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[1] We explore and review the value of soil moisture measurements in vadose zone
hydrology with a focus on the field and catchment scales. This review is motivated by the
increasing ability to measure soil moisture with unprecedented spatial and temporal
resolution across scales. We highlight and review the state of the art in using soil moisture
measurements for (1) estimation of soil hydraulic properties, (2) quantification of water
and energy fluxes, and (3) retrieval of spatial and temporal dynamics of soil moisture
profiles. We argue for the urgent need to have access to field monitoring sites and
databases that include detailed information about variability of hydrological fluxes and
parameters, including their upscaled values. In addition, improved data assimilation
methods are needed that fully exploit the information contained in soil moisture data. The
development of novel upscaling methods for predicting effective moisture fluxes and
disaggregation schemes toward integrating large-scale soil moisture measurements in
hydrological models will increase the value of soil moisture measurements. Finally, we
recognize a need to develop strategies that combine hydrogeophysical measurement
techniques with remote sensing methods.
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1. Introduction

[2] Soil moisture is a key variable for understanding
hydrological processes in the vadose zone. It plays an
important role in weather and climate predictions from the
regional to the global scale by controlling the exchange and
partitioning of water and energy fluxes at the land surface.
Agricultural and irrigation management practices, especially
in semiarid and arid regions, largely depend on a timely and
accurate characterization of temporal and spatial soil mois-
ture dynamics in the root zone because of the impact of soil
moisture on the production and health status of crops and
salinization. In addition, soil moisture also plays a major role
in the organization of natural ecosystems and biodiversity.
[3] Soil moisture studies have mainly focused on the

characterization of soil moisture fields at various spatial
scales. Reviews on this topic were published by Blöschl
and Sivapalan [1995], Mahmood [1996], Sposito [1998],
and Western et al. [2002]. We anticipate an increasing
availability of soil moisture data in the near future because
of the increased use of nondestructive measurement techni-
ques, such as ground penetrating radar [e.g., Eppstein and
Dougherty, 1998; Huisman et al., 2001, 2002; Lunt et al.,

2005; Lambot and Gorriti, 2007], soil moisture sensor
networks [e.g., Cardell-Oliver et al., 2005] and new remote
sensing platforms [e.g., Wagner et al., 2007], such as
SMOS [Kerr et al., 2001] and SMAP (http://smap.jpl.
nasa.gov). These new methods provide unique opportuni-
ties to map the spatial and temporal variation of soil
moisture at an unprecedented resolution and with the
potential of providing measurement coverage across a range
of scales. However, guidance is needed on how to effec-
tively use this increasing wealth of soil moisture data
toward advancing the field of vadose zone hydrology.
Specifically, in this paper we review and discuss the
scientific benefits of improved characterization of spatial
and temporal soil moisture dynamics and we review
approaches that require information contained in soil mois-
ture measurements to predict hydrological state variables
(e.g., soil moisture fields, soil water storage), parameters
(e.g., hydraulic properties) and fluxes (e.g., evapotranspi-
ration, groundwater recharge, runoff, and plant water up-
take) at the field and catchment scale. We focus on
information content rather than on availability and perfor-
mance of soil moisture measurement techniques, as these
have been recently addressed by Robinson et al. [2008].
[4] The integration of observations characterizing the

state of a system (e.g., vadose zone moisture content) into
models to predict system states is known as data assimila-
tion. It is frequently used in meteorology and climate
research [Heathman et al., 2003], and increasingly in
hydrology. In the present context, data assimilation can be
used to consider soil moisture information from remote and
ground sensing to improve model predictions of soil mois-
ture at the scale of interest, and to resolve spatial and
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temporal structure of soil moisture using surrogate infor-
mation (soil texture and depth, topography). Alternatively,
data fusion approaches are applied in the hydrogeophysics
field [Hyndman and Gorelick, 1996; Kowalsky et al., 2005;
Rubin and Hubbard, 2005; Vereecken et al., 2004, 2006], to
optimally merge uncertain model predictions and soil mois-
ture data. In this review, we summarize the different
approaches toward improving soil moisture prediction.
[5] The paper is organized in nine sections. In section 2

we will briefly address the approaches used to measure and
predict soil water at the field and catchment scale. Data
assimilation methods are presented in section 3. In section 4,
we address the retrieval of high-resolution temporal and
spatial soil moisture distributions from locally measured soil
moisture data with a special focus on the value of near-
surface soil moisture measurements to retrieve vertical soil
moisture profiles. The use of soil moisture data to derive
soil hydraulic properties is discussed in section 5. In
section 6, we discuss how soil moisture data can be used
to derive hydrological fluxes. Section 7 evaluates the
potential of soil moisture data and its spatial variability to
improve the prediction of surface energy fluxes. The deri-
vation of structural, morphological and other soil properties
is discussed in section 8. In section 9, we discuss further
research needs.

2. Methods for Measuring and Modeling Soil
Moisture

2.1. Overview of Soil Moisture Measurement
Techniques

[6] There is a substantial body of literature describing soil
moisture measurement methods [e.g., Evett and Parkin,
2005]. A recent review on advances in sensor technology,
in particular in the field of hydrogeophysics and distributed
sensor development, is given by Robinson et al. [2008].
They defined two main categories of soil moisture measure-
ments: contact-based and contact-free methods. Contact-
based methods require direct contact with the soil. Examples
of contact methods include capacitance sensors [e.g., Dean
et al., 1987; Bell et al., 1987; Blonquist et al., 2005a, 2005b;
Fares and Polyakov, 2006; Bogena et al., 2007], time
domain reflectometry [Topp, 2003; Robinson et al., 2003],
electrical resistivity measurements [e.g., Goyal et al., 1996;
Hymer et al., 2000; Zhou et al., 2001; Michot et al., 2003;
Samouelian et al., 2005], heat pulse sensors [Valente et al.,
2006], fiber optic sensors [Alessi and Prunty, 1986; Garrido
et al., 1999; Fields et al., 2000; Robinson et al., 2008] and
destructive sampling (e.g., gravimetric methods). These
measurement techniques typically provide spatially and
temporally highly resolved measurements at the point scale
(e.g., vertical soil moisture profile) and the spatial-temporal
dynamics of soil moisture at the field scale. Excellent
reviews of each of these methods and discussions on the
attainable accuracy are available, and the reader is referred
to these papers for further information [e.g., Robinson et al.,
2008].
[7] The second category consists of contact free measure-

ment techniques. Remote sensing methods are prominent in
this category. Remote sensing methods include passive
microwave radiometers [Schmugge et al., 1992; Sellers et
al., 1992; Jackson, 1993; Jackson et al., 1992, 1993, 1995,

1999; Laymon et al., 1999; Schmugge et al., 2002; Narayan
et al., 2004; Crosson et al., 2005]; synthetic aperture radars
[Ulaby et al., 1996; Altese et al., 1996; Verhoest et al., 1998,
2007; Biftu and Gan, 1999; Satalino et al., 2002; Western et
al., 2004], scatterometers [Wagner et al., 2003; Ceballos et
al., 2005; Verstraeten et al., 2006; Blumberg et al., 2006],
and thermal methods [Pratt and Ellyett, 1979; Price, 1980;
Gillies and Carlson, 1995; Verstraeten et al., 2006; Katra et
al., 2006, 2007; Sugiura et al., 2007]. These methods are
either ground based or operated from airborne or spaceborne
platforms. A recent overview of the operational readiness of
microwave remote sensing of soil moisture content is given
by Wagner et al. [2007]. For larger-scale applications,
Drusch et al. [2004] provide a comparison between remote-
ly sensed soil moisture data and data obtained from oper-
ational products. Key limitations of current remote sensing
methods are problems with spatial averaging and a small
penetration depth. These limitations make it difficult to
obtain accurate values of soil moisture at a much smaller
spatial support than the observation, and to sense moisture
variations beyond a thin surface layer. To overcome these
limitations, disaggregation approaches have been intro-
duced to increase spatial resolution, and radiometer systems
(e.g., SMOS) are operated in the L band to maximize
penetration depth [Kerr et al., 2001]. To further increase
the efficiency of remote sensing platforms, multifrequency
and coupled active systems with larger antennas are prom-
ising [Kerr, 2007].
[8] Contact-free hydrogeophysical methods are also in-

creasingly used. The most prominent examples are off-
ground ground penetrating radar [e.g., Huisman et al.,
2003; Serbin and Or, 2004, 2005; Lambot et al., 2006a,
2006b] and electromagnetic induction [e.g., Sheets and
Hendrickx, 1995; Akbar et al., 2005; Corwin and Lesch,
2005]. Although these methods are suited for occasional
mapping, they are not able to provide data on soil moisture
with a high temporal resolution at the catchment scale.
[9] Catchment-scale information with a high temporal

