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ON THE VARIANCE OF THE HEIGHT OF RANDOM BINARY SEARCH TREES*
LUC DEVROYE# AND BRUCE REEDt

Abstract. Let Hn be the height of a random binary search tree on n nodes . We show that there exists a constant
a = 4.31107 . . . such that P { I Hn - a log n i > f log log n } -+ 0, where > 15a/ In 2 = 93 .2933 . . . . The
proof uses the second moment method and does not rely on properties of branching processes . We also show that
Var{Hn } = O ((lag log n) 2 ) .
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1. Introduction . The height Hn of a random binary search tree on n nodes, constructed
in the usual manner, starting from a random equiprobable permutation of 1, . . . , n, is known
to be close to a log n, where a = 4 .31107 . . . is the unique solution on [2, oo) of the equation
a log ( (2e) /a) --:- 1 . First, Pittel [12] showed that H,~ / log n -+ y almost surely as n -+ 00
for some positive constant y . This constant was known not to exceed a (Robson [15]), and
it was shown in Devroye [4] that y = a as a consequence of the fact that EH n a log n .
Robson [16] has found that Hn does not vary much from experiment to experiment and seems
to have a fixed range of width not depending on n . Devroye [5] proved that H n -- a log n =
O ( ./log n log log n) in probability, but this does not quite confirm Robson's findings . It is the
purpose of this paper to prove the following theorem .

THEOREM .

EHn -= a log n + O (log log n )

and

Var{H„} = O((loglogn) 2) .

While this is a major step forward, we still do not know whether Var [H0 ] _ 0(1) .
For more information on random binary search trees, one may consult Knuth [7], [S], Aho,
Hopcroft, and Ullman [1], [2], Mahmoud and Pittel [10], Devroye [6], Mahmoud [9], and
Pittel [13] .

Finally, we note that this paper contains the first proof of the asymptotic properties of
H0 that is not based upon the theory of branching processes or branching random walks. We
merely employ a well-known representation of random binary search trees from Devroye [4],
and combine it with the second moment method, which has found so many other applications
in the theory of random graphs (see, e .g., Palmer [11]) .

2. Notation and definitions . Let T~ be the complete infinite binary tree . Each node x
has a right son r (x) and a left son 1(x) . We consider a random labelled tree R~ obtained from
T~ by choosing a uniform [0, 1 ] random variable U (x) for each node x of T~ and labelling
the edge (x, r (x)) by U (x) and the edge (x, 1(x)) by 1-- U (x) . The label of edge a is denoted
L(a) . We let Rk be the random tree consisting of the first k edge levels of R~ .

For each node y of Rte , we let 1(y) be the product of the labels of the edges on the
unique path from the root to y . We remark that for each x € R te, -- log U (x) is an exponential
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random variable with mean 1 . If the labels on the path from the root to a node y of R, are
U1	U,, then we define

h,r(y) = L . . . LLnU1JU2J . . . U,J .

Also, - log f(y) is distributed as the sum of i independently and identically distributed (i .i .d .)
exponential random variables with mean 1, i.e., it is gamma distributed with parameter i .

Fact 1 . It is well known that we can construct a random binary search tree Tn on n nodes
by taking a copy R of R~ and letting Tn consist of those nodes y of R with h" (y ) 1 . (See,
e.g ., Devroye [4] .)

Fact 2 . Let y be a node of R~ at depth i (i .e., at edge-distance i from the root) . Then

nf(y) -- r

	

hn (y ) nf(y) .

Facts 1 and 2 basically allow us to obtain refined information regarding '" merely by
studying Rte, . The inequality in Fact 2 introduces a certain looseness ; in fact, it will limit the
accuracy of the results on Hn to be o (log log n ) .

3. Lemmas regarding the gamma distribution . The sum Sn of n i .i .d. exponential
random variables with mean 1 is gamma (n) distributed . Its density is given by

t"-1e--t

g(t

		

~,

	

t>O .
(n - 1)} .

