, is

Vk(z) = min
P∈Hk

zTPz. (6)

Furthermore, forz ∈ R
n andk = 1, . . . , N , if we define

(P ∗
k (z), i∗k(z)) = argmin

(P∈Hk−1,i∈M)

zTρi(P )z, (7)

then the optimal hybrid-control law at statez and time
t = N − k is ξ∗k(z) = (µ∗

k(z), ν∗k(z)), where µ∗
k(z) =

−Ki∗
k
(z)(P

∗
k (z))z and ν∗k(z) = i∗k(z). Here,Ki(P ) is the

optimal-feedback gain for subsystemi with matrix P , i.e.,

Ki(P ) , (Ri +BT
i PBi)

−1BT
i PAi. (8)

.
Proof: The theorem is proved by induction. It is obvious

that for k = 0 the value function isV0(z) = zTQfz,
satisfying (6). Now suppose equation (6) holds for somek ≤
N −1, i.e.,Vk(z) = minP∈Hk

zTPz. We shall show that it is
also true fork+1. By the principle of dynamic programming
and noting thatVk(·) represents the value function at time
N−k, the value function at timeN−(k+1) can be recursively
computed as

Vk+1(z) = inf
i∈M,u∈Rp

[

zTQiz + uTRiu+ Vk(Aiz +Biu)
]

= inf
i∈M,P∈Hk,u∈Rp

[

zT (Qi +AT
i PAi)z

+ uT (Ri +BT
i PBi)u + 2zTAT

i PBiu
]

. (9)

Since the quantity inside the bracket is quadratic inu, the
optimalu∗ can be easily found to be

u∗ = −(Ri +BT
i PBi)

−1BT
i PAiz = −Ki(P )z, (10)

whereKi(P ) is the matrix defined in (8). Substitutingu∗ into
(9), we obtainVk+1(z) = mini∈M,P∈Hk

zTρi(P )z. Observing
that {ρi(P ) : i ∈ M, P ∈ Hk} = ρM(Hk) = Hk+1, we
haveVk+1(z) = minP∈Hk+1

zTPz. In addition, letP ∗
k (z) and

i∗k(z) be defined as in (7). Then it can easily be seen from the
above derivation that

(

−Ki∗
k+1

(z)(P
∗
k+1(z))z, i

∗
k+1(z)

)

is the
optimal decision at timeN−(k+1) that achieves the minimum
costVk+1(z).

Remark 1:Theorem 1 is not a trivial variation of the results
in [4], [15], which deal with piecewise affine systems, where
the mode sequencev(t) is determined by the evolution of
the continuous state instead of being a decision variable
independent of the continuous state as in the present DSLQR
problem.

Remark 2:The piecewise quadratic structure of the value
function has also been suggested in [3] for the infinite-horizon
DSLQR problem. Compared with [3], the contribution of
Theorem 1 lies in the explicit characterization of the value
function in terms of the SRM and its connection to the optimal-
feedback gain and the Riccati equation of the classical LQR
problem.

Mode 1

Mode 2

Mode 2
gain 1

Mode 2
gain 2

Mode 2 
gain 1

Fig. 1. Typical optimal decision regions of a two-switched system, where
mode 1 is optimal within the white region and mode 2 is optimalwithin the
gray region. The optimal mode region is divided into smallerhomogeneous
regions, each of which corresponds to a different optimal-feedback gain.

Compared with the classical LQR problem, the value func-
tion of the DSLQR problem is no longer a single quadratic
function; it becomes the pointwise minimum of a finite number
of quadratic functions. At each time step, instead of having
a single optimal-feedback gain for the entire state space,
the optimal state feedback gain becomes state dependent.
Furthermore, the minimizer(P ∗

k (z), i∗k(z)) of equation (7) is
radially invariant, indicating that at each time step all the
points along the same radial direction have the same optimal
hybrid-control law. These properties are illustrated in Fig. 1
using an example inR2 with 2 subsystems: at each time
step, the state space is decomposed into several homogeneous
decision regions, each of which corresponds to a pair of
optimal mode and optimal-feedback gain. In addition, all the
gray homogeneous regions have the same optimal mode, say
mode 2. It is worth mentioning that in a higher dimensional
state space, the homogeneous decision regions may become
nonconvex and rather complicated. A salient feature of the
DSLQR problem is that all these complex decision regions
are completely encoded in a finite number of matrices in the
SRSs.

IV. PROPERTIES OF THEVALUE FUNCTIONS

In this section, we will derive various important prop-
erties for the family of the finite-horizon value functions
{VN (z)}∞N≥0 and the infinite-horizon value functionV ∗(z).
These properties are crucial in the design and analysis of
efficient algorithms for solving the DSLQR problems [9].