resolution could be provided by emerging wireless sensor
network technologies [e.g., Cardell-Oliver et al., 2005].
There are at least three reasons to use sensors networks in
vadose zone hydrology. First, these networks will improve
the spatial and temporal coverage of soil moisture measure-
ments. This information may then be used for improved
characterization of hydrological fluxes, for calibration and
validation of remote sensing data, and for development of
upscaling and downscaling techniques. Second, networks
are designed to ensure a good data quality from field-
deployed sensors through their communication ability
(e.g., online visualization of data). Third, sensor networks
improve data continuity through early detection of sensor
failures. An important prerequisite for the optimal perfor-
mance of wireless soil moisture networks is the careful
selection of soil moisture probes [e.g., Bogena et al., 2007].
Sensor networks require probes that maximize sensing
volume while drawing minimum power [Blonquist et al.,
2005a, 2005b; Bogena et al., 2007]. Further work is needed
to optimally design these soil moisture networks in terms of
measurement frequency and spatial arrangement [Yoo,
2001; Jacobs et al., 2004], and for validation of remote
sensing data. To optimize the required number of sensors,
the temporal stability of soil moisture patterns [e.g.,
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Vachaud et al., 1985; Jacobs et al., 2004; Starr, 2005; Lin,
2006] and information on spatial structures of soil proper-
ties [Chen et al., 1995; van Groenigen, 2000; Thierfelder et
al., 2003] and landscape heterogeneity [Manfreda and
Rodrı́guez-Iturbe, 2006] should be exploited.
[10] Figure 1 summarizes measurement techniques

addressed in this review. Western and Blöschl [1999]
identified a scale triplet that applies both to models and
measurements: spacing, extent and support. Spacing refers
to the distance between the samples or mode elements,
extent refers to the overall coverage and support to the
integration volume or area. The black lines in Figure 1
represent the support of each method, whereas the colored
areas indicate the potential extent. A major challenge for the
future will be the simultaneous use of different measure-
ment technologies and the development of a framework that
optimally combines the information contained in the obser-
vations with model predictions of soil moisture dynamics at
various spatial scales. This will require a concerted action of
different research disciplines. The need for such actions
becomes more pressing with the establishment of terrestrial
observatories that will provide access to multiscale data
obtained from a suite of cross-scale measurement methods
[e.g., Bogena et al., 2006].

2.2. Examples of Soil Moisture Measurement Studies

[11] A large number of experimental field studies provide
information about the spatial and temporal variation of soil
moisture across a range of spatial scales. Specific attention
has been given to (1) the potential of remote sensing to

measure near surface soil moisture content and to provide
information on probability density functions and statistical
moments of soil moisture data [Owe et al., 1982; Famiglietti
et al., 1999; Mohanty et al., 2000; Ryu and Famiglietti,
2005; Choi et al., 2007], (2) the identification of spatial
organization of soil moisture [Grayson et al., 1997; Western
et al., 1999;Western and Blöschl, 1999; Rodriguez-Iturbe et
al., 1995; Oldak et al., 2002; Thierfelder et al., 2003]; and
(3) investigation of temporal stability of spatial patterns at
the field [Kachanoski and de Jong, 1988; Starks et al.,
2006] and catchment scale [Grayson and Western, 1998;
Mohanty and Skaggs, 2001; Cosh et al., 2004, 2006].
[12] At the field and hillslope scale, various soil moisture

data sets are available providing information on (1) the
statistical moments of near surface soil moisture content
[Brocca et al., 2007]; (2) the spatial organization and time
stability of soil moisture patterns [Reid, 1973; Niemann and
Edgell, 1993; Kamgar et al., 1993; Famiglietti et al., 1998;
Wendroth et al., 1999a; Jacques et al., 2001; De Lannoy et
al., 2006; Teuling et al., 2006]; (3) the temporal stability of
soil moisture profiles [Vachaud et al., 1985; Comegna and
Basile, 1994;Gomez-Plaza et al., 2000;Martinez-Fernandez
and Ceballos, 2003; Pachepsky et al., 2005; Lin, 2006]; and
(4) the parameters and factors controlling the spatial vari-
ability of soil moisture, such as vegetation, soil texture,
topography and rainfall [Hawley et al., 1983; Coronato and
Bertiller, 1996; Pariente, 2002; Western et al., 2004; Wilson
et al., 2005; Buttafuoco and Castrignano, 2005; Lin, 2006;

Figure 1. Support scale of soil moisture observations or measurements obtained from ground-based
sensors (GPR, ground penetrating radar; TDR, time domain reflectometry; EMI, electromagnetic
induction; ELBARA, L band radiometer), wireless sensor networks, airborne sensors (SAR, synthetic
aperture radar; E-SAR, experimental airborne SAR; ESTAR, electronically scanned thinned aperture
radiometer; PBMR, L band push broom microwave radiometer; PALS, passive and active L/S band
sensor), and spaceborne sensors (ALOS, Advanced Land Observing Satellite; AMSR-E, Advanced
Microwave Scanning Radiometer; ENVISAT, Environmental Satellite; ERS1–2, European Remote
Sensing Satellite 1–2; JERS, Japanese Environmental Remote Sensing; SMOS, Soil Moisture and Ocean
Salinity Satellite; SMMR, Scanning Multichannel Microwave).
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Tromp-van Meerveld and McDonnell, 2006; Teuling et al.,
2007].
[13] At the catchment scale, large measurement campaigns

have focused on validation of remote sensing methods.
Ground-based soil moisture measurements from these cam-
paigns were typically restricted to the first few centimeters
of the soil profile, and did not provide information about
deeper soil layers [Choi and Jacobs, 2007], nor did they
infer subsurface properties. Yet, catchment-wide informa-
tion about moisture dynamics at multiple depths is highly
desirable as this contains important information about
hydrological fluxes. Unfortunately, there are only very
few data sets with measurements of both catchment-wide
soil moisture dynamics in the topsoil and measurements of
evapotranspiration, groundwater level, moisture content of
deeper layers and hydraulic properties [e.g., Western and
Grayson, 1998; Mohanty et al., 2002]. The collection of
such data sets is one of the challenges that should be
addressed in the terrestrial observatories that are currently
being established.
[14] At the global scale, Robock et al. [2000] report on

the establishment of a soil moisture database. This database
presently includes soil moisture observations from more
than 600 stations covering a large variety of climates. It
supports temporal and spatial analyses of soil moisture, the
evaluation of land-surface-atmosphere parameterization
schemes, the design of soil moisture observational networks
and the validation of remote sensing methods for soil
moisture mapping.

2.3. Vadose Zone Modeling Approaches

[15] In vadose zone hydrology, there has been a strong
tradition in using the Richards equation to describe water
movement. In this equation, the mass conservation equation,

@q
@t

¼ � @qi
@xi

� S hð Þ; ð1Þ

is combined with Darcy’s law,

qi ¼ �K hð Þ @ hþ x3ð Þ
@xi

� �
; ð2Þ

which results in

@q
@t

¼ @

@xi
K hð Þ @

@xi
hþ x3ð Þ

� �
� S hð Þ; ð3Þ

where q is the soil moisture content, qi is the water flux, h is
the soil matric potential, K is the hydraulic conductivity, t is
time, S is a sink term to account for plant root water uptake,
and xi are the Cartesian coordinates. The coordinate axis
in the vertical dimension is defined by x3. To solve
equation (3), the moisture retention characteristic, q(h), the
hydraulic conductivity function, K(h), and the initial and
boundary conditions need to be defined. The validity of the
Richards equation has been evaluated using controlled
experiments at the column scale assuming one-dimensional
water flow. Typically, these experiments combine measure-
ments of soil moisture and matric potential. The Richards
equation in one or more dimensions has been successfully
applied to describe soil water fluxes at the field scale [e.g.,

Vereecken et al., 1991; Clemente et al., 1994; Herbst et al.,
2005; Mortensen et al., 2006], the hillslope scale [Nieber
and Walter, 1981; Bronstert and Plate, 1997] and the
catchment scale [e.g., Herbst and Diekkrüger, 2003;
Schoups et al., 2005a]. Two- or even three-dimensional
descriptions of water flow processes at larger scales might
be warranted when lateral processes such as overland and
subsurface flow determine soil moisture dynamics.
[16] Despite these successful applications, the appropri-

ateness of the Richards equation is still under debate. A
detailed investigation of its validity is hampered by the
inherent spatial variability of soils, the current inability to
obtain spatially averaged measurements of matric potential,
and the difficulty of accurately measuring boundary con-
ditions at larger spatial scales. While an accurate mathe-
matical formulation of flow and transport is of utmost
importance, an appropriate model dimension must be se-
lected that adequately reflects the field situation. For the
sake of computational simplicity, soil moisture data are
often analyzed using one-dimensional models, which as-
sume that flow occurs only vertically. However, to assess
the validity of this assumption a comparison with multidi-
mensional flow models is required [e.g., Vrugt et al.,
2001a]. Inappropriate selection of model dimensionality
will not only corrupt soil hydraulic parameter estimates,
but also reduces the accuracy of model predictions of soil
moisture. Examples where consideration of horizontal flow
might be important include analysis of the response of an
aquifer to groundwater pumping, and analysis of soil profile
moisture in humid landscapes were lateral flow is an
important contribution to runoff. Unfortunately, these sys-
tems are often modeled as one dimensional because of our
inability to appropriately populate multidimensional models
with hydraulic properties, and absence of reliable informa-
tion about spatially varying boundary conditions. The extent
to which dimensionality affects the optimized values of the
soil hydraulic properties and the interpretation of model
predicted moisture patterns needs to be investigated in more
detail.
[17] The catchment and land surface hydrology commu-

