To appear in 2013 in Springer’s Empirical Software Engineering journal — manuscript No.
(will be inserted by the editor)

On the variation and specialisation of workload — A
case study of the GNOME ecosystem community

Bogdan Vasilescu - Alexander Serebrenik -
Mathieu Goeminne .- Tom Mens

DOI: 10.1007/s10664-013-9244-1

Abstract Most empirical studies of open source software repositories focus on the
analysis of isolated projects, or restrict themselves to the study of the relation-
ships between technical artifacts. In contrast, we have carried out a case study that
focuses on the actual contributors to software ecosystems, being collections of soft-
ware projects that are maintained by the same community. To this aim, we defined
a new series of workload and involvement metrics, as well as a novel approach—
T-graphs—for reporting the results of comparing multiple distributions. We used
these techniques to statistically study how workload and involvement of ecosys-
tem contributors varies across projects and across activity types, and we explored
to which extent projects and contributors specialise in particular activity types.
Using GNOME as a case study we observed that, next to coding, the activities of lo-
calization, development documentation and building are prevalent throughout the
ecosystem. We also observed notable differences between frequent and occasional
contributors in terms of the activity types they are involved in and the number
of projects they contribute to. Occasional contributors and contributors that are
involved in many different projects tend to be more involved in the localization ac-
tivity, while frequent contributors tend to be more involved in the coding activity
in a limited number of projects.

Keywords open source - software ecosystem - metrics - developer community -
case study

B. Vasilescu and A. Serebrenik

MDSE, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Nether-
lands

Tel.: +31-40-2473595 Fax: +31-40-2475404

E-mail: {b.n.vasilescu | a.serebrenik}@tue.nl

M. Goeminne and T. Mens

COMPLEXYS Research Institute, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
Tel.: +32-65-373453 Fax: +32-65-373459

E-mail: {mathieu.goeminne | tom.mens}@umons.ac.be



2 Bogdan Vasilescu et al.

1 Introduction

Since the early 2000s, empirical studies aiming to understand open source software
development by mining software repositories have continued to gain popularity.
Two main causes of this popularity are: the abundance of projects for which the
entire history of all software artifacts can be freely analysed; and the growing
popularity of the open source paradigm, even in industrial settings (Weber, 2004;
Bonaccorsi et al, 2006).

In this paper, we go beyond existing research in software repository mining by
focusing on the community of contributors to a software ecosystem. In particular,
we wish to get insights in the variation of workload across the contributors to
the different projects that make up the ecosystem. All contributors need to com-
municate, interact and collaborate in order to adapt and maintain the ecosystem
and its constituent projects. However, some of these contributors are considerably
more active than others, some contribute to multiple projects, and many are in-
volved in different types of activities. The social interactions between open source
contributors, as well as their degree of project participation have been reported
repeatedly to influence software quality and complexity (Bettenburg and Hassan,
2010; Terceiro et al, 2010). Such information needs to be carefully and empirically
analyzed in order to get a better understanding of how open source contributors
interact as part of a large ecosystem built up from multiple interrelated projects.

Another important aspect that is largely unexplored in empirical analyses of
software repositories is how contributors specialise themselves in a restricted num-
ber of activity types. As proposed by Robles et al (2006) and Hindle et al (2007),
one can distinguish different activity types such as coding, development documen-
tation, building, testing, and so on. Both German (2003) and the GNOME devel-
opers themselves recognised the importance of non-coding activities for GNOME®,
as well as contributors specialising themselves in these activities:

“GNOME Community Celebrates 10 Years of Software Freedom, Innova-
tion and Industry Adoption: Since 1997, the GNOME project has grown
from a handful of developers to a contributor base of coders, documenters,
translators, interface designers, accessibility specialists, artists and testers
numbering in the thousands.” (Waugh, 2007)

“Just on this note, let me state that I in no way consider translators as
second-class citizens; nor documenters, Ul dudes, general organisers, or
anyone whatsoever just because they don’t code.” (Stone, 2004)

This is why we use the GNOME ecosystem as a case study in this paper. The aim of
this case study is to explore the variation in workload of projects and contributors
of GNOME, taking into account the activity types they are involved in.

This article is structured as follows. Section 2 presents our two research goals
and explains the research methodology followed. We introduce a novel set of met-
rics to study the variation of workload and involvement, and we present T-graphs
as a novel approach to report the results of comparing multiple distributions. Sec-
tions 3 and 4 report on the statistical evaluation carried out for each research goal,
and discuss the results. Section 5 presents the threats to validity, Section 6 reviews
related work, Section 7 discusses future work, and Section 8 concludes.

L yww.gnome.org


www.gnome.org

An empirical case study of workload specialisation in GNOME 3

2 Methodology
2.1 Research Goals

Following Lungu et al (2010) we define a software ecosystem as “a collection of
software projects that are developed and evolve together in the same environment”.
Accompanying this notion of ecosystem we define its ecosystem community as the
“collection of all contributors to the projects in the software ecosystem”.

As mentioned above, we believe that studying the contributors to a software
ecosystem (its ecosystem community) is equally important as studying the con-
tributions to the ecosystem themselves. Therefore, we focus on participation of
individual contributors, and study variations of the amount of participation across
projects of the ecosystem and across contributors of the ecosystem community. For
this reason, we explore the following two research goals:

1. How does workload vary across projects of the software ecosystem?
2. How does workload vary across contributors to the software ecosystem?

We decided to use the term workload as an objective measure of the amount
of participation. Its formal definition will be given in Subsection 2.5. As explained
in the introduction, and as observed in an earlier exploratory study (Mens and
Goeminne, 2011), the workload of projects or contributors may vary a lot depend-
ing on the type of activity that is being considered. Therefore we will take the type
of activity into account while studying both research goals.

Section 3 will study the first research goal, and Section 4 will study the second
research goal. It is in these sections that we will formulate the research questions
and how they contribute to each goal.

2.2 Selected case study

In order to address the research goals we need to select as a case study a software
ecosystem with at least the following characteristics:

— it should have a long development history (at least several years);

— it should possess a large ecosystem community involving many different con-
tributors;

— its contributors should be active in other activity types besides coding;

— it should contain a large number of projects, many of which should still be
actively maintained today;

— the projects should be open source as it facilitates data extraction and repli-
cation of our research results;

— the ecosystem should be well-known to researchers and open source developers.

We have selected the GNOME ecosystem as a case because it satisfies all of
these requirements. The GNOME community develops a popular free and open
source desktop environment for GNU/Linux and UNIX-type operating systems.
In total, GNOME contains 1358 projects, 699 of which (i.e., 51.5%) belong to the
archived category, and 4 belong to the deprecated category.? Each of the GNOME

2 These values were computed on October 28, 2011, based on the project list available at
git.gnome.org/browse. The number of GNOME projects has increased since this date.


git.gnome.org/browse

4 Bogdan Vasilescu et al.

projects has a corresponding Git distributed source code repository containing
all information about the evolution history of the project. We only considered a
subset of 1316 GNOME projects (including 691 archived projects) due to technical
reasons: some of the Git repositories were not available at the time of extraction,
some of the extractions did not produce any results, and some of the projects
did not contain any committers. The lifetime of the considered projects varies
widely. Some of the GNOME projects (e.g., gnome-disk-utility) have started in
1997 and are still evolving today (corresponding to a lifetime of 15 years), others
(e.g., gnome-contacts) were created more recently and were merely a couple of
months old at the moment we extracted the data. In addition, many of the GNOME
projects (over 900 of them) appeared to be inactive recently, their latest commit
dating before 2011. This is in particular the case for most (but not all) projects
belonging to the archived category.

The research goals of Section 2.1 use the notion of contributor belonging to the
ecosystem community. Since all GNOME projects are stored in a Git repository, we
will use the technical Git terminology to refer to a specific kind of contributor.
Git makes an explicit distinction between a project committer and a project au-
thor. The committer is the person that has the right to commit files to the version
repository. The author is the person that actually made the changes to the com-
mitted files. The reason for this distinction is that, for ease of management, an
author does not always have commit rights, implying that his changes need to be
committed by a different person. We will from now use the term author instead of
contributor, to reflect the fact that we restrict our case study to only those persons
that contribute to the Git project repositories of GNOME®.

To extract relevant data from these Git repositories, we used CVSAnaly?, a
specialized tool able to populate a database having a particular structure (Robles
et al, 2009). For each project, we created and populated a database containing
its entire change history (from its very beginning until september 2011) at file
level. For each project commit, the database contains the date of creation of the
commit, the commiter name, the author name, and the files touched in the commit.
A file touch corresponds to any action carried out on a file by its author: addition,
removal, modification, copy or rename. Within a single commit, the same file can
only be touched once. All files belonging to the same commit are touched by the
same author.

Table 1 shows how some project characteristics vary across GNOME projects.
For each project we have retrieved the number of committers, number of commits,
number of authors and number of files (that latter values are computed only for
the latest commit retrieved for each project). Based on these values we computed
the median, minimum, maximum, lower quartile (Q1), upper quartile (Q3) and
mean values. The boxplots in Figure 1 visualise the distribution of these results.

2.3 Identity matching

One of the challenges when studying software ecosystems containing many dif-
ferent projects stored in different version control repositories, and communities

3 If we were to consider other data sources, such as mailing lists and bug trackers, we would

be able to study other types of contributors as well.

4 metricsgrimoire.github.com/CVSAnalY


metricsgrimoire.github.com/CVSAnalY

An empirical case study of workload specialisation in GNOME 5

auth |comm | commits | files - §
ors | itters g i
min_ |1 1 1 25 " l g
Q1 3 2 23 61 3 | B
med |12 9 131 112 2 F 4
Q3 |59 46 517 237 l :
max | 1142 |692 | 35191 | 7097 gd - ‘ E
= i :
[mean [62.07[45.78 [760.2  [252.3] A L

Table 1: Variation of Git project
characteristics across 1316 GNOME

projects. For each project, the num- T f f f ‘
ber of commits, committers and Authors  Commiters Commits ~ Files
authors was computed for the entire
considered project history. The num-
ber of files was computed for the last
considered commit only.

Fig. 1: Boxplots showing the varia-
tion of Git characteristics from Ta-
ble 1 (log y-axis). Red triangles show
the mean value.

involving a large number of contributors, is identity matching. The same author
can use different names when contributing to different projects (e.g., ‘A S Alam’
and ‘Amanpreet Singh Alam’). Within the same project, an author may use differ-
ent names (e.g., ‘Gabor Keleman’ and ‘Gabor Kelemen’), or even different types
of names (e.g., the name ‘Yaakov Selkowitz’ and the login ‘yselkowitz’). Since we
wish to study the specialisation of authors contributing to a software ecosystem,
we need a unique identity representing the same author across all projects, even
if the author has used different names or logins. To achieve this, we need to use a
name matching algorithm.

Several identity matching algorithms have been proposed in literature (Rob-
les and Gonzélez-Barahona, 2005; Christen, 2006; Bird et al, 2006; Goeminne
and Mens, 2011a; Kouters et al, 2012; Igbal and Hausenblas, 2012). Such algo-
rithms either compute a similarity measure for each pair of names (e.g., based
on the Levenshtein distance or on phonetic encoding), attempt to match names
and logins adhering to known naming conventions (e.g., ‘dmitrym’ and ‘Dmitry
Mastrukov’), or use additional information to aid in the matching process (e.g.,
GPG key servers® to determine coupled e-mail addresses (Robles and Gonzélez-
Barahona, 2005)). However, all known existing approaches produce false positives
(names that are incorrectly matched to the same identity) and false negatives
(different names that correspond to the same author but for which no match is
identified). Moreover, name structure and format are often influenced by project-
specific, ecosystem-specific or community-specific rules and constraints (e.g., in
the GNOME Git repositories we found several name aliases corresponding to the
name of an author prefixed by a timestamp in different formats, such as ‘(13:16)’ or
‘23:32:57 BST"), thus increasing the risk of misclassification when blindly applying
automated identity matchers.

5 GNU Privacy Guard, a free implementation of the OpenPGP standard for public key
encryption.



6 Bogdan Vasilescu et al.

Certain matching algorithms use other data sources (e.g., mailing lists) to
facilitate the matching. However, a preliminary study of two GNOME projects,
brasero and evince, has shown a significant overlap in contributors per project, in
the version repository, mailing lists and bug tracker (Goeminne and Mens, 2011b).
Therefore, mailing lists and bug trackers were not considered in the current study
and we decided to rely only on the data extracted from the Git code repositories.

0: Author names, as
extracted by CVSAnaly

J 0.1: (Manual) Identify Gnome-specific naming artifacts

0.2: (Automatic) Preprocessing

1: Author names,
after preprocessing

1.1: (Automatic) Compute similarity measures

for each pair of names, using different algorithms:

- Levenshtein distance, Damerau-Levenshtein distance, bag distance
- soundex, phonex, editex, Jaro, Winkler

1.2: (Automatic) Select candidate matches for each author name,
based on the similarity measures

1.3: (Automatic) Augment candidate matches
v (logins, middle names, reversed first/last names, etc.)

2: Candidate matches,
for each author name

2.1: (Automatic) Transform problem to computing

v the set of connected components for a graph

3. Unique identities, and
mapped author names

3.1: (Manual) Postprocessing, to reduce the number of
v false positives and false negatives

4. Validated unique identities,
and mapped author names

Fig. 2: Identity matching steps.

To overcome these challenges we combine automatic identity matching with
a manual postprocessing phase to reduce the number of false positives and false
negatives. The different steps are schematised in Figure 2. First, GNOME-specific
naming artifacts, such as the timestamp prefixes in different formats, are iden-
tified by manual inspection (step 0.1), then the author names are automatically
preprocessed to remove these prefixes (step 0.2).

Next, a list of candidate matches is computed for each name (step 1.1) using a
number of similarity measures® based on pattern matching (e.g., the Levenshtein
distance (Levenshtein, 1966)), phonetic encoding (e.g., soundex (Knuth, 1973)), or
a combination of both (e.g., editex (Zobel and Dart, 1996)). Christen (2006) pro-
vides an overview of such similarity measures. Although numerous name similarity
measures exist and have available implementations, e.g., as part of Febrl (Chris-
ten et al, 2004), computing such measures is often computationally expensive.
Moreover, there is no single best technique available. Therefore, we applied the

6 The implementations of the similarity measures are part of Febrl — a parallel open source
data linkage system (Christen et al, 2004).



An empirical case study of workload specialisation in GNOME 7

Bertillonage approach proposed by Davies et al (2011) to reduce the search space
using fast techniques, followed by more expensive computations on this reduced
data set. Applying this to identity matching, we started by using a subset of the
available similarity measures and only then performed a manual postprocessing.

From the set of available similarity measures of Christen (2006) we required
a limited subset (to ensure fast computation), well-balanced in terms of com-
plementary types of similarity measures (pattern matching, phonetic encoding,
combinations of both, or more advanced measures), and containing techniques
that have been shown to perform well in practice. In this sense we selected the
Levenshtein distance, Damerau-Levenshtein distance, and bag distance pattern
matching techniques, the soundex and phonex phonetic encoding techniques, the
editex combined measure, and the Jaro and Winkler data linkage algorithms. All
of these algorithms are presented in detail by Christen (2006), who also shows
experimentally that they perform well on real name data sets.

A name is considered a candidate match (step 1.2) when at least one of the
selected similarity measures exceeds a certain threshold. For a given similarity
measure and a given name, the higher the threshold, the fewer the candidate
matches and, conversely, the lower the threshold, the more the candidate matches
for that name. We observed that a threshold value of 0.8 offered a good tradeoff
between the number of candidate matches and the number of false positives. If
needed, the threshold can be changed, since it only impacts the amount of manual
postprocessing required.

Similarity measures are sensitive to the ordering of name parts (e.g., ‘Attila
Hammer’ and ‘Hammer Attila’) and to the presence of middle names or initials
(e.g., ‘Lars R. Clausen’ and ‘Lars Clausen’). They also fail to recognize as candidate
matches login names corresponding to the same identity, even when logins are
formatted according to commonly-adopted naming conventions, such as the first
letter of the first name followed by the last name. Step (1.3) extends the list of
candidate matches to incorporate these cases automatically.

Similarity measures are not necessarily transitive. In step (2.1), in order to
have a complete list of candidates, we represent the candidate match relation as
a graph in which names are nodes, and there is an edge between two nodes if one
of them is a candidate match for the other. The sets of aliases used by the same
authors is therefore the set of connected components of the graph.

In the manual postprocessing step (3.1) one of the authors of this paper
matched the remaining logins, not adhering to commonly-adopted naming con-
ventions (e.g., ‘mrhappypants’), to existing names by searching on the internet for
email addresses used in common both by the nicknames (logins) and the existing
names. Another author independently checked all matches, without being aware of
which matches were suggested by the algorithm or by the manual postprocessing.