We first introduce some notations. Defineλ−Q =

mini∈M{λmin(Qi)}, andλ+
f = λmax(Qf ). Denote byx∗z,N (t)

for 0 ≤ t ≤ N an optimal trajectory originating fromz at time
0 and denote by(u∗z,N(t), v∗z,N (t)) the corresponding optimal
hybrid-control sequence.

A. Homogeneity and Boundedness

Lemma 2 (Homogeneity):For anyz ∈ R
n, λ ∈ R andN ∈

Z
+, we haveV ∗(λz) = λ2V ∗(z) andVN (λz) = λ2VN (z).
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The homogeneity ofVN is clear from Theorem 1. The ho-
mogeneity ofV ∗ follows from the linearity of the subsystems
and the quadratic nature of the objective function (3).

The properties of the value functions presented in the
rest of this section are based on the following stabilizability
assumption.

(A1) At least one subsystem is stabilizable.

Lemma 3 (Boundedness):Under assumption (A1), there
exists a finite constantβ such thatVk(z) ≤ β‖z‖2, for
all k ∈ Z

+ and z ∈ R
n. Furthermore, if the stabilizable

subsystem is(Ai, Bi) andF is any feedback gain for which
Āi , Ai − BiF is stable, then one possible choice ofβ is
given by:

β =
(

‖Qf‖ + ‖Qi + FTRiF‖
)

·





∞
∑

j=0

‖Āj
i‖

2



 <∞. (11)

Proof: Suppose subsystem(Ai, Bi) is stabilizable. Let
{P

(i)
k }∞k=0 be the sequence of matrices generated by the

Riccati mapping using only subsystemi, i.e.,P (i)
k+1 = ρi(P

(i)
k )

with P
(i)
0 = Qf . Since the switched system (1) can stay in

subsystem(Ai, Bi) all the time, the value function of the
DSLQR problem must be no greater than the value function
of the LQR problem for subsystem(Ai, Bi), i.e., Vk(z) ≤

zTP
(i)
k z for all k ∈ Z

+ andz ∈ R
n. Thus, it suffices to show

that theβ given in (11) is an upper bound for the Euclidean
norm of all the matrices in{P (i)

k }∞k=0. Let F be a feedback
gain for whichĀi = Ai − BiF is stable. Define{P̃ (i)

k }∞k=0

iteratively by

P̃
(i)
k+1 =Qi+Ā

T
i P̃

(i)
k Āi+F

TRiF, with P̃
(i)
0 =Qf . (12)

In the above equation, ifF = Ki(P̃
(i)
k ) for eachk, where

Ki(·) is defined in (8), theñP (i)
k would coincide withP (i)

k . In
other words,P̃ (i)

k defines the quadratic energy cost of using
the stabilizing feedback gainF instead of the time-dependent
optimal-feedback gain of thek-horizon LQR problem. By a
standard result of the Riccati equation theory (Theorem 2.1
in [13]), we haveP (i)

k � P̃
(i)
k for all k ≥ 0. Thus, it suffices

to show‖P̃
(i)
k ‖ ≤ β for eachk ≥ 0. By (12), we have

P̃
(i)
k =P̃

(i)
0 +

k
∑

j=1

(P̃
(i)
j − P̃

(i)
j−1)

=P̃
(i)
0 +

k−1
∑

j=0

(ĀT
i )j(P̃

(i)
1 − P̃

(i)
0 )(Āi)

j

=Qf +

k−1
∑

j=0

(ĀT
i )j+1Qf(Āi)

j+1

+

k−1
∑

j=0

(ĀT
i )j(Qi −Qf + FTRiF )(Āi)

j

�(ĀT
i )kQf(Āi)

k +

∞
∑

j=0

(ĀT
i )j(Qi + FTRiF )(Āi)

j

Thus,

‖P
(i)
k ‖ ≤ ‖P̃

(i)
k ‖ ≤

(

‖Qf‖+‖Qi+F
TRiF‖

)





∞
∑

j=0

‖Āj
i‖

2



 .

Note that the formula of the geometric series does not directly
apply here, as the 2-norm of a stable matrix may not be
strictly less than 1 in general. However, it is shown in Chapter
5 of [16] that limk→∞ ‖Āk

i ‖
1/k = ρ(Āi) < 1, whereρ(·)

denotes the spectral radius of a given matrix. This guarantees
that ‖Āj

i‖ < (1 − ǫ)j for some smallǫ > 0 and all largej.
Therefore,

∑∞

j=0 ‖Ā
j
i‖

2 < ∞ and the proposition is proved.