nity have embraced the use of relatively simple water
balance models without a full characterization of the q(h)
and K(h) functions [e.g., Boulet et al., 2000; Demarty et al.,
2005; Decharme and Douville, 2007]. These models are
sometimes cast in a stochastic framework to analyze the
spatial and temporal variation of soil moisture induced by
the spatial and temporal variation of vegetation and rainfall
[Entekhabi and Rodriguez-Iturbe, 1994; Laio et al., 2002;
Ridolfi et al., 2003; Isham et al., 2005; Rodriguez-Iturbe et
al., 2006; Botter et al., 2007; Settin et al., 2007]. In these
approaches, soil moisture is typically modeled by simplified
moisture balance equations [Rodriguez-Iturbe et al., 1999;
Albertson and Montaldo, 2003; Montaldo and Albertson,
2003b] that are similar to the capacity type bucket models
often used in conceptual rainfall-runoff models. This is
nicely illustrated by the work of Albertson and Montaldo
[2003], who presented a theoretical framework to analyze
temporal variability of root zone soil moisture. As in the
derivation of the Richards equation, they start with the mass
balance and Darcy equation. By integrating the mass
balance over the root zone, defining the input and output
fluxes and by applying a spatial averaging operator over a
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specified horizontal grid cell (x1, x2), they obtain an
averaged (coarse-grained) soil moisture equation,

@q
@t

¼ 1

Lv
I � qr � Eo � T
� �

� @q1
@x1

� @q2
@x2

; ð4Þ

where Lv is the rooting depth, I is the infiltration rate, Eo is
the bare soil evaporation, T is the transpiration rate and the
overbars denote spatially averaged values. A unit gradient in
matric potential was assumed to quantify the vertical
drainage flux (qr), which implies knowledge of the
hydraulic conductivity function. The lateral flux between
adjacent horizontal cells was calculated by

qxi ¼ �Ksq
@z

@xi
; i ¼ 1; 2; ð5Þ

where z is the topographic height. Infiltration is controlled
by the saturated moisture content. Actual evapotranspiration
was described by a piecewise linear function of soil
moisture requiring information on the moisture content for
which the transpiration is less than the potential rate and the
moisture content for which transpiration ceases. When
lateral fluxes are neglected, equation (4) describes the well-
known tipping bucket model for a soil with one layer.
[18] Both potential and water content–based approaches

are viable approaches to model water movement. Soil water
balance models directly address moisture content as the
variable of interest and assume gravity as the driving force
for water flow, whereas models using the Richards equation
include both matric potential and gravity as the driving
forces. There are several reasons for favoring a soil mois-
ture–based approach.
[19] 1. Estimation of effective soil water fluxes using

Richards-based approaches heavily relies on knowledge of
effective soil hydraulic parameters at the scale of interest
and the validity of a capillary-based concept at larger scales.
Although upscaling approaches enable estimation of effec-
tive properties from local-scale hydraulic properties, their
validity is mostly limited to specific flow conditions.
Further developments in both upscaling theories and mea-
surement technologies quantifying effective state variables
and fluxes are needed to eliminate these limitations. More-
over, the nature of the spatial structure of hydraulic param-
eters is typically unknown and its determination requires
substantial efforts. In contrast, simple mass balance
approaches have been postulated that may be considered
scale-invariant, robust and parsimonious in terms of param-
eter specification and estimation.
[20] 2. Soil moisture can be measured at a variety of

scales and often in a nondestructive manner with a high
temporal and spatial resolution. This is not possible for soil
matric potential, which can only be measured at the point
scale.
[21] 3. Near surface soil moisture content is important for

the partitioning of water and energy fluxes. For example,
soil moisture content is a key variable in the estimation of
evapotranspiration fluxes from the soil and it is well known
to exhibit a nonlinear relationship [Wetzel and Chang, 1987;
Crow and Wood, 2002a].
[22] 4. Soil moisture measurements are typically more

accurate than matric potential measurements. Additionally,

soil moisture measurements cover the whole range, whereas
conventional matric potential measurements only cover the
wet part of the moisture retention characteristic. Recently,
new tensiometers have been developed that significantly
extend the range of soil matric potential measurements [e.g.,
Bakker et al., 2007]. However, these new sensors have not
yet found widespread use.
[23] Despite these advantages, closure of the mass balance

in the water content–based (bucket-type) models still
requires constitutive equations for the unknown mass
fluxes, such as internal drainage, lateral flow, capillary rise
and evaporation [Reggiani et al., 2000]. These fluxes are
usually derived on the basis of flux potential gradient
relationships such as Darcy’s law (equation (2)). However,
this equation requires the specification of the hydraulic
conductivity relationship, which is difficult to obtain. Also
the prediction of root water uptake requires adequate
knowledge of both the hydraulic conductivity and the soil
moisture retention functions (see section 6.4). Therefore, the
issue of closing the mass balance is often solved by using
simplified descriptions that neglect specific processes or by
linearization of the constitutive equations. To what extent
this limits the validity of the obtained results is not really
known or studied. Even when more accurate soil moisture
measurements become available, the specification of these
constitutive equations will remain a requirement. One
potential way out of this dilemma are direct measurements
of hydrological fluxes. Unfortunately, there is a lack of
methods to measure subsurface hydrological fluxes. At the
point scale, heat pulse methods have been used to measure
the soil moisture flux directly [e.g., Ren et al., 2000; Mori et
al., 2005]. At the hillslope scale, Retter et al. [2006] used
slanted TDR probes to estimate soil moisture fluxes. It
seems promising to explore the usefulness of these methods
at larger scales (e.g., by integration in sensor networks).

3. Data Assimilation Methods for Estimating
Vadose Zone Properties and Fluxes From
Measured Soil Moisture Data

[24] A large number of methods are presently available
that enable the assimilation of soil moisture measurements
in models to estimate vadose zone properties and predict
fluxes. In this section, we will summarize the key methods:
direct insertion, statistical correction assimilation, Newto-
nian nudging, inverse modeling, variational approaches and
sequential data assimilation methods, also known as Kal-
man filtering (KF) techniques. We do not distinguish
explicitly between what sources of information can be used
to estimate soil moisture. In the present context, we could
distinguish between direct (remote sensing and ground
measurements) and indirect sources (soil texture, soil depth
and topography). Both of these data sources facilitate
updating of model predicted soil moisture content when
new observations become available. However, direct meas-
urements will likely contain more information about the
moisture content at the scale of interest, and allow for a
stronger state update and uncertainty reduction.

3.1. Direct Insertion and Statistical Correction
Assimilation

[25] In the direct insertion method, simulated values are
substituted with observed values as they become available
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[e.g., Houser et al., 1998; Walker et al., 2001a; Heathman et
al., 2003]. Typically this is done for the state variable values
near the soil surface as they are often readily available and
easily accessible for remote sensing and in situ measure-
ment equipment. This approach is similar to defining a
Dirichlet-type boundary condition with a value equal to the
measured state variable (e.g., soil moisture).
[26] In the statistical correction assimilation method, the

statistical moments of the modeled state variables are
adjusted to match the statistical moments of the observa-
tions [e.g., Houser et al., 1998]. Two assumptions are made
in this approach. First, the statistics of the observed values
are correct and provide a close approximation of reality.
Second, the patterns of the predicted state variables are
correct but the statistical moments are biased, which can be
corrected by matching against the observed statistical
moments [Houser et al., 1998].

3.2. Newtonian Nudging

[27] Recently, Newtonian nudging (NN) methods have
been introduced in hydrology. In NN, an additional correc-
tion term, N(x, t) is added to a dynamical model of the form

@v

@t
¼ F v; x; tð Þ þ N x; tð Þ vo � vð Þ; ð6Þ

where v is the model state variable, vo is the observed value
of the state variable and F is the forcing term in the
dynamical model. This correction of the forcing term is
proportional to the difference between the simulated and
observed state variable and it forces the simulation in the
direction of the observations. This correction or nudging
term may contain information on data quality, nudging
influence factors and a priori knowledge on the spatiotem-
poral variability and characteristic scales of the state vari-
ables using four-dimensional weighting functions. Details
about the specification of the nudging term can be found in
work by Paniconi et al. [2003] and Houser et al. [1998].
Most of the hydrological studies using NN are limited to
numerical case studies. These studies showed that NN is
computationally efficient. However, NN was found to be
sensitive to the parameter settings (e.g., the strength of the
nudging term, the frequency of data assimilation), which
requires further analysis [Hurkmans et al., 2006].

