ON THE VARIANCE OF THE HEIGHT OF RANDOM BINARY SEARCH TREES*

LUC DEVROYE ${ }^{\dagger}$ and BRUCE REED ${ }^{\dagger}$

Abstract

Let H_{n} be the height of a random binary search tree on n nodes. We show that there exists a constant $\alpha=4.31107 \ldots$ such that $\mathbf{P}\left\{\left|H_{n}-\alpha \log n\right|>\beta \log \log n\right\} \rightarrow 0$, where $\beta>15 \alpha / \ln 2=93.2933 \ldots$. The proof uses the second moment method and does not rely on properties of branching processes. We also show that $\operatorname{Var}\left\{H_{n}\right\}=O\left((\log \log n)^{2}\right)$.

Key words. binary search tree, probabilistic analysis, random tree, asymptotics, height, second moment method

AMS subject classifications. $68 \mathrm{Q} 25,60 \mathrm{C} 05$

1. Introduction. The height H_{n} of a random binary search tree on n nodes, constructed in the usual manner, starting from a random equiprobable permutation of $1, \ldots, n$, is known to be close to $\alpha \log n$, where $\alpha=4.31107 \ldots$ is the unique solution on [$2, \infty$) of the equation $\alpha \log ((2 e) / \alpha)=1$. First, Pittel [12] showed that $H_{n} / \log n \rightarrow \gamma$ almost surely as $n \rightarrow \infty$ for some positive constant γ. This constant was known not to exceed α (Robson [15]), and it was shown in Devroye [4] that $\gamma=\alpha$ as a consequence of the fact that $\mathbf{E} H_{n} \sim \alpha \log n$. Robson [16] has found that H_{n} does not vary much from experiment to experiment and seems to have a fixed range of width not depending on n. Devroye [5] proved that $H_{n}-\alpha \log n=$ $O(\sqrt{\log n \log \log n})$ in probability, but this does not quite confirm Robson's findings. It is the purpose of this paper to prove the following theorem.

THEOREM.

$$
\mathbf{E} H_{n}=\alpha \log n+O(\log \log n)
$$

and

$$
\operatorname{Var}\left\{H_{n}\right\}=O\left((\log \log n)^{2}\right) .
$$

While this is a major step forward, we still do not know whether $\operatorname{Var}\left\{H_{n}\right\}=O(1)$. For more information on random binary search trees, one may consult Knuth [7], [8], Aho, Hopcroft, and Ullman [1], [2], Mahmoud and Pittel [10], Devroye [6], Mahmoud [9], and Pittel [13].

Finally, we note that this paper contains the first proof of the asymptotic properties of H_{n} that is not based upon the theory of branching processes or branching random walks. We merely employ a well-known representation of random binary search trees from Devroye [4], and combine it with the second moment method, which has found so many other applications in the theory of random graphs (see, e.g., Palmer [11]).
2. Notation and definitions. Let T_{∞} be the complete infinite binary tree. Each node x has a right son $r(x)$ and a left son $l(x)$. We consider a random labelled tree R_{∞} obtained from T_{∞} by choosing a uniform [0,1] random variable $U(x)$ for each node x of T_{∞} and labelling the edge $(x, r(x))$ by $U(x)$ and the edge $(x, l(x))$ by $1-U(x)$. The label of edge a is denoted $L(a)$. We let R_{k} be the random tree consisting of the first k edge levels of R_{∞}.

For each node y of R_{∞}, we let $f(y)$ be the product of the labels of the edges on the unique path from the root to y. We remark that for each $x \in R_{\infty},-\log U(x)$ is an exponential

[^0]random variable with mean 1 . If the labels on the path from the root to a node y of R_{∞} are U_{1}, \ldots, U_{i}, then we define
$$
h_{n}(y)=\left\lfloor\ldots\left\lfloor\left\lfloor n U_{1}\right\rfloor U_{2}\right\rfloor \ldots U_{i}\right\rfloor .
$$

Also, $-\log f(y)$ is distributed as the sum of i independently and identically distributed (i.i.d.) exponential random variables with mean 1, i.e., it is gamma distributed with parameter i.

Fact 1. It is well known that we can construct a random binary search tree T_{n} on n nodes by taking a copy R of R_{∞} and letting T_{n} consist of those nodes y of R with $h_{n}(y) \geq 1$. (See, e.g., Devroye [4].)