Applying the above identity matching approach to the data about the GNOME
contributors allowed us to quantify the scale of the problem: without name match-
ing, we found 6982 different author names across all considered GNOME projects.
After name matching, only 5155 unique identities remained (i.e., 73.83%). When
counting the number of different names associated to these unique identities, we
found a median value of 1, a mean value of 1.355, and a maximum value of 168.
In fact, in 4344 cases (i.e., 84.26%) the unique identities correspond to a single
name. In 555 cases (i.e., 10.77%) the identities correspond to two different names.
The remaining 4.97% unique identities correspond to persons that have used 3



8 Bogdan Vasilescu et al.

or more different names to identify themselves. The maximum number of aliases
(168) corresponded to an author that used commit messages instead of his name.

In the remainder of this paper, whenever we use the term author, we refer to
the unique identities obtained as a result of the identity matching process.

2.4 Identifying activity types

The type of development activity carried out by authors in a project can be esti-
mated on the basis of the types of files that are touched during each commit in the
project’s version control repository. To this end, we collect fully qualified paths,
including the directory hierarchies, and the names and extensions of the files that
have been touched for each commit in the version control history of each project.

Our approach is similar to that of Robles et al (2006) and Hindle et al (2007),
who distinguish between different activity types based on the file names and ex-
tensions. Hindle et al (2007) distinguished between four types of files: source, test,
build and documentation. Robles et al (2006) proposed 8 different activity types.
We expand upon the classification by Robles et al (2006) by considering additional
types such as testing, database and library.

In total, we defined 14 activity types. Documentation (doc) helps the final user
in getting acquainted with the application. Image (img) refers to all picture files
used as part of the software project (e.g., button icons, illustration in documen-
tation). Localization (110n) consists in adapting the software for other cultures,
and includes translation activities. User interface (ui) is concerned with provid-
ing a graphical user interface to interact with the application. Files associated to
multimedia (media) contain sounds, videos, and other multimedia resources (ex-
cluding images, which are categorized separately) that are used in the software.
Code (code) files describe the software logic, whereas test (test) files contain the
instructions needed to automatically test this logic. Files pertaining to the meta
(meta) activity type are not a direct artifact of the projects, but support the soft-
ware development process. Configuration files (config) are used by developers to
describe some project properties, whereas build (build) files are used to help the
developers and/or users to build a binary from the available resources. The de-
velopment documentation (devdoc) aims to help persons involved in the project’s
development to maintain and improve the system. Files attached to the database
(db) activity are used by the application as knowledge management resources.
Library (1ib) files contain third-party software. The last activity type, labelled
unknown, contains all files not contained in any of the previous activity types.

Using information extracted from the file paths and file names, we iteratively
build a collection of rules mapping files to activity types. Initially, the collection
is empty and no files are mapped to activity types. For each file that has not
been associated yet with an activity type, we add a pair (¢, e), where e is a case-
insensitive regular expression matching the fully qualified file path, and t is the
corresponding activity type. For example, (code, .*\.c) is a rule specifying that
any file with extension .c, regardless of its file path, corresponds to a code activity
(since it is a C source code file). More examples of rules can be found in Table 2,
while the complete set of rules can be found in Appendix A.

To define the regular expressions we have used domain knowledge. For instance,
programming languages have traditional extensions for their source code files (e.g.,



An empirical case study of workload specialisation in GNOME 9

Activity type t Acronym | Regular expression e

Code code .*\.cpp

Development documentation | devdoc .*/changelog. *

Documentation doc .*\.man, .*/doc(s?)/.*, .*/copyright
Images img .*\.jpg

Localization 110n .*\.po(~7), .*/locale(s?)/.*
Multimedia media .*/media(s?)/.*, .*\.mid

Table 2: Excerpt of the rules (¢, e) used to identify the activity types from the file
paths and file names. The regular expressions follow the traditional POSIX Basic
Regular Expression syntax (ISO/IEC/IEEE, 2009). Backslash \ is used as escape
character distinguishing between . representing any character and \. represent-
ing the character ‘dot’, i.e., .*\.cpp represents all files with the .cpp extension.
Forward slash / is used as a directory separator in file paths, i.e., .*/doc(s?)/.*
represents all files in doc and docs subdirectories. The complete list of rules is
given in Appendix A.

.java for Java programs), hence these extensions can be used as regular expres-
sions associated with the code activity type. Other examples of commonly used
naming conventions are the use of file paths, such as /library/, or parts of file
names, such as copyright, to provide an indication of the corresponding activity
type (in this case 1ib and doc, respectively).

In order to resolve situations where multiple regular expressions may be ap-
plicable to the same file, the rules are treated as an ordered list. Thus, the last
rule that matches the file will be used to classify the file under the associated
activity type. For example, a file /test/ClassTest.java matches the rules (code,
.*\.java) and (test, .*/test.*\..x). Because the rule for the test activity type
is checked after the one for code, /test/ClassTest.java will be associated with
a test activity.

Files for which none of the regular expressions are applicable are classified as
unknown. Examples of such files include (i) container files (having the extension
.zip, .rar, etc.), (ii) files having an ambiguous, unusual or no extension, as well
as files having no specific name or a non-specific path. Since files pertaining to the
unknown activity type have little in common, we choose not to present and discuss
their results during our analysis. However, in order not to distort our data, we do
include unknown files in the computation of all our metrics.

Note that the above approach for classifying files per activity type is restric-
tive: files cannot be associated with multiple activity types since this would pose
problems in the definition of some metrics and the statistical analysis and inter-
pretation of some results. In some cases, multiple classification would have been
useful. For example, /test/ClassTest.java could be classified as test because
it presumably contains unit tests as well as code because Java test files are also
source code files. Another limitation of our naive approach is that we classify files
in a particular activity type based on the file path and file extension. This is not
always sufficient. To determine if a file is really a test file, for example, one would
need to parse the file’s contents. For more details, we refer to Zaidman et al (2011)
who used open source repository mining to study the co-evolution of production
code and test code. A more refined classification and treatment of files per activity
types is beyond the scope of this article.



10 Bogdan Vasilescu et al.

2.5 Metrics

Having defined the research goals, and having selected GNOME as a case study,
we now present a novel set of metrics that we have created to be able to answer
the research questions for each research goal in Sections 3 and 4. These metrics
are somehow restricted by the type of data that we can extract from the different
GNOME project repositories in reasonable time. We decided to focus on file-level
metrics as the most suitable level of granularity for our case study. While analyzing
data below file level would allow us to be more precise, it turns out to be too time-
consuming and resource-consuming. In addition, the file contents is only useful
for text-based files such as code files, while a more in-depth analysis of code files
would necessitate the use of different parsers (one for each language used). Ignoring
files by studying commits would be too coarse grained, as it does not allow us to
approximate the workload of individual authors at a sufficient level of detail. In
particular, it does not allow us to identify the different activity types carried out
by authors (see Section 2.4), while this is a prerequisite for addressing the second
research goal.

PROJECT WORKLOAD METRICS H AUTHOR WORKLOAD METRICS
project absolute project metrics absolute author metrics author
specialisation specialisation

metrics metrics
W(a,p.t)
Sump Sump

Gini Gini
( Pws(p) }:""T PTWpt)> (ATW(a,t)) 'mL{ AWS(a) |
Sump \Sx S% Sumg
PW(p) TW—) AW(a)

4 d
Giniy v L N Giniy
w<——<RPTW pt) <RTPW pt)) (RTAW(a,t)) RATW(a,t))——» RAWS(a)

relative project metrics relative author metrics

M<——=4>»rmD OO—T—-4MZT MAC-rO®nT>

Fig. 3: Workload metrics. The following naming convention is adopted for the met-
ric acronyms: A = Author; P = Project; T = activity Type; W = Workload; R
= Relative; S = Specialisation. Relative metrics are defined as a fraction % and
represent a percentage (i.e., a value between 0 and 1). Ginir denotes the appli-
cation of the Gini inequality index (Gini, 1921) over all activity types. Similarly,
Sumr, Suma and Sump aggregate values through summation.

Let P be the set of all GNOME projects, A the set of all unique GNOME authors
(i.e., the GNOME contributors after matching different logins to the same identity),
T the set of all considered activity types. Each file belonging to some commit in
the version control repository of a project p € P can be directly linked to an author
a € A that touched this file, and the type ¢t € T of the activity corresponding to
this file is computed as explained in Subsection 2.4.



An empirical case study of workload specialisation in GNOME 11

The basic metric we compute using data extracted from the Git logs is the
Author-Project-Type Workload APTW:

APTW (p,a,t) = number of touches to files of activity type ¢

by author a for project p over its entire history. (1)

If the same file is touched in different commits, it will be counted multiple times.
Based on this metric, we can also derive the Author-Project-Type Involve-
ment APTI that determines for project p if an author a has been involved in at
least one (i.e., has touched at least one file of) activity type t:

[ 1,if APTW(p,a,t) > 0;

APTI(p, a,t) = {O, otherwise. (2)
Using these two basic metrics, we can derive higher-level aggregate metrics.
Figure 3 presents the workload metrics that are derived from APTW, while Fig-
ure 4 presents the involvement metrics that are derived from APTI. In both figures
we distinguish between project-level metrics (on the left) and author-level metrics

(on the right).

PROJECT INVOLVEMENT METRICS \ AUTHOR INVOLVEMENT METRICS
A project absolute project metrics absolute author metrics author
B specialisation specialisation
metrics metrics

S APTI(a,p,t)

o

b Sum(Max Sump(Max)

T

E

M

$ (NTP(p) ) NTA(a)

T Ginip- Ginip

c PIS(p) |e—1 PTI(p,t) ATl(a,t) —»( AlS(a)

S
g
E - d_yn .

L Gini Ginip

A RPIS(p) |<—1 RPTI(p,t) RATI(a,t) —»{ RAIS(a)

T

1

‘é relative project metrics relative author metrics

Fig. 4: Involvement metrics. The same naming convention is followed as in Figure
3, except that we now use I for involvement and N for number of.

The way these metrics are computed is similar. We therefore only present the
project-level metrics definitions in Tables 3 and 4. The main distinction between
workload metrics and involvement metrics is that the latter rely on counting.
For example, NAP(p) counts how many authors are involved in project p. If the
same author is involved in different activity types for this project, she needs to
be counted only once. This explains why we first compute the maximum over all
types, and then compute the sum over all authors.

Tables 3 and 4 and Figures 3 and 4 also refer to specialisation metrics that
need some further explanation. To quantify the degree of specialisation of authors



12 Bogdan Vasilescu et al.
Acronym Description Definition
PTW (p,t) (absolute) project-type workload Z APTW (p,aj,t)
aj€A
PW(p) th'OJeCt workload over all authors and activity [ > PTW(p,ts)
ypes tR €T
TW(t) type workload over all authors and projects ;P PTW (pi, 1)
Pi
workload in project p for activity type t, relative PTW (p,t)
RPTW (p.t) to the total project workload PW (p)
workload in project p for activity type t, relative PTW (p, t)
RTPW (p, 1) to the total type workload TW (t)
specialisation (imbalance) of workload across ac-
PWS(p) tivity types for project p, over all authors con- | Ginisy er(PTW (p,tx))
tributing to p
RPWS(p) specialisation (imbalance) of relative workload
p across activity types for project p, over all authors | Giniy,er(RPTW (p,ty))
contributing to p

Table 3: Definitions of APTW -based project-level workload metrics. (The author-
level workload metrics are defined similarly.)

Acronym Description Definition
PTI(p,t) (absolute) project-type involvement Z APTI(p,a;,t)
aj; €A
NTP(p) number of types for project p Z ma:rajeAAPTI(p, aj,ti)
tRET
NAP(p) number of authors for project p Z maxy, e APTI(p, aj,ty)
aj €A
author involvement in project p for activity PTI
t
RPTI(p,t) type t, relative to the total number of authors w
involved in the project NAP(p)
specialisation (imbalance) of involvement
PIS(p) across activity types for project p, over all | Giniy, c7(PTI(p,tx))
authors contributing to p
specialisation (imbalance) of relative involve-
RPIS(p) ment across activity types for project p, over | Giniy, er(RPTI(p, t))
all authors in p

Table 4: Definitions of APTI-based project-level involvement metrics. (The
author-level involvement metrics are defined similarly.)

(towards a particular activity type), as well as the degree of project specialization
(towards a particular activity type), we rely on the Gini inequality index (Gini,
1921). We have used it to define the project specialisation metrics PW.S, RPW S,
PIS and RPIS, as well as the author specialization metrics AWS, RAW S, AIS
and RAIS by aggregating over all activity types in 7. The Gini inequality in-
dex (Gini, 1921) is one of the many inequality indices commonly applied in econo-
metrics to study inequality of income or welfare distributions (Cowell, 2000; Cowell
and Jenkins, 1995). As opposed to traditional aggregation techniques such as mean
or median, inequality indices provide reliable results for highly-skewed distribu-
tions. Similarly to such traditional aggregation techniques, inequality indices do
not require complex application procedures. The Gini index is defined based on
the Lorenz curve (Lorenz, 1905), and ranges between 0 and 1 — % (Allison, 1978),



An empirical case study of workload specialisation in GNOME 13

where n is the number of values being aggregated (e.g., n = 14 in the case where
we aggregate over all activity types). We could have chosen other measures of in-
equality (Cowell, 2000; Theil, 1967; Serebrenik and van den Brand, 2010; Mordal
et al, 2012), but Gini has been shown to convey the same information as the other
applicable inequality indices (Vasilescu et al, 2011a,b).

Finally, we have chosen to focus on the specialisation of authors and projects
towards a particular activity type. Alternatively, one could have studied specialisa-
tion of authors towards a particular project Giniaea(D,cq APTW (p, a,t)) (sim-
ilar to the project Work Concentration measure of Tsay et al (2012)) or speciali-
sation of projects towards a particular author Ginipep(_,cq APTW (p,a,t)).

2.6 Data analysis

In order to facilitate replication of our case study, we have created a webpage
and a replication package’ containing the data, tooling, and detailed results of the
statistical analysis performed. In this section we briefly introduce the techniques we
have used to perform statistical analysis. We relied on the R project for statistical
computing (R Development Core Team, 2010), including packages such as ineq
to calculate the Gini index (Zeileis, 2009), Matching to perform the bootstrapped
Kolmogorov-Smirnov test (Sekhon, 2011), agricolae to determine the Kendall
correlation coefficient (de Mendiburu, 2010), and nparcomp to compute relative
contrast effects when comparing two distributions (Konietschke, 2012).

Correlation When measuring statistical correlation between two groups of data
we have a choice between linear or rank correlation coefficients. Linear coefficients
(e.g., Pearson (1895)) are sensitive only to a linear relation between two variables.
Rank coefficients (Kendall, 1938; Spearman, 1904) are more robust to nonlinear
relations since they only measure the extent to which an increase in one variable
(not necessarily linear) corresponds to an increase in the other variable. Since we
do not make assumptions about the shape of each relation, we use a rank coef-
ficient and we opt for Kendall’s 7 since Spearman’s p is known to be difficult to
interpret (Noether, 1981). We account for ties as described by Press et al (2002).
Whenever we measure Kendall correlation between two metrics, the null hypoth-
esis Hyp is that there is no relation between the two metrics, and the alternative
hypothesis H, is that there is a relation between the two metrics. We report
Kendall’s 7 and the corresponding p-value.

Linear regression When a linear relation between the dependent variable and one
or more independent variables can be suspected, we also perform linear regres-
sion, i.e., based on the data we estimate parameters of the linear function of the
independent variables to obtain as close values as possible to the values of the
dependent variable. To check the adequateness of the fitted model we analyze the
residual plot: the points in the residual plot should appear randomly dispersed
around the horizontal axis. Moreover, we report the p-values for the significance
of regression with the F-statistic, as well as p-values for the coefficients and the
intercept. Finally, we report the adjusted coefficient of determination R? (Theil,

7 The dataset can be found here: www.win.tue.nl/mdse/gnome


www.win.tue.nl/mdse/gnome

14 Bogdan Vasilescu et al.

1971, pp. 164,175-178) that takes into account the number of parameters used by
the regression model.

Distribution fitting In order to understand how data values are distributed, we try
to fit a theoretical distribution to it. Specifically, as many distributions in software
follow a power law x~% (Louridas et al, 2008) or are log-normal (Baxter et al, 2006;
Little, 2006), in this paper we only attempt to fit these types of distributions. To
evaluate the goodness-of-fit of a log-normal distribution we use the Kolmogorov-
Smirnov test. The original test cannot calculate correct p-values in presence of
ties. In those cases we use the bootstrapped version of the Kolmogorov-Smirnov
test (Sekhon, 2011) instead. In this test we use the two-sided alternative hypoth-
esis and the default number of bootstraps to be performed (1000). Considering
a power law distribution, it often applies only for values greater than some min-
imum value, so we need to estimate this value in addition to a that determines
the form of the distribution. Using the methodology proposed by Clauset, Shalizi
and Newman (2009) we estimate the aforementioned parameters and calculate the
goodness-of-fit between the data and the power law. If the resulting p-value is
lower than the threshold of 0.1 proposed by Clauset et al (2009), we reject the hy-
pothesis that the distribution follows a power law. If the p-value is higher than 0.1,
it is possible that other distributions can be fitted as well. Therefore, we have to
compare the likelihood of the data under two competing distributions. Depending
on the families these distributions belong to, we either exploit the closeness test
of Vuong (1989) or a slightly modified likelihood ratio test (Clauset et al, 2009).