3.3. Inverse Modeling

[28] Inverse modeling estimates the unknown parameters
governing the processes and fluxes in the system using
independent observations of the system under study [e.g.,
Yeh, 1986; Abbaspour et al., 1997; Vereecken et al., 2007a].
These observations can include state variables, such as soil
moisture or matric potential, and fluxes, such as evapo-
transpiration and river discharge. In the process of inverse
modeling, the model parameters are adjusted to minimize
the difference between observed and modeled values. This
approach is often referred to as calibration in hydrological
literature. The models used in this approach can vary from
simple 1-D soil moisture balance models or SVAT models
with only a limited number of parameters [e.g., Demarty et
al., 2004, 2005; Rushton et al., 2006] to more complex soil-
vegetation-atmosphere models or large-scale hydrological
models [Vrugt et al., 2004; Schoups et al., 2005a, 2005b].
The algorithms used to find the ‘‘optimal’’ parameters may

range from simple search algorithms that seek iterative
improvement of the objective function starting from a single
location in the search space [e.g., Ritter et al., 2003] to more
advanced global search methods that utilize the strength of a
population of individuals to efficiently search the space of
potential solutions and avoid getting stuck in a local
minimum of the objective function. Global optimization
methods that have been used for the estimation of the
unsaturated soil hydraulic properties include the anneal-
ing-simplex method [Pan and Wu, 1998], genetic algorithms
[Takeshita, 1999], multilevel grid sampling strategies
[Abbaspour et al., 2001; Lambot et al., 2002], ant colony
optimization [Abbaspour et al., 2001], and shuffled complex
methods [Vrugt andBouten, 2002;Mertens et al., 2004, 2005,
2006]. Recent extensions include multiobjective search
methods [e.g., Vrugt et al., 2003; Vrugt and Dane, 2005;
Mertens et al., 2006], and simultaneous multimethod genet-
ically adaptive optimization algorithms [Vrugt and Robinson,
2007;Wöhling et al., 2008].

3.4. Kalman Filtering Techniques

[29] Kalman filtering (KF) was developed in the 1960s
for optimal control of systems governed by linear equations
[Kalman, 1960] and was introduced into earth system
sciences to optimally merge information from uncertain
measurements and model predictions [Evensen, 1994;
Houtekamer and Mitchell, 1998; Bertino et al., 2003;
Annan et al., 2005; Ni-Meister et al., 2006]. Here, we
summarize the three most important filters that have found
use in vadose zone hydrology: standard Kalman filters,
extended Kalman filters and ensemble Kalman filters. Note
that a recent review on the use of data assimilation in earth
systems science is given by Reichle [2008].
[30] KF is used to describe linear dynamical systems that

are discretized in the time domain. At each moment in time,
a linear operator is applied to generate a new state of the
system accounting for the presence of system noise and
information from controls on the system. To predict the state
of the system at time t, the KF optimally weights the model
predicted state at this time with measured values of the state
at this time based on a least squares approach. The KF
technique can be considered as the most general estimator
for systems governed by linear dynamics. Spatial estimation
methods such as kriging, spline interpolation and condi-
tional multivariate normal estimation may be viewed as
special steady state versions of KF [e.g., McLaughlin, 1978;
Or and Hanks, 1992]. Unfortunately, in most real world
studies, system dynamics are not linear but governed by
nonlinear stochastic difference equations. In these situa-
tions, the extended KF can be used, which linearizes the
state transition (hence error covariance), and observation
model using a tangent linear operator [Reichle et al., 2002a,
2002b; Sabater et al., 2007]. Various studies have demon-
strated that this linearization is notoriously unstable if the
nonlinearity is strong, and therefore an alternative is needed.
[31] Evensen [1994] proposed the ensemble KF (EnKF),

which uses a Monte Carlo method to generate an ensemble
of model trajectories from which the time evolution of the
probability density of the model states, and related error
covariances are estimated. The EnKF avoids many of the
problems associated with the extended KF. Moreover, the
conceptual simplicity, relative ease of implementation and
computational efficiency of the EnKF make the method an
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attractive option for data assimilation in vadose zone
hydrology. Further developments of the EnKF were pro-
posed by Dunne and Entekhabi [2005] and Pan and Wood
[2006].

3.5. Variational Approaches

[32] In the variational approach [e.g., Reichle et al., 2001;
Sabater et al., 2007], the simulated values of a state
variable, x are adjusted to the observations available within
a specified assimilation window, z, defined on the basis of
observation times by minimizing a general cost function
J(x) [Sabater et al., 2007]:

J xð Þ ¼ 1

2
x� xb
� �

B�1 x� xb
� �Tþ 1

2
½ z�H xð Þð �R�1½ z�H xð Þð �T :

ð7Þ

The observation vector, z, includes all the observations
made within a prespecified assimilation window and there-
fore differs from the sequential time stepping approach used
in the KF techniques. The right hand side of equation (7)
consists of two terms: a background term Jb(x) and an
observation term Jo(x). The background term is a measure
for the difference between the state vector and its back-
ground value weighted by the background error matrix B.
The observation term quantifies the difference between the
measured and the predicted value for the defined assimila-
tion windows weighted by the measurement error matrix R.
This matrix R is similar to the error matrix used in the KF
but differs in the definition of the time scale. The matrix H
projects the model space into the observation space and is
therefore similar to the observation operator used in the
Kalman filter, but again differs in the time scale considered.
In the variational method, the cost function J(x) is typically
minimized by using the gradient descent method, which
requires the adjoint and the tangent linear models [Sabater et
al., 2007]. Sabater et al. [2007] distinguish two variational
approaches: the simplified 1DVAR approach [Balsamo et al.,
2004] and the variational tuning method. The latter method
neglects the background term Jb(x) and assumes that R = I,
the identity matrix.

3.6. Regression Analysis, Empirical Orthogonal
Function Approaches, and Interpolation Schemes

[33] A few authors proposed the use of linear regression
equations to derive the soil moisture profile, the soil
moisture deficit or the water content at a specific depth
from surface soil moisture content [e.g., Arya et al., 1983;
Jackson et al., 1987]. Fernandez-Galvez et al. [2006] used a
vertical interpolation technique to estimate soil moisture
profiles and values of integrated profile moisture content
using continuous measurements at a limited number of
depths and occasional measurements at a large number of
depths. In addition, they developed a temporal interpolation
technique to retrieve complete time series of soil moisture
for locations with only a limited number of observations
using information from time series observed at other nearby
locations. This approach is based on the assumption that
changes in water content at one location will be similar to
changes at nearby locations because of approximate similar
atmospheric forcing. At the catchment scale, an empirical
orthogonal function analysis [Perry and Niemann, 2007;
Jawson and Niemann, 2007] can be used to estimate soil

moisture patterns for unobserved times if detailed soil
moisture observations are available for a limited period in
the past.

4. Retrieving the Spatial and Temporal
Variability of Soil Moisture

[34] One of the first studies demonstrating that near
surface soil moisture content contains useful information
to estimate root zone water storage and soil moisture
profiles was presented by Camillo and Schmugge [1983].
Since then, many studies have reported similar findings
[Kostov and Jackson, 1993; Georgakakos and Baumer,
1996; Calvet et al., 1998; Calvet and Noilhan, 2000;
Wendroth et al., 1999b; Li and Islam, 1999; Crow and
Wood, 2003, Das and Mohanty, 2006]. Despite this success,
there are several issues that require attention and these are
discussed below.

4.1. Importance of Correct Process Description and
Hydraulic Parameterization

[35] Several studies indicate that a successful retrieval of
soil moisture profiles requires mathematical models that
include the dominant processes for the specific hydrological
conditions [Walker et al., 2001a] and a correct specification
of hydraulic parameters [e.g., Heathman et al., 2003].
Walker et al. [2001a] used the KF approach with an
approximation of the Richards equation to retrieve the soil
moisture profile by assimilating measured near surface soil
moisture data. Soil moisture retrieval required knowledge of
the representative depth of the surface soil moisture mea-
surement, the best possible estimate of the saturated and
residual moisture content and a model description consid-
ering the dominant processes. In their study, incorporation
of a root water uptake model led to an improved character-
ization of the soil water balance and thus reduced model
bias. The implementation of root water uptake was neces-
sary because soil moisture profiles were generally too wet in
the summer period. Unfortunately, no quantitative informa-
tion on the bias reduction was provided. A qualitative
comparison of the measured and retrieved soil moisture
profiles indicated that the soil water retention parameters
were the most important hydraulic parameters for soil
moisture retrieval. However, a systematic analysis of the
sensitivity of soil moisture retrieval as function of hydraulic
parameters was not performed. In contrast, Montaldo and
Albertson [2003a] were able to improve the prediction of
soil moisture profiles by updating saturated hydraulic con-
ductivity on the basis of a sensitivity analysis of the
assimilation protocol to errors in the specified hydraulic
properties [Montaldo et al., 2001]. Using actual field data,
they showed that the root-mean-square error (RMSE) of soil
moisture content could be reduced by a factor of 3. Further
reduction of the RMSE was hampered because of the
presence of uncertainty in model physical parameters and
the simplified structure of the model. Again, no systematic
sensitivity analysis was performed for the other soil hy-
draulic parameters, such as the air entry value or pore size
distribution index parameter. In addition, the soil moisture
retention parameters used in the analysis of Walker et al.
[2001a] are not explicitly considered by Montaldo and
Albertson [2001]. Das and Mohanty [2006] used a one-
dimensional soil water flow model in combination with an
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ensemble Kalman filter to assimilate remotely sensed sur-
face soil moisture data in order to retrieve the root zone
soil moisture. They found that remotely sensed surface soil
moisture could not substantially improve root zone soil
moisture estimates when soil hydraulic properties were
uncertain. This uncertainty resulted from a lack of a priori
knowledge about the true soil profile properties such as
layering and textural composition. The above studies
strongly suggest that accurate knowledge of soil hydraulic
properties is important for improved retrieval of soil mois-
ture profiles from surface soil moisture measurements.
However, detailed and systematic investigations of the
required accuracy and sensitivity of soil hydraulic properties
for soil moisture retrieval are still lacking. A first study in
this direction was recently published by Ines and Mohanty
[2008]. As a priori information on soil hydraulic properties
is often not available, the use of pedotransfer functions to
estimate soil hydraulic properties should be explored.