Fact 2. Let y be a node of R_{∞} at depth i (i.e., at edge-distance i from the root). Then

$$
n f(y)-i \leq h_{n}(y) \leq n f(y) .
$$

Facts 1 and 2 basically allow us to obtain refined information regarding H_{n} merely by studying R_{∞}. The inequality in Fact 2 introduces a certain looseness; in fact, it will limit the accuracy of the results on H_{n} to be $O(\log \log n)$.
3. Lemmas regarding the gamma distribution. The sum S_{n} of n i.i.d. exponential random variables with mean 1 is gamma (n) distributed. Its density is given by

$$
g(t)=\frac{t^{n-1} e^{-t}}{(n-1)!}, \quad t>0
$$

LEMMA 1. Let $\left\{t_{n}\right\}$ be a sequence of numbers such that $t_{n} \sim$ cn as $n \rightarrow \infty$ for some $c \in(0,1)$. Then

$$
\mathbf{P}\left\{S_{n}<t_{n}\right\} \sim \frac{1}{1-c} \frac{e^{-t_{n}}\left(t_{n}\right)^{n}}{n!}
$$

Proof. By integration by parts,

$$
\begin{aligned}
\mathbf{P}\left\{S_{n}<t_{n}\right\} & =\int_{0}^{t_{n}} \frac{t^{n-1} e^{-t}}{(n-1)!} d t \\
& =e^{-t_{n}}\left(\frac{t_{n}^{n}}{n!}+\frac{t_{n}^{n+1}}{(n+1)!}+\frac{t_{n}^{n+2}}{(n+2)!}+\cdots\right) \\
& \sim \frac{1}{1-c} \frac{e^{-t_{n}}\left(t_{n}\right)^{n}}{n!} .
\end{aligned}
$$

Lemma 2. Let $t \in(0,1)$ be a fixed constant. Then

$$
\frac{e^{-t n}(t n)^{n}}{n!} \leq \mathbf{P}\left\{S_{n}<t n\right\} \leq \frac{1}{1-t} \frac{e^{-t n}(t n)^{n}}{n!} .
$$

Proof. The lower bound follows directly by integration by parts as in the proof of Lemma 1. For the upper bound, note that

$$
\begin{aligned}
\mathbf{P}\left\{S_{n}<t n\right\} & \leq e^{-t n}\left(\frac{(t n)^{n}}{n!}+\frac{(t n)^{n+1}}{(n+1)!}+\frac{(t n)^{n+2}}{(n+2)!}+\cdots\right) \\
& \leq \frac{e^{-t n}(t n)^{n}}{n!}\left(1+\frac{t n}{n+1}+\left(\frac{t n}{n+1}\right)^{2}+\cdots\right) \\
& \leq \frac{e^{-t n}(t n)^{n}}{n!}\left(\frac{1}{1-t}\right) .
\end{aligned}
$$

Lemma 3.

$$
A \leq \sqrt{n} 2^{n} \mathbf{P}\left\{S_{n}<n / \alpha\right\} \leq B,
$$

where $A=e^{-1 / 12} / \sqrt{2 \pi}$ and $B=\alpha /((\alpha-1) \sqrt{2 \pi})$.
Proof. From Lemma 2,

$$
\frac{e^{-n / \alpha}(n / \alpha)^{n}}{n!} \leq \mathbf{P}\left\{S_{n}<n / \alpha\right\} \leq \frac{1}{1-1 / \alpha} \frac{e^{-n / \alpha}(n / \alpha)^{n}}{n!}
$$

Use the fact that $n!=(n / e)^{n} \sqrt{2 \pi n} e^{H /(12 n)}$ for some $\theta \in(0,1)$ and the definition of α.
Lemma 4. There exists a universal constant C such that

$$
\mathbf{P}\left\{S_{n} \geq C n\right\} \leq 2^{-2 n}
$$

$C=5$ will do.
Proof. Take $C>1$. By Chernoff's exponential bounding method (Chernoff [3]), for $t>0$,

$$
\mathbf{P}\left\{S_{n} \geq C n\right\} \leq \mathbf{E} e^{t S_{n}} e^{-t C n}=(1-t)^{-n} e^{-t C n}=\left(C e^{1-C}\right)^{n},
$$

where we take $1-t=1 / C$. For C large enough (e.g., $C \geq 5$), this is less than 4^{-n}.
Lemma 5. Let $E_{1}, E_{2}, \ldots, E_{n}$ be i.i.d. random variables with a density, and let a be a fixed constant. Then

$$
\mathbf{P}\left\{E_{1}<a, E_{1}+E_{2}<2 a, \ldots, E_{1}+\cdots+E_{n}<n a \mid E_{1}+\cdots+E_{n}<n a\right\} \geq \frac{1}{n} .
$$