B. Exponential Stability of the Optimal Trajectory

In view of part 3) of Lemma 1, to ensure the stability of the
optimal trajectory, it is natural to assume that each subsystem
is stabilizable and detectable. Unfortunately, such a natural
extension does not hold in the DSLQR case. As an example,
consider the following DSLQR problem:

A1 =

[

0 2
0 0

]

, A2 =

[

0 0.5
0.5 0

]

,

Q1 =

[

100 0
0 0

]

, Q2 =

[

0 0
0 100

]

,

x0 =

[

0
1

]

, Qf = 0, andBi = 0, Ri = 0, i = 1, 2.

(13)
Let the horizonN be arbitrary (possibly infinite) and let
x∗(·) be the optimal trajectory of this DSLQR problem with
initial condition x∗(0) = x0. Notice that each subsystem is
stabilizable and detectable. However, it can be easily verified
thatx∗(t) = [0, 1]T if t is even andx∗(t) = [2, 0]T otherwise.
Thus, to ensure the stability of the optimal trajectory, we
introduce the following assumption.

(A2) Qi ≻ 0, ∀i ∈ M.

Theorem 2:Under assumptions (A1) and (A2), theN -
horizon optimal trajectory originating fromz at time t = 0,
namely,x∗z,N (·), satisfies the following inequalities:

‖x∗z,N (t)‖2 ≤
β

λ−Q
γt‖z‖2, for t=1, . . . , N − 1,

and‖x∗z,N (N)‖2 ≤
βζ2

λ−Q
γN−1‖z‖2,

(14)

whereβ is defined in Lemma 3,

γ=
1

1 + λ−Q/β
< 1 and ζ=max

i∈M

‖Ai−BiKi(Qf )‖. (15)

In other words, the optimal trajectory is exponentially stable
with a decay rateγ.

Proof: For simplicity, fort = 0, 1, · · · , N , definex̃(t) ,

x∗z,N (t) and ṼN−t , VN−t(x
∗
z,N (t)). Denote by(ũ(·), ṽ(·))

the optimal hybrid control sequence corresponding tox̃(·). For
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t = 1, . . . , N , we have

ṼN−(t−1) − ṼN−t = L(x̃(t− 1), ũ(t− 1), ṽ(t− 1))

≥x̃(t− 1)TQṽ(t−1)x̃(t− 1) ≥ λ−Q‖x̃(t− 1)‖2

≥
λ−Q
β
ṼN−(t−1) ≥

λ−Q
β
ṼN−t.

Hence, we havẽVN−t ≤
1

1+λ−
Q

/β
ṼN−(t−1) for t = 1, · · · , N .

Therefore,̃VN−t ≤

(

1
1+λ−

Q
/β

)t

ṼN . Obviously, fort ≤ N−1,

ṼN−t ≥ x̃(t)TQṽ(t)x̃(t) ≥ λ−Q‖x̃(t)‖2. Thus,

‖x̃(t)‖2 ≤
1

λ−Q
ṼN−t ≤

1

λ−Q

(

1

1 + λ−Q/β

)t

ṼN

≤
β

λ−Q

(

1

1 + λ−Q/β

)t

‖z‖2 =
β

λ−Q
γt‖z‖2. (16)

For t = N , by Theorem 1, we have that̃x(N) = (Ai −
BiKi(Qf ))·x̃(N−1) for somei ∈ M. Therefore,‖x̃(N)‖2 ≤
ζ2‖x̃(N−1)‖2, whereζ is defined in (15), and then the desired
result follows from (16).

Remark 3: It is worth pointing out that the decay rateγ
given in (15) could be conservative.

C. Exponential Convergence of Value Iteration

Some classical results on the convergence of the value itera-
tion of general DP problem can be found in [11]. Most of these
results require either a discount factor with magnitude strictly
less than 1 or thatψ(z) ≤ V ∗(z) for all z ∈ R

n. Neither is
true for the general DSLQR problem with a nontrivial terminal
cost. A more recent convergence result is given in [3], [6],
where the aforementioned assumptions are replaced with some
other conditions onV ∗(z). Since the infinite-horizon value
function V ∗(z) of the DSLQR problem is usually unknown,
the conditions in [3], [6] are not easy to check. In view of
these limitations, a further study on the convergence of the
value iteration of the DSLQR problem is necessary.

