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ABSTRACT

We consider text retrieval within dense representational space in
real-world settings such as e-commerce search where (a) document
popularity and (b) diversity of queries associated with a document
have a skewed distribution. Most of contemporary dense retrieval
literature–which typically focuses on MSMARCO and TREC bench-
mark datasets–present two shortcomings in these settings. (1) They
learn an almost equal number of representations per document, agnos-
tic to the fact that a few ‘head’ documents are disproportionately
more critical to achieving a good retrieval performance. (ii) They
learn purely semantic document representations inferred from intrin-
sic document characteristics (e.g. tokenized text) which may not
contain adequate information to determine the queries for which
the document is relevant–especially when the document is short.

We propose to overcome these limitations by augmenting seman-

tic document representations learned by bi-encoders with behavioral

document representations learned by our proposed approach MVG.
To do so, MVG (1) determines how to divide the total budget for
behavioral representations by drawing a connection to Pitman-Yor
process, and (2) simply clusters the queries related to a given docu-
ment (based on user behavior) within the representational space
learned by a base bi-encoder, and treats the cluster centers as its
behavioral representations. Our central contribution is the finding
such a simple intuitive light-weight approach leads to substantial

gains in key first-stage retrieval metrics (e.g. recall) by incurring only

a marginal memory overhead. We establish this via extensive ex-
periments over three large public datasets comparing to several
single-vector (e.g. SentenceBERT) and multi-vector (e.g. ColBERT)
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bi-encoders, a proprietary e-commerce search dataset comparing
to production-quality bi-encoder, and an A/B test. We hope that
the next generation of dense retrieval approaches more carefully
considers the dual questions of representational budget distribution,
and of jointly learning semantic and behavioral representations.
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1 INTRODUCTION

Dense retrieval (DR) is a powerful workhorse for large-scale lan-
guage systems which rely on text retrieval as the first step, e.g.
web search [24, 43], e-commerce shopping [31] and multi-label text
categorization [29]. The main idea in DR is to embed queries and
documents into a common continuous representation space, such
that the relevance of a document to a query is captured by the prox-
imity of their representations in this space. The representations are
robust and fully learnable from data; thus DR greatly enhances gen-
eralization (e.g. robustness in the face of synonyms, misspellings,
morphological variants) compared to sparse retrieval approaches
which rely on lexical overlap, e.g. BM25 [37] . During serving, the
document representations are pre-computed and stored within an
efficient nearest-neighbor (NN) index for fast lookup [15].

Our motivating observation is that in many real-world retrieval

settings, document popularity follows a skewed (e.g. power-law) dis-

tribution [7]. As shown in Figure 1 (left), most user queries result
in clicks for only a small set of ‘head’ documents whereas there is
a long ‘tail’ of documents with very few associated queries. Thus
memorization of associations between these head documents and
queries associated with them in the past (as well as generalizing
these associations to new query variants) tends to be disproportion-
ately more important to maintaining a good retrieval performance
in real-world settings, compared to the retrieval of tail documents.

Typical DR approaches [11, 13, 28, 31, 35, 43] are ‘single-vector’
i.e. they learn a single representation per document, agnostic to
whether the document is head or tail. However, learning only a
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Figure 1: Document popularity distributions in a few com-

mon datasets: A few documents are seen to be dispropor-

tionately popular (left) and relevant to a diverse (right) set of
queries. This motivates us to consider non-uniform number

of extra (behavioral) representations for such documents

within the nearest-neighbor (NN) index of dense retrieval.

single representation per head document is not adequate for memo-

rization of its historical query associations. Figure 1 (right) compares
the diversity of queries used to access head and tail documents, and
shows that head documents are typically accessed through a dis-
proportionately diverse set of queries compared to tail documents1.
However, such diverse and disparate reasons for accessing a head
document cannot be shoehorned into a single representation: trian-
gle inequality (a typical prerequisite for the representation space to
be well-defined) disallows a document to be close to two queries,
when the queries are themselves well-separated in this space.

Recent DR approaches [19, 24, 38, 39] consider learning multi-
ple representations per document. Still, a prevailing limitation is

that the learned document representations are purely semantic. That
is, once the ‘behavioral’ graph of query-document associations is
used to train the bi-encoder, the graph is discarded, and only the
documents’ intrinsic features (typically, tokenized text) are used to
infer their representations. This is especially problematic for short
documents where the tokenized text does not contain adequate
information to determine the queries for which it is relevant. Graph
neural networks [8, 22, 44] is an attractive framework to better
leverage graph information, but suffers from high online retrieval
latency [21].

To address the above challenges, we propose to augment semantic

document representations learned by bi-encoder models with behav-

ioral document representations learned by our proposed approach:

MVG (Multi-View Geometric Index).MVG and its resulting behav-
ioral representations have several attractive properties: (a) Vari-
able number of representations per document: The number of
behavioral representations learned per document can be controlled
via a hyperparameter to be as skewed as is appropriate for a given
dataset. (b) Improved memorization for head documents: The
behavioral representations are learned directly from the behav-
ioral graph (hence the name) by simply clustering the queries con-
nected to the document within the representational space given
by the bi-encoder. Thus, behavioral representations are not tied
1Here, diversity of a set of queries is measured by the volume of the smallest bounding
box enclosing all their representations in a given space (we use bert-base-uncased
model from https://huggingface.co). Concretely, if 𝑙 𝑗 is the length of this box along
dimension 𝑗 ∈ {1, . . . , 𝑟 }, we compute diversity as (𝑙1𝑙2 . . . 𝑙𝑟 )1/𝑟 . But other notions
of diversity (e.g. smallest bounding ball instead of box) led to a similar observation.

Table 1: MVG-based Dense Retrieval with steps 1-4 per-

formed offline and step 5 conducted online. Only step 3 (fo-

cus of this paper) is new compared to standard dense re-

trieval pipeline.

Steps inMVG-based Dense Retrieval New?

1. Learn a bi-encoder modelM ✗

2. Infer semantic document representations fromM ✗

3. Infer behavioral document representations fromMVG ✓

4. Build an NN-index of all document representations ✗

5. Query the NN-index online ✗

to intrinsic document features, and are more flexible in memo-
rizing query-document associations. (c) Light-weight practical
approach:MVG can be implemented with a light-weight step (step
3) in the standard DR pipeline as shown in Table 1, with no change
in bi-encoder training or inference procedure (steps 1-2), the NN-
index building step (step 4), or the online retrieval logic (step 5).
These properties, together, setMVG apart from past dense retrieval
literature as we illustrate in Table 2 and detail in Section 2.