Proof. Define $F_{i}=E_{i}-a$ for all i. Define $E_{r}=E_{r-n}$, when $n<r \leq 2 n$. Then, by symmetry,

$$
\begin{aligned}
\mathbf{P} & \left\{E_{1}<a, E_{1}+E_{2}<2 a, \ldots, E_{1}+\cdots+E_{n}<n a \mid E_{1}+\cdots+E_{n}<n a\right\} \\
& =\mathbf{P}\left\{F_{1}<0, F_{1}+F_{2}<0, \ldots, F_{1}+\cdots+F_{n}<0 \mid F_{1}+\cdots+F_{n}<0\right\} \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbf{P}\left\{F_{i}<0, F_{i}+F_{i+1}<0, \ldots, F_{i}+\cdots+F_{i+n-1}<0 \mid F_{1}+\cdots+F_{n}<0\right\} \\
& =\mathbf{P}\left\{F_{S}<0, F_{S}+F_{S+1}<0, \ldots, F_{S}+\cdots+F_{S+n-1}<0 \mid F_{1}+\cdots+F_{n}<0\right\},
\end{aligned}
$$

where S is independent of the E_{i} 's and uniformly distributed on $\{1, \ldots, n\}$. Now, fix E_{1}, \ldots, E_{n}, and let $s \in\{1, \ldots, n\}$ be the (unique) value at which $\sum_{i>0 . i<s} F_{i}$ is maximal. If $s=1$, then $\sum_{i=1}^{j} F_{i}<0$ for all $j>0$. If $s>1$, then, as $\sum_{i=1}^{n} F_{i}<0$, we see that $\sum_{i=s}^{s+j} F_{i}=$ $\sum_{i=1}^{s+j} F_{i}-\sum_{i=1}^{s-1} F_{i}<0$ for all $j \geq 0$. Thus,

$$
\begin{aligned}
& \mathbf{P}\left\{F_{S}<0, F_{S}+F_{S+1}<0, \ldots, F_{S}+\cdots+F_{S+n-1}<0 \mid F_{1}+\cdots+F_{n}<0\right\} \\
& \quad \geq \mathbf{P}\{S=s\}=\frac{1}{n} .
\end{aligned}
$$

4. Proof of the theorem.

Lemma 6. Consider positive integers $n>k$. Then

$$
\mathbf{P}\left\{H_{n} \geq k\right\} \geq \mathbf{P}\left\{\exists \text { leaf } y \in R_{k}: f(y) \geq(k+1) / n\right\}
$$

Proof. This follows immediately from Facts 1 and 2.
Lemma 7. There exists a constant $d>0$ such that for sufficiently large j,

$$
\mathbf{P}\left\{\exists \text { leaf } y \in R_{j}: f(y) \geq(j+1) / \exp (j / \alpha+d \log (j / \alpha))\right\} \geq 1-\frac{1}{j^{3}} .
$$

We may pick $d=\epsilon+15 / \log 2$ for any small $\epsilon>0$.

Proof. The proof is contained in $\S 5$.
Lemma 8. Let d be the constant of Lemma 7. Then, for sufficiently large n,

$$
\mathbf{P}\left\{H_{n} \geq \alpha \log n-d \alpha \log \log n-1\right\} \geq 1-\frac{1}{(\alpha \log n)^{3}} .
$$

We may choose $d=\epsilon+15 / \log 2$ for any small $\epsilon>0$.
Proof. The proof follows from Lemmas 6 and 7 by setting $j=k=\lfloor\alpha \log n-$ $d \alpha \log \log n\rfloor$.

Lemma 9.

$$
\mathbf{P}\left\{H_{n} \geq\lceil\alpha \log n+i\rceil\right\} \leq\left(\frac{2}{\alpha}\right)^{i}, \quad i \geq 0
$$

Proof. See Devroye [4, p. 492].
Note that the theorem follows from Lemmas 8 and 9 without work.

5. Proof of Lemma 7.

Lemma 10. For every i with probability at least $1-2^{-i}$, every leafof R_{i} has $f(y) \geq e^{-5 i}$.
Proof. The probability that, for some leaf y of R_{i}, we have $f(y)<e^{-5 i}$ is at most 2^{i} times $\mathbf{P}\left\{S_{i} \geq 5 i\right\}$, where S_{i} is gamma i distributed. By Lemma 4, this does not exceed $2^{i} / 4^{i}=$ 2^{-i}.