Ezcluding zeros As part of our research goals we study the influence of the activity
type (e.g., coding, localization) on workload variations across projects and across
project contributors. To this end we distinguish between, and compute metrics per,
different activity types. Whenever we compute a metric that takes the activity type
into account, we consistently exclude zero values; for each activity type, we only
focus on the projects (contributors) that contain (participate in) activities of that
type, cf. discussion of active committers of Robles et al (2006). The only exception
is when we compare specialisation of projects and contributors in few activity types
(i.e., Figures 8 and 16), computed using the Gini index. In these cases, since not
all projects contain, and not all contributors participate in, activities of all types,
we do not exclude zero values (e.g., for a project we do not ignore the activity
types not present in that project), since this would lead to incomparable Gini
index values.

2.7 T procedure and ’i‘-graph

When studying the specialisation of projects and authors towards different activity
types, we need to assess whether the distributions of a given metric are different for
the different activity types. Traditionally, comparison of multiple groups follows a
two-step approach: first, a global null hypothesis is tested, and then multiple com-
parisons are used to test sub-hypotheses pertaining to each pair of groups. The
first step is commonly carried out by means of ANOVA or its non-parametric coun-
terpart, the Kruskal-Wallis one-way analysis of variance by ranks (Holander and



An empirical case study of workload specialisation in GNOME 15

Wolfe, 1973). The second step uses the t-test or the rank-based Wilcoxon-Mann-
Whitney test (Wilcoxon, 1945), with Bonferroni correction (Dunn, 1961; Sheskin,
2007). Unfortunately, the global test null hypothesis may be rejected while none
of the sub-hypotheses are rejected, or vice versa (Gabriel, 1969). Moreover, sim-
ulation studies suggest that the Wilcoxon-Mann-Whitney test is not robust to
unequal population variances, especially in the unequal sample size case (Zimmer-
man and Zumbo, 1992). Therefore, one-step approaches are preferred: these should
produce confidence intervals which always lead to the same test decisions as the
multiple comparisons.

Moreover, since we have identified 13 different activity types®, we had to con-
duct % = 78 comparisons and report 78 results. For the sake of brevity we
summarize the test results as a directed acyclic graph. Nodes of the graph corre-
spond to activity types, edges to results of pairwise comparisons. Because plot-
ting a graph with 13 nodes and in the worst case 78 edges would result in vi-
sual clutter, we would like to omit direct edges between A and B if there is a
path from A to B passing through at least one other node C. Hence, we need
an approach that respects transitivity. Unfortunately, this is not necessarily the
case for traditional pairwise or multiple comparison approaches: e.g., Brown and
Hettmansperger (2002) show that no transitive reduction is possible for the tradi-
tional pairwise Wilcoxon-Mann-Whitney tests. Transitivity is, however, respected
by the recently proposed multiple contrast test procedure T (Konietschke et al,
2012). Moreover, T is robust against unequal population variances.

The T procedure takes as input a type of contrast and the threshold for the
family-wise error rate, i.e., the probability of falsely rejecting one or more null sub-
hypotheses (Kurtz et al, 1965) (we use the traditional threshold of 5%). The T
procedure returns an estimator for the difference of each pair of the distributions
being compared, the corresponding 95% confidence interval, test statistics and the
corresponding p-values.

Contrasts, represented as the contrast matrix, express which sub-hypotheses
should be tested. Formally, matrix C is called a contrast matrix if C-1 = 0, where
1 is the column vector of appropriate length consisting solely of ones and 0 is the
row vector consisting solely of zeroes, i.e., the sum of all rows in C is 0 (Brunner
and Munzel, 2002). To illustrate the notion of a contrast matrix consider the
following matrices:

-1 10...00

-1 01...00

—-110...0 -100...01

-101...0 0 —-11 00
Cp=1|. ... .| Cr=

—-100...1 0 -10... 01

0 00...-11

Matrix C'p expresses comparisons of multiple alternative hypotheses (treatments)
with a specific one (control group) and is known as “many-to-one” or Dunnett-
type contrast (Dunnett, 1955). Matrix Cr expresses all pairwise comparisons (up

8 As explained in Section 2.4 we do not include the unknown activity type.



16 Bogdan Vasilescu et al.

to symmetry) and is known as “all pairs” or Tukey-type contrast (Tukey, 1951).
Since our goal is to compare all groups pairwise, we consider only Tukey-type
contrasts.

Next we introduce T—graph& a new and more intuitive visualisation that we
propose for reporting the results of the T procedure:

— First, for each pair of groups we analyse the 95% confidence interval to test
whether the corresponding null sub-hypothesis can be rejected. If the lower
boundary of the interval is greater than zero for groups A and B, then we
claim that the metric value is higher in A than in B. Similarly, if the upper
boundary of the interval is less than zero for groups A and B, then we claim
that the metric value is lower in A than in B. Finally, if the lower boundary
of the interval is less than zero and the upper boundary is greater than zero,
we conclude that the data does not provide enough evidence to reject the null
hypothesis.

— Second, based on the results of the comparisons we construct the graph with
nodes being groups and containing edges (A, B) if the metric value is higher
in A than in B. After removal of transitive edges (Aho et al, 1972), we obtain
a directed acyclic graph that we call a ri‘—graph.

A visual comparison of multiple distributions using 'i‘—graphs enables us to focus
on “interesting” groups, e.g., activity types located “high” in the graph, i.e., those
activity types with metric values higher than most of the remaining activity types,
or “low” in the graph, i.e., those activity types with metric values lower than many
remaining activity types.

Pair Lower Upper p-value °
Activity Developers B-A -0.560 -0.444 0.000
type C-A -0.503 -0.313 7.536e-10 °
A 22233333334444444455 D—-A -0.320 -0.027 1.997e-02
B 11111111111111111122 C-B -0.014 0.242 9.742¢-02
C 11111111111122222233 D-B 0.237 0.470 1.200e-06 ee
D 11122222223333334444 D-C 0.090 0.404 2.432e-03

Table 5: Illustration of T procedure and 'i‘—graph based on artificial data. Left:
Commit activity per type for 20 developers (columns). Middle: Results of the T
procedure. The p-value reported as zero is too small to be calculated exactly. Right:
The resulting T-graph.

To illustrate the T procedure and a ’i‘—graph consider the following artificial
example inspired by and extending the drug, data of Akritas et al (1997). Figure 5
(left) shows the commit activity per activity type (A, B, C or D) for a group of
twenty developers: e.g., developer #1 has performed two commits for activity A,
one commit for activity B, one commit for activity C and one commit for activity
D. Using the T procedure and a T-graph we would like to clarify the relationship
between the four activity types. We start by invoking the T procedure for the
Tukey-type contrast and 95% confidence level. Results of the T procedure are
summarized in Figure 5 (middle). For five out of six comparisons the T procedure
reports p < 0.05 or, equivalently, the corresponding 95% confidence interval does



An empirical case study of workload specialisation in GNOME 17

not contain zero. Since the lower boundary of the confidence interval for D-B
and D—C is greater than zero, the corresponding graph should contain edges from
D to B and from D to C. Similarly, since the upper boundary of the confidence
interval for B-A, C-A and D—-A is smaller than zero, the corresponding graph
should contain edges from A to B, A to C and A to D. After removal of transitive
edges we obtain the T-graph with three edges shown in Figure 5 (right).

A special case of comparison of multiple distributions is the comparison of two
distributions. We need to test whether one of two samples of independent observa-
tions tends to have larger values than the other. Traditionally, distributions of soft-
ware metrics have been compared using the Wilcoxon-Mann-Whitney two-sample
rank-sum test (Antoniol et al, 2005; Khomh et al, 2009). However, Wilcoxon-Mann-
Whitney is not robust against differences in variance (Zimmerman and Zumbo,
1992; Brunner and Munzel, 2000). The T procedure as described above cannot be
applied to comparison of two distributions (Konietschke et al, 2012). We therefore
prefer the two-distributions equivalent of the T procedure, i.e., we perform two
sample tests for the nonparametric Behrens-Fisher problem (Brunner and Munzel,
2000), and compute confidence intervals for the relative effect of the two samples.
If the relative effect p(a,b) > 0.5 then b tends to be larger than a. Moreover,
since software metrics are frequently being compared using the Wilcoxon-Mann-
Whitney two-sample rank-sum test (Antoniol et al, 2005; Khomh et al, 2009), we
also report the results of this test.

3 Goal 1: How does workload vary across projects?

Our first research goal consists in understanding how workload varies across projects
belonging to the same ecosystem. In order to address this goal we study cross-
project variation of measurable project-level properties (e.g., project workload
PW , number of authors involved in a project N AP, number of activity types per
project NTP) by answering the following research questions:

. How does project workload vary across the ecosystem?

. Which types of projects are more active?

. How specialised are projects towards different activity types?
. What are the characteristics of specialised projects?

=W N

3.1 How does project workload vary across the ecosystem?

We start by studying the variation of the project workload PW (p) across the
ecosystem, for all p € P. The distribution is left-skewed and the maximal value is
more than an order of magnitude larger than the mean: two features typical for
heavy-tailed distributions (Taube-Schock et al, 2011). We first hypothesise that the
project workload follows a power law. This hypothesis can be rejected since the p-
value of the goodness-of-fit test equals 0.0496, which is lower than the threshold of
0.1 (Clauset et al, 2009). Next, we consider the log-normal distribution. Since the
data contains ties we opt for the bootstrapped Kolmogorov-Smirnov test (Sekhon,
2011). The corresponding p-value equals 0.533, and, hence, the hypothesis that



18 Bogdan Vasilescu et al.

80 100 120
1 1 |

60
1

Number of projects
40

20

0
L

log(PW)

Fig. 5: The workload PW (p) is distributed log-normally.

the project workload follows the log-normal distribution cannot be rejected. A
histogram of log PW (p) is presented in Figure 5.

Project workload is distributed log-normally across the software ecosystem.

Figure 5 also reveals exceptional projects. At the lower end of the scale we dis-
tinguish archived projects, and projects with very little activity. Further inspection
of the commit logs and GNOME mailing list archives revealed that since some of the
latter modules have not seen any recent activity or are closed in the issue tracker
for new bug entries, they are likely to be archived soon as well. This was for exam-
ple the case for gnome-audio, that had very little activity until October 2011 (the
latest date considered in our case study) and is indeed listed as archived in Octo-
ber 2012. Other projects with small workload either have incomplete repositories,
potentially as a result of migration from CVS to Git (e.g., O3web), or are auxil-
iary (e.g., perl-Clutter which, although stand-alone, represents only a set of Perl
bindings for Clutter 1.x). At the higher end of the scale we distinguish very active
projects such as GIMP, the GNU image manipulation program, or Evolution, the
email, contacts and scheduling manager.

3.2 Which projects are more active?
3.2.1 Are projects containing more activity types more active?

To study this first question, we compare the number of activity types per project
NTP(p) and the project workload PW (p). With a Kendall correlation test we
observe a strong correlation (7 = 0.6), and reject Hy (p-value < 2.2 x 107'9).
Closer inspection of the scatter plot in Figure 6 suggests a linear relation between
NTP(p) and log PW (p). Using linear regression we obtain the model log PW (p) =
0.64562 - NTP(p) + 1.57412 (R? = 0.6129). The fitted linear model is adequate:
F-statistic equals 2109 on 1 and 1314 degrees of freedom with the corresponding
p-value < 2.2 x 10716, p-values for the coefficient and the intercept do not exceed
2.2 x 1076, The points in the residual plot appear randomly dispersed around
the horizontal axis. We conclude that the project activity increases exponentially
(due to the use of log PW in the formula) as projects include more activity types:

increasing the number of activity types by one increases the effort almost twice
(064562 ~ 1 9)



An empirical case study of workload specialisation in GNOME 19

: .
2 ° e [
s 8 8 H
. |
s 8
o —s———i——— ---&-------F--+-F -
s 4
o 8 g
° H E
T
9

o

o

log(PW(p))
Residuals

200 @mdomccme o o

CODE———n0 0 O
o )

| @0 @ camom opooommmen o o

1 1 1 1T 1T T T T T T T T 1T T T T T
3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8

T T T
10 11 12 13

—~ o ool o o

NTP(p) NTP(p)

Fig. 6: Left: observed linear relation between NT P(p) and log PW (p) (regression
line drawn in red). Right: residuals plot.

The more activity types a project contains, the more active it is: increasing the
number of activity types by one approximately doubles the project workload.

Figure 6 also reveals exceptional projects, being either very diverse (e.g., the
Anjuta integrated development environment and the Banshee music player both
contain activities of all 13 types considered), or very specialised (e.g., GTK tutorial
is an archived project associated with the GTK toolkit for creating graphical user
interfaces, and contains only documentation activities, while O3web is an archived
project containing only build activities). The 18 projects containing activities of
a single type are all categorised as archived.

3.2.2 Are projects with larger communities more active?

Does the number of authors NAP(p) involved in project p influence the total
workload PW (p)? As a result of Kendall’s correlation test we observe a strong
correlation between NAP(p) and PW (p) (7 = 0.64) and reject Hy (p-value <
2.2 x 1071%), suggesting that project workloads are higher as more authors are
involved in the projects. We do not describe the relation between NAP(p) and
PW ((p) further since we could not obtain adequate linear regression models, for
which the points in the residual plot would appear randomly dispersed around the
horizontal axis.

‘ The larger its community of contributors, the more active the project. ‘

We observed some exceptional projects. For example, 218 projects (16.56%) are
developed by a single author. Among them we find projects such as GSAPI and
GSpeech (variations on the Java Speech API), which eventually became archived
and were refined into Gnome Speech, which has a larger community of 15 authors.
There are also non-archived projects developed by a single author. For exam-
ple, Grits, a Virtual-Globe-like library that handles coordinates and the OpenGL
viewport, is still actively maintained today by a single developer.

3.3 How specialised are projects towards different activity types?

Let us first explore how the ecosystem workload varies across the different activity
types. Figure 7 displays this variation using the type workload TW (t) aggregated



20 Bogdan Vasilescu et al.

over all projects. We observe a high inequality between the different activity types.
code, devdoc, 110n, and build account for the highest shares of the ecosystem
workload, representing together 78% of the total workload. All code activities by
themselves account for more than 40% of the total workload.

Across the ecosystem, code, devdoc, 110n, and build activities account for the
highest share of the workload. code is the predominant activity type.

e
2000000 — 0
Sl=
2
1500000 — |
© | 1
© 8
1000000 |
<+
3
500000
D "7
3
o 4 L |:||:|I:||:n:n:n:|_7
$8s38z28°§858°¢2 2
c 3 - ® 8 E g
o RPWS(p)

Fig. 8: Relative project work-
load specialisation RPWS(p):
Most projects concentrate their
workload in few activity types.

Fig. 7: Type workload: activity types code,
devdoc, 110n, and build account for the highest
workload share in the ecosystem.

3.8.1 To what extent are projects specialised in few activity types?

The specialisation RPW S(p) of a project p can be interpreted as how a project
p specialises its relative workload RPTW (p,t) towards few activity types t. It is
computed by applying the Gini index to aggregate the RPTW (p, t) values over all
types t € T. A high value of RPW S(p) reflects a high inequality in the distribution
of workload across the different activity types for project p. This suggests that most
of the project’s workload is concentrated in few activity types, while the remaining
activity types only account for a very small fraction of the workload. A low value
of RPW S(p) reflects a more equal distribution of the project’s workload across
the different activity types.

Figure 8 displays the variation across projects of RPW . S(p). We observe that
most projects are specialised in few activity types, since the median is high (0.77).
Our observation is similar to the findings of Vasa et al (2009), according to which
the typical overall range of Gini coefficients for multiple software metrics is be-
tween 0.45 and 0.75, thus values above 0.75 can be considered high. The highest
values of RPW S(p) have been observed for projects such as O3web that focus on
one activity only. For these projects RPW S(p) reaches the highest theoretically
possible value for Gini coefficient on a data set of 14 elements, i.e., % ~ 0.93. The
lowest value of RPWS(p) is 0.459, i.e., it still belongs to the [0.45, 0.75] range
of Gini coefficients observed by Vasa et al (2009). The lowest value of RPW S(p)



An empirical case study of workload specialisation in GNOME 21

has been observed for gnome-applets, the project that distributes the activity in
a most egalitarian way. Gnome-applets is a collection of small unrelated applica-
tions for the GNOME desktop, including various monitors, weather report, trash
bin and eyes following the mouse pointer around the screen. The second lowest
RPW S(p) value (0.555) was obtained for gnome-utils, another collection of small
unrelated desktop applications. Closer inspection of the RPTW values for gnome-
applets and gnome-utils reveals that both projects have a relatively high share of
the build activity: 13% and 11%, respectively. This can be explained by the fact
that one should be capable of compiling separately individual applications com-
prising gnome-applets and gnome-utils, implying that each one of the application
has its own makefile and related files. Moreover, since gnome-applets and gnome-
utils comprise desktop applications, a relatively high part of the effort is dedicated
to 110n and image. All this leads to relatively egalitarian workload distribution,
reflected in relatively low RPW S values.