Concretely, our contributions are four-fold:
• Theoretical Connection: We leverage Pitman-Yor Process [34]
(PYP) to explain the skewed distribution of query diversity from
Figure 1. Under PYP, the expected number of query clusters𝑚 for a
document with 𝑛 queries scales as𝑚 = O(𝑛𝛽 ) for some 𝛽 ∈ (0, 1).
• Light-Weight Algorithm: We propose the MVG algorithm to
improve the recall of any bi-encoder by incurring a marginal over-
head in NN-index size. The core algorithmic questions here are:
(i) how many behavioral representations to learn per document,
and (ii) how to learn them.MVG provides principled answers for
both, by leveraging the connection to PYP for (i) and formulating
(ii) as a constrained clustering problem on a unit sphere. MVG is
also easy to deploy within any industrial infrastructure that sup-
ports bi-encoders since the only change is in the set of document
representations to be indexed for NN-search (Table 1).
• Experiments on Public Datasets: We evaluateMVG as an ap-
proach for first-stage retrieval where recall and mean-average pre-
cision (MAP) are the key metrics. When applied on top of state-
of-the-art (SOTA) single-vector approaches [31, 35] in three large
diverse datasets, MVG consistently delivers 12 − 28% recall and
4 − 33%MAP gains (computed over 𝑘 = 100 results) by incurring
only 1.3× increase in index size. In comparison with the prominent
SOTA ‘multi-vector’ ColBERT [19],MVG achieves gains of 3%−15%
recall and 1%−17%MAP by requiring 4−6× smaller index space. All
gains are in absolute percentages, and statistically significant [45].
• Experiments within E-Commerce Search Engine: MVG im-
proves a production-quality bi-encoder by 13% recall and 4% MAP
(at 𝑘 = 100) in terms of offline metrics by increasing the index size
by only 1.2% (a large fraction of tail documents were absent from
the behavioral graph as is typical in an industrial setting; such docu-
ments were not allocated any behavioral representations by MVG).
In an A/B test, MVG significantly increased customer engagement
metrics without degrading customer-perceived latency.

2 RELATEDWORK

We review prior dense retrieval (DR) literature, emphasizing the
axes which set our work apart via Table 2. We categorize prior DR

https://huggingface.co
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methods into two based on whether they learn a single or multiple
representation(s) per query and document.

Single-Vector Bi-encoders learn a single vector per query and
document; suchmethods arewidely used industrially, e.g. Youtube [5],
Airbnb [11], Amazon [31]. Early approaches includeDSSM [13] and
DESM [28] which relied on simple text embedding approaches (e.g.
FastText [16]) and worked well for short-text documents. Recently,
the emphasis has shifted to transformer [6] based bi-encoders
such as S.Bert [35] to better capture semantic similarity for long-
text documents by considering the entire context. Several works
try to improve negative mining for single-vector bi-encoders, e.g.
ADORE [47], DPR [18] and most recently, ANCE [43] which relies
on globally hard negatives. Our proposedMVG is complementary
to any work in this category, and can be applied on top of any
single-vector bi-encoder to improve retrieval performance.

Multi-Vector Bi-encoders are becoming increasingly common
as a single vector may not suffice to adequately represent a docu-
ment it [32, 42]. We further subdivide these works in two. (1) Fixed
count: These methods learn𝑚 vectors for each document by either
directly using the first𝑚 BERT token embeddings (ME-BERT [24],
or after clustering all token embeddings into𝑚 centroids (PQR [39]),
or by having𝑚 [CLS]-like tokens instead of one (MVR [48]). These
methods typically employ a different relevance scoring function
during inference than the one used in training. (2) Variable count:
Here the number of representations learned per document may
vary, e.g. based on document length. The most prominent approach
here is ColBERT [19] which achieves state-of-the-art performance
by preserving all (contextualized) token embeddings from queries
and documents and using late-stage interaction in an end-to-end
differentiable manner. Several works consider how to optimize
memory usage of ColBERT while minimally impacting retrieval
performance. Maize [38] uses a residual compression mechanism
with a denoised supervision strategy; CQ [46] uses contextual quan-
tization of token embeddings; COIL [9] leverages contextualized
token representations stored in inverted lists; ColBERTer [12] re-
moves document tokens which minimally impact final scores. Other
methods are PRF [41] which uses pseudo-relevance feedback and
MVA [49] which uses multiple vector attention mechanism. How-
ever, a common limitation here is that the learned document repre-
sentations are all semantic, which is limited by what can be inferred
from intrinsic document features (e.g. tokenized text)–especially
for short-text documents. Moreover, the proposed MVG is comple-
mentary to these DR methods and can be used in combination to
create behavioral representations to augment the learned semantic
representations.

Exploiting graph structure:Ourmethod uses query-document
relevance graph to compute behavioral representations; this is
broadly related to the relational learning [10] and graph neural
networks [8, 22, 44] but they are typically expensive to serve on-
line at web-scale. The closest work here is simultaneous work [21]
which uses graph information within a bi-encoder model. But it
does not consider variable number of representations per document.

Choice of Baselines: Given the rapid pace of DR research, and
our focus on retrieval settings which are uncommon for DR, a core
experimental challenge is select a set of representative baselines
which (a) allows us to test all key hypotheses but also (b) is small in
number so that we can retrain and tune performance on all three

public datasets that we consider. We shortlist two single-vector
baselines: classic DSSM and transformer-based S.Bert which are
better suited for short- and long- text applications respectively. We
choose ColBERT as the competitive multi-vector baseline. Fortu-
nately, we do not have to consider follow-up works of ColBERT
which trade-off memory footprint for retrieval performance as we
already observe superior performance w.r.t ColBERT in Table 5.

3 PRELIMINARIES

We provide a brief background on dense retrieval and use this to
formally state the problem we tackle in the rest of the paper.

3.1 Dense Retrieval

Consider historical relevance data (Q,D,𝑤) over a set of queries
Q and documents D. For 𝑞 ∈ Q, 𝑑 ∈ D, the relevance score (e.g.
based on past clicks) is noted as 𝑤𝑞𝑑 ≥ 0. Let M be a bi-encoder
model with query encoderM𝑄 and document encoderM𝐷 , where
the parameters for the two encoders can be fully or partially shared.