LE1sIMA 1. Let {tn } be a sequence of numbers such that t" ^- cn as n -+ x for some
c E (o, 1) . Then
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LEMMA 2. Let t E (0, 1) be afixed constant. Then
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Proof. The lower bound follows directly by integration by parts as in the proof of Lemma

1. For the upper bound, note that
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LEMMA 3 .

A 5 Jig" P {S,, C n/a} < B,

where A = e" 2/ ./and~"

	

2r~

	

B = a / ((a - 1) Zrr ) .
Proof From Lemma 2,

e -"~~ (n /a)"

	

1

	

e-"/' (n /a)"
P { S„ n/a}

n !

	

1

	

1/a

	

n .

Use the fact that n ! = (n / e )" 2n n

	

/'eH1(12,' ) for some 8 E (o, 1) and the definition of a .
LEMMA 4 . There exists a universal constant C such that

p {S„ ? Cn} 2-z" .

C = 5 will do .
Proof. Take C > 1 . By Chernoff's exponential bounding method (Chemoff [3]), for

t >0,

P { S,~

	

Cn}

	

P et sn a-tcrr = (1 - t)-" e-tC" = (Ce I_C)",-

where we take 1 --- t = 1/C. For C large enough (e.g., C ? 5), this is less than 4" .

	

a
LEMMA 5 . Let E1, E2, . . ., E,, be i . i .d. random variables with a density, and let a be a

faxed constant. Then

1
P {E1 <a,Ei+E2 E2a, . . .,EI+ . . .+E" <na I Ei+ . . .+.E,, <na}

	

- .
n

Proof. Define Ft = Ej - a for all i . Define Er = E,--R , when n E r 2n . Then, by
symmetry,

P{E1 <a,Ei+E2 <2a, . . .,E1+ . . .+E„ <na I E 1 + . . .+. 'n <na}
= P {Fl <0,F1+F2 <o, . . .,F1+ . . .+F" <0# F1 + • . .+Fn <0}

1

n
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n
P {Fi <o,F1 +Fi +1 <o, . . .,Fj+ . . .+Fi+n-I <0f F1+ . . .+F" <o}

iii

= P {Fs < 0, Fs + Fs+ i < o, . . . , FS + . . . + Fs+n_ i < o I Fi + . . . + F„ <0),

where S is independent of the Ej 's and uniformly distributed on (1	n} . Now, fix E1, . . . ,
E" , and let s E (1, . . . , n } be the (unique) value at which J j>0j<, Fj is maximal . If s = 1,

then

	

1 Fi < o for all j >0. Ifs > l, then, as >J'_ 1 Fj

	

~< 0, we see that

	

±s Fj

~ ~ Fj --

	

i F, < o for all j ? o . Thus,

P { Fs < 0, Fs + Fs+ 1 < O, . . . , Fs + . . . .+. Fs+n_ i < o I Fi + . . . + Fn < O }

1
P { S -_. s } _. .

	

0
n

4. Proof of the theorem .
LEMMA 6. Consider positive integers n > k. Then

P{H„?k}>_ P{2leafyER k f(y)(k+1)/n} .>_

Proof. This follows immediately from Facts 1 and 2 .

	

D
LEMMA 7. There exists a constant d > 0 such that for sufficiently large j,

P (3 leafy E R; f(y) >_ (j+l)/exp(j/a+dlog(j/a))} >_ 1-

We may pick d = E + 15/ log 2 for any small e > 0 .

1
j3



Proof. The proof is contained in §5 .

	

D
LEMMA 8 . Let d be the constant of Lemma 7. Then, for sufficiently large n,
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P {H„ >_alogn-daloglogn-1} >_ 1
1

(alogn)3
We may choose d = E -f- 15/ log 2 for any small E > 0.

Proof. The proof follows from Lemmas 6 and 7 by setting j = k = La log n -
da log log n J .

	

D

LEMMA 9 .

P {H„ >_ (alogn+i1} <_( 2)

	

i0 .
a

Proof. See Devroye [4, p . 492] .

	

D
Note that the theorem follows from Lemmas 8 and 9 without work .

5. Proof of Lemma 7.
LEMMA 10 . For every i with probability at least 1- 2 - k, every leaf of R, has 1(y) ? e 5' .
Proof. The probability that, for some leaf y of R,, we have f(y) C e" 5 ' is at most 2i

times P{ S, 5i}, where S1 is gamma i distributed. By Lemma 4, this does not exceed 2 1 /4 i
2' .