By part 2) of Lemma 1, for the classical LQR problem, if
the system is stabilizable, then the value iteration converges to
the infinite-horizon value function. For the DSLQR problem,
however, Assumption (A1) alone is not enough to ensure the
convergence of the value functions. For example, consider
the DSLQR problem with matrices defined by (13) except
that Qf = I2. Although each subsystem is stable, it can be
easily seen thatVN (x0) is 2 if N is an odd number and is
1 otherwise. Thus, the limit ofVN (x0) asN → ∞ does not
exist.

In the following we shall show that the value iteration will
converge exponentially fast if both (A1) and (A2) are satisfied.
The following lemma provides a bound for the difference
between two value functions with different horizons and is
the key in proving the convergence result.

Lemma 4:Let N1 and N2 be positive integers such that
N1 > N2. For anyz ∈ R

n, the difference between theN1-
horizon value function and theN2-horizon value function can

( )x t
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z N
x

2 1 2
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z N N
x
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z N
x

1
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N t0

Fig. 2. Illustrating the proof of Lemma 4, where the dashdot line represents
the trajectoryx̃(·), the solid line represents the trajectoryx̂(·) and the solid
line together with the dashed line represents the trajectory x

∗

z,N1
(·).

be bounded as follows:

VN1−N2
(x∗z,N1

(N2)) − ψ(x∗z,N1
(N2)) ≤ VN1

(z)−VN2
(z)

≤VN1−N2
(x∗z,N2

(N2))−ψ(x∗z,N2
(N2)). (17)

Proof: Let z2 = x∗z,N2
(N2). Define a newN1-horizon

trajectoryx̃(·) as

x̃(t) =

{

x∗z,N2
(t), t ≤ N2

x∗z2,N1−N2
(t−N2), N2 < t ≤ N1

(18)

As shown in Fig. 2 (the dashdot line),̃x(·) is obtained by
first following theN2-horizon optimal trajectory and then the
(N1 − N2)-horizon optimal trajectory. Let(ũ(·), ṽ(·)) be the
hybrid controls corresponding tõx. Then by the definition of
the value function, we have

VN1
(z) ≤

N1−1
∑

t=0

L(x̃(t), ũ(t), ṽ(t)) + ψ(x̃(N1))

=

N2−1
∑

t=0

L(x∗z,N2
(t), u∗z,N2

(t), v∗z,N2
(t))

+

N1−N2−1
∑

t=0

L(x∗z2,N1−N2
(t), u∗z2,N1−N2

(t), v∗z2,N1−N2
(t))

+ ψ(x∗z2,N1−N2
(N1 −N2))

=VN2
(z) − ψ(x∗z,N2

(N2)) + VN1−N2
(x∗z,N2

(N2)) (19)

Equation (19) describes exactly the second inequality in (17).
To prove the first one, define anN2-horizon trajectorŷx(·) as
the solid line in Fig. 2 by taking the firstN2 steps ofx∗z,N1

,
i.e., x̂(t) = x∗z,N1

(t) for 0 ≤ t ≤ N2 and let (û(·), v̂(·)) be
the corresponding hybrid control sequence. Then

VN2
(z) ≤

N2−1
∑

t=0

L(x̂(t), û(t), v̂(t)) + ψ(x̂(N2))

=

N2−1
∑

t=0

L(x∗z,N1
(t), u∗z,N1

(t), v∗z,N1
(t)) + ψ(x∗z,N1

(N2))

=VN1
(z) − VN1−N2

(x∗z,N1
(N2)) + ψ(x∗z,N1

(N2)), (20)

where the last step follows from the Bellman’s principle of
optimality, namely, any segment of an optimal trajectory must
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be the optimal trajectory joining the two end points of the
segment. The desired result follows from (19) and (20).

With a nontrivial terminal cost, theN -horizon value func-
tion VN (z) may not be monotone asN increases. Neverthe-
less, by Lemma 4, the difference betweenVN1

(z) andVN2
(z)

can be bounded by the quadratic functions ofx∗z,N1
(N2) and

x∗z,N2
(N2). By Theorem 2, we know both quantities converge

to zero asN1 andN2 grow to infinity. This will guarantee
that by choosingN1 andN2 large enough, the upper and lower
bounds in (17) can be made arbitrarily small. The convergence
of the value iteration can thus be established.