Single-Vector Bi-encoders. Here, we obtain a single represen-
tation per query or document. Denote these as x𝑞 := M𝑄 (𝑞) and
x𝑑 := M𝐷 (𝑑). Typically, | |x𝑞 | |2 = | |x𝑑 | |2 = 1, i.e. unit vectors in
some 𝑟 -dimensional space, and their relevance score is computed
via their dot product or cosine similarity:

rel (𝑞, 𝑑) := x⊤𝑞 x𝑑 (1)

As the query and document vectors can be inferred independently,
bi-encoders allow us to precompute document vectors and index
them in an efficient data-structure, e.g. HNSW [25] so that time com-
plexity of nearest-neighbor search to retrieve relevant documents
grows only logarithmically in the size of the document corpus.

Multi-Vector Bi-encoders. Here, we obtain one or more repre-
sentations per query or document. Denote them as {x𝑞𝑖 }𝑖∈[1,𝑚𝑞 ] =
M𝑄 (𝑞) and {x𝑑𝑖 }𝑖∈[1,𝑚𝑑 ] = M𝐷 (𝑑). Many scenarios are possible
as shown in Table 2, e.g. multiple vectors for documents only or for
queries only or for both; count of multiple vectors fixed or variable
across documents and queries. The most common formulation of
multi-vector relevance score [12, 19, 24, 46], based on max-sim

operator over document vectors for a given query vector, is:

rel(𝑞, 𝑑) :=
∑︁

𝑖∈[1,𝑚𝑞 ]
max

𝑗 ∈[1,𝑚𝑑 ]
x𝑞𝑖⊤x𝑑 𝑗 (2)

where again | |x𝑞𝑖 | |2 = | |x𝑑 𝑗 | |2 = 1 ∀𝑞, 𝑖, 𝑑, 𝑗 . Typically, queries
have short text; thus setting 𝑚𝑞 = 1 ∀ 𝑞 helps achieve the best
online latency. In this case, retrieval according to Equation (2) is
simply the following: build an NN-index of all representations for
all documents and conduct NN-search identical to single-vector
case.

3.2 Problem Formulation

Our goal is to augment semantic document representations learned
by a given bi-encoder with behavioral document representations
so as to improve the memorization performance of DR approaches.
For ease of exposition in the rest of the paper, we assume that bi-
encoder under consideration is a single-vector approach; but our
formulation and method generalizes to multi-vector bi-encoders in
a straightforward manner. Overall, our problem can be stated as:
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Table 2:MVG vs prior DR approaches on (a) size of nearest-neighbor (NN) index (e.g. HNSW [25]), (b) latency or time required

for NN search (for the same embedding dimensionality). Let𝐷 be the number of documents, 𝑡𝑑 (𝑡𝑞) be average number of tokens

per document (query). Let𝑚 be a fixed hyper-parameter, and 𝛿 be the relative increase in number of document representations

due to MVG. For conservative values such as 𝐷 = 1𝑀, 𝑡𝑞 = 8, 𝑡𝑑 = 128,𝑚 = 4, 𝛿 = 0.3, MVG achieves 7 − 90% less latency while

requiring 3 − 12× smaller index size than other representative multi-vector approaches, e.g. ColBERT,ME-BERT. Thus,MVG-

based dense retrieval is faster and requires lower memory; as we later show in Section 6, MVG also achieves better retrieval

performance.

Methods

Document representations

Index Size Online Latency

Nature Count

Single-vector methods, e.g. DSSM [13],
DESM [28], S.Bert [35], ANCE [43] semantic only only one per document O(𝐷) O(log𝐷)

ME-BERT [24],MVR [48], PQR [39] semantic only multiple, fixed hyperparameter𝑚 O(𝑚𝐷) O(log(𝑚𝐷))
ColBERT [19],Maize [38], COIL [9] semantic only multiple, tied to document length 𝑡𝑑 O(𝑡𝑑𝐷) O(𝑡𝑞 log(𝑡𝑑𝐷))
MVG applied on any single-vector ap-
proach (this paper)

semantic and
behavioral

multiple, variable per document based
on hyperparameter 𝛽 , 1 + 𝛿 on average O((1 + 𝛿)𝐷) O(log((1 + 𝛿)𝐷))

Problem 1 (Behavioral Representation Learning). Given
query-document relevance dataset (Q,D,𝑤), semantic representa-

tions of queries and documents {x𝑞}𝑞∈Q , {x𝑑 }𝑑∈D from a bi-encoder

and a budget 𝑀 on the total number of behavioral representations

across documents, learn behavioral document representations {v𝑑 𝑗 |
𝑗 ∈ [1, 𝑚𝑑 ]}𝑑∈D under the given budget so as to maximize the
relevance of historically associated query-document pairs.

maximize

∑︁
𝑞∈Q,𝑑 ∈D

𝑤𝑞𝑑 rel(𝑞, 𝑑) s.t.

∑︁
𝑑∈D

𝑚𝑑 ≤ 𝑀 (3)

Problem 1 aims to maximize the relevance score of past query-
document associations within a given memory budget, essentially
seeking better memorization of historical relevance data within
the bi-encoder representational space. This sets the stage for an
improved recall, which is crucial for DR approaches used for first-
stage retrieval. The above maximization objective can be further
expanded using the max-sim relevance score from Equation (2) as∑︁

𝑞∈Q,𝑑∈D
𝑤𝑞𝑑 rel(𝑞, 𝑑) =

∑︁
𝑞∈Q,𝑑∈D

𝑤𝑞𝑑 max
𝑗 ∈[0,𝑚𝑑 ]

x⊤𝑞 v𝑑 𝑗 (4)

where v𝑑0 := x𝑑 is fixed, | |v𝑑 𝑗 | |2 = | |x𝑞 | |2 = 1 ∀ 𝑞, 𝑑, 𝑗 , and queries
are assumed to represented as single vector each.

Jointly solving Problem 1 for behavioral document representa-
tions {v𝑑 𝑗 } 𝑗 ∈[1,𝑚𝑑 ],𝑑 ∈D and their count {𝑚𝑑 }𝑑∈D only permits
local search algorithms [26] which have no quality guarantees and
are also computationally expensive. Therefore, we instead seek a
two-step approach which can determine {𝑚𝑑 }𝑑∈D in a heuristic
manner, and then solve the simplified Problem 1 exactly to compute
the optimal behavioral representations {v𝑑 𝑗 } 𝑗 ∈[1,𝑚𝑑 ],𝑑∈D .