Most of a project’s workload is concentrated in few activity types. ‘

Note that not each activity type is present in each project (e.g., not all projects
contain db activities). However, since we are interested in comparing specialisation
for different projects (i.e., comparing Gini index values, computed for RPTW (p, t)
data over all activity types ¢ € T'), we consider for each project the set of all
possible activity types. As explained in Section 2.6, we do not ignore the activity
types t for which RPTW (p,t) = 0 when computing RPW S(p) since this would
render Gini index values incomparable.

3.8.2 To what extent are projects specialised towards different activity types?

Workload. The specialisation of a project p towards a certain activity type ¢t can be
expressed in terms of the relative project’s workload RPTW (p,t), defined as the
workload in project p for activity type t relative to the total workload in p. High
RPTW (p,t) values reflect that most of the workload of project p is concentrated
in t, i.e., t is a predominant activity type in p in terms of number of file touches.
Similarly, low RPTW (p,t) values reflect that activities of type t are but auxiliary
in p.

Figure 9 illustrates the variation across projects of RPTW (p, t) for each activ-
ity type t. In each boxplot, we only consider the projects for which activity type
t is present (i.e., the workload PTW (p,t) > 0), since we are only interested in
understanding how the workload varies for projects that contain activities of that
type. The number of projects (out of the total 1316 projects considered) for which
PTW (p,t) > 0 is displayed below each activity type in the boxplot.

We observe two groups of activity types. On the one hand, code, build, devdoc,
and 110n (the same four main activity types observed at ecosystem level, Figure 7)
have the highest values, with code being the predominant one in the 'i‘-graph.
Since the median for RPTW (p, code) is slightly less than 0.5, we can say that in
most projects that contain coding activities, coding represents around 50% of the
workload. There are 54 (4.1%) projects that do not contain any code activities at
all. Further manual investigation of the source code repositories and mailing list
archives revealed that such projects without code activities are often auxiliary,
e.g., Gnome Backgrounds—a collection of desktop background images, or Gnome



22 Bogdan Vasilescu et al.

1.0

o
°

0.6
1

.
H

8

—_ ! H

< : ' 8
S ; ; o
]

§

|

o °

|

0.2
1

i
i

g
g
:
E

fo oo camwe coao

o -
=1

code devdoc [10n  build  doc img  config ui meta  test media db lib
(1262) (1253) (691) (1185) (1220) (701) (626) (579) (1081) (590) (314) (132) (15)

Fig. 9: Boxplots for relative project workload per activity type t. Per boxplot,
zero values are excluded. code is the predominant activity type at project level:
in most projects that contain coding, it represents around 50% of the workload.
devdoc, 110n, and build each account for 10-20% of the workload on average.
The T-procedure with respect to Tukey-type contrasts and 5% family-wise error
rate shows differences between the activity types in the T-graph on the right (cf.
Section 2.6).

Cookbook—a cookbook used and developed by the GNOME community. On the
other hand, 1ib, media, and db have the lowest RPTW (p, t) values, all being leafs
in the T-graph.

At the level of individual projects, most of the workload is concentrated in
code, followed by the devdoc, 110n and build activity types.

Workforce. Another way to express the specialization of a project towards a cer-
tain activity type t is in terms of the relative project’s workforce RPTI(p,t),
defined as the number of authors of p involved in activity type t relative to the
total number of authors in p. High RPTI(p,t) values reflect that most of the au-
thors involved in p are contributing to activities of type t. Low RPTI(p,t) values
indicate that activities of types t that only attract a small fraction of the authors
involved in p.

The variation of RPT(p,t) across projects per activity type t is illustrated in
Figure 10. Similarly as before, we only consider the projects for which there is at
least one author involved in activities of type ¢, i.e., the involvement PTI(p,t) > 0
(their number is displayed below each activity type in Figure 10). On the one end
of the spectrum we observe that 110n and devdoc (which encompasses updating
the ChangeLog, a common practice of authors whenever they perform changes)
attract most of the authors involved in projects (they are the dominant activity
types in the 'i‘—graph), followed by build and only then code. On the other end of
the scale we observe activity types such as 1ib, db, and media (the bottommost
activity types in the 'i‘—graph), in which for most projects only a small fraction of
the authors are involved.



An empirical case study of workload specialisation in GNOME 23

1.0

0.6
1

0.4
1

o
H
8 8 —_

9

=
o

0.0
1

code devdoc [10n  build  doc img  config ui meta  test media db lib
(1262) (1253) (691) (1185) (1220) (701) (626) (579) (1081) (590) (314) (132) (15)

Fig. 10: Boxplots for relative project involvement per activity type t. Per boxplot,
zero values are excluded. 110n attracts the highest fraction of the project authors.
db activities are performed only by a small fraction of the project authors. The
multiple contrast test procedure T with respect to Tukey-type contrasts and 5%
family-wise error rate shows differences between the activity types in the directed
acyclic graph on the right (cf. Section 2.6).

110n and devdoc activities attract most of the authors involved in projects,
followed by build and then code.

We illustrate the variation of RPTI(p,t) across projects by taking a closer
look at two projects, Gevice, GNOME’s Network Device Manager, and FEvolution,
GNOME’s contact manager, address manager and calendar. The RPTI values of
Gevice are extremely high: RPTI(Gevice, t) = 1 for all t but 1ib, media, and test,
meaning that for any other activity 100% of the Gevice authors are involved in it.
This is not surprising since Gevice has only a single author. As opposed to Gewvice,
the RPT1I values of Fvolution are always lower than 1, i.e., there is no activity
that would attract all 723 FEvolution authors.

3.4 What are the characteristics of specialised projects?

In order to understand the characteristics of highly-specialised projects, we study
the correlation between metrics representing the specialisation of projects, i.e.,
RPWS(p), PTW(p,t), RPTW (p,t), PTI(p,t) and RPTI(p,t), on the one hand,
and general project characteristics, i.e., project workload PW (p), number of au-
thors involved in a project NAP(p) and number of activity types per project
NTP(p), on the other hand.

3.4.1 Which project characteristics are observed when it is specialised towards few
activity types?

In Section 3.3.1 we observed that, while some GNOME projects exhibit relatively
low specialisation values (e.g., 0.459 for gnome-applets), the opposite is true for



24 Bogdan Vasilescu et al.

other projects (e.g., 0.93 for O3web). In this section we investigate which char-
acteristics of a project influence its specialisation. We expect that projects with
more workload (measured by PW (p)), as well as projects with larger communi-
ties (measured by NAP(p)) tend to be less specialised since more opportunities
for diversity arise from higher workload and more authors. On the other hand, it
is unclear whether more specialised projects consist of few activity types (which
thus concentrate the workload), or consist of many activity types of which only few
concentrate the workload. In order to answer the question we study Kendall cor-
relation between RPW . S(p) and each one of the project-specific PW (p), NT P(p),
and NAP(p) metrics.

For PW (p) we confidently reject Hg at 0.01 significance level (p-value = 1.26 x
10~13). However, the correlation coefficient is very small and negative (7 = —0.13),
indicating a very weak relation between RPW S(p) and PW (p). For NAP(p) we
again confidently reject Ho at 0.01 significance level (p-value = 7.33 x 10737), and
observe a small negative correlation (7 = —0.24). We hence did not find conclusive
evidence that projects with more activity or projects with larger communities tend
to be less specialised.

Finally, we confidently reject Ho at 0.01 significance level for NT P(p) (p-value
= 6.85 x 10799) and observe a slightly higher negative correlation (7 = —0.39).
This suggests that the more activity types are present in a project, the lower the
project’s specialisation towards those activity types, as measured by RPWS(p).
It follows that highly unequal distributions of workload across different activity
types are due to few activity types being present in a project and thus the project’s
workload being concentrated in those types, rather than many activity types being
present in a project, with most of the project workload concentrated in one of these

types.

Highly specialised projects comprise few activity types (as opposed to many
activity types out of which only few would concentrate the workload).

In contrast, we have not found enough evidence that projects with more work-
load or larger communities are less specialised towards few activity types.

3.4.2 To what extent does project community size relate to the workload (share)
for a particular activity type?

In Section 3.2.2 we observed that projects with larger communities have higher
workloads. We wish to understand how the size of a project community (mea-
sured by NAP(p) ) relates to the workload PTW (p,t) and the workload share
RPTW (p,t) of this project generated for a particular activity type t.

To answer the question we compute Kendal correlation between N AP(p) and
PTW (p,t) on the one hand, and between NAP(p) and RPTW (p,t) on the other
hand, for all activity types t € T'. For each activity type ¢, we only look at projects
for which PTW ((p,t) > 0, as discussed in Section 3.3.2. The results of the corre-
lation tests are visually summarised in Figure 11 for PTW (drawn in black) and
RPTW (drawn in gray). The shape and fill of a point represent the p-value of
the correlation test, and determine whether Hg can be rejected (i.e., filled square:
p < 0.01; empty square: 0.01 < p < 0.05; empty circle: p > 0.05). The ordinate of
a point represents the value of Kendall’s 7 coefficient.



An empirical case study of workload specialisation in GNOME 25

Kendall corr.: NAP-PTW (black), NAP-RPTW (gray)

-1.0 -05 0.0 05 1.0
1 1 |

Fig. 11: As more authors become in-
volved in the projects, the workload
increases the most in 110n, devdoc,
build, and code (black). In terms of
shares, it is the workload in localization
that increases the most relative to those
in other activity types (gray).

Kendall corr.: NAP-PTI (black), NAP-RPTI (gray)

-1.0 -0.5 0.0 0.5 1.0
1 1 | 1 1
code — i u
devdoc | L]
110n - L
build L]
doc o L]
img — L]
config L
ui o L]
meta =
test - L]
media — u
db — L
lib — o

Fig. 12: As more authors become in-
volved in the projects, they mostly con-
tribute to 110n, devdoc, build, and
code (black). The percentage of devel-
opers involved in 110n does not de-
crease as more developers become in-
volved in the projects (gray).

For PTW (p,t) we reject Ho at 0.01 confidence level for all activity types except
1ib. Due to insufficient projects that contain 1ib activities (only 15), Ho cannot
be rejected for this activity type even at 0.05 confidence level. We observe the
strongest correlation for the four main activity types, 110n (7 = 0.77), devdoc
(r = 0.64), build (r = 0.60), and code (7 = 0.50). This suggests that as more
authors are involved in the projects, the project workload is higher in these activity

types.

Projects with more authors correspond to more absolute workload in 110n,
devdoc, build, and code than in other activity types.

For RPTW (p,t) we again reject Ho at 0.01 confidence level for all activity
types except lib, for which Hg cannot be rejected even at 0.05 confidence level.
As opposed to PTW (p, t), correlation is now negative for all activity types except
devdoc and 110n, and is low for all activity types. 110n shows the strongest positive
correlation (0.35), suggesting that as more authors are involved in a project, it is
the share of the workload in 110n that is the highest most relative to the workload
in other activity types. The positive correlation for devdoc is also due to the
authors contributing to 110n, since as they perform 110n activities, they often also
update the ChangeLog, which is part of devdoc. This observation generalises that
of German (2004), who reports similar co-updates of the ChangeLog for Evolution,
one of the GNOME projects.

Projects with more authors correspond to higher fractions of workload in 110n
rather than other activity types.

3.4.83 To what extent does project community size relate to the involvement
(share) of authors in different activity types?

We wish to understand whether the number of authors NAP(p) involved in project
p influences how the authors become involved in a particular activity type, in terms
of their absolute involvement PTI(p,t) and their involvement share RPTI(p,t)
for this project.



26 Bogdan Vasilescu et al.

To answer the question we compute Kendall correlation between NAP(p) and
each of PTI(p,t) and RPTI(p,t), for all activity types ¢ € T. Figure 12 visually
summarises the results of the correlation tests for PTI (drawn in black) and RPTI
(drawn in gray), with the same conventions as in the previous question.

For PTI(p,t) we reject Ho at 0.05 confidence level for 1ib, and at 0.01 con-
fidence level for all other activity types. Similarly to the previous question, we
observe the strongest correlation (now higher) for the four main activity types,
110n (7 = 0.88), devdoc and build (7 = 0.81), and code (7 = 0.70). This suggests
that as more authors are involved in the projects, they are involved mostly in these
activity types.

As more authors are involved in a project, most of them tend to be translators
rather than coders.

For RPT1(p,t) we again reject Ho at the same confidence levels, and observe
negative correlation for all activity types. 1ib shows now the strongest correlation
(r = —0.88), suggesting that as more authors are involved in a project, the share
of authors involved in this activity type is lower. This confirms that 1ib is the
smallest activity type, and that it is performed by a limited number of developers.
In addition, 110n shows the lowest correlation (7 = —0.09), leading us to the
following conclusion:

The number of authors involved in a project is not related to the share of
authors involved in localization activities.

Summarising the preceding discussions of Section 3.4, we observed the follow-
ing relations between project characteristics and project specialisation. The more
specialised a project, the less activity types are present in it. As more authors
are involved in a project, they tend to be mostly translators and they generate a
higher workload for the activity type 110n. However, we have found no evidence
that higher project workload or larger project community are correlated to the
overall specialisation values.

3.5 Summary for Goal 1

Our first research goal consisted in wunderstanding how workload varies across
projects belonging to the same ecosystem, taking into account the different types
of activities performed within these projects.

First, we observed that project activity across the ecosystem follows a log-
normal distribution. Next, we investigated what project properties are correlated
to the project activity, and we found such a correlation for the number of activity
types in which the developer community participates, and for the size of the com-
munity. Specifically, a project having a high number of activity types or having a
large developer community is more active than a project having a small number
of activity types or a small developer community.

By focusing on different activity types we observed that coding, development
documentation, localization, and build are the four most important ones, at the
ecosystem level as well as at the level of individual projects. It is also these four
activity types that attract most of the authors involved in projects. However,



An empirical case study of workload specialisation in GNOME 27

while it is coding that concentrates most of a project’s workload, localization and
development documentation attract most of the contributors.

Finally, we observed that most projects concentrate their workload in few ac-
tivity types. We investigated the factors associated to this specialisation and found
evidence that highly specialised projects are also projects including few activity
types. Moreover, as projects contain more contributors, they are more commonly
translators rather than coders.

4 Goal 2: How does workload vary across authors?

Our second research goal consists in understanding how workload varies across
authors belonging to the same community. In order to address this goal we study
cross-author variation of measurable author-level properties (e.g., author workload
AW number of projects NPA in which an author is involved, number of activity
types per author NT' A) by answering the following research questions in each of
the next subsections:

. How does workload vary across authors?

. Which kind of authors are more active?

. How specialized are authors towards different activity types?
. What are the characteristics of specialised authors?

=W N =

4.1 How does workload vary across authors?

We start by studying the variation of the author workload AW (a) across all
projects and activity types (Figure 13). As in the case of the project workload,
distribution of the author workload is heavy-tailed and does not follow a power
law: the p-value equals 0.0499 and does not exceed the recommended threshold
of 0.1 (Clauset et al, 2009). As opposed to the project workload, hypothesis of
log-normal distribution of the author workload can be rejected since the p-value
corresponding to the bootstrapped Kolmogorov-Smirnov test (Sekhon, 2011) is
lower than 2.2 x 1076,

‘ Most authors have low workload. Few authors have high workload. ‘

The heavy tail of the distribution of AW (a) suggests a more refined analysis. To
mitigate the potentially confounding effect of size, we distinguish between authors
with low activity (occasional contributors) and authors with high activity (frequent
contributors). Specifically, based on their AW (a) values we apply equal-frequency
binning and split the authors into two groups: AW < 14 and AW > 14. Figure 14
displays the breakdown of authors after binning.

Approximately half of the authors performed less than 14 file changes (log 14 ~
2.64). In contrast, the most active author performed 185,874 file changes
(log 185874 ~ 12.13).

This conclusion is concurrent with the observation by Neary and David (2010)
that the top 40 developers have made 31% of all changes, while the most prolific
5% of developers have made 65% of all changes.



28 Bogdan Vasilescu et al.

o
871 H Author workload AW(a)
o M 2576 2579
o - o
n 8 —
Q o
g g4
g o S
5 g g s
@ =1
o © o
E g 5 B
z N o)
-g (=]
€ 1 2 81
o — o
T T T T T T 1 8 7
0 2 4 6 8 10 12
o J
log(AW)
AW < 14 AW >= 14

Fig. 13: Distribution of author work-
load AW is heavy-tailed but does not
follow a power law or log-normal distri-
bution.