LEMMA 11. For sufficiently large k with probability at least $1 / k^{3}$, there is a leaf y of R_{k} with $f(y) \geq e^{-k / \alpha}$.

Lemma 11 will be proved in $\S 6$. If Lemma 11 is true, then we can proceed with the proof of Lemma 7 as follows: First note that we can obtain a copy of R_{i+k} by making each leaf of R_{i} a root of a copy of R_{k}, where all these trees are independently labelled. Define $k=\lfloor j-A \log j\rfloor$ and $i=\lceil A \log j\rceil$ so that $j=k+i$ with some constant A to be picked further on. Note first that for j large enough, if $A>\alpha$,

$$
\frac{k}{\alpha}+5 i \leq \frac{j}{\alpha}+5 A \log \left(\frac{j}{\alpha}\right)-\log (j+1)
$$

Then,

$$
\begin{aligned}
& \mathbf{P}\left\{\nexists \text { leaf } y \in R_{j} \text { with } f(y) \geq 1 / \exp (j / \alpha+5 A \log (j / \alpha)-\log (j+1))\right\} \\
& \leq \mathbf{P}\left\{\exists \text { leaf } y \in R_{i} \text { with } f(y)<e^{-5 i}\right\} \\
& \quad+\mathbf{P}\left\{\nexists \text { leaf } y \in R_{j} \text { with } f(y) \geq 1 / \exp (j / \alpha+d \log (j / \alpha)-\log (j+1))\right. \\
& \left.\quad \mid \forall \text { leaf } y \in R_{i}: f(y) \geq e^{-5 i}\right\} \\
& \leq
\end{aligned}
$$

(by Lemma 10)

$$
\begin{aligned}
& \leq 2^{-i}+\left(1-k^{-3}\right)^{2^{i}} \quad(\text { by Lemma } 11) \\
& \leq 2^{-i}+\exp \left(-2^{i} k^{-3}\right) \\
& \leq j^{-A \log 2}+\exp \left(-j^{A \log 2-3}\right) \\
& \leq j^{-3}
\end{aligned}
$$

for j large enough, provided that $A \log 2>3$. This proves Lemma 7. We note that we can pick $d=5 A$, where $A=\epsilon+\max (\alpha, 3 / \log 2)$ for any small $\epsilon>0$.
6. Proof of Lemma 11. Let P be a path from the root to a leaf y of R_{k}. The condition $f(y) \geq 1 / e^{k / \alpha}$ is equivalent to

$$
\sum_{e \in P}(-\log L(e)) \leq \frac{|P|}{\alpha} .
$$

We call a leaf y special if, in addition to the above condition, it satisfies

$$
\sum_{e \in P^{\prime}}(-\log L(e)) \leq \frac{\left|P^{\prime}\right|}{\alpha}
$$

for every subpath P^{\prime} of P that originates at a terminal vertex y. Such subpaths are called terminal. Let \mathcal{S} be the collection of special leaves of R_{k}. By Lemma 5 , the expected number of special leaves is at least $1 / k$ times $\mathbf{P}\left\{S_{k}<k / \alpha\right\}$ times 2^{k}. By Lemma 3,

$$
\mathbf{E}|\mathcal{S}| \geq \frac{e^{-1 / 12}}{\sqrt{2 \pi} k^{3 / 2}}
$$

Next, we consider the expected number of pairs of special leaves to be able to apply the second moment method. We fix a leaf z of R_{k} and count $|\mathcal{S}|$, given that $z \in \mathcal{S}$. To this end, let w be another leaf of R_{k}. Let P_{z} and P_{p}, denote the paths from the root of R_{k} to z and w, respecively. Then P_{z} and $P_{l \prime}$, have an initial common subsequence, i.e., the join $P_{z} \cap P_{w}$. Let $e_{1}, e_{2}, \ldots, e_{k}$ be the edges on the path from the root to z and define $Q_{i}=\left\{e_{1}, \ldots, e_{i}\right\}$. For any j, the number of leaves of R_{k} whose join with P_{z} is Q_{j} is 2^{k-j}. Furthermore, the probability that a leaf $w \in R_{k}$ is a special leaf, given that $z \in \mathcal{S}$ and $P_{z} \cap P_{w}=Q_{j}$, is bounded above by the probability that for the terminal path $P^{\prime} \subseteq P_{w}-Q_{j}$ with $\left|P^{\prime}\right|=\max (0, k-j-1)$, we have

$$
\sum_{e \in P^{\prime}}(-\log L(e)) \leq \frac{\left|P^{\prime}\right|}{\alpha}
$$