4 THEORETICAL CONNECTION

We leverage Pitman-Yor Process [34] (PYP) to explain the skewed
distribution of query diversity from Figure 1 (right). In this sec-
tion, we provide background on PYP and draw the connection to
document retrieval; later in Section 5, we show how to use it for
behavioral budget distribution among documents.

Pitman-Yor Process (PYP) [34] is a discrete-time stochastic
process that generalizes the popular Chinese Restaurant Process [1]
to accommodate power-law tails. In a PYP, customers arrive sequen-
tially to be seated in a restaurant with infinite tables, each with

infinite capacity. Let 𝑧𝑛 be the choice of table for𝑛𝑡ℎ customer. After
the arrival of 𝑛𝑡ℎ customer, let 𝑇𝑛,𝑘 be the number of customers at
table 𝑘 and let 𝑇𝑛 denote the number of occupied tables. The table
𝑧𝑛+1 picked by the 𝑛 + 1𝑡ℎ customer is distributed as

𝑃 (𝑧𝑛+1 |𝑧1, . . . , 𝑧𝑛) =
{
𝑇𝑛,𝑘−𝛽
𝑛+𝛼 , 1 ≤ 𝑘 ≤ 𝑇𝑛 occupied table

𝛼+𝛽𝑇𝑛
𝑛+𝛼 , 𝑘 = 𝑇𝑛 + 1 new table

(5)

where 𝛼 > 0 and 𝛽 ∈ (0, 1) are concentration parameters: for low
values of 𝛼 and 𝛽 , customers tend to crowd around fewer tables.
When choosing to sit at one of the occupied tables, observe that
customers prefer to sit at popular tables having higher values of
𝑇𝑛,𝑘 ; thus PYP naturally captures the ‘rich get richer’ phenomenon.

Connection to Document Retrieval: We posit that relevant
queries for a document have a clustered distribution, where each
query cluster encodes a latent intent for accessing the document
(e.g. kitchen and camping are two different intents to buy the same
gas lighter product). The number of query clusters is not known
in advance, and can grow as more queries are observed. There is
also a notion of ‘rich get richer’ as the search engine typically uses
mechanisms such as query auto-complete or auto-correct to ensure
that new queries are similar to common queries in the past. All
these characteristics make PYP a natural fit to model queries used to
retrieve a document via search engine. Concretely, each document
has an associated PYP according to which its associated queries
(customers) arrive and map to query clusters or intents (tables).

Query Diversity under PYP: The consequence of the above
connection is our ability to leverage classical results from discrete-
time stochastic processes to distribute the total budget 𝑀 of be-
havioral representations among documents in a principled manner.
Lemma 1 guarantees that the number of tables 𝑇𝑛 in a PYP grows
sublinearly as O(𝑛𝛽 ) in terms of the number of customers 𝑛.

Lemma 1 (Pitman [33] §3.3). The expected number of tables (𝑇𝑛)

occupied by 𝑛 customers under Pitman-Yor Process (Equation (5)) is:

E(𝑇𝑛 |𝛼, 𝛽) =
𝛼

𝛽


𝑛∏
𝑗=1

𝛼 + 𝛽 + 𝑗 − 1
𝛼 + 𝑗 − 1

− 1
 ≍ Γ(𝛼 + 1)

𝛽Γ(𝛼 + 𝛽)𝑛
𝛽

where Γ is the gamma function and ≍ indicates asymptotic equality.
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INPUT: Total 
Behavioral Vector 

Budget M

INPUT: Query-
Document Relevance 

(Q, D, w)

INPUT: Bi-Encoder 
g : Q ∪ D → ℝr

STEP 1: DISTRIBUTING 
BEHAVIORAL VECTOR 

BUDGET

STEP 2: LEARNING 
BEHAVIORAL 

DOCUMENT VECTORS

INTERMEDIATE: 
Per-Document 

Behavioral Vector 
Budget md

OUTPUT:
Behavioral 
Document 

Vectors  

{vdj ∈ ℝr}
1 ≤ j ≤ md

d ∈ 𝒟

Figure 2: Overview of the proposed method: MVG (1) splits

a total behavioral vector budget into per-document vector

budgets, and (2) uses a Bi-encoder to learn additional doc-

ument vectors to be indexed for nearest-neighbor search.

Both steps utilize the query-document relevance data.

Algorithm 1 MVG Algorithm (Step 2) for Learning Behav-

ioral Document Representations

Input: Semantic document vector x𝑑 from bi-encoder; query
vectors and relevance weights {x𝑞,𝑤𝑞𝑑 }𝑞∈Q ; budget 𝑚𝑑 of
behavioral vectors.

1: procedure MVG(x𝑑 , {x𝑞,𝑤𝑞𝑑 }𝑞∈Q ,𝑚𝑑 )
2: Cluster assignment matrix 𝑆𝑞𝑗 :=0, ∀ 𝑞 ∈ Q, 𝑗 ∈ [0,𝑚𝑑 ]
3: for 𝑞 ∈ Q do ⊲ random initialization
4: Pick 𝑗 ′ ∼ {0, . . . ,𝑚𝑑 } uniformly at random;
5: Set 𝑆𝑞𝑗 ′ := 1.
6: Fix one cluster center v𝑑0 := x𝑑 .
7: repeat

8: for 𝑞 ∈ Q and 𝑗 = 0, . . . ,𝑚𝑑 do ⊲ update assignments
9: 𝑆𝑞𝑗 = 1[ 𝑗 = argmax0≤ 𝑗 ′≤𝑚𝑑

x⊤𝑞 v𝑑 𝑗 ′]
10: for 𝑗 = 1 to𝑚𝑑 do ⊲ update cluster centers
11: v𝑑 𝑗 =

∑
𝑞 𝑆𝑞𝑗𝑤𝑞𝑑x𝑞 / ∑𝑞 𝑤𝑞𝑑𝑆𝑞𝑗

12: v𝑑 𝑗 = v𝑑 𝑗/∥v𝑑 𝑗 ∥2
13: until matrix 𝑆 does not change.
14: return behavioral document representations {v𝑑 𝑗 }

𝑚𝑑

𝑗=1.

Thus, if all documents follow identical and independent Pitman-
Yor Processes, the resulting distribution of query diversity across
documents (measured in terms of the number of query clusters)
also exhibits similar behavior as stated in Corollary 1. Our proposed
approach leverages this result as we discuss next.