Fig. 14: Approximately half of the au-
thors performed less than 14 touches to
GNOME files.

4.2 Which kind of authors are more active?
4.2.1 Are authors that participate in more activity types more active?

We first investigate whether the number of activity types NT' A(a) an author a
contributes to across the ecosystem is related to her total workload AW (a). As a
result of Kendall’s correlation test we confidently reject Ho (p < 2.2 x 107 %) and
observe a strong correlation between NT A(a) and AW (a) (7 = 0.737).

5! - © o
o g 8 . 3
2 . g 18 8 8 o
g i v ﬁ s 2 e N
= © H 8 H ]
s <L I L
2 o e § o | 3
< @
=3 o SR SN I DU DU SO NN D D SN NN e S
2 4 4 ® 8 « ° °
. R
H i
o~ o I 8 g 4 8
o - : ° < ° 8 o
T T T T T T T T T T T T T ! T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13
NTA(a) NTA(a)

Fig. 15: Left: observed linear relation between NT A(a) and log AW (a) (regression
line drawn in red). Right: residuals plot.

The scatter plot of Figure 15 suggests a linear relation between NTA(a)
and log AW (a). We obtain the following linear regression model: log AW (a) =
0.69326- NT A(a)+0.47786, with R? = 0.7971. The fitted linear model is adequate:
F-statistic equals 20030 on 1 and 5146 degrees of freedom with the corresponding
p-value not exceeding 2.2 x 10716, p-values for the coeflicient and the intercept do
not exceed 2.2 x 1076, The points in the residual plot appear randomly dispersed
around the horizontal axis. We conclude that the author activity increases expo-
nentially (due to the use of log AW in the formula) as authors contribute to more



An empirical case study of workload specialisation in GNOME 29

activity types. Increasing the number of activity types by one doubles the effort
(€269326 ~ 2). Figure 15 also reveals that 1452 (28%) authors are involved in a
single activity type. In Section 4.3.2 we investigate in which activity types these
authors specialise themselves.

The more activity types an author participates in, the more active she is:
increasing the number of activity types by one doubles the workload.

4.2.2 Are authors that contribute to more projects more active?

How does the number of projects NPA(a) an author a is involved in correlate
to the total workload AW (a) for that author? As a result of the Kendall correla-
tion test we confidently reject Ho (p < 2.2 x 107'¢), and observe above average
correlation (7 = 0.573). This suggests that the author workload increases as au-
thors become involved in more projects. We do not describe the relation between
NPA(a) and AW (a) further since we could not obtain linear regression models
for which the points in the residual plot would appear randomly dispersed around
the horizontal axis, hence the linear models were not appropriate for the data.

‘ The more projects an author contributes to, the more active she is.

4.3 How specialized are authors towards different activity types?
4.8.1 To what extent are authors specialised in few activity types?

We intuitively expect that authors are mostly specialised in few activity types,
similar to what we observed for the specialisation of projects in Section 3.3. The
specialisation RAW S(a) of an author a can be interpreted as how this author
specialises her relative workload towards few activity types. It is computed by
applying the Gini index to aggregate the RATW (a,t) values over all types ¢ €
T. Figure 16 displays the variation across authors of RAW S(a), for the entire
ecosystem community as well as for each of the two groups obtained after binning.

Note that different authors contribute to different activity types (e.g., not all
authors contribute to test activities). Since we are interested in comparing spe-
cialisation for different authors, we consider for each author the set of all possible
activity types (i.e., we do not ignore the activity types ¢t for which RATW (a,t) = 0
when computing RAW S(a)).

Using the same equal-frequency binning for AW as in Section 4.1, we observe a
clear distinction between the specialisation of occasional (AW < 14) and frequent
(AW > 14) contributors. Since they contribute very few changes in total to the
ecosystem, the occasional contributors are very specialised, more than the frequent
contributors: the median for the occasional contributors group equals 0.9285, which
is also the maximal value of the Gini index for populations of size 14, i.e., 1 —1/14.
By definition of the Gini index it follows that most of the occasional contributors
participate in a single activity type. Note that the double usage of the value 14
is coincidental: in “AW < 14”7, 14 was the threshold found for AW as a result
binning, while in “1 — 1/14”, 14 refers to the number of activity types.



30 Bogdan Vasilescu et al.

RAWS(a)

Overall ° ° m_-+ 7777777777

AW<14 - ° cumﬂ}> ——————

AW>=14 o e m_k ,,,,,,,,, +

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 16: Relative author-workload specialisation RAW S(a).

Our observation that the occasional contributors are specialised more than
the frequent contributors is supported by statistical tests. The relative effect for
(frequent,occasional) is 0.815 and the corresponding p-value is too small to be
computed exactly. Since the relative effect exceeds 0.5, the specialisation values
for the occasional contributors tend to be larger than those for the frequent contrib-
utors. The Wilcoxon-Mann-Whitney test allows us to derive the same conclusion,
p<22x10716,

Even though less specialised, the frequent contributors also display a very
high median of RAW S(a) (0.82), even higher than the corresponding median of
RPW S(p) from Goal 1 (0.77, Figure 8). Therefore, there is high inequality in the
distribution of workload across the different activity types for most of the frequent
authors. Overall, we conclude that most of the authors’ workload is concentrated
in few activity types, while the remaining activity types only account for a small
fraction of the workload.

While contributing to different projects within the ecosystem, most authors
concentrate their workload in few activity types. Moreover, occasional contrib-
utors typically participate in a single activity type.

4.3.2 To what extent are authors specialised towards different activity types?

Workload. The specialisation of an author a towards a certain activity type t
can be expressed as the specialisation of her relative workload RATW (a,t), i.e.,
the total number of file touches that a performed for activity type t across the
ecosystem relative to the the total number of file touches that a performed for
all activity types across the ecosystem. High RATW (a,t) values reflect that most
of the workload of a across the ecosystem is directed towards activities of type ¢,
i.e., t is a predominant activity type for a. Low RATW (a,t) values reflect that
activities of type t are but auxiliary for a.

Figure 17 (top left) depicts the overall variation across authors of RATW (a,t)
for each activity type t, for all authors. As before, for each boxplot we only con-
sider the authors that contribute to ¢ (i.e., the workload ATW (a,t) > 0), and
display their number below each activity type. We observe the same outstanding
activity types as in Figures 7 and 9, namely code, devdoc and 110n. Specifically,



An empirical case study of workload specialisation in GNOME 31

Overall
2 4 — e —— o ° o o o B o
' 3 g H o °
. § ! { N
HEE $ .
@ ° E .
© —_
' 8 H
: § h § .
8 8 H 8 o o °
H s H 8 H o
g [ T ..
| S B .
8 8 . H o . s
§ H .
g 8 H R
3 i | E [
— I I
: i l 8 g ° H
o~ ; ; 2 o
7 9 SR l P,
| B : 3 l e o o
e | | S A
s 4 o L D L = [ e = e —
T T T T T T T T T T T T T
code devdoc 110n build doc img  config ui meta test media db lib
(3754) (2937) (2008) (2675) (1721) (1129) (1287) (1195) (1031) (896) (482) (241) (19)
AW < 14
e ° D o _— — [/ e o ° -
«© _| - ' 3 : :
s ; ; : ;
o | 4 : :
© o i i
. | ; I R .
S o : :
° | ! .
En : : B T
S o oL :
44 412 = 4L L= i L —
<
S
T T T T T T T T T T T T T
code devdoc 110n build doc img  config ui meta test media db lib
(1589) (870) (598) (544) (165) (38) (161)  (110) (29) (41) ®8) (1 (1)
AW >= 14
e — — ° 8 o
: 3 3 8 H o °
N
: . o 8 . .
g1 H ’ * o
A T
R R
g | ° 8 8
31 H : e g 8 ) °
B : g 8 g H 8 o
§ : H i g .
< ; i e o . H o
S 7 H 8 g ° °
| i L
3 : ‘ i 8 § H
SR | R
° | 1 3 l i ! !
' ' : M
1 E : ‘ 1 : l l H 8 ‘
s L 4L =T = Q = iy S I S
T T

code devdoc 110n build doc img  config ui meta test media db lib
(2165) (2067) (1410) (2131) (1556) (1091) (1126) (1085) (1002) (855) (474) (240)  (18)

Fig. 17: Boxplots for RATW (a,t) per activity type t. Zero values are excluded. By
definition of RATW (a,t) (AW (a) appears in the denominator), the lower whiskers
in the AW < 14 boxplots cannot be lower than 1/13. For AW < 14 the 'i‘—graph
does not include db and 1ib since the T procedure is not applicable for groups of
size one.



32 Bogdan Vasilescu et al.

we observe that the third quartile for 110n coincides with 1, i.e., approximately
25% of the translators (526 out of 2008) focus exclusively on 110n, corresponding
to slightly more than 10% of the entire GNOME community. A similar finding has
been reported for KDE by Robles et al (2006).

The 'I‘—graph on the right confirms that code is the dominant activity type,
while db and 1ib have the smallest values. Therefore specialisation of authors
towards certain activity types follows specialisation of projects, since most authors
specialise in the four previously-observed main activity types. The predominance
of code and 110n is also recognised by members of the ecosystem community in
mailing list discussions:

“[...] gnome *is* a code-centric organization. The coders are our sine
qua non—without them, we have nothing. Translators are probably a close
second to that—without them, we have no international coders. Past that,
no group of people in the project are indispensable to the current state of
the project, or even close to it.” (Villa, 2007)

Most authors specialise in code, 110n and devdoc activities. Among those ac-
tivity types, code is predominant.

Using equal-frequency binning we can obtain more fine-grained information for
the occasional contributors (AW < 14) and the frequent contributors (AW > 14).
We displayed both groups in the middle and bottom boxplots of Figure 17. Visual
comparison of these sets of boxplots reveals a clear distinction in behaviour for the
110n activity: in the AW < 14 case, the median for RATW (a,110n) is 1, while in
the AW >= 14 case it is around 0.1. Indeed, statistical tests show that occasional
contributors are specialised in localisation more than the frequent contributors.
The relative effect for (frequent,occasional) is 0.907 and the corresponding p-value
is too small to be computed exactly. Since the relative effect exceeds 0.5, the
RATW (a,110n) for the occasional contributors tend to be larger than those for
the frequent contributors. The Wilcoxon-Mann-Whitney test allows us to derive
the same conclusion, p < 2.2 x 10716,

Since the overall median for RATW (a,110n) is also relatively small (~ 0.3),
the preceding discussion suggests that occasional contributors prefer to specialise
in localisation rather than other activity types. This observation is supported by
the T-graphs, in which we observe an inversion of the relation between 110n and
code from AW < 14 to AW > 14: while code is the dominant activity type for
frequent contributors, 110n is the dominant one for occasional contributors. On
the other hand, the relations between code and devdoc, and between code and
build are consistent.

For frequent contributors, devdoc and build remain the other two predom-
inant activity types. For occasional contributors, although img or config might
appear visually to have higher values, the data does not provide enough evidence
to support this observation using the T-procedure (see T-graph).

Frequent contributors tend to specialise in the code activity, while occasional
contributors tend to specialise in the 110n activity. For both types of contrib-
utors devdoc and build remain important activities.

A similar difference in behaviour between occasional and frequent GNOME con-
tributors with respect to code and 110n has also been observed by Neu et al (2011).



An empirical case study of workload specialisation in GNOME 33

Blue cross: code. Red square: 110n. Symbol size: RATW(a,t)

500

o

§
400
I

NPA(a)
300
1
$51
>

Musnber of Projests

T T T
50000 100000 150000

AW(a)

Fig. 18: Left: visualization by Neu et al (2011): each square depicts a committer;
the number of projects is encoded both on the y-axis and in the colour of each
square; the size of a square corresponds to the lifetime in days of a committer
within GNOME; (D): translators, ©): developers, ©): outlier, ®: no man’s land. Per-
sons under the logarithmic-like curve are assumed to be coders, persons above the
exponential-like curve are assumed to be translators. Right: Our own visualization.

The authors assume persons “who contributed a lot but only to a relatively small
number of projects” to be coders (i.e., the people located under a logarithmic-
like curve in Figure 18-left), while those “who committed less often but to more
projects” to be translators (i.e., the people placed above an exponential-like curve
in Figure 18-left). While this classification is only qualitative, it is confirmed by
our quantitative analysis (Figure 18-right). In our case the y-axis also corresponds
to the number of projects per author NPA(a), while the z-axis corresponds to the
author workload AW (a) — expressed as number of file touches per author, so more
fine-grained than the number of commits per committer used by Neu et al. In
the plot we overlay per author a the RATW (a, code) values (blue crosses) and
RATW (a,110n) values (red squares), where the size of each symbol encodes the
RATW value. Our results are consistent with those of Neu et al: coders are typ-
ically very active contributors involved in a relatively small number of projects,
while translators are less active but are involved in more projects. Examples of
potential misclassifications following the qualitative approach include developer C,
a coder with low activity but involved in many projects, or developer B, a con-
tributor active in both code as well as 110n, having high activity but involved in
relatively few projects. Mixed patterns of involvement in code and 110n (for which
developer A is an example) are inline with the following excerpts from the mailing
list discussions: while translators do not typically code, some start out with just
translating, but continue with fixing bugs and then coding.

“Furthermore, in GNOME, we have many translators that started out
with just translating, but continued with fixing bugs, and some are full
time coders now. We should be proud of this integration.” (Rose, 2007)

“As you have pointed out yourself, translators are usually not hack-
ers/coders.” (Rose, 2001)



34 Bogdan Vasilescu et al.

Involvement. The relative author involvement RATI(a,t) is defined as the number
of projects in which author a performs activities of type t relative to the total
number of projects in which she is involved. High RATI(a,t) values reflect that
in most of the projects author a is involved in, she contributes to activities of type
t. Similarly, low RATI(a,t) values reflect that a performs activities of type ¢ only
sporadically, i.e., she only performs activities of type ¢ in a small fraction of the
projects she is involved in.

For all authors, the variation of RATI(a,t) per activity type ¢ is illustrated
in Figure 19 (top). Zeros are again ignored. The median value of 1 for the code,
devdoc, and 110n activity types signifies that, once authors are involved in these
activity types, they perform the same activities in all projects they contribute to.
Less pronounced is the recurrence of authors in build, config, and doc activ-
ity types, for which there is more spread. Even though these activity types are
common in software projects, they are less specialised and thus can be performed
by different authors in different projects. As expected, the lowest median values
correspond to the activity types least common to the software projects considered,
i.e., 1ib and db (both leafs in the T-graph). Since the boxplot for RATW (a,db)
from Figure 17 is very low, we conclude that authors who prefer to specialise in db
activities contribute to other activity types in the projects in which db activities
are absent.

Most authors contributing to code, devdoc, and 110n activity types in one
project, do so in all other projects they contribute to. In contrast, database
developers “wear many hats”, i.e., they contribute to other activity types in
projects where db is not available.

To illustrate the point of the versatility of database developers we mention
that one of the most active database contributors in anjuta has been involved in
gdl as coder, translator, builder and even UI designer.

To obtain additional insights we study the difference between occasional (AW <
14) and frequent (AW > 14) contributors in the middle and bottom boxplots of
Figure 19. Visual comparison of both sets of boxplots reveals striking differences:
in the AW < 14 case, all activity types except db have a median of 1, suggesting
that once occasional authors are involved in these activity types, they perform
the same activities in all projects they contribute to. This should not come as a
surprise: further inspection of the data revealed that 77.3% (1991 out of 2576) of
the occasional contributors only participate in a single project.

On the other hand, the results (and 'i‘—graphs) for AW > 14 are similar to
those for the entire ecosystem community: code, devdoc, build, and 110n are
again the predominant activity types, suggesting that authors involved in these
activity types choose to specialise in them in all projects they contribute to. For
example, we have identified a frequent contributor (AW = 1459) involved in 28
projects, who dedicates more than 94% of his effort to code.

Most occasional contributors participate in a single project. Frequent contrib-
utors specialise in code, devdoc, and to a lesser extent build and 110n, i.e.,
they perform these activities in most projects they participate in.




An empirical case study of workload specialisation in GNOME 35

Overall
29 /] T ] T T T ° ° -
@
° —_
o | : : .
S : :
: Ll : .
< 1 : :
s ! : =
3 |
S :
e . - - - . . —_—
S
T T T T T T T T T T T T T
code devdoc 110n build doc img  config ui meta test media db lib
(3754) (2937) (2008) (2675) (1721) (1129) (1287) (1195) (1031) (896) (482) (241) (19)
AW < 14
e — — — — — — — — — — —
@ | ° . devdoc
S
° o o o
° ° ° o ° o o
© |
e ° °
o o o o o o o ° o ° —
=
=]
o ° ° o o o o o o °
o B o o o o o —_—
| ° ° ° o
° o
<
S
T T T T T T T T T T T T T
code devdoc 110n build doc img  config ui meta test media db lib
(1589) (870) (598) (544) (165) (38) (161) (110) (29) (41)  (8) (1) 1)
AW >= 14
24 17 T - - - - - M ° °
o | N 3 3 3 3
e | | | | | _
o | ; | A
e ' : ! ! ! : : ;
| i : : : : : 3 . -
4 - o
o | A I i
=] : : T : T :
=
T T T T T T T T T T T T T
code devdoc 110n build doc img  config ui meta test media db lib

(2165) (2067) (1410) (2131) (1556) (1091) (1126) (1085) (1002) (855) (474) (240)  (18)

Fig. 19: Boxplots for RATI(a,t) per activity type t. Zero values are excluded. For
AW < 14 the T-graph does not include db and 1ib since the T procedure is not
applicable for groups of size one.