Theorem 3:Under assumptions (A1) and (A2), for any
N1 > N2, we have

|VN1
(z) − VN2

(z)| ≤ αγN2‖z‖2, (21)

whereα = max{1, ζ2

γ }·
(β+λ+

f
)β

λ−
Q

, with β, γ < 1 andζ defined

in (11) and (15).
Proof: By Theorem 2, for any z ∈ R

n, we
have ‖x∗z,N2

(N2)‖
2 ≤ ζ2β

λ−
Q

γ
γN2‖z‖2 and ‖x∗z,N1

(N2)‖
2 ≤

β

λ−
Q

γN2‖z‖2. Hence,

VN1−N2
(x∗z,N2

(N2)) ≤ β‖x∗z,N2
(N2)‖

2 ≤
ζ2β2

λ−Qγ
γN2‖z‖2,

ψ(x∗z,N2
(N2))≤λ

+
f ‖x

∗
z,N2

(N2)‖
2≤

λ+
f ζ

2β

λ−Qγ
γN2‖z‖2,

VN1−N2
(x∗z,N1

(N2)) ≤ β‖x∗z,N1
(N2)‖

2 ≤
β2

λ−Q
γN2‖z‖2,

ψ(x∗z,N1
(N2)) ≤ λ+

f ‖x
∗
z,N1

(N2)‖
2 ≤

λ+
f β

λ−Q
γN2‖z‖2.

Thus, by Lemma 4 we have

|VN1
(z) − VN2

(z)| ≤ max{1,
ζ2

γ
} ·

(β + λ+
f )β

λ−Q
γN2‖z‖2.

By Theorem 3, assumptions (A1) and (A2) together imply
the exponential convergence of the value iteration. In general,
the limiting functionV∞(z) may not coincide with the infinite-
horizon value functionV ∗(z). The following Theorem shows
that the two functions agree for the DSLQR problem.

Theorem 4:Under assumptions (A1) and (A2),V∞(z) =
V ∗(z) for eachz ∈ R

n.
Proof: For any finiteN , we know that

VN (z) =

N−1
∑

t=0

L(x∗z,N (t), u∗z,N (t), v∗z,N (t)) + ψ(x∗z,N (N)).

By the optimality ofV ∗(z), we have

V ∗(z) ≤

N−1
∑

t=0

L(x∗z,N (t), u∗z,N (t), v∗z,N (t)) + V ∗(x∗z,N (N))

= VN (z) − ψ(x∗z,N (N)) + V ∗(x∗z,N (N)).

By Theorem 3 and Theorem 2, asN → ∞, VN (z) →
V∞(z), ψ(x∗z,N (N)) → 0 andV ∗(x∗z,N (N)) → 0. Therefore,
V ∗(z) ≤ V∞(z). We now prove the other direction. Notice

that by (A2) we must haveV ∗(z) = infπ∞∈Πs
∞
Jπ∞

(z),
whereΠs

∞ denotes the set of all the infinite-horizon stabilizing
policies. Letπ∞ be an arbitrary policy inΠs

∞ and let x̂(·)
and(û(·), v̂(·)) be the corresponding trajectory and the hybrid
control sequence, respectively. Sincex̂(t) → 0 as t→ ∞, for
any ǫ > 0, there always exists anN1 such thatψ(x̂(t)) ≤ ǫ
for all t ≥ N1. Hence, for allN ≥ N1,

VN (z) ≤

N−1
∑

t=0

L(x̂(t), û(t), v̂(t)) + ψ(x̂(N))

≤

N−1
∑

t=0

L(x̂(t), û(t), v̂(t)) + ǫ ≤ Jπ∞
(z) + ǫ.

Let N → ∞, we haveV∞(z) ≤ Jπ∞
(z) + ǫ, ∀π∞ ∈ Πs

∞.
Thus,V∞(z) ≤ V ∗(z) + ǫ and the theorem is proved asǫ is
arbitrary.

Remark 4:Compared with the previous work [3], [11], our
convergence result derived specially for the DSLQR problem
has several distinctions. First, it allows general terminal cost,
which is especially important for the finite-horizon DSLQR
problems. In addition, the convergence conditions are ex-
pressed in terms of the subsystem matrices rather than the
infinite-horizon value function [3], and thus become much
easier to verify. Finally, by Theorem 3, for a given tolerance
on the optimal cost, the required number of iterations can be
computed before the actual computation starts. This provides
an efficient means to stop the value iteration with guaranteed
suboptimal performance.

V. CONCLUSION

A number of important properties of the value functions
of the DSLQR problem are derived. In particular, we have
proved that any finite-horizon value function is the pointwise
minimum of a finite number of quadratic functions that can
be obtained recursively using the SRM. It has also been
shown that under some mild conditions, the family of the
finite-horizon value functions is homogeneous of degree 2, is
uniformly bounded over the unit ball and converges exponen-
tially fast to the corresponding infinite-horizon value function.
Future research will focus on employing these properties
to efficiently solve the DLQRS problem with guaranteed
suboptimal performance.
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