Corollary 1. For a given document 𝑑 under the Pitman-Yor Pro-

cess Equation (5), the expected number of query clusters (𝑚𝑑 ) after

observing 𝑛𝑑 queries is: E(𝑚𝑑 |𝛼, 𝛽) ≍
Γ (𝛼+1)
𝛽Γ (𝛼+𝛽) (𝑛𝑑 )

𝛽
.

5 OUR APPROACH

Our proposed approach, called Multi-View Geometric Index (MVG),
works in two steps as shown in Figure 2. First, it determines how to
distribute the total budget𝑀 of behavioral representations across all
documents by leveraging the above connection to PYP (Section 5.1).
Then, it computes the behavioral representations of a document
by clustering its associated queries in the representational space
learned by the Bi-encoder (Section 5.2). After describing these steps,
Section 5.3 reviews howMVG fitswithin the dense retrieval pipeline,
and also highlights its desirable properties for use in practice.

5.1 Step 1: Budget Distribution

How many behavioral representations𝑚𝑑 out of a total budget𝑀
should we allocate to a document 𝑑?MVG leverages the connection
to PYP from Section 4 to provide a principled answer: the number

of behavioral representations allocated to a document should be pro-

portional to the number of observed query clusters for the document.
If a document 𝑑 has 𝑛𝑑 =

∑
𝑞∈Q 1[𝑤𝑞𝑑 > 0] relevant queries in the

training set, then:

𝑚𝑑 ∝ 𝑛
𝛽

𝑑
(6)

where 𝛽 ∈ (0, 1) is now an experimental hyperparameter that
allows us to smoothly interpolate between uniform distribution
(𝛽 = 0) and popularity distribution (𝛽 = 1). Due to its ability to
model a rich set of budget distribution schemes, the functional form
in Equation (6) is widely used in other applications as well [14, 27].

5.2 Step 2: Representation Learning

Given the count𝑚𝑑 of behavioral representations to learn for a doc-
ument 𝑑 , our approach for learning them is to directly optimize the
objective in Problem 1 using max-sim formulation in Equation (2).
When rel is dot product, it is easy to show Equation (3) is the
weighted 𝑘-means clustering objective with 𝑘 = 𝑚𝑑 + 1 and one
constrained cluster center v𝑑0 := x𝑑 . Algorithm 1 simply adapts
Llyod’s algorithm [23] for this setting.

5.3 MVG in Practice

We highlight thatMVG is a light-weight approach that is easy for
dense retrieval practitioners to use. As shown in Table 1, MVG can
be implemented as a single step (step 3) in the standard DR pipeline,
with no change in Bi-encoder training or inference procedure (steps
1-2), the nearest-neighbor (NN) index building step (step 4), or the
online retrieval logic (step 5). The only impact of MVG is an increase
in the number of document representations to be indexed for NN
search. But due to efficient NN index data structures, this incurs
only a sublinear increase in online retrieval latency [2].

An additional implementation detail when usingMVG (or any
approach learning multiple representations for documents such as
ColBERT [19]) is that the nearest neighbor documents obtained
online for a query can contain duplicates as a single document can
be retrieved in multiple times due to its many representations. Thus
additional deduplication is necessary. However, we find that the
deduplication overhead is negligible as online retrieval latency is
heavily dominated by that of NN-search.

6 EXPERIMENTS

We conduct an extensive evaluation of MVG to answer the fol-
lowing questions: (Q1) Applied on propriety e-commerce product
search dataset (which is our motivating problem setting), doesMVG
outperform production dense retrieval baseline in offline metrics?
(Q2)When A/B tested, doesMVG improve customer engagement
within acceptable latency regression? (Q3) Does MVG improve
over state-of-the-art dense retrieval approaches across a diverse
set of public datasets? (Q4) What is the behavior of MVG with
respect to important hyperparameters, e.g. budget for behavioral
representations and embedding dimensionality of base bi-encoder?
(Q5) How can we understand the specific examples where MVG
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Figure 3: On ProdSearch Dataset, (Left) MVG improves over

Prod on Recall@𝑘 for all 𝑘 ∈ [1, 200]. (Right)MVG improves

Recall@100 for >55% of query traffic (green), while hurting

only < 5% of query traffic (orange).

leads to substantial improvements? (Q6)How doesMVG behave on
datasets where its motivating factors (e.g. skewed distributions in
Figure 1) are absent? Our findings for these questions are detailed
in order in Section 6.1 through Section 6.6.

MVG Implementation: We use query-document pairs with
positive relevance scores in the training data as input to MVG,
treating all queries for a document as equally relevant. By default,
we use 𝛽 = 0.5 and learn 𝑀avg = 0.3 additional vectors per doc-
ument on average. We apply MVG as a wrapper over multiple
baseline bi-encoder models described later.

Evaluation Metrics: We use Faiss [15] to retrieve documents
that have the highest cosine similarity with the test queries and
deduplicate the retrieved document list when evaluating MVG.
We adopt two of the most commonly used information retrieval
metrics, namely, Recall and Average Precision to evaluate the quality
of models in retrieving relevant documents. More specifically, Recall
measures the fraction of relevant documents within the retrieved
document list, whereas Average Precision measures the goodness
of relevant documents by their ranks within the retrieved document
list. Due to high variability in the number of relevant documents
across queries, we limit the retrieval to top 𝑘 ∈ {10, 100} documents
with the highest cosine similarity. We report Recall@𝑘 andMAP@𝑘

(mean Average Precision at 𝑘) as the average of corresponding per-
query metrics over all queries, in percentage.

6.1 Results on Propriety ProdSearch Dataset

We took a uniform sample from fourteen months of anonymized
aggregated search logs from an e-commerce search engine for this
experiment. We used data recorded in the first twelve months for
training and validation, setting aside the last two months for testing.
The document corpus consists of about 60 million products. The
baseline dense retrieval model (Prod) follows the network architec-
ture from [13]. Both Prod andMVG were trained on 1M queries,
and tested on 100K queries. For comparison, we also evaluate the
standard BM25 model [37], which relies solely on the statistics of
overlapping terms between queries and documents.

The overall columns in Table 3 show the metrics computed on
all test queries. We see that MVG applied to Prod (MVG +Prod)

consistently outperforms Prod alone by improving Recall@𝑘 be-
tween 4.6%−12.4%, andMAP@𝑘 between 0.4%−4%. These gains are
statistically significant according to two-sided macro-sign test [45],
and also generalize to 1 ≤ 𝑘 ≤ 200 as shown in Figure 3 (left). In
contrast, BM25 underperforms, indicating its inability to retrieve
relevant documents by pure lexical matching from a large corpus.