36 Bogdan Vasilescu et al.

4.4 What are the characteristics of specialised authors?

We wish to understand which of the author characteristics studied previously
(i.e., author workload AW (a), number of activity types per author NT A(a), and
number of projects per author NP A(a)) are related to her degree of specialisation.

4.4.1 Which characteristics of an author are observed when she is specialised
towards few activity types?

In Figure 16 we observed that most authors specialise their workload in few activity
types. We expect that authors contributing to many activity types prefer to spread
their work across these types rather than concentrate it in few of them. Thus, we
expect that authors involved in many activity types, as well as authors involved
in many projects tend to be less specialised.

To answer the question we study Kendall correlation between RAW S(a) and
each of the author-specific AW (a), NT A(a), and NPA(a) metrics. For all three
metrics, we confidently reject Ho at 0.01 significance level (p-value < 2.2 x 10716).
Similarly to the complementary question in Section 3.4.1, we observe negative
correlation for all three metrics. However, now the correlation is much stronger:
7= —0.342 for NPA(a), 7 = —0.497 for AW (a), and 7 = —0.751 for NT A(a).

Three factors (i.e., number of activity types, number of projects, and number
of file touches) are negatively correlated to specialisation of authors: the higher
a factor, the less specialised an author is towards few activity types.

4.4.2 To what extent does the number of projects an author is involved in relate
to her workload (share) for a particular activity type?

We wish to understand whether the number of projects NPA(a) author a is in-
volved in correlates to her workload ATW (a, t) and her relative workload RATW (a, t)
for a particular activity type t. We expect that authors that participate in many
projects contribute to 110n rather than code activities, hence the more projects
an author contributes to, the higher the workload in 110n should be.

To answer the question we compute Kendall correlation between NPA(a) and
ATW (a,t) on the one hand, and between NPA(a) and RATW (a,t) on the other
hand, for all activity types t € T'. In concordance to Section 4.3.2, we discard the
authors for which ATW (a,t) = 0. Figure 20 visually summarises the results of
the correlation tests for ATW (black) and RATW (gray), using the same visual
conventions as in Figures 11 and 12.

For both ATW (a,t) and RATW ((a,t) we confidently reject Ho at 0.01 con-
fidence level for all activity types except 1ib. In case of ATW (a,t) correlation
is positive for all activity types (except 1ib which is statistically insignificant),
suggesting that the workload of authors increases in all activity types as they con-
tribute to more projects. The four main activity types we previously observed at
project level are therefore also confirmed at author level, with the highest correla-
tion being observed for 110n (7 = 0.58) and devdoc (7 = 0.57) activity types. In
contrast, correlation is negative for all activity types in case of RATW (a,t) (e.g.,



An empirical case study of workload specialisation in GNOME 37

7 = —0.33 for code and 7 = —0.17 for 110n) The statistical analysis therefore sup-
ports the observation one can make by inspecting Figure 18: the upper two-thirds
of the picture are dominated by large red symbols (= 110n), while blue symbols
(= code) in this region remain small and barely visible.

As authors are involved in more projects, they contribute to 110n rather than
code activities.

4.4.8 To what extent does the number of projects an author is involved in relates
to the share of projects in which she performs a particular activity type?

We wish to understand whether the number of projects NPA(a) an author is
involved in relates to the absolute author involvement AT'I(a,t) or the involvement
share RATI(a,t) of these projects in which she performs activities of a particular
type. We expect that not all activity types can support the same growth in terms
of the number of projects in which they are performed. For example, we expect
that the (relative) number of projects in which an author contributes to db or 1ib
activities does not increase significantly as the author is involved in more projects
since these activity types are performed in few projects in total. Moreover, even
for main activity types such as 110n and code, we expect that it is more common
for authors to perform 110n rather than code activities in most of the projects
they are involved in, as this number grows.

To answer the question we compute Kendall correlation between NPA(a) and
ATI(a,t) on the one hand, and between NPA(a) and RATI(a,t) on the other
hand, for all activity types ¢t € T. Figure 21 visually summarises the results of
the correlation tests for AT (drawn in black) and RATI (drawn in gray), for all
activity types, under the usual conventions. For both ATI(a,t) and RATI(a,t)
we confidently reject Ho at 0.01 confidence level for all activity types except lib.
For AT'I(a,t) we observe the strongest correlation for code and devdoc (7 = 0.85),
build (7 = 0.76), and 110n (7 = 0.72), while db exhibits the lowest correlation
among the statistically significant activity types (7 = 0.33). For RATI(a,t) we
observe negative correlation for all activity types (e.g., 7 = —0.63 for code, and 7 =

Kendall corr.: NPA-ATW (black), NPA-RATW (gray) Kendall corr.: NPA-ATI (black), NPA-RATI (gray)

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
L L | | L 1 1 | 1 1
code : u code ' =
devdoc L devdoc L]
110n L] 110n L]
build L] build L]
doc = doc L]
img - img L]
config - config L]
ui L] ui =
meta L] meta L
test L] test =
media = media L]
db - db -
lib o lib o

Fig. 20: As they are involved in Fig. 21: As they are involved in more

more projects, more authors concen-
trate their workload in 110n and devdoc
than in other activity types (black). In
addition, the share of their workload in
code decreases in comparison to that in
110n (gray).

projects, more authors contribute to
code and devdoc in their new projects
than to 110n (black). In addition, the
share of their projects in which they
code decreases in comparison to 110n

(gray).



38 Bogdan Vasilescu et al.

—0.35 for 110n). This indeed confirms our expectation. Recall that RATI(a,t) is
defined as the ratio between ATI(a,t) and NPA(a). Therefore, although increases
in ATI(a,code) and ATI(a,110n) both match increases in N PA(a) (high positive
correlation), it is only RATI(a, code) that decreases as NPA(a) increases (high
negative correlation). Therefore, we can say that the percentage of projects in
which an author participates for the 110n activity does not decrease as she is
involved in more projects.

Authors that are involved in more projects tend to participate more in 110n
for these projects than in code, i.e., the fraction of projects in which an author
participates in 110n does not decrease as she is involved in more projects.
(Recall the complement: as projects attract more developers, these are more
commonly translators rather than coders).

Our finding concurs with the observation of Jergensen et al (2011) made for
a subset of six GNOME projects. The overlap between the committer communi-
ties of these projects increases when documentation and translation committers
are included as opposed to source code committers only. We conjecture that the
ease of participation in cross-project translation activities is fostered by Damned
Lies, the Web application used to manage the localization of GNOME? (cf. de-
scription of intltool, one of the predecessors of Damned Lies in (Souphavanh
and Karoonboonyanan, 2005, p. 44)).

4.5 Summary for Goal 2

Our second research goal consisted in understanding how workload varies across
authors belonging to the same community, taking into account the different types
of activities they perform.

First, we observed that author activity across the community follows a heavy-
tailed distribution: most authors are occasional contributors with little activity,
while relatively few authors are frequent contributors that are very active. Specif-
ically, approximately half of the authors performed less than 14 file touches, while
the most active author performed 185,874 file touches.

Next, we investigated the factors that influence how active authors are. We
found that the more activity types an author participates in, or the more projects
she contributes to, the more active she is. Moreover, we observed that when con-
tributing to different projects within the ecosystem, authors prefer to specialise in
a small number of activity types. In particular, occasional contributors typically
participate in a single project, and a single activity type.

Focusing on different activity types, we observed that coding, development doc-
umentation, localization, and build are also the 4 activities in which members of
the ecosystem community prefer to specialise. While frequent contributors prefer
coding, occasional ones specialise in localization. Both frequent as well as occasional
contributors are attracted to development documentation and build.

In terms of their versatility across projects, we observed that most authors
contributing to coding, development documentation, and localization in one project,
do so as well in other projects they contribute to within the ecosystem. However,

9 110n. gnome.org


l10n.gnome.org

An empirical case study of workload specialisation in GNOME 39

as authors become involved in more projects, it is more common for them to
participate in localization rather than coding across the different projects. On the
other hand, authors contributing to scarce activities (such as database) “wear
many hats”, i.e., they contribute to other activity types when their preferred ones
are not available.

5 Threats to validity

As in any empirical study, there are many potential threats to validity in our
research.

Construct validity seeks agreement between a theoretical concept and a spe-
cific measuring device or procedure. In this respect, we equated the notion of
contributor to the notion of Git author in our study. By taking into account other
data sources (e.g., mailing lists and bug trackers) we could consider a larger set
of GNOME contributors and activity types, which could affect our results. Another
potential threat is the lack of agreement between the theoretical concept of a “au-
thor” and a specific author identification technique described in Section 2.3. As
recognised by Goeminne and Mens (2011a), identity matching can never be perfect
due to the presence of false positives and false negatives. Using a wide portfolio of
complementary algorithms we have reduced these to a minimum. In addition, we
manually checked and corrected the remaining problems. Even if some incorrect
identity matches may remain, their number will be limited and will not influ-
ence the results presented in this paper. Note that we used a threshold of 0.8 for
the similarity measures used during identity matching. This threshold was chosen
based on a limited number of tests. A more appropriate value could be computed
following the approach of Goeminne and Mens (2011a).

Construct validity might also have been affected by our operationalization of
an author’s activity. Our activity identification builds on and extends the work
of Robles et al (2006). We stress, however, that changing the rules (regular ex-
pressions) and the order in which they are evaluated may lead to different results.
Looking at the exact changes made to each file may lead to a more precise identi-
fication of the activity type. In addition, our approach does not allow to associate
more than one activity type to the same file.

Construct validity is also related to our definition of workload and involvement
as proxies for the actual development effort. To determine the workload we counted
the number of file touches by an author for a project, without taking into account
the size of the file change or the effort that was needed for making such a change.
In considering the number of file touches rather than the modification size we
follow a popular approach in software evolution research (D’Ambros and Lanza,
2009; Valverde, 2007). A similar proxy of the development effort has been used
by German (2003).

Internal validity is related to validity of the conclusion within the experimental
context of GNOME. A first threat is that we were not able to extract and analyse
data from all 1358 GNOME projects (i.e., 97%). We have left out 42 projects (3%)
due to data extraction errors, but given the low percentage this will have little
influence on the validity of the results. Since our study did not involve repeated
application of a treatment, typical threats to internal validity such as history,
maturation, or mortality (Wohlin et al, 2000) could not have affected the results



40 Bogdan Vasilescu et al.

of our study. Furthermore, we have paid special attention to the appropriate use
of statistical machinery (Sheskin, 2007) (cf. Sections 2.6 and 2.7).

Ezxternal validity is the validity of generalisations based on this study beyond
GNOME. External validity is of no importance for this study as no claims are made
about the generalisability of our results to other ecosystems. Although the studies
presented in this paper can be replicated on other open source ecosystems'®, the
obtained results may vary, as each ecosystem has its own specific community and
process. For instance, the significant share of translation activities in GNOME might
be related to the special GNOME Live! translation project or Damned Lies, the Web
application used to manage the localization of GNOME.

6 Related work

In the case study of this article we have studied the relationship between projects,
authors and activity types in the open source software ecosystem GNOME. Through-
out the paper we have added references to related work pertaining to individual
steps in our analysis process. For example, existing work related to data analy-
sis is discussed in Sections 2.6 and 2.7, while identity matching approaches are
discussed in Section 2.3. In Subsection 6.1 we discuss existing results related to
studies of developers and their activities, and in Subsection 6.2 we discuss studies
of the GNOME ecosystem.

6.1 Studies of open source software contributors

Many researchers have investigated the roles developers play in open source soft-
ware projects. Capiluppi et al (2003) attempted to characterize open source projects,
their evolution, and the developer communities responsible for their maintenance,
by studying 400 projects hosted by the FreshMeat!'! portal. While they distinguish
between stable and transient developers based on the amount of changes they per-
form, we classify developers based on the types of files they touch. In addition, the
projects analysed by them are not necessarily related, hence could be maintained
by independent authors. In contrast, GNOME community members participate in
multiple projects across the GNOME ecosystem. Shibuya and Tamai (2009) also dis-
tinguish between frequent and occasional contributions, based on the number of
commits developers contribute each month. However, even though they distinguish
between different activities related to involvement in a project (e.g., participat-
ing in mailing lists, reporting bugs, developing), they do not distinguish between
different development activities (e.g., coding, testing, writing documentation).
Mockus et al (2002) performed two case studies on the Apache and Mozilla
projects where they investigated the roles and responsibilities of developers. Their
approach distinguishes between developers who contributed code submissions, per-
formed bug fixes, or reported problems. Although they do not study differences
between development activity types, they observe specialisation of contributors
towards a single role. Our data shows similar features: approximately 20% of the

10 We have provided a replication package here: www.win.tue.nl/mdse/gnome. However, it
will first need to be adapted in order to be applicable to other software ecosystems.

11 freecode.com


www.win.tue.nl/mdse/gnome
freecode.com

An empirical case study of workload specialisation in GNOME 41

developers involved in code activities, and 25% of the developers involved in lo-
calization activities do not contribute to other activity types. Similarly to Mockus
et al, Nakakoji et al (2002) distinguish between developers, bug fixers and bug re-
porters. Furthermore, they have proposed a more refined classification of developer
kinds: peripheral developers, active developers, core members and project leaders.
The “onion model” proposed suggests that there are more core members than
project leaders, more active developers than core members, more peripheral devel-
opers than active ones, etc. Similar hypotheses have been studied by Dinh-Trong
and Bieman (2005). The Open Source community itself recognises that develop-
ers play different roles as witnessed, e.g., by recording “credited developers” and
“maintainers” as opposed to uncredited developers or maintainers in LINUX (Moon
and Sproull, 2000).

Benefits of incorporating the more refined classification in our work include
discovering whether persons classified as core members in a number of projects
tend to limit their involvement in other projects to bug reporting. However, as
shown by Poncin et al (2011), integration of the refined classification proposed by
Nakakoji et al necessitates additional analysis of bug tracker information. Yu and
Ramaswamy (2007) made a similar distinction between core and associate project
members, but unlike Nakakoji et al their approach infers roles automatically based
on clustering developers using frequency of their interaction.

Our approach is based on, and extends that of, Robles et al (2006), who also dis-
tinguish between development activity types. However, while they follow a holistic
approach and classify commits in different activity types, we perform the distinc-
tion both at the level of individual software projects, as well as that of individual
authors participating in these projects.

6.2 Studies of the GNOME ecosystem

GNOME, being a large open-source software ecosystem, comprising a wide variety
of diverse projects, is a very popular case study in software evolution research.

GNOME was part of the MSR 2009 and 2010 Mining Challenges. In 2009,
there was a general challenge to demonstrate the usefulness of mining tools on
the GNOME case study, and a prediction challenge to predict the code growth at
project level. Linstead and Baldi (2009) and Schackmann and Lichter (2009) mined
the GNOME Bugzilla database, and Shihab et al (2009) mined the GNOME Inter-
net Relay Chat (IRC) meeting channels. In this paper, we investigated a different
data source, namely the version control repositories. Lungu et al (2009) focused
on the visualization of the GNOME ecosystem. Although they are interested in
similar questions as we are, they do not provide any statistical evidence. Casebolt
et al (2009) found an inverse relation between file size and the notion of author
entropy, suggesting that large files are more likely to have a dominant author than
small files. The notion of author entropy characterizes the distribution of author
contributions to a file, and is therefore related (at least in spirit) to our use of
inequality indices such as Gini or Theil. The main difference is that we did not
focus on the author collaboration for individual files.

In 2010, MSR focused on software ecosystems and, more in particular, on
the relationships between packages, by relying on information stored in the SVN
version control system and the mailing list archives (Hindle et al, 2010). There



42 Bogdan Vasilescu et al.

were two contributions to this mining challenge that used GNOME as a case study.
Krinke et al (2010) focused on the reuse and cloning of code between the different
GNOME projects. Luijten et al (2010) focused on the process and efficiency of issue
handling. These topics did not take activity types or GNOME contributors into
account and are thus different in scope from the research in this paper.

Similarly to Neu et al (2011) we recognize the importance of combining the
analyses of the ecosystem and an individual project, as well as the community and
an individual contributor. However, while Neu et al focused on visualization of
GNOME data based on a number of assumptions, we conducted statistical analyses.
Our findings support their assumptions, since we also observed that persons “who
contributed a lot but only to a relatively small number of projects” are typically
coders, while those “who committed less often but to more projects” are typically
translators.