4.2. Role of Initial Soil Moisture Profile

[36] A few studies addressed the importance of the initial
soil moisture profile for assimilation of surface soil moisture
measurements. Poor initialization is caused by the lack of a
priori knowledge of the true soil moisture content or soil
properties. Walker et al. [2001a] studied the impact of poor
initialization by specifying initially wet conditions for a
dry soil. Das and Mohanty [2006] used a uniform initial
soil moisture profile equal to 50% of relative saturation.
Galantowicz [1999] exchanged the true sandy soil profile
by a clay loam profile leading to a poor representation of the
initial soil moisture profile. All these studies showed that
this incorrect initialization is corrected by assimilating near
surface soil moisture measurements. For example, Walker et
al. [2002] showed that the RMSE of the open loop simu-
lations (i.e., runs without assimilation) can be reduced by
more than 50%.

4.3. Frequency of Soil Moisture Measurements

[37] Measurement frequency is a key factor for deriving
accurate soil moisture profile estimates from surface soil
moisture measurements. The update frequency differs con-
siderably between studies and may range from daily updating
[Hoeben and Troch, 2000; Li and Islam, 1999], updating
every 2 to 3 days [Walker et al., 2002; Pauwels et al., 2007],
up to weekly to 2-weekly updating [Calvet et al., 1998; De
Lannoy et al., 2007]. Numerical case studies examining the
update frequency show that the required assimilation fre-
quency depends on the errors in the model physics and
forcing data [Walker et al., 2002]. De Lannoy et al. [2007]
found that the optimal assimilation frequency of surface soil
moisture to retrieve soil moisture profiles was about one to
two weeks after removal of bias in the model specification
and forcing. Calvet et al. [1998] required only a few surface
soil moisture measurements to accurately retrieve the root
zone moisture content during a 6 month study period in
spring and autumn. Accuracy was defined in terms of the
RMSE, maximum error and mean bias between retrieved
total soil moisture content and the reference simulation.
Assimilation of five measurements within a 15 day time
window resulted in a RMSE of 13.4 mm in autumn (4% of
the total soil moisture content) and a RMSE of 26 mm in
spring (6–7% of the total soil moisture content). A sixfold
increase of the number of soil moisture measurements

reduced the RMSE by 50% in both spring and autumn. In
general, analysis of literature data shows that the optimal
assimilation frequency is not determined by one specific
factor. Several factors, such as model correctness (e.g.,
appropriate dominant processes), correct parameterization,
appropriate atmospheric forcing (e.g., directly measured
surface energy balance components and precipitation data),
the assimilation approach, and data quality all play important
roles.

4.4. Decoupling of Surface and Deeper Soil Layers

[38] The value of surface soil moisture data to retrieve
soil moisture profiles might be limited by the lack of
correlation between surface and subsurface soil moisture.
This is often explained by physical decoupling of adjacent
soil layers and may occur when the surface and subsurface
drying rates diverge [Capehart and Carlson, 1997]. The
strength and occurrence of this decoupling is primarily
controlled by the soil hydraulic properties. In coarse tex-
tured soil, decoupling may occur because of the breakdown
of capillary connectivity. The presence of soil layers with
strongly differing hydraulic properties (e.g., by agricultural
practices) also favors decoupling. Fine textured soils are
less prone to decoupling because of the smooth changes in
moisture content and hydraulic conductivity with increasing
dryness.
[39] Several studies reported on the importance of cou-

pled surface and subsurface soil moisture content for
retrieving soil moisture profiles from near surface measure-
ments [e.g., Walker et al., 2002; De Lannoy et al., 2007].
For example, Walker et al. [2002] could not retrieve vertical
soil moisture profiles because of decoupling. This was
explained by a combination of strong surface drying and
the specific properties of the soil profile, which consisted of
a clay layer overlain by sandy loam.

4.5. Accuracy of Soil Moisture Data

[40] The accuracy of soil moisture data affects the accu-
racy of soil moisture profile retrieval [e.g., Georgakakos
and Baumer, 1996; Li and Islam, 1999; Hoeben and Troch,
2000; Pauwels et al., 2007]. Available studies diverge with
respect to the measurement accuracy that still provides
acceptable predictions. This may partly be explained by
differences in modeling approach, the use of calibration, the
type and accuracy of forcing terms and the assimilation
procedure. Georgakakos and Baumer [1996] used a simpli-
fied two-layer model that was calibrated to streamflow data
to predict flows (e.g., streamflow at the outlet, evaporation)
and soil moisture content. Assimilation of surface soil
moisture data, even in the presence of substantial error,
resulted in improved estimates of the water content in the
deeper soil. They considered error levels ranging from 10%
to more than 50% of the moisture content of the upper soil
layer. In contrast, Li and Islam [1999] showed that soil
moisture data with random errors larger than 5% did not
improve soil moisture profile predictions. A similar analysis
by Pauwels et al. [2007] showed that modeled soil moisture
could only be improved when the observation error was
below 0.05 m3 m�3. This absolute error corresponds with a
relative error ranging from 20 to 50% on the basis of the
range of observed soil moisture content in this study.
Hoeben and Troch [2000] concluded that active microwave
remote sensing measurements, given the present-day obser-
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vation noise, will not substantially improve soil moisture
prediction compared to retrievals obtained with open loop
simulations. Clearly, consideration of measurement accuracy
of satellite systems is a critical issue that requires further
attention, especially in the case of remote sensing techniques.
Typically, errors in field-based measurement techniques,
such as TDR, GPR and capacitance probes, are well below
the critical error levels identified above, which supports their
value for retrieval of soil moisture profiles.

4.6. Using Auxiliary Information to Predict Soil
Moisture

[41] Improved retrieval of soil moisture profiles is often
accomplished by including additional information besides
measured soil moisture data. This may include state varia-
bles (e.g., temperature, leaf area index (LAI)), fluxes and
spatial attributes. Pauwels et al. [2007] showed that simu-
lated soil moisture profiles improved when both soil mois-
ture and LAI were updated at least every 2 weeks. This also
resulted in improved evapotranspiration predictions com-
pared to baseline simulations. However, no clear picture
was obtained when only LAI data were assimilated.
Entekhabi et al. [1994] demonstrated the value of com-
bining microwave remote sensing and infrared temperature
measurements to retrieve soil moisture and heat profiles.
Visser et al. [2006] combined online soil moisture data,
water table measurements and meteorological data and
obtained improved forecasts of water table depth and
physically consistent soil moisture profiles. Wilson et al.
[2005] proposed a terrain-based method for predicting the
spatial distribution of soil moisture. The method exploits the
fact that terrain attributes can be related to an average soil
wetness index. This dependency is then used to simulate
spatial patterns of soil moisture on the basis of an appro-
priate weighing of the relationship between wetness con-
ditions and terrain and spatial attributes.
[42] Information contained in the spatial dependence of

soil moisture has only rarely been exploited in data assim-
ilation studies [e.g., Grayson et al., 2002]. One of the first
papers to include spatial information of soil moisture in a
KF approach to estimate the soil water balance was pub-
lished by Or and Hanks [1992]. They showed that spatial
estimates obtained from a limited number of soil moisture
measurements using a conditional multivariate normal
method could be successfully used as ‘‘new’’ measurement
information in an additional KF updating step. A similar
approach to integrate spatial soil moisture information was
presented by Parada and Liang [2004] using the multiscale
KF technique proposed by Kumar [1999].

4.7. Strengths and Limitations of Assimilation Methods

[43] The appropriate choice of assimilation method plays
an important role in the retrieval of soil moisture profiles
from surface soil moisture measurements. Direct insertion
approaches have a limited potential in this respect [Heathman
et al., 2003; Francois et al., 2003; Li and Islam, 1999].
Walker et al. [2001b] used a numerical study to compare the
ability of the direct insertion and the extendedKF approach to
retrieve the true soil moisture and temperature profiles by
assimilating near-surface soil moisture and temperature data
into a soil moisture and heat transfer model. For soil
moisture retrieval, they showed that the KF is superior to
direct insertion because it is able to correct the entire soil

moisture profile, whereas direct insertion only alters the soil
moisture values at each observation depth. Houser et al.
[1998] compared direct insertion, statistical correction and
Newtonian nudging in their ability to predict root zone soil
moisture profiles. The best results were obtained by New-
tonian nudging, which produced soil moisture fields without
discontinuities and retained the observed spatial patterns
while making a larger impact on the root zone soil moisture
at the same time.
[44] Assimilation methods also differ in terms of flexi-

bility, performance and computational effort. Sabater et al.
[2007] compared two types of KF (extended and ensemble)
and two variational schemes (variational tuning and simpli-
fied 1DVAR) with respect to their potential in retrieving
root zone soil moisture from near-surface soil moisture data.
In general, all four methods provided satisfactory results.
However, the lower computational costs of 1DVAR make it
especially suited for operational root zone moisture estima-
tion using remotely sensed surface soil moisture data.
Reichle et al. [2002a] compared the performance of the
extended and ensemble KF for soil moisture estimation
using different numerical case studies. Both KF approaches
were able to account for nonlinearities and were found to be
equally accurate at comparable computational costs. How-
ever, the ensemble Kalman filter was most promising in
terms of flexibility and performance.