The memorization and generalization columns in Table 3
show the break-down of metrics by queries that appeared in and
were absent from the training set, respectively. Even though MVG
primarily targets memorization of query-document pairs in the
training set, we noticed that it also generalized to new queries.
These results showcase the effectiveness of memorization in dense
representation space: memorized queries for a document can also
help new similar queries discover the relevant document.

Figure 3 (right) shows the fraction of query traffic in whichMVG
has gained or lost in Recall@100 compared to Prod alone. We see
that the Recall@100 of MVG increased in over 55% of query traffic,
matched with Prod in about 40% of query traffic, but lost only in
less than 5% query traffic. This analysis shows thatMVG is effective
and safe to use even though the additional queries may also, in
theory, invite more irrelevant documents into retrieval results.

6.2 A/B Testing in E-Commerce Product Search

An e-commerce service typically collects first-stage retrieval re-
sults from several sources like lexical matchers (inverted indices),
semantic matchers (dense retrieval methods), upstream machine
learning models, and advertised products. To evaluate MVG online,
we replace only the production dense retrieval method (X) with its
MVG-augmented version (X+MVG) and measure improvements in
(a) customer engagement: number of products purchased (Units)
and the amount of product sales (PS), (b) relevance quality: per-
centage of exact or substitute matches (E+S) within the top-16
products, (c) sparse results: percentage of queries with less than
16 products retrieved (SR), and (d) latency P90: value of latency at
90th percentile traffic. Table 4 tabulates the results. We observe that
MVG brings statistically significant improvements in customer en-
gagement metrics and sparse results without impacting the overall
latency. However, there is a slight degradation in relevance quality
metrics, which we discuss in Section 7 and leave for future work.

6.3 Results on Publicly Available Datasets

We evaluate MVG on publicly available datasets which have the
characteristics that motivated our approach: skewed distribution in
frequency and diversity of queries across documents from Figure 1.

Dataset Description: (1) EurLex [4]
2 for labeling legal docu-

ments with one or more EUROVOC concepts (e.g. international
affairs, data processing). We use document titles as queries and con-
cepts as documents for dense retrieval. The dataset consists of 4271
documents and 45K, 6K, and 6K queries in the training, validation,
and test sets, respectively. (2) PubMed

3 [17] for classification of
biomedical articles into one or more NIH Medical Subject Headings
(MeSH) (e.g. fibrosis, humans, and mutation). We use article titles
as queries, and MeSH labels as documents. After preprocessing
and splitting, the dataset consists of 27K documents and 1.2M, 1K,

2https://huggingface.co/datasets/eurlex
3https://www.kaggle.com/bonhart/pubmed-abstracts

https://www.kaggle.com/bonhart/pubmed-abstracts
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Table 3: Results onproprietary ProdSearch dataset:Metrics are reported over all test queries (“overall”), test queries seen during

training (“memorization”), and those not seen during training (“generalization”). Per-query metric values are aggregated by

accounting for the traffic contribution of queries. Bold and underline typefaces follow the same convention as in Table 5.

Method

Recall@𝑘 MAP@𝑘 Index

Overall Memorization Generalization Overall Memorization Generalization Size

𝑘 = 10 𝑘 = 100 𝑘 = 10 𝑘 = 100 𝑘 = 10 𝑘 = 100 𝑘 = 10 𝑘 = 100 𝑘 = 10 𝑘 = 100 𝑘 = 10 𝑘 = 100 (GB)

BM25 4.50 13.75 4.13 13.25 13.23 25.47 1.92 2.64 1.72 2.45 6.60 7.13 N/A
Prod 28.72 55.39 28.50 55.49 33.86 53.00 17.13 21.48 17.04 21.54 19.31 20.19 30.0

MVG + Prod 33.33 67.77 33.19 68.14 36.76 59.04 17.55 25.54 17.47 25.74 19.51 20.73 30.8

Table 4: A/B test results showing % improvements fromMVG

over production system. Underline indicates statistical sig-

nificance while arrows indicate whether higher (↑) or lower

(↓) is better on ametric. Allmetrics are defined in Section 6.2.

Units (↑) PS (↑) E+S (↑) SR (↓) Latency P90 (↓)
+0.24% +0.06% −0.18% -1.21% −3ms

and 100K queries for the training, validation, and test sets, respec-
tively. (3) WikiSeeAlso

4 [20] for predicting the titles of related
Wiki pages from a given webpage title. The dataset consists of
300K documents and 500K, 138K, and 177K queries in the training,
validation, and test sets, respectively.

Baselines: We compare MVG to the following: (i) BM25 [37]
as before. (ii) Popularity, which ranks documents based on the
count of unique queries associated in training set. Even though
the same document list is applied to all test queries, this baseline
remains competitive on datasets with skewed distribution of as-
sociation between queries and documents. (iii) Deep Structured

Semantic Model (DSSM) [13] using SentencePiece Byte-Pair En-
coding [3] to tokenize text. The tokenizers are trained on both
queries and documents to learn a vocabulary of size 40K for Eu-
rLex, 300K for PubMed, and 100K for WikiSeeAlso. The vocabulary
sizes were set to roughly half the number of unique words in the
respective datasets. (iv) SentenceBERT (S.Bert) [35] initialized
using domain-specific pretrained BERT: LegalBERT5 for EurLex,
PubMedBERT6 for PubMed, and BERTBase7 forWikiSeeAlso and fine-
tuned using default hyper-parameter settings. (v) ColBERT [19]
using the default configuration. This is the state-of-the-art dense
retrieval method learning multiple representations per document.

MVG vs Single-Vector Bi-encoders:We applyMVG as a wrap-
per on top of DSSM and S.Bert. We do not compare with solutions
built for the datasets that are not of bi-encoder architecture because
they are not compatible with MVG. Table 5 summarizes the per-
formance of all approaches on all the public datasets. Popularity
is more competitive than BM25 on EurLex and PubMed which ex-
hibit skewed query-document distribution but not on WikiSeeAlso
that has the least skewed distribution among the three datasets
as shown in Figure 1. The dense retrieval approaches DSSM and
S.Bert achieve higher metrics, with S.Bert yielding higher metrics
on PubMed dataset where semantic understanding of documents

4http://manikvarma.org/downloads/XC/XMLRepository.html
5https://huggingface.co/nlpaueb/legal-bert-base-uncased
6huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
7https://huggingface.co/bert-base-uncased

is more crucial. Importantly,MVG consistently outperforms both
these baselines, delivering upto 27.27% gain in Recall@100 and
22.95% gain in MAP@100 – at the cost of only 1.3× increase in
index size. Thus MVG can bring value in a wide variety of settings
across diverse datasets and underlying bi-encoders.