In their study of effort, co-operation and co-ordination in GNOME, Koch and
Schneider (2002) have observed significant differences between contributions of
different developers in terms of lines of code. Both their data and our data on the
workload in terms of file touches (Section 3.1) show similar features: the distribu-
tions are left-skewed and the maximal value is more than an order of magnitude
larger than the mean, i.e., both distributions are heavy-tailed (Taube-Schock et al,
2011). A similar distribution seems to be suggested by partial data on percent-
ages of modification requests per developer, as reported by German (2003). As
opposed to our work, Koch and Schneider consider a more advanced approach to
effort estimation that takes into account lines of code added or deleted as well as
the communication between the developers via mailing lists. Furthermore, while
Koch and Schneider follow a holistic approach, we augment such results with
more fine-grained analyses of individual GNOME projects. Similarly to Koch and
Schneider, Gousios et al (2008) developed an advanced measure of individual de-
veloper contribution based on information from the source code repository, the
mailing lists and the bug tracking systems, and applied the measure to a number
of GNOME projects. Jergensen et al (2011) have studied six GNOME projects in
order to understand how developers join, socialize and develop within GNOME.
They observed, among others, that very experienced developers are less involved
in the actual coding. Similarly to our work, Jergensen et al have observed that
translation and documentation are more cross-project activities than coding. Sum-
marizing this discussion we observe that most of the studies so far either followed
a holistic approach and considered GNOME as one system, or focused on a number
of example GNOME projects such as Evince or Nautilus.

Finally, Lopez-Fernandez et al (2006) studied relations between the GNOME
developers by means of social network analysis, while Ernst and Mylopoulos (2010)
studied perception of software quality requirements in some of the GNOME projects.

7 Future Work

Our research can be extended in numerous ways.

While in this article we have considered all GNOME projects as being equal, in
reality they are classified under different categories (see git.gnome.org/browse/):
Archived, Administration tools, Bindings, Desktop, Development tools, Infrastruc-
ture, Platform, Productivity tools, Other and Deprecated. GNOME projects could


git.gnome.org/browse/

An empirical case study of workload specialisation in GNOME 43

also be clustered along other dimensions. For example, all GNOME projects re-
lated to multimedia activity (e.g., bonobo-media would belong to this cluster).
We intend to look into different such classifications and clusterings to statisti-
cally investigate whether projects belonging to the same category share common
properties, and to what extent differences between projects can be explained by
these categories (Cowell and Jenkins, 1995; Serebrenik and van den Brand, 2010;
Serebrenik et al, 2011).

An important area of future work is to look at how the presented metrics and
statistics evolve over time. This would allow us to detect certain trends (or trend
breaks) in how ecosystems and communities evolve, predict future evolutions, and
compare the evolution of projects (or authors) against one another. Recently we
started to explore this temporal dimension (Goeminne and Mens, 2013).

We intend to take into account other data repositories in future studies. In
particular, we wish to integrate data coming from bug trackers and mailing lists
(Gousios et al, 2008; Poncin et al, 2011). On the one hand, this gives us access
to a richer source of information. On the other hand, it makes the integration of
these different data sources more challenging. We also intend to apply our study
to other software ecosystems, such as APACHE, KDE and GNU.

The distinction between different development activities, e.g., coding and trans-
lation, can be used to refine measures of experience and recognition intended for
quantification and comparison of the contributions of open-source software devel-
opers in an objective, open and reproducible way (Capiluppi et al, 2012b). These
measures can be used both by software developers looking for a job and by re-
cruiters evaluating suitability of such candidates (Capiluppi et al, 2012a).

Finally, we intend to use more characteristics when studying the variation
across projects and authors. For projects we intend to include, among others,
project size, project maturity, main programming language used, and application
domain. For communities we intend to take into account, among others, developer
seniority, team size, and team structure.

8 Conclusion

This article studied the workload variation of the projects belonging to an open
source software ecosystem, and the workload variation of the contributors belong-
ing to the ecosystem community. To achieve this, a portfolio of statistical tech-
niques was applied on the GNOME case study, a large and well-known open source
ecosystem and associated community (with over 1300 different projects and over
5000 active authors).

By analyzing the GNOME mailing list archives, we observed that GNOME con-
tains both paid contributors and volunteers, and it can be expected that their
workload is different. The GNOME community also acknowledges that, while cod-
ing is the most important activity, other activities such as translation/localisation
are indispensable. In addition, translators are usually not coders, and most of the
other GNOME activity types (such as documentation, user interface design, etc.)
are considered to be less important.

To confirm these informal observations, we studied the GNOME ecosystem with
two research goals in mind: to understand how workload varies across projects and



44 Bogdan Vasilescu et al.

to understand how workload varies across contributors. To achieve this, we de-
fined a novel set of metrics, parameterised by project, author and activity type,
with coding, localization and development documentation being the most impor-
tant activity types. This set of metrics can be considered as a contribution in its
own, as it can be reused easily for studying other software ecosystems. Of partic-
ular importance are the specialisation metrics that are defined based on the Gini
inequality index. An additional contribution consists in introducing T-graphs, a
novel approach for reporting the results of comparing multiple distributions.

Concerning the first research goal, we observed that project workload across
the ecosystem follows a log-normal distribution. We found two characteristics that
positively correlated to the project workload: the size of the project community and
the number of activity types contained in the project. The workload was mainly
concentrated in four activity types, that also attracted most of the project’s con-
tributors: coding, development documentation, localization, and build. Of these,
coding concentrates most of a project’s workload, while localization and develop-
ment documentation attract most of the contributors. We also found evidence that
highly specialised projects only include few activity types. In contrast, we did not
find evidence that projects with more activity types or larger communities are less
specialised.

Concerning the second research goal, we observed that author workload across
the GNOME ecosystem follows a heavy-tailed distribution: most contributors have
little activity (approximately half of the contributors performed less than 14 file
touches), while a small number of contributors have a very high workload. We
found that a contributor’s workload is positively correlated to the number of
projects she contributes to, as well as to the number of activity types she par-
ticipates in. We also observed that contributors prefer to restrict themselves to
a small number of activity types. In particular, the many occasional contributors
typically restrict themselves to a single project and a single activity type. While
occasional contributors are mainly specialised in the localization activity, frequent
contributors tend to prefer coding. Both kinds of contributors are also often in-
volved in development documentation and build. Most contributors to one of these
four activity types in one project, also tend to contribute to these types in the other
projects they are involved in. However, the more projects a contributor is involved
in, the more she tends to participate in localization as opposed to coding.

Overall, our empirical case study has allowed us to confirm that there is no
such thing as a uniform ecosystem of projects and contributors: when taking into
account the activity types and the workload, there is a lot of variation across
projects and across contributors, but with a clear preference towards the activity
types of coding, localization, development documentation and building. It is quite
possible that other ecosystems than GNOME may reveal other activity patterns.

Acknowledgements

We thank Javier Perez and Romuald Deshayes for proofreading a draft version of
this article. We are also grateful to Dr. Koo Rijpkema for a number of discussions
on certain aspects of statistical analysis and Dr. Frank Konietschke for providing
us with the (yet to be published) implementation of the T procedure. Moreover,



An empirical case study of workload specialisation in GNOME 45

we thank the anonymous reviewers for their numerous remarks that helped us to
improve the article significantly.

This research has been partially supported by research projects FRFC 2.4515.09
financed by Fonds de la Recherche Scientifique (F.R.S-FNRS), ARC AUWB-
08/12-UMH-3 and AUWB-12/17-UMONS-3 financed by the Ministere de la Com-
munauté frangaise—Direction générale de I’Enseignement non obligatoire et de
la Recherche scientifique (Belgium), and NWO 600.065.120.10N235 financed by
the Dutch Science Foundation (Nederlandse Organisatie voor Wetenschappelijk
Onderzoek, NWO). Part of this research has been carried out during the second
author’s stay at the Université de Mons, supported by grant BSS-2012/V 6/5/015
of the Fonds de la Recherche Scientifique (F.R.S-FNRS).

References

Aho AV, Garey MR, Ullman JD (1972) The transitive reduction of a directed
graph. SIAM J Comput 1(2):131-137

Akritas M, Arnold S, Brunner E (1997) Nonparametric hypotheses and rank statis-
tics for unbalanced factorial designs. J Am Stat Assoc 92:258-265

Allison PD (1978) Measures of inequality. Am Sociol Rev 43(6):865-880

Antoniol G, Di Penta M, Harman M (2005) Search-based techniques applied to
optimization of project planning for a massive maintenance project. In: Int Conf
Softw Maint, Inst Electr Electron Eng, pp 240-249

Baxter G, Frean M, Noble J, Rickerby M, Smith H, Visser M, Melton H, Tempero
E (2006) Understanding the shape of Java software. SIGPLAN Not 41(10):397—
412

Bettenburg N, Hassan AE (2010) Studying the impact of social structures on
software quality. In: Int Conf Program Comprehension, Inst Electr Electron
Eng, pp 124-133

Bird C, Gourley A, Devanbu PT, Gertz M, Swaminathan A (2006) Mining email
social networks. In: Min Softw Repos, Assoc Comput Mach, pp 137-143

Bonaccorsi A, Giannangeli S, Rossi C (2006) Entry strategies under competing
standards: Hybrid business models in the open source software industry. Manag
Sci 52(7):1085-1098

Brown BM, Hettmansperger TP (2002) Kruskal-Wallis, multiple comparisons and
Efron dice. Aust NZ J Stat 44(4):427-438

Brunner E, Munzel U (2000) The nonparametric Behrens-Fisher problem: Asymp-
totic theory and a small-sample approximation. Biom J 42(1):17-25

Brunner E, Munzel U (2002) Nichtparametrische Datenanalysen: Unverbundene
Stichproben. Statistik und ihre Anwendungen, Springer

Capiluppi A, Lago P, Morisio M (2003) Characteristics of open source projects.
In: Conf Softw Maint Reengineering, Inst Electr Electron Eng, pp 317-327

Capiluppi A, Serebrenik A, Singer L (2012a) Assessing technical candidates on the
social web. Software, Inst Electr Electron Eng, PP(99):1

Capiluppi A, Serebrenik A, Youssef A (2012b) Developing an h-index for OSS
developers. In: Min Softw Repos, Inst Electr Electron Eng, pp 251254

Casebolt JR, Krein JL, MacLean AC, Knutson CD, Delorey DP (2009) Author
entropy vs. file size in the GNOME suite of applications. In: Min Softw Repos,
Inst Electr Electron Eng, pp 91-94



46 Bogdan Vasilescu et al.

Christen P (2006) A comparison of personal name matching: Techniques and prac-
tical issues. In: Int Conf Data Min, Inst Electr Electron Eng, pp 290-294

Christen P, Churches T, Hegland M (2004) Febrl—a parallel open source data
linkage system. In: Adv Knowl Discov Data Min, Lect Not Comput Sci, vol
3056, Springer, pp 638647

Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical
data. SIAM Rev 51:661-703

Cowell FA (2000) Measurement of inequality. In: Handbook of Income Distribu-
tion, Handbooks in Economics, vol 1, Elsevier, pp 87-166

Cowell FA, Jenkins SP (1995) How much inequality can we explain? A methodol-
ogy and an application to the United States. Econ J 105(429):421-430

D’Ambros M, Lanza M (2009) Visual software evolution reconstruction. J Softw
Maint Evol 21:217-232

Davies J, German D, Godfrey M, Hindle A (2011) Software bertillonage: Finding
the provenance of an entity. In: Min Softw Repos, Assoc Comput Mach, pp
183-192

Dinh-Trong T, Bieman J (2005) The FreeBSD project: a replication case study of
open source development. Trans Softw Eng, Inst Electr Electron Eng, 31(6):481—
494

Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52-64

Dunnett CW (1955) A multiple comparison procedure for comparing several treat-
ments with a control. J Am Stat Assoc 50(272):1096-1121

Ernst N, Mylopoulos J (2010) On the perception of software quality requirements
during the project lifecycle. In: Requirements Engineering: Foundation for Soft-
ware Quality, Lect Not Comput Sci, vol 6182, Springer, pp 143-157

Gabriel KR (1969) Simultaneous test procedures—some theory of multiple com-
parisons. Ann Math Stat 40(1):224-250

German DM (2003) The GNOME project: a case study of open source, global
software development. Softw Process 8(4):201-215

German DM (2004) Using software trails to reconstruct the evolution of software.
J Softw Maint Evol 16(6):367-384

Gini C (1921) Measurement of inequality of incomes. Economic J 31:124-126

Goeminne M, Mens T (2011a) A comparison of identity merge algorithms for
software repositories. Sci Comput Program. Accepted for publication

Goeminne M, Mens T (2011b) Evidence for the Pareto principle in open source
software activity. In: Int Workshop Softw Qual Maintainab

Goeminne M, Mens T (2013) Analysing ecosystems for open source software devel-
oper communities. In: Software Ecosystems: Analyzing and Managing Business
Networks in the Software Industry, Palgrave-MacMillan

Gousios G, Kalliamvakou E, Spinellis D (2008) Measuring developer contribution
from software repository data. In: Min Softw Repos, Assoc Comput Mach, pp
129-132

Hindle A, Godfrey MW, Holt RC (2007) Release pattern discovery: A case study
of database systems. In: Int Conf Softw Maint, Inst Electr Electron Eng, pp
285-294

Hindle A, Herraiz I, Shihab E, Jiang ZM (2010) Mining challenge 2010: FreeBSD,
GNOME Desktop and Debian/Ubuntu. In: Min Softw Repos, Inst Electr Elec-
tron Eng, pp 82-85

Holander M, Wolfe DA (1973) Nonparametric statistical methods. Wiley



An empirical case study of workload specialisation in GNOME 47

Igbal A, Hausenblas M (2012) Integrating developer-related information across
open source repositories. In: Information Reuse and Integration (IRI), 2012 Inst
Electr Electron Eng, 13th Int Conf, pp 69 76

ISO/IEC/IEEE (2009) Standard 9945:2009 information technology—portable op-
erating system interface (posix) base specifications, issue 7

Jergensen C, Sarma A, Wagstrom P (2011) The onion patch: migration in open
source ecosystems. In: Gyimé6thy T, Zeller A (eds) SIGSOFT Found Softw Eng,
Assoc Comput Mach, pp 70-80

Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81-93

Khomh F, Di Penta M, Guéhéneuc YG (2009) An exploratory study of the impact
of code smells on software change-proneness. In: Work Conf Reverse Eng, Inst
Electr Electron Eng, pp 75-84

Knuth D (1973) The art of computer programming. Vol. 3: Sorting and searching.
Addison Wesley

Koch S, Schneider G (2002) Effort, co-operation and co-ordination in an open
source software project: GNOME. Inf Syst J 12(1):27-42

Konietschke F (2012) nparcomp. Reference manual

Konietschke F, Hothorn LA, Brunner E (2012) Rank-based multiple test proce-
dures and simultaneous confidence intervals. Electron J Stat 6:738-759

Kouters E, Vasilescu B, Serebrenik A, van den Brand MGJ (2012) Who’s who in
Gnome: using LSA to merge software repository identities. In: Int Conf Softw
Maint, Inst Electr Electron Eng, pp 592-595

Krinke J, Gold N, Jia Y, Binkley D (2010) Cloning and copying between GNOME
projects. In: Min Softw Repos, Inst Electr Electron Eng, pp 98-101

Kurtz TE, Link RF, Tukey JW, Wallace DL (1965) Short-cut multiple compar-
isons for balanced single and double classifications: Part 2. Derivations and
approximations. Biometrika 52(3/4):485-498

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and
reversals. Sov Phys Dokl 10(8):707-710

Linstead E, Baldi P (2009) Mining the coherence of GNOME bug reports with
statistical topic models. In: Min Softw Repos, Inst Electr Electron Eng, pp 99—
102

Little T (2006) Schedule estimation and uncertainty surrounding the cone of un-
certainty. Software, Inst Electr Electron Eng, 23(3):48-54

Lopez-Fernandez L, Robles G, Gonzalez-Barahona J, Herraiz I (2006) Applying
social network analysis techniques to community-driven libre software projects.
Int J Inf Technol Web Eng 1(3):27-48

Lorenz MO (1905) Methods of measuring the concentration of wealth. J Am Stat
Assoc 9(70):209-219

Louridas P, Spinellis D, Vlachos V (2008) Power laws in software. Trans Softw
Eng Meth 18:2:1-2:26, Assoc Comput Mach

Luijten B, Visser J, Zaidman A (2010) Assessment of issue handling efficiency. In:
Min Softw Repos, Inst Electr Electron Eng, pp 94-97

Lungu M, Malnati J, Lanza M (2009) Visualizing GNOME with the small project
observatory. In: Min Softw Repos, Inst Electr Electron Eng, pp 103-106