5. Estimating Soil Hydraulic Properties From Soil
Moisture Data

[45] The soil water retention characteristic and the hy-
draulic conductivity function are important properties to
describe soil water fluxes. At the column scale, it has now
become common practice to estimate these parameters from
flux data (e.g., outflow, evaporation), often combined with
measurements of matric potential using an inverse modeling
framework [e.g., Kool et al., 1987; van Dam et al., 1992;
Eching et al., 1994; Vereecken et al., 1997; Simunek et al.,
1998; Nutzmann et al., 1998, Vrugt et al., 2001a]. For a
detailed discussion on the various column-scale techniques
and on the possibilities and limitations of inverse modeling
to derive soil hydraulic parameters from unsaturated flow
and transport experiments, the reader is referred to reviews
of Simunek and Hopmans [2002] and Finsterle [2005].

5.1. Estimating Field-Scale Soil Hydraulic Properties

[46] Compared to the extensive use of inverse methods at
the column scale, there are only a limited number of studies
that use field-scale soil moisture data to inversely estimate
hydraulic properties. In general, these studies indicate that
the use of soil moisture measurements alone is not sufficient
to provide unique and physically reasonable estimates of
hydraulic properties at the field scale. Typically, inversions
require additional information to constrain parameter esti-
mation. This information may include directly measured
matric potential data [Ross, 1993], soil structural informa-
tion [Abbaspour et al., 2000], homogeneous soil assumption
[Ahuja et al., 1993] and measured values of the hydraulic
properties [Sisson and van Genuchten, 1991]. In addition,
experimental data have often been collected under well-
defined flow conditions, such as gravity dominated flow,
and bottom boundary conditions prescribing the matric
potential [Katul et al., 1993; Wendroth et al., 1993; Eching
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et al., 1994, Abbaspour et al., 1999, 2000]. Successful
studies exploit these well defined flow and boundary con-
ditions during inverse simulation [Dane and Hruska, 1983;
Sisson and van Genuchten, 1991; Eching and Hopmans,
1993; Si and Kachanoski, 2000]. Dane and Hruska [1983]
determined the van Genuchten parameters using measured
soil moisture contents during a gravity drainage experiment.
They required a known matric potential at the bottom
boundary and a known value of the unsaturated hydraulic
conductivity before stable inversion results could be
obtained. Si and Kachanoski [2000] used an inverse proce-
dure to estimate the hydraulic parameters from an analytical
solution for constant flux infiltration from measurements of
moisture storage using TDR. They concluded that matric
potential measurements of the initial and steady state are
required in addition to water storage measurements to
obtain accurate estimates of the soil hydraulic conditions.
[47] The conditions imposed during these studies are

probably not very representative for the field, where differ-
ent flow regimes alternate and interact and boundary con-
ditions are fluctuating and typically not as well defined.
This is especially true at larger spatial scales. Only a few
field studies estimate soil hydraulic parameters from soil
moisture data under naturally occurring or transient flow
boundary conditions. Ritter et al. [2003] estimated effective
hydraulic properties from measured time series of soil
moisture content in three different depths under natural
boundary conditions. They demonstrated the feasibility of
their approach, but suggested that a different measurement
design might have substantially reduced the uncertainty
associated with the inversely determined parameters. Given
the increase in computational power in combination with
powerful novel optimization methods, inverse estimation of
field-scale effective hydraulic parameters from transient
flow data is becoming feasible.
[48] Recently, Yeh et al. [2005] and Ye et al. [2005]

explored an alternative approach to derive effective hydrau-
lic properties at the field scale. They used spatial moment
analysis of 3-D moisture distributions under transient flow
conditions to derive the 3-D effective unsaturated hydraulic
conductivity tensor from a water injection experiment.
Application of this approach to data from the Hanford site
showed that the effective hydraulic conductivity exhibited a
moisture-dependent anisotropy. The principal directions of
the spatial moments were found to be depth-dependent, as
the plume evolved through the subsurface. The effective
hydraulic conductivities derived with this approach com-
pared well with lab-scale measurements of unsaturated
hydraulic conductivity. Ward et al. [2006] also used spatial
moment analysis to derive the upscaled soil hydraulic con-
ductivity and also found saturation-dependent anisotropy.

5.2. Estimating Effective Hydraulic Properties at the
Catchment Scale

[49] The availability of remotely sensed soil moisture
data has opened an unprecedented opportunity to estimate
soil hydraulic parameters at the field to the catchment scale
using inverse modeling. Feddes et al. [1993] proposed to
use remotely sensed estimates of regional latent and sensible
heat fluxes to constrain the parameter space of soil hydrau-
lic parameters. Subsequent studies showed the feasibility of
this approach [Gouweleeuw et al., 1996; Kabat et al., 1997].
The analysis of Kabat et al. [1997] considered three

different sets of information representing various data
sources for area-average hydrological variables: surface
moisture content of selected profiles on specific days, cumu-
lative evaporation and infiltration data typically available
from remote sensing data, and a combination of both data
sources. A strong similarity was found between inversely
estimated and measured effective hydraulic parameters.
They also found that surface soil moisture measurements
did not improve the hydraulic parameter estimates com-
pared to use of evaporation and infiltration fluxes only.
[50] Mattikalli et al. [1998a, 1998b] explored the poten-

tial of using surface soil moisture content measurements
from microwave remote sensing to identify soil texture and
to estimate soil hydraulic parameters at the catchment scale.
They showed that temporal changes in brightness temper-
ature and soil moisture content were significantly correlated
with the ratio of sand to clay and the saturated hydraulic
conductivity derived from a generalized Kozeny-Carman
equation [Mattikalli et al., 1998a]. Mattikalli et al. [1998b]
extended their analysis to estimate saturated hydraulic
conductivity values in deeper soil layers using an inverse
approach.

5.3. Outlook

[51] In general, it seems that soil moisture measurements
contain substantial information on soil water processes
making them valuable to estimate soil hydraulic properties
in an inverse approach at the field or catchment scale.
Whether soil moisture measurements alone are sufficient
to estimate hydraulic properties depends on the complexity
of the vadose system, the amount of a priori knowledge, the
uncertainty associated with the measured boundary condi-
tions, and the number and type of parameters to be
estimated [e.g., Ines and Mohanty, 2008]. The additional
use of energy fluxes to constrain the estimates of effective
hydraulic parameters seems promising. At the field scale,
energy fluxes can be obtained by micrometeorological
measurement techniques (e.g., eddy covariance) or high-
resolution measurements of surface temperature (e.g., using
infrared cameras). The use of this type of data to estimate
field-scale hydraulic properties is largely unexplored.
[52] Another promising source of information are hydro-

geophysical measurement methods, such as ground pene-
trating radar (GPR) and electrical resisitivity tomography
(ERT). These techniques are increasingly being used to
estimate soil hydraulic properties and their spatial distribu-
tion at the field scale. The potential of inverse hydrody-
namic modeling of water flow combined with GPR
measurements of soil moisture content to estimate soil
hydraulic parameters has been demonstrated [e.g., Lambot
et al., 2004, 2006a, 2006b; Rucker and Ferré, 2004;
Kowalsky et al., 2004]. At the field scale, Binley et al.
[2002] combined cross-borehole GPR and ERT and used the
spatiotemporal dynamics of water flow during a controlled
tracer experiment to estimate the vertical effective hydraulic
conductivity using inverse modeling. Kowalsky et al. [2004,
2005] used numerical experiments to demonstrate the po-
tential of GPR and hydrological measurements (e.g., mois-
ture content) to derive soil hydraulic parameter distributions
in the vadose zone.
[53] Recently, Vereecken et al. [2007b] suggested that the

statistical properties of soil water content variability itself
can be used to estimate hydraulic properties. Using results
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from stochastic analysis of soil water flow, they proposed a
procedure to inversely estimate the effective Brooks-Corey
soil hydraulic parameters and their spatial variability. This
interesting and scale-independent approach warrants further
study.

6. Estimating Hydrological Fluxes

[54] In this section, we discuss the use of soil moisture
data to characterize hydrological fluxes, such as runoff,
groundwater recharge and root water uptake. The quantifi-
cation of hydrological fluxes from soil moisture data
requires the spatiotemporal characterization of soil moisture
as well as a hydrological model able to describe these
dynamics. The required complexity of this model is deter-
mined by the complexity of the system being studied. Most
studies dealing with the determination of soil moisture
fluxes have dealt with bare soils or deeper vadose zone
processes so far. As most soils and catchments are covered
with vegetation, the prediction of hydrological fluxes will
need to include the characterization of transpiration fluxes.
Therefore, this review pays specific attention to the use of
soil moisture data in characterizing root water uptake, as
this process is strongly linked with the transpiration flux.