MVG vs Multi-Vector Bi-Encoder: Importantly,MVG also im-
proves over the state-of-the-art multi-vector ColBERT baseline
which learns multiple semantic (but no behavioral) representations
per document (and query). Both MVG and ColBERT can be viewed
as improvements over the same single-vector S.Bert bi-encoder
to incorporate multiple behavioral representations and multiple
semantic representations respectively. However, as seen in Table 5,
on datasets with motivating skewed distributions, behavioral repre-
sentations turn out to be much more effective. Thus,MVG +S.Bert
outperforms ColBERT by a statistically significant 3 − 15% recall
and 1− 17%MAP by requiring 4− 6× smaller space as measured by
number of million floating points stored within the NN-index. Our
results suggest that improvements fromMVGwill likely persist over
recent dense retrieval methods which optimize the memory over-
head of ColBERT by sacrificing some retrieval performance Gao
et al. [9]. Finally, Figure 5 illustrates that wide spectrum of memory
overhead that MVG offers a practitioner to play with, compared
to ColBERT which is a fixed point in the figure; this makesMVG
better suited to practical settings with stricter latency and memory
requirements.

6.4 Effect of Hyper-parameters and Base Model

We study how the performance depends on choice of hyperparam-
eters forMVG and the capacity and quality of base bi-encoder.

Budget Hyper-parameters:We vary total budget𝑀 by vary-
ing the average number of behavioral vectors per document𝑀avg ∈
[0.01, 3]. Figure 4 (left) illustrates how the relative budget allocated
to head, torso, tail documents varies with 𝛽 (these are the top, mid-
dle, bottom 33%𝑙𝑒 documents based on number of queries 𝑛𝑑 ). As
𝛽 → 0, all documents get equal budget, and when 𝛽 → 1, 80% bud-
get is allocated to head documents which account for most unique
queries. Intermediate values provide more reasonable budget distri-
butions, and thus we use them to chart the variation of Recall@100
with𝑀avg in Figure 4 (right). For a given 𝛽 , as we increase𝑀avg, the
recall steeply improves due to the improved memorization. The best
recall is achieved for 𝛽 = 0.3, 𝑀avg = 0.5. The recall falls gradually
as𝑀avg is increased beyond its optimal value however, suggesting
the MVG overfits to training data and hurts generalization. Larger
values of 𝛽 overfit more severely to the head documents, and hence
show a steeper decrease in this regime. Importantly, observe that for

http://manikvarma.org/downloads/XC/XMLRepository.html
https://huggingface.co/nlpaueb/legal-bert-base-uncased
huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
https://huggingface.co/bert-base-uncased
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Table 5:MVG outperforms baselines on publicly available datasets in Recall@𝑘 andMAP@𝑘: Bold indicates bestmethod under

each metric within each row group, while underline signifies statistically significant differences (𝑝 < 0.001) with respect to the

second best method in the same row group according to a two-sided macro-sign test [45].

Method

Recall@100 MAP@100 Index Size (# Floats in Millions)

EurLex PubMed WikiSeeAlso EurLex PubMed WikiSeeAlso EurLex PubMed WikiSeeAlso

BM25 18.95 20.55 25.90 7.26 11.22 9.55 N/APopularity 46.26 33.65 0.20 8.35 10.35 0.12
DSSM [13] 67.20 20.24 35.44 31.83 6.58 11.42 1.84 7.52 78.95

MVG + DSSM 81.62 49.01 37.90 51.28 16.70 13.73 2.40 9.77 102.63
S.Bert [35] 50.58 35.49 29.38 14.75 6.87 9.66 5.53 22.56 236.86

MVG + S.Bert 78.15 59.62 42.12 47.87 17.73 13.78 7.19 29.32 307.92
ColBERT [19] 73.47 44.88 39.01 31.24 14.35 12.70 30.66 170.22 1748.16
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all hyper-parameters,MVG consistently matches or outperforms
the Prod baseline (gray dashed line).

EmbeddingDimension of Base Bi-Encoder: In Figure 6 (left),
we vary the embedding dimensionality 𝑟 of DSSM, and compare it
to 𝑟 -dimensionalDSSM +MVGwith 1.3×memory overhead. We see
that the recall of DSSM increases steadily with larger dimensions.
This behavior is expected based on [36]; and MVG +DSSM follows
this pattern too. In particular, at 𝑟 = 32, MVG brings a 18% recall
improvement (from 58% to 76%) compared to DSSM with just 1.3×

26 28 210

Embedding dimension

0.2

0.4

0.6

0.8

M
et

ri
c@

10
0 DSSM, Recall

MVG+DSSM, Recall

DSSM, MAP

MVG+DSSM, MAP

+18.51%

+11.21%

+26.44%

+16.89%

0 100 200 300
Training iterations

0.1

0.2

0.3

0.4

0.5

0.6

V
al

id
at

io
n

M
et

ri
c@

10
0

DSSM, Recall

MVG+DSSM, Recall

DSSM, MAP

MVG+DSSM, MAP

Figure 6: On Eulex dataset, (Left) MVG improvement with

variation of embedding dimensions (Right) MVG improve-

ment throughout the training iterations.

memory overhead. However, even with 100% memory overhead
(doubling dimensionality), DSSM with 𝑟 = 64 attains a recall of just
63%. This shows that index size increase by allocating non-uniform
representational budget (e.g. more vectors to head documents) per-
forms better than uniformly increasing representational budget
across all documents (e.g. dimensionality increase).

Base Model Quality: To effectively produce base model DSSM
of varying quality, we set a limit on the training iterations (or train-
ing set size) for base model. Figure 6(right) shows the metrics on
EurLex dataset for base model DSSM andMVG (applied to DSSM)
at various training iterations. The Recall@100 and MAP@100 of
DSSMmodel gradually increase as training progresses before show-
ing sign of model overfitting towards the end where metrics de-
creased. In the early stage of training,MVG improves over DSSM
with 42.8% for Recall@100 and 37.4% on MAP@100, which in-
dicates that MVG can improve on DSSM even when it has not
fully converged. At the stage where DSSM attains the highest Re-
call@100,MVG shows 12.5% and 19.2% improvement over DSSM
on Recall@100 and MAP@100 respectively. We also evaluate the
impact of MVG over pretrained BERT models with no task-specific
finetuning on EurLex dataset: BERTBase pretrained on general data
source, LegalBERT pretrained on European legislation documents.
As shown in Table 6,MVG brings large recall and MAP improve-
ments, suggesting that applying MVG over pretrained bi-encoders
can potentially serve as a light-weight alternative to expensive
fine-tuning when memorization is the primary objective.
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Table 6: On Eurlex dataset, MVG improves over BertBase

and LegalBertmodels on two metrics.