	

0
LEMMA 11 . For sufficiently large k with probability at least 1/k3 , there is a leafy ofRk

with f (y) >_ e-k/0r .
Lemma 11 will be proved in §6 . If Lemma 11 is true, then we can proceed with the

proof of Lemma 7 as follows : First note that we can obtain a copy of R1+k by making each
leaf of R; a root of a copy of Rk, where all these trees are independently labelled . Define
k = Lj - A log jJ and i = IA log j1 so that j = k + i with some constant A to be picked
further on . Note first that for j large enough, if A > a,

a +5i <_ 1-+5Alog(L) - log(j + 1) .

Then,

P { , leafy e R~ with f(y) >_ 1/ exp(j/a + SA log(j/a) - log(j + 1))}

< P {~ leaf y E R; with f(y) <e 5' }

+ P ( ,I leaf y E R3 with f(y) >_ 1/ exp(j/a + d log(j/a) - log(j -F 1))

I b leaf y E R~ : f(y) ? e-5i }

< 2- ' + P {every copy of Rk contains no leafy with f(y) >_ 1/ exp(k/a)}

(by Lemma 10)

<_ 2- ` +(1-k) 2 -3 (by Lemma 11)

C 2-t + exp (-2k 3 )i

-C j -A log 2+exp
`-

j A log 2 _3
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for j large enough, provided that A log 2 > 3 . This proves Lemma 7 . We note that we can
pick d = 5A, where A = E -+- max(a, 3/log 2) for any small E > o .

6. Proof of Lemma 11. Let P be a path from the root to a leafy of Rk . The condition
f(y) >_ 1/e~~" is equivalent to

(-- log L(e))
eE P

IPI
a

1)~/2 7r (k - j - 1)

We call a leaf y special if, in addition to the above condition, it satisfies

I p' t
(_log L(e)} < _

aeE P'

for every subpath P' of P that originates at a terminal vertex y . Such subpaths are called
terminal. Let S be the collection of special leaves of Rk . By Lemma 5, the expected number
of special leaves is at least 1/k times P (Sk <k/a) times 2k . By Lemma 3,

>_
2n/k 3 / 2

Next, we consider the expected number of pairs of special leaves to be able to apply the
second moment method . We fix a leaf z of Rk and count IS), given that z E S. To this end,
let w be another leaf of Rk . Let P~ and P,,, denote the paths from the root of Rk to z and w,
respectively. Then PM and P,,, have an initial common subsequence, i .e ., the join P~ f1 P,,, . Let
e 1 , e2	ek be the edges on the path from the root to z and define Q 1 .- (e 1	e; } . For any
j, the number of leaves of Rk whose join with P~ is Q~ is 2k-j, Furthermore, the probability
that a leaf w E Rk is a special leaf, given that z E S and P~ fl P,,, = Q~ , is bounded above by
the probability that for the terminal path P' c P,,, Q~ with P' f = max(o, k - j -- 1), we
have

~ 'P'I(_ log L (e)} _

	

.
eE P'

	

a

Note that P' contains one edge less than P,,, -- Q 1 . Later, this allows us to work out a conditional
probability, given z E S, without much trouble . By Lemma 3, the probability of the event
mentioned above is at most

a
- 1).~/2ir(k - j - 1)2k -i -1 .

Thus,

E{I{w ES :P,,,f1Pz =Q;}IIzES}

a2k-i

1)~/2n(k - j - 1)2k -i -1

2a
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when k - j 2 . The previous expected value is bounded by 2 when k -j { 4, 1 } . Therefore,

x
E {ISIIzES}=~E {~{w ES :P,,,f1PZ =Qi}I IZES}

-o
k

<~2=2)C-f-2 .

Hence, by the second moment method,

P{ISI > 1{ ~ E~s~

1+ sups leaf of Rk E{ J S I I-z E S}
E lSI

- 2k+3
~-1/i2

2~r (2k + 3)k3~ 2

1

- k 3

for all k large enough . This concludes the proof of Lemma 1 l .
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