6.1. Soil Water Fluxes

[55] High spatial and temporal resolution data of soil
moisture obtained from either remote sensing or hydro-
geophysical methods may be used to derive information on
the magnitude and dynamics of water fluxes in soil profiles.
There is a long tradition in using measured surface soil
moisture content to estimate bare soil evaporation. In the
1980s, Bernard et al. [1981] and Prevot et al. [1984]
analyzed the value of remotely sensed soil moisture for
estimating bare soil evaporation. Bernard et al. [1981]
showed that by assimilating near surface soil moisture
measurements every 3 days in a numerical model, the
evaporation could be described very well. Prevot et al.
[1984] used remotely sensed soil moisture measurements as
the upper boundary condition (i.e., direct insertion) in a
model based on the Richards equation and found that
modeled and measured soil evaporation compared well.
Bernard et al. [1986] used an airborne scatterometer (active
microwave) to determine the temporal dynamics of near
surface soil moisture of bare soils with a daily resolution for
three months. Using this data, they were able to quantify the
drainage from the surface to the deeper layers. More
recently, Jackson et al. [1998] used ground-based L and S
band microwave radiometers to monitor soil moisture
content during and following irrigation at the plot scale.
These measurements suggested the presence of a sharp
dielectric boundary that moved downward with time, sug-
gesting the presence of an infiltration front. This shows that
plot-scale microwave measurements potentially can be used
to determine near-surface infiltration rates.
[56] Despite these successes in characterizing soil water

fluxes, the use of remote sensing has been limited to the
upper part of the soil profile. To a large extent, the
limitations discussed in the context of estimating subsurface
soil moisture content from surface soil moisture measure-
ments are also valid for estimating fluxes (e.g., decoupling).
Characterization of soil water fluxes from soil moisture
measurements cannot rely solely on remote sensing. A

combined approach in which remote sensing is combined
with in situ measurements seems promising. The in situ
measurements (e.g., hydrogeophysical measurements) could
provide information on soil moisture dynamics at various
depths and remote sensing could provide the required spatial
coverage. We will elaborate more on this in section 6.4 on
groundwater recharge.

6.2. Runoff

[57] The value of soil moisture to improve the prediction
of runoff is still under debate [e.g., Henderson-Sellers,
1996; Scipal et al., 2005; Parajka et al., 2006], although
it has been recognized that spatial patterns of soil moisture
can have a dominant influence on catchment runoff [e.g.,
Grayson et al., 1997; Merz and Plate, 1997]. A few studies
reported improved prediction of runoff or flood events using
land surface hydrological models combined with measure-
ments of near surface soil moisture obtained from remote
sensing [Francois et al., 2003; Pauwels et al., 2001, 2002;
Crow et al., 2005b; Jacobs et al., 2003] or point-scale
measurements [Aubert et al., 2003]. Less positive results
were reported by Parajka et al. [2006]. They studied the
potential of assimilating soil moisture obtained from active
microwave radar at a coarse 50 km2 resolution to improve
the prediction of soil moisture dynamics and hydrological
fluxes in 320 gauged and ungauged Austrian catchments. A
plausible explanation for this lack of improvement by soil
moisture assimilation may be that runoff was already
predicted adequately because of model calibration on runoff
data. Similar results have been found for soil moisture
profile retrieval for cases where simulations were already
quite good (see section 4.5).
[58] Most likely, these conflicting results are related to the

use of different windows or sampling volumes of the soil
moisture measurement techniques and the scale at which
runoff is predicted. In addition, the lack of improvement
might be related to the large uncertainty in soil moisture
content retrieval from remote sensing (see section 4) and
errors in forcing terms [e.g., Francois et al., 2003]. Local-
scale measurements often include a large component of
small-scale variability and do not provide full coverage of
the catchment, which reduces their value at the larger scale.
Active microwave remote sensing typically measures soil
moisture at a coarse resolution (e.g., 50 km), which is often
considered of less value to study catchment-scale hydrolog-
ical processes. Disaggregation approaches, such as pro-
posed by Reichle et al. [2001] or Merlin et al. [2006],
might contribute to resolving this issue.

6.3. Groundwater Recharge

[59] The use of remotely sensed soil moisture to predict
groundwater recharge has mainly focused on calibration of
hydrological models through adjustment of model parame-
ters [Scott et al., 2000; Jackson, 2002] or the improvement
of predicting soil moisture profiles through data assimilation
techniques (see section 4). Entekhabi and Moghaddam
[2007] outline the potential of spaceborne radars operating
at GHz and sub-GHz frequencies to allow direct measure-
ments of near surface soil moisture in order to provide data
to constrain a physically based model approach within a KF
framework. Despite the potential of remote sensing techni-
ques in providing a high spatial and temporal coverage of

W00D06 VEREECKEN ET AL.: SOIL MOISTURE AND HYDROLOGY

11 of 21

W00D06



near surface moisture content, these data have not yet been
directly used in an operational manner to predict ground-
water recharge. The major limitation of remotely sensed soil
moisture still is the limited sampling depth. A way forward
in the quantification of groundwater recharge from sensing
information lies therefore in a combination of ground-based
measurement techniques that provide the required vertical
resolution of the moisture profile combined with the spatial
coverage provided by airborne and spaceborne platforms.
Hydrogeophysical measurement techniques seem especially
promising for improved subsurface characterization. In this
respect, there is a need to develop novel data assimilation
techniques that are able to integrate both hydrogeophysical
and remotely sensed data, as well as spatially distributed
soil moisture data. Application of hydrogeophysical meth-
ods to characterize spatial and vertical variation of soil
moisture will require the development of cheap sensor
systems in order to obtain the necessary spatial coverage.

6.4. Root Water Uptake

[60] Plant transpiration is an important water flux and has
a major impact on other water fluxes (e.g., recharge) and
moisture content in the soil. In addition, Vogeler et al.
[2001] demonstrated that the vertical distribution of water
uptake by plants has an important impact on solute trans-
port. It is known that the spatial arrangement of plants
affects the spatiotemporal pattern of soil moisture content
and water fluxes in orchards and plantations [Green and
Clothier, 1998; Andreu et al., 1997] and in row crops [Li et
al., 2002; Hupet and Vanclooster, 2005; Coelho and Or,
1998].
[61] In general, root water uptake models try to predict

where water is taken up by plants and under what conditions
this uptake is reduced by soil water shortage or soil salinity.
Although soil moisture is directly affected by root water uptake,
it must not be considered as a driving factor. Water flow toward
and within the root system is driven by water potential
gradients and is therefore determined by the resistances in
the soil-root system. This resistance to flow depends on the
resistance of the different water flow paths in the soil-plant
continuum, which include flow in the soil, flow across the
soil-root interface and flow within the root. The root length
density determines the length scale of the flow path in the
soil. Often, flow in the soil is the most resistive part. The
moisture content changes in time and space may be used to
estimate the root water uptake and the root length density
using inverse modeling. Musters and Bouten [1999] and
Hupet et al. [2002] derived root water uptake parameters
(root depth and root density) using a 1-D flow model and
found that the root water uptake parameters vary consider-
ably in space. Two and three-dimensional soil moisture
patterns were considered by Vrugt et al. [2001b, 2001c] in
the calibration of a multidimensional root water uptake
model. However, the success of this approach has varied
because moisture content also changes because of other soil
water fluxes. Hupet et al. [2003] remarked that root water
uptake parameters are difficult to estimate when hydraulic
soil parameters are uncertain. Musters et al. [2000] and
Musters and Bouten [2000] found as well that root water
uptake was difficult to estimate on the basis of soil water
dynamics alone. Additional measurements of root density,
sap flow, soil water potential, and actual plant transpiration

help to confine root uptake parameters during inverse
modeling.