Method

Recall@𝑘 MAP@𝑘

𝑘 = 10 𝑘 = 100 𝑘 = 10 𝑘 = 100
BertBase 0.66 3.42 0.23 0.31

MVG + BertBase 55.84 76.20 43.46 46.58
LegalBert 3.74 11.53 1.92 2.26

MVG + LegalBert 56.15 77.15 43.53 46.90
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Figure 7: On ProdSearch dataset, t-SNE [40] visualization of

vectors query vectors (grey dots), document vectors (red dia-

mond). MVG captures the relevance of far-away queries by

having several auxilary vectors (blue cross).

6.5 Case Studies

Figure 7 depicts case studies from ProdSearch dataset to help un-
derstand where and how MVG helps compared to the underly-
ing bi-encoder. For each document, we display its semantic vector
learned by Prod as a red diamond, behavioral vectors learned by
MVG as blue crosses, and queries associated with the document in
the training data as grey dots–after projecting all vectors into two
dimensions using t-SNE [40]. While 𝐿2 distances in the projected
space only approximately preserve cosine similarities in the origi-
nal space, these plots provide an insight into the relative distances
among all vectors of interest in the high-dimensional space. After
examining such plots for many documents, we discover two types
of scenarios where MVG proves most useful over Prod bi-encoder.

Figure 7 (left) depicts the first success scenario: the Prod’s se-
mantic document vector captures only a single group of relevant
queries (red diamond is near one grey cluster only), andMVG learns
behavioral vectors (blue crosses) to capture other groups of relevant
queries. Observe that the blue crosses are not only situated close to
tight grey clusters (likely queries sharing the same intent) but are
also far away from the red diamond (semantic document vector).
This visually confirms thatMVG learns behavioral vectors which
complement the semantic Prod vector of the document, and thus
representation power is not wasted trying to capture the same set
of queries more than once. Figure 7 (right) shows the second suc-
cess scenario: the Prod document vector is unable to capture any
single group of relevant queries sufficiently well (red diamond is in
a sparse central region away from most grey points). In this case,

Table 8: On MSMarco dataset [30] with flat document popu-

larity distribution,MVG does not improve over single-vector

or multi-vector baselines; notably, it does not hurt either.

Recall@𝑘 ANCE [43] ANCE+MVG ColBERT [19]

𝑘 = 10 58.35 58.35 60.83
𝑘 = 100 85.24 85.24 85.82
𝑘 = 1000 95.87 95.66 96.18

the Prod document vector is essentially wasted, whileMVG suc-
cessfully learns multiple behavioral vectors which better represent
the dense clouds of grey points.

Table 7 provides examples of query-document pairs from Prod-
Search training dataset that were missed by the top-100 retrieved
documents of the Prodmodel, but were correctly captured byMVG.
For these cases, a single vector for a document was insufficient; as
MVG boosts the relevance scores of positive query-document pairs
much more than negative ones (Figure 8), MVG is able to rectify
these memorization gaps.

6.6 Results on Datasets w/o Skewed

Distribution

How does MVG work on datasets where motivating characteristics
from Figure 1 are absent? To answer this, we use the popular MS-
Marco [30] question-answering dataset which has flat document
popularity distribution, likely due to synthetic curation and heavy
preprocessing. Table 8 compares the performance of state-of-the-art
single-vector (ANCE [43]) and multi-vector (ColBERT [19]) meth-
ods to that of MVG +ANCE. We see thatMVG does not bring gains
over ANCE as expected; in this case, the improvements from multi-
vector ColBERT method are marginal too. Importantly, even when
motivating dataset characteristics are absent, MVG does not signif-
icantly decrease performance compared to underlying bi-encoder.

7 CONCLUSION AND FUTUREWORK

Wepresented a simple yet effective approach calledMVG to improve
any given bi-encoder model for first-stage retrieval by incurring
only a marginal memory overhead. MVG was motivated by the
skewed distributions in document popularity and query diversity
in real-world retrieval settings, which have thus far largely been
overlooked in the dense retrieval literature. To correct for this, our
main ideas were to (1) carefully consider the distribution of repre-
sentational budget among documents based on document properties
(e.g. popularity); (2) learn behavioral representations for documents
which can more flexibly memorize past query-document associa-
tions compared to the typical semantic representations which are
limited by what can be inferred from intrinsic document features
(e.g. tokenized text that is short). Extensive experiments over three
large public datasets, a proprietary e-commerce search dataset, and
an A/B test consistently demonstrated the merits of our ideas and
the specific way in whichMVG incorporates them–as long as the
dataset characteristics align with our motivations. When dataset
characteristics deviate, however, (e.g. MS Marco) we saw thatMVG
does not bring gains; but it does not significantly hurt either.
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Table 7: Examples from ProdSearch training dataset demonstrating gaps in memoriza-

tion of Prod model: the similarity scores are low, leading to ranks worse than 100.MVG

rectifies these gaps, leading to improved similarity scores and ranks.

Query Document (Product)

Prod MVG + Prod

Sim Rank Sim Rank

automatic water plant DIY Automatic Drip Irrigation Kit 0.65 >500 0.72 74
art for toddlers Doodle Dog Arts and Crafts 0.63 265 0.75 24

gym glives Adidas Performance Gloves 0.64 >500 0.73 81
label manager Brother Easy Portable Label Maker 0.66 112 0.75 8

arm mobile holder Adidas Sports Armband for iPhone X 0.70 >500 0.80 19

We hope that our work paves the way for next generation of
dense retrieval approaches which more carefully consider the dual
questions of representational budget distribution, and of jointly
learning semantic and behavioral representations. Some concrete
directions for future work are: (a) improving robustness to noise and
overfitting (Table 4, Figure 5) by using a discriminative approach
instead of clustering, (b) hyperparameter-free automatic way to
infer the number of behavioral representations per document.
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