Note that P^{\prime} contains one edge less than $P_{w}-Q_{j}$. Later, this allows us to work out a conditional probability, given $z \in \mathcal{S}$, without much trouble. By Lemma 3, the probability of the event mentioned above is at most

$$
\frac{\alpha}{(\alpha-1) \sqrt{2 \pi(k-j-1)} 2^{k-j-1}} .
$$

Thus,

$$
\begin{aligned}
\mathbf{E} & \left\{\left|\left\{w \in \mathcal{S}: P_{w} \cap P_{z}=Q_{j}\right\}\right| \mid z \in \mathcal{S}\right\} \\
& \leq \frac{\alpha 2^{k-j}}{(\alpha-1) \sqrt{2 \pi(k-j-1)} 2^{k-j-1}} \\
& =\frac{2 \alpha}{(\alpha-1) \sqrt{2 \pi(k-j-1)}} \\
& \leq 2,
\end{aligned}
$$

when $k-j \geq 2$. The previous expected value is bounded by 2 when $k-j \in\{0,1\}$. Therefore,

$$
\begin{aligned}
\mathbf{E}\{|S| \mid z \in \mathcal{S}\} & =\sum_{j=0}^{k} \mathbf{E}\left\{\left|\left\{w \in \mathcal{S}: P_{w} \cap P_{z}=Q_{j}\right\}\right| \mid z \in \mathcal{S}\right\} \\
& \leq \sum_{j=0}^{k} 2=2 k+2
\end{aligned}
$$

Hence, by the second moment method,

$$
\begin{aligned}
\mathbf{P}\{|\mathcal{S}| \geq 1\} & \geq \frac{\mathbf{E}|\mathcal{S}|}{1+\sup _{z \text { leaf of } R_{k}} \mathbf{E}\{|\mathcal{S}| \mid z \in S\}} \\
& \geq \frac{\mathbf{E}|\mathcal{S}|}{2 k+3} \\
& \geq \frac{e^{-1 / 12}}{\sqrt{2 \pi}(2 k+3) k^{3 / 2}} \\
& \geq \frac{1}{k^{3}}
\end{aligned}
$$

for all k large enough. This concludes the proof of Lemma 11.
Acknowledgments. The authors thank Colin McDiarmid and an anonymous referee for helpful comments.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, AddisonWesley, Reading, MA, 1975.
[2] ——, Data Structures and Algorithms, Addison-Wesley, Reading, MA, 1983.
[3] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Statist., 23 (1952), pp. 493-507.
[4] L. Devroye, A note on the height of binary search trees, J. Assoc. Comput. Mach., 33 (1986), pp. 489-498.
[5] ——, Branching processes in the analysis of the heights of trees, Acta Inform., 24 (1987), pp. 277-298.
[6] - On the height of random m-ary search trees, Random Structures Algorithms, 1 (1990), pp. 191-203.
[7] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, Addison-Wesley, Reading, MA, 1973.
[8] -_, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading, MA, 1973.
[9] H. M. Mahmoud, Evolution of Random Search Trees; John Wiley, New York, 1992.
[10] H. Mahmoud and B. Pittel, On the most probable shape of a search tree grown from a random permutation, SIAM J. Algebraic Discrete Meth., 5 (1984), pp. 69-81.
[11] E. M. Palmer, Graphical Evolution, John Wiley, New York, 1985.
[12] B. Pittel, On growing random binary trees, J. Math. Anal. Appl., 103 (1984), pp. 461-480.
[13] ——, Note on the heights of random recursive trees and random m-ary search trees, Tech. report, Department of Mathematics, Ohio State University, 1992.
[14] R. Pyke, Spacings, Roy. Statist. Soc. Ser. B, 7 (1965), pp. 395-445.
[15] J. M. Robson, The height of binary search trees, Austral. Comput. J., 11 (1979), pp. 151-153.
[16] ——, The asymptotic behaviour of the height of binary search trees, Austral. Comput. Sci. Comm., Queensland Univ. Tech., Brisbane, 1982, p. 88.

[^0]: *Received by the editors September 24, 1992; accepted for publication (in revised form) April 21, 1994. This research was supported by Natural Sciences and Engineering Research Council of Canada grant A3456.
 ${ }^{\dagger}$ School of Computer Science, McGill University, Montreal, Quebec H3A 2K6, Canada (luc@crodo. cs.megill.ca).