7. Estimating Energy Fluxes

[62] Knowledge of surface soil moisture and its spatial
distribution is of utmost importance to understand and
predict the partitioning of surface energy fluxes [e.g.,
Schmugge, 1998; Margulis et al., 2002; Crow and Wood,
2002a]. Neglecting small-scale variability of soil moisture
may affect the quality of predicted surface energy fluxes in
climate and weather models at the regional scale. According
to Crow and Wood [2002a], this can be explained by the
highly nonlinear relationship between soil moisture content
and evapotranspiration and the highly heterogeneous spatial
structure of soil moisture fields. Nonlinear relationships
between land surface variables and surface fluxes dictate
that grid-scale fluxes in regional models will be sensitive to
the absence or presence of subgrid variability of soil
moisture [Crow and Wood, 2002a]. Statistical downscaling
procedures have been developed that estimate the statistical
moments of the soil moisture distribution at the subgrid
scale of regional models from coarse resolution soil mois-
ture imagery. Even with the new generation of remotely
sensed soil moisture data from the SMOS satellite (30 km
resolution), disaggregation will remain necessary. One of
the most common approaches for disaggregating soil mois-
ture is based on a power law relationship between the
variance of the soil moisture distribution and scale [e.g.,
Crow and Wood, 2002b]. Accounting for this subgrid soil
moisture variability, Crow and Wood [2002b] showed that
the error of modeled energy surfaces fluxes could be halved
for footprints larger than 16 km2. Crow and Wood [2002a]
considered three spatial scales for soil moisture (point, field
and region) and developed a conceptual link between the
impact of soil moisture aggregation on the surface energy
surfaces fluxes and the spatial scaling properties of soil
moisture fields. As spatial aggregation mainly deals with
horizontal and near surface variability of soil moisture, a
description of the change of soil moisture content with
depth, especially in the topsoil layer, is important in
predicting surface energy fluxes correctly. Recent evidence
obtained from analyzing multiscale soil moisture data
observed at scales ranging between 2.5 and 50 km showed
that the relationship between variance and scale has differ-
ent slopes. This questions the validity of the scaling concept
using a single unique slope [Famiglietti et al., 2008].
[63] Another approach for disaggregation is based on the

use of surrogate information that can be mapped with a high
spatial resolution and that correlates with soil moisture. This
information may include micrometeorological data, soil
texture, and land cover data [Reichle et al., 2001]. Merlin
et al. [2006] developed an algorithm to disaggregate syn-
thetic near-surface soil moisture SMOS-type data (50 km
resolution) to the scale of a distributed SVAT model with a
resolution of 1 km. The disaggregation procedure used
thermal and optical data to disaggregate microwave soil
moisture on the basis of a relationship between the soil skin
temperature and surface soil moisture. The assimilation of
downscaled measurements improved the prediction of the
spatial distribution of surface soil moisture and performed
better than the open-loop system or the case were coarse-
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scale measurements were assimilated. Errors in surface soil
moisture could be reduced from 1.4% for the open loop
simulation to values ranging between �0.11 and 0.25%
depending on the assimilation frequency. In addition, the
prediction of latent heat flux was improved both at the fine
and coarse scales. Limitations of this synthetic study are that
the error sources were known and the coupling between
surface temperature and surface soil moisture was relatively
strong, which limits the disaggregation scheme to specific
climate regions.
[64] Not all studies confirm the importance of subgrid soil

moisture variability for predicting large-scale surface fluxes.
Sellers et al. [1995] showed that averaged soil moisture
fields can be used in large-scale models to predict surface
energy fluxes without considering subgrid variability. This
was explained by a loss of spatial variation during soil
drying, which suppresses the increase in nonlinearity be-
tween soil moisture and evapotranspiration. This finding is
also supported by Kustas and Jackson [1999] on the basis
of data obtained in the little Watchita ’92 experiment.
Seemingly, the importance of subgrid soil moisture vari-
ability for large-scale prediction of surface energy fluxes is
still under debate.
[65] Future research should focus on improved upscaling

and downscaling techniques [Crow and Wood, 2002a] and
the use of innovative measurement techniques. Upscaling
strategies based on simple averaging concepts [e.g., Crow et
al., 2005a] or stochastic theories developed to upscale soil
water processes from the local to the field scale in vadose
zone hydrology [Vereecken et al., 2007a, 2007b] may
provide scale-appropriate moisture content data or effective
properties that can be used in land surface models to predict
surface energy fluxes. In addition, the establishment of
multiscale sensor networks covering spatial scales up to
the relevant footprint sizes of remote sensing platforms for
soil moisture, such as SMOS, may contribute in revealing
the role of soil moisture variability in predicting surface
energy fluxes and provide new information to develop
upscaling or downscaling approaches. Results of Famiglietti
et al. [2008] indicate that there is an information gap in the
very wet and dry range concerning small-scale soil moisture
variability (up to 100 m), which needs to be overcome to
allow further development and validation of upscaling
approaches.

8. Inferring Structural, Textural, and Soil
Morphology Parameters

[66] Soil moisture can be used as a proxy variable to
derive information about the structural, textural and mor-
phological properties of the subsurface. Wilson et al. [2003]
used information about the spatial and temporal distribution
of soil moisture derived from electromagnetic induction
measurements to obtain information on subsurface mor-
phology structures related to fast horizontal subsurface
water flow. The structure consisted of abrupt textural
changes from loess-alluvium to an underlying tertiary sand
layer and was expected to greatly influence vertical and
horizontal water movement. Dissimilar patterns in electrical
bulk conductivity observed during drying of the field site
were inferred to be caused by soil moisture variation
eventually causing difference in water flow.

[67] Hollenbeck et al. [1996] used passive microwave
remote sensing to map areas of relative fast and slow soil
surface drying within the HAPEX-Sahel 1992 experiment.
These differences in drydown were attributed to heteroge-
neity in soil hydraulic properties. The observed heteroge-
neity was then related to available information on soil
properties (e.g., textural properties), soil patterns and geo-
morphologic features (e.g., plateaus and terraces). Chang et
al. [2003] used remotely sensed brightness temperature over
the Southern Great Plains to derive soil textural information.
Chang and Islam [2000] proposed a methodology based on
a neural network approach to relate observed brightness
temperature and soil moisture to soil textural properties.
This methodology follows the approach of Hollenbeck et al.
[1996]. The use of brightness temperature data from mul-
tiple drying cycles was required to classify the soil texture
into more than three categories.

9. Research Needs and Outlook

[68] The improved capability to measure soil moisture
variation in space and time alone using multiscale and
multitemporal soil moisture campaigns is insufficient to
improve the characterization and quantification of soil
hydraulic parameters and hydrological fluxes. It also
requires a correct description of vadose zone processes so
that the high-resolution soil moisture measurement can be
optimally used. Thus, both improved measurement and
modeling methods must be combined to advance the sci-
ence of vadose zone and catchment hydrology. Moreover, to
further improve the hydrologic information content from
soil moisture profiles additional data on soils, vegetation
and land management practice are required.
[69] Combining hydrogeophysical with remote sensing

technologies provides a unique way to quantify the deeper
subsurface soil moisture dynamics. We are not aware of any
study that integrates both techniques to provide spatial
coverage of soil moisture in both horizontal and vertical
dimensions with a high temporal resolution. Novel meth-
odologies need to be developed that better capitalize on the
information that can be collected with these new measure-
ment techniques. For example, the success of retrieving soil
moisture profiles from soil moisture data essentially relies
on the type of assimilation method. Recent developments
combining Kalman Filters with Markov Chain Monte Carlo
methods to simultaneously estimate state variable and
system parameters seem promising.
[70] For estimation of soil hydraulic properties, soil

moisture data only is often insufficient and additional soil
data, such as matric potential, is commonly required.
Inclusion of hydrologic and energy fluxes using remote
sensing may improve the well posedness of the inverse
problem when optimizing for soil hydraulic parameters.
Therefore, the application of micrometeorological and
ground-based remote sensing techniques creates a unique
opportunity to measure field-scale effective fluxes, when
used in data assimilation or inverse approaches to estimate
field-scale hydraulic parameters.
[71] The validity of downscaling and upscaling concepts

of soil moisture and the role of soil moisture variability in
determining land surface exchange processes require further
attention. There is a pressing need to develop improved
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disaggregation schemes that can better integrate large-scale
soil moisture measurements into finer-scale hydrological or
SVAT models, thereby increasing the value of remotely
sensed soil moisture data. Upscaling methods of local-scale
soil moisture for predicting surface energy fluxes and water
fluxes also require much more attention. Upscaling theories
developed for water flow processes in unsaturated soils may
prove useful in this respect, because their potential has not
been fully explored. Despite the increasing capabilities of
measurement technologies and the development of wireless
soil moisture sensing networks, the hydrologic community
still lacks a unified concept for multiscale observation and
interpretation of soil moisture data. Therefore, multiscale
monitoring sites and databases are needed to not only
provide local information on spatial and temporal character-
istics of near surface soil moisture, surface fluxes and near
surface properties, but also to provide detailed information
of soil moisture content and water fluxes at the field and
catchment scale. This type of data is essential for validating
upscaling theories and catchment-scale models. We antici-
pate that the establishment of long-term terrestrial observa-
tories that aim at multicompartmental and multiscale
observation of hydrological processes will help moving
these issues forward.
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and D. J. Wilson (2004), Spatial correlation of soil moisture in small
catchments and its relationship to dominant spatial hydrological pro-
cesses, J. Hydrol., 286, 113–134, doi:10.1016/j.jhydrol.2003.09.014.

Wetzel, P. J., and J. T. Chang (1987), Concerning the relationship between
evapotranspiration and soil moisture, J. Clim. Appl. Meteorol., 26, 18–
27, doi:10.1175/1520-0450(1987)026<0018:CTRBEA>2.0.CO;2.

Wilson, D. J., A. W. Western, and R. B. Grayson (2005), A terrain and data-
based method for generating the spatial distribution of soil moisture, Adv.
Water Resour., 28, 43–54, doi:10.1016/j.advwatres.2004.09.007.

Wilson, R. C., R. S. Freeland, J. B. Wilkerson, and R. E. Yoder (2003),
Inferring subsurface morphology from transient soil moisture patterns
using electrical conductivity, Trans. ASAE, 46, 1435–1441.
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