Lungu M, Lanza M, Girba T, Robbes R (2010) The small project observatory:
Visualizing software ecosystems. Sci Comput Program 75:264-275

de Mendiburu F (2010) Agricolae. Practical manual. Faculty of Economics and
Planning, La Molina National Agrarian University, La Molina, Lima, Peru



48 Bogdan Vasilescu et al.

Mens T, Goeminne M (2011) Analysing the evolution of social aspects of open
source software ecosystems. In: Int Workshop Softw Ecosystems, CEUR-WS,
pp 1-14

Mockus A, Fielding RT, Herbsleb JD (2002) Two case studies of open source
software development: Apache and Mozilla. Trans Softw Eng Meth 11(3):309—
346, Assoc Comput Mach

Moon JY, Sproull L (2000) Essence of distributed work: The case of Linux ker-
nel. First Monday 5(11), http://firstmonday.org/issues/issue5_11/moon/
index.html

Mordal K, Anquetil N, Laval J, Serebrenik A, Vasilescu B, Ducasse S (2012) Soft-
ware quality metrics aggregation in industry. J Softw Evol Process Accepted for
publication

Nakakoji K, Yamamoto Y, Nishinaka Y, Kishida K, Ye Y (2002) Evolution patterns
of open-source software systems and communities. In: Int Workshop Princ Softw
Evol, Assoc Comput Mach, pp 76-85

Neary D, David V (2010) The GNOME Census: Who writes GNOME? In:
GNOME Users And Developers European Conference

Neu S, Lanza M, Hattori L, D’Ambros M (2011) Telling stories about GNOME
with Complicity. In: Intl Workshop Vis Softw Underst Anal, Inst Electr Electron
Eng, pp 1-8

Noether GE (1981) Why Kendall tau? Teach Stat 3(2):41-43

Pearson K (1895) Note on regression and inheritance in the case of two parents.
Royal Soc Proc 58:240-242

Poncin W, Serebrenik A, van den Brand MGJ (2011) Process mining software
repositories. In: Conf Softw Maint Reengineering, Inst Electr Electron Eng, pp
5-14

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical Recipes
in C/C++: The Art of Scientific Computing Code. Cambridge University Press

R Development Core Team (2010) R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria

Robles G, Gonzdlez-Barahona JM (2005) Developer identification methods for
integrated data from various sources. In: Min Softw Repos, Assoc Comput Mach,
pp 106-110

Robles G, Gonzalez-Barahona JM, Merelo JJ (2006) Beyond source code: the
importance of other artifacts in software development (a case study). J Syst
Softw 79(9):1233-1248

Robles G, Gonzalez-Barahona JM, Izquierdo-Cortazar D, Herraiz I (2009) Tools
for the study of the usual data sources found in libre software projects. Int J
Open Source Softw Processes 1(1):24-45

Rose C (2001) Re: Handling Translations. https://mail.gnome.org/archives/
gnome-web-1ist/2001-August/msg00073.html

Rose C (2007) Re: Git vs SVN (was: Can we improve things?). https://mail.
gnome.org/archives/foundation-1ist/2007-September/msg00050.html

Schackmann H, Lichter H (2009) Evaluating process quality in GNOME based on
change request data. In: Min Softw Repos, Inst Electr Electron Eng, pp 95-98

Sekhon JS (2011) Multivariate and propensity score matching software with auto-
mated balance optimization: The matching package for R. J Stat Softw 42(7):1—
52


http://firstmonday.org/issues/issue5_11/moon/index.html
http://firstmonday.org/issues/issue5_11/moon/index.html
https://mail.gnome.org/archives/gnome-web-list/2001-August/msg00073.html
https://mail.gnome.org/archives/gnome-web-list/2001-August/msg00073.html
https://mail.gnome.org/archives/foundation-list/2007-September/msg00050.html
https://mail.gnome.org/archives/foundation-list/2007-September/msg00050.html

An empirical case study of workload specialisation in GNOME 49

Serebrenik A, van den Brand MGJ (2010) Theil index for aggregation of software
metrics values. In: Int Conf Softw Maint, Inst Electr Electron Eng, pp 1-9

Serebrenik A, Vasilescu B, van den Brand MGJ (2011) Similar tasks, different
effort: Why the same amount of functionality requires different development
effort? In: 10th Belg-Neth Softw Evol Semin, pp 4-5

Sheskin DJ (2007) Handbook of Parametric and Nonparametric Statistical Proce-
dures, 4th edn. Chapman & Hall

Shibuya B, Tamai T (2009) Understanding the process of participating in open
source communities. In: Emerg Trends in Free/Libre/Open-Source Softw, Inst
Electr Electron Eng, pp 1-6

Shihab E, Jiang ZM, Hassan A (2009) On the use of internet relay chat (IRC)
meetings by developers of the GNOME GTK+ project. In: Min Softw Repos,
Inst Electr Electron Eng, pp 107-110

Souphavanh A, Karoonboonyanan T (2005) Free/Open Source Software: Localiza-
tion. United Nations Asia Pacific Development Information Programme

Spearman C (1904) The proof and measurement of association between two things.
Am J Psychol 15(1):72-101

Stone D (2004) Re: [fdo] Re: On translation regressions due to freedesktop.org
dependencies. https://mail.gnome.org/archives/gnome-1i18n/2004-July/
msg00146.html

Taube-Schock C, Walker RJ, Witten IH (2011) Can we avoid high coupling? In:
Eur Conf Object-Oriented Program, Lect Not Comp Sci, vol 6813, Springer, pp
204-228

Terceiro A, Rios LR, Chavez C (2010) An empirical study on the structural com-
plexity introduced by core and peripheral developers in free software projects.
In: Braz Symp Softw Eng, Inst Electr Electron Eng, pp 21-29

Theil H (1967) Economics and Information Theory. North-Holland

Theil H (1971) Principles of Econometrics. John Wiley

Tsay JT, Dabbish L, Herbsleb J (2012) Social media and success in open source
projects. In: Comp Support Coop Work Companion, Assoc Comput Mach, New
York, NY, USA, pp 223-226

Tukey JW (1951) Quick and dirty methods in statistics, part II, Simple analysis
for standard designs. In: Am Soc Qual Control, pp 189-197

Valverde S (2007) Crossover from endogenous to exogenous activity in open-source
software development. Europhys Lett 77(2):20,002

Vasa R, Lumpe M, Branch P, Nierstrasz OM (2009) Comparative analysis of evolv-
ing software systems using the Gini coefficient. In: Int Conf Softw Maint, Inst
Electr Electron Eng, pp 179-188

Vasilescu B, Serebrenik A, van den Brand MGJ (2011a) By no means: a study on
aggregating software metrics. In: Workshop Emerg Trends Softw Metr, Assoc
Comput Mach, pp 23-26

Vasilescu B, Serebrenik A, van den Brand MGJ (2011b) You can’t control the
unfamiliar: A study on the relations between aggregation techniques for software
metrics. In: Int Conf Softw Maint, Inst Electr Electron Eng, pp 313-322

Villa L (2007) Re: GNOME Project Organogram. https://mail.gnome.org/
archives/marketing-1ist/2007-February/msg00027 .html

Vuong QH (1989) Likelihood ratio tests for model selection and non-nested hy-
potheses. Econometrica 57(2):307-333


https://mail.gnome.org/archives/gnome-i18n/2004-July/msg00146.html
https://mail.gnome.org/archives/gnome-i18n/2004-July/msg00146.html
https://mail.gnome.org/archives/marketing-list/2007-February/msg00027.html
https://mail.gnome.org/archives/marketing-list/2007-February/msg00027.html

50 Bogdan Vasilescu et al.

Waugh J (2007) GNOME community celebrates 10 years of software free-
dom, innovation and industry adoption. https://mail.gnome.org/archives/
gnome-announce-1list/2007-August/msg00048.html

Weber S (2004) The success of open source. Harvard University Press

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics Bul-
letin 1(6):80-83

Wohlin C, Runeson P, Hést M, Ohlsson MC, Regnell B, Wesslén A (2000) Exper-
imentation in software engineering: an introduction. Kluwer

Yu L, Ramaswamy S (2007) Mining CVS repositories to understand open-source
project developer roles. In: Min Softw Repos, Inst Electr Electron Eng, p 8

Zaidman A, Rompaey BV, van Deursen A, Demeyer S (2011) Studying the co-
evolution of production and test code in open source and industrial developer
test processes through repository mining. Empir Softw Eng 16(3):325-364

Zeileis A (2009) ineq: Measuring Inequality, Concentration, and Poverty. R Foun-
dation for Statistical Computing

Zimmerman DW, Zumbo BD (1992) Parametric alternatives to the Student t test
under violation of normality and homogeneity of variance. Percept Motor Skill
74(3(1)):835-844

Zobel J, Dart P (1996) Phonetic string matching: Lessons from information re-
trieval. In: Int Conf Res and Dev Inf Retr, Assoc Comput Mach, pp 166-172


https://mail.gnome.org/archives/gnome-announce-list/2007-August/msg00048.html
https://mail.gnome.org/archives/gnome-announce-list/2007-August/msg00048.html

An empirical case study of workload specialisation in GNOME 51

A Activity type rules

Rules used to assign each file to an activity type. The rule for each activity type is defined by
a regular expression. If the expression matches the file’s path, the activity type is associated
to the file. The rules are assessed in sequence. Among the rules matching the file, the last one
is used to determine the activity type. We do not allow for multiple classification, as this poses
problems with the definition of some metrics and the statistical analysis of some results.

Activity type Regular expressions

acronym

Unknown Sk

unknown

Documentation +\. ((slxlglpl (gt)) ?)htm(17?) .x/translators .*x/contributors
.x/doc(-?)book(s?)/.* .*\.page .x/info c*\L1

doc .*\.zabw .x/potfiles .x/install .*\.wml
.*\.chm .*\.ods .*/copyright .*/version
.*\.css .*\.vcard(~?) .*/plan .*/feature(s?)
S\ L txt ((\.bak) ?) .*/credits .*x/notes .*/licence
S\ Ltxt ((\.old)?) .*\.man .*x/howto .*/license
\Lrtf .x\.ics .x/faq .*/maintainers
.*\.tex .*/documenters .*xcopying .*/copying
.*\.sgml .*\.gnumeric .x/copying.* .*/committers
.*\.pdf .x\.vcf .x/doc(s?)/.% .*/thanks
.*\.xsd .*\.schemas .*/help(s?)/.x  .x/authors
.*\.texi .x\.doc .x/bugs .*\.docx
.*\.png .*\.ppm .+\.icns .*x\.eps

Image .*\.pgm .*\.jpg .*\.chm .*\ . xbm

img .*\. jpeg .*\ . bmp .*\.chm .x\.vdx
*\.gif +\.sgv(z?) .*\.nsh .*\.ico
*\.xcf

Localization .*/.potfiles\.in("?) .*\.i18ns("7?) *\.pot("7?) /po/ .*
/strings.properties .*\.mo(~?) .*\.linguas Cx\Lwxl

110n .*\.gmo("7) .x\.resx("7) .*/locale(s?)/.x .x\.po("7)
.*\.charset("7)

User interface .*\.glade (\d?) ((\.bak)?) (*7) .x\.desktop -\ xul("7)
.*\.gladed(\d?) ((\.bak)?) ("7) x\Lui .*\.xpm

ui .*\.gladep(\d?) ((\.bak)?) ("?) .*\.theme

. . .*\.mp3 .x\ .mp4 .x/media(s?)/.*x .*\.pfm

Multimedia .*\.mgv .*\.mfxl .x/font(s?)/.* .*\.gnect

media .*x\.ogg .*\.ogv .x/icon(s?)/.*x  .x\.shape
*\.wav .x\.au +\.otf("?) .x\.gnl
.x\.mov k\.avi L\ sfd("7) -*\.pgn
.*\.mid .*\ . xspf A\ ttf(77) .*\.cdf
Cx\.m4f .*\.ps .*\.afm .*\.bse
.x\.pls .*\.omf .*\.pfb .*\.cur

Codin .*\.dmg ("7) A\ . swg(77) .*\.so("?7) \L1(77)

g #\.o("?) H\.exe("7?) #\.oafinfo("?) .*\.pyd(~?)

code +\.awk("7?) +\.scm(7?) x\.glsl("7) .*\.patch(~7?)
\.c((\.swp)?) ("7)  .*/script(s?)/.* L\ . jar("7) .x/src/ . *
A\m((\.swp)?) (T?7)  .k\.cs(T7?) .\ .1d1("?) \.s(77?)
A\ ((\.swp)?) (C7)  x\.cxx(T7) +\.pyc("?) *\.asm(x?) ("7)
A\ py((\swp)?) () .y ((\.swp) ) (°?)  .#\.gi((\.swp)?) ("7)
A\t ((\swp)?) (7)) .#\.d11(77) .x\.h\.template((\.swp)?) ("7)
A\ Gs((\.swp)?) (?)  .x\.rb((\.swp)?) ("?) .*\.c\.template((\.swp)?)("7)
A\ hg((\.swp)?) (7)) .*\.pm((\.swp)?) ("?) .*\.php((\.swp)?) (\d?) ("7?)
\Lcc((\.swp)?) ("?)  .*\.sh((\.swp)?) ("?) .*\.php((\.swp)?) (\d?)("7?)
\.el((\.swp)?) ("?) .*\.hh((\.swp)?) ("?) .*\.h((pp)?) ((\.swp)?) ("7)
\Lxs((\.swp)?) (°7)  .*\.pl((\.swp)?) ("?) .*\.h\.tmpl((\.swp)?)("7)
A\mm((\.swp)?) ("?) . *\.id1((\.swp)?) ("?) .*\.h.win32((\.swp)?) ("7)
A\ Lxpt ((\.swp)?) (°?) .*\.ccg((\.swp)?) ("?) .*\.c\.tmpl((\.swp)?)("7?)
\Lsnk((\.swp)?) (7?7) .*\.inc((\.swp)?) ("?) .*\.asp(x?) ((\.swp)?) ("7)
o\ .cpp((\.swp)?) ("7) .*x\.gob((\.swp)?) ("?) .*\.vapi((\.swp)?)("7)
o\ giv((\.swp)?) (77) .*\.dtd((\.swp)?) ("?) .*\.gidl((\.swp)?)("?)
N\ Lgiv((\.swp)?) ("?) .x\.ada((\.swp)?) ("?) .*\.defs((\.swp)?) ("7)
A\ teL((\.sup)?) (*7) #\.vbs ((\.swp)?) (*2) .*\.java((\.swp)?) (*?)
A\ .nib((\.swp)?) (°?) .*\.sed((\.swp)?) ("?) .*\.vala((\.swp)?)("7?)




52

Bogdan Vasilescu et al.

Activity type

Regular expressions

acronym
Meta .*\.svn(.*) o\ git(Lx) .*\.doap .*\.mdp
k\Lcvs (L %) .\ . bzr(.*x) .*\.mds .*¥\.vbg
meta .*\.sln
. .*\.conf .*\.cfg .*\.anjuta .*\.dsw
Configuration .*\.gnorba .x\.project .x\.pgp("?) .*\.ini
config .*\.prefs .*\.vsprops *\.gpg("7?) .*\.config
.x\.vmrc .*\.csproj *\.gpg\.pub("?) .*\.xml
.*\.cproj .*\.cbproj .+\.pgp\.pub("?) .*\.dsp
.*\.emacs .*\.groupproj .*\.xcconfig .*#\.plist
.*\.pbxproj .*xanjuta\.session .x/.xsetting(s?).x/.*\.jp
.x/.xconfig(s?).*/.*\.jp
Building L%\ .cmake .*/install-sh .x/build/.* k\.ezt
.*\.cbp .*\.pch .*/pkg-info *\ . wxilib
build x\.m4(77?) .xmakefile.* .+\.prj .x\.plo
.\ .mk .*\.make .*\.deps .*\.wxiproj
+\.am("?) .*\.mp4 .*\.builder .*\.1lo
.*\.target .x\.iss .*\.nsi SR\ L wxid
.*/configure((\..+)?) .*\.wxs .*/mkbundle\..+ .*\.in
.x/autogen\. ((.+\.)?)sh .\ .wpj
4\ .ve(x?)proj (i?)n((\.filters((in)?))7?) .x\.vcproj ((\.filters((in)?))?)
Development .*readme. * .*/changelog.* .*\.dia("7?) .*\.ical
documentation | .*/changes .x/status .x/fixme .*\.doxi
devdoc .*/todo. * .*/hacking. * .x/news.* .*/roadmap
*\.rst .*/devel(-?)doc(s?)/.*
.*\.sql .x\.sqlite .*\.mdb .*\.yaml
Database .*\.sdb .*\.dat .*\.yaml .*\.json
db .*x\.db .x/berkeleydb.*/ . *
Testing k\.test(s?)/.* .*/ . xtest\..* k/test . k\. . *
test
Library .*/library/.* .x/libraries/.*

lib




	Introduction
	Methodology
	Goal 1: How does workload vary across projects?
	Goal 2: How does workload vary across authors?
	Threats to validity
	Related work
	Future Work
	Conclusion
	Activity type rules

