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Abstract. We present a variational formulation of combined motion by minus the Laplacian of
curvature and mean curvature flow, as well as related flows. The proposed scheme covers both the
closed curve case and the case of curves that are connected via triple or quadruple junction points
or intersect the external boundary. On introducing a parametric finite element approximation, we
prove stability bounds and compare our scheme with existing approaches. The presented scheme
has very good properties with respect to the equidistribution of mesh points and, if applicable, area
conservation.
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1. Introduction. The motion of curves or surfaces driven by second or fourth
order geometric evolution equations arises in many applications in materials science
and, of course, in differential geometry. Well known is the mean curvature flow, where
a hypersurface moves in the direction of its mean curvature vector. Also frequently
arising are evolution laws where the normal speed of an evolving hypersurface is
given as a function of mean curvature, in applications, such as image processing or
mathematical physics. In mathematical physics the inverse mean curvature flow plays
a role in the context of the positive mass conjecture. In materials science the motion
of networks of curves or surfaces is also often important. The evolution of grain
networks—arising in polycrystalline materials—is also given by mean curvature flow,
where at junctions angle conditions have to hold.

Fourth order geometric evolution equations also frequently are found in geometry
and materials science. The situation that the normal velocity of a hypersurface is
given by minus the Laplacian of mean curvature is called surface diffusion. This evo-
lution law arises in situations where the diffusion of material is restricted to interfacial
regions; see, e.g., [36]. When many phases appear, networks also have to be taken
into account. As the evolution law is of fourth order, additional conditions, which act
as boundary conditions for the evolution law on the curves or surfaces, have to hold.

The goal of this paper is to propose and analyze a new approach to numerically
solving geometric evolution laws of second and fourth order. The numerical method is
variational and very flexible. In particular, it is possible to couple fourth and second
order laws on the surfaces or at triple junctions in a straightforward way.
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There exist numerous methods for numerically solving geometric evolution equa-
tions. Approaches are based on, e.g., the parametric formulation, the graph formula-
tion, the level set method, or the phase field approach. We do not intend to give an
outline of all these methods, but rather refer to [14] for a comprehensive recent review.
Our approach makes use of a fundamental idea in [16], which used the identity

(1.1) Δs �x = �κ,

where Δs is the surface Laplacian, �x is the position vector, and �κ is the mean curvature
vector, for the first time in order to design a finite element method for geometric
partial differential equations and mean curvature flow; see also [17]. A second major
idea stems from the paper [3], which came up with a splitting method and employed
a Schur complement approach, in order to compute solutions of the surface diffusion
law

(1.2) V = −Δs κ,

where κ is the sum of the principal curvatures of Γ and V is the normal velocity of
the surface.

The approaches of Dziuk and of Bänsch, Morin, and Nochetto both require that
the parameterization evolve only in the normal direction. In the recent paper [6],
the present authors introduced a novel parametric finite element approximation for
surface diffusion that also allowed for a tangential movement of mesh points, which
of course does not change the geometry. This new approach has the advantage that
the discretization has very good properties with respect to the equidistribution of
mesh points. In the case of surface diffusion of curves, a semidiscrete version of
this scheme, i.e., a scheme where one discretizes only with respect to space, leads
to a precise equidistribution of mesh points. With the new ansatz it is also possible
to formulate the rather complicated conditions that need to hold at triple junction
points in a natural variational way. In this paper we want to demonstrate that the
ideas developed in [6] can also be used to compute other geometric evolution laws
of both second and fourth order. For instance, the inverse mean curvature flow and
an evolution flow which couples mean curvature flow to surface diffusion at triple
junctions (see, e.g., [12]) can be approximated in the spirit of the approach proposed
in [6].

In this paper, we will consider evolution laws that couple fourth and second order
geometric evolution laws. The coupling can be either through triple junctions or
through a coupling that combines mean curvature flow and the fourth order surface
diffusion flow via an appropriate interpolation; see [42] for applications of this flow
in materials science. Let us introduce first the case of pure second order geometric
evolution equations; that means in our context situations where the normal velocity
is given by a function of mean curvature. For a closed hypersurface Γ in R

d, mean
curvature flow is given by

(1.3) V = κ

or, more generally, we are also going to consider flows of the form

(1.4) V = f(κ),

where f : (a, b) → R with −∞ ≤ a < b ≤ ∞ is a strictly monotonically increasing
continuous function, e.g.,

(1.5) f(r) := |r|β−1r, β ∈ R>0 ;
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see [35] and the references therein. For example, the evolution law (1.4), with (1.5)
for β = 1

3 , has been studied in [1, 40, 2].
We will also consider computations for (1.4) with

(1.6) f(r) := −r−1,

i.e., the inverse mean curvature flow; see, e.g., [29, 32] for the origins of this flow
in mathematical physics, and [31], and the references therein, for a consideration of
this flow in differential geometry. To our knowledge, the only numerical results in
the literature for (1.4) with (1.6) can be found in [38, 22], where a finite volume and
a finite element approximation, respectively, of a regularized level set formulation of
(1.4) with (1.6) are employed. We know of no direct approach for the approximation
of the inverse mean curvature flow in the literature.

For a parameterization �x(ρ, t) ∈ R
d of Γ, (1.4) can be written as a second order

equation:

(1.7) V := �xt . �ν = f(κ), κ �ν = Δs �x,

where �ν is a unit normal to Γ. Note that because the tangential component �xt −
(�xt . �ν)�ν of the velocity �xt is not prescribed in (1.7), there exists a whole family of
solutions �x, even though the evolution of Γ is uniquely determined by (1.3). Our
numerical scheme will directly discretize (1.7), in contrast to the scheme considered
by Dziuk (see [16, 17]), which discretizes �xt = Δs �x and hence, on noting (1.1) and
that �κ = κ �ν, enforces a movement of the parameterization �x in the normal direction
only.

A version of (1.4) that preserves the enclosed volume is given by

(1.8) V = f(κ) −

∫
Γ
f(κ) ds∫
Γ

1 ds
,

the so-called conserved mean curvature flow, also called surface attachment limited
kinetics (SALK), if f(r) := r. An intermediate law between (1.4), with f(r) := r,
and (1.2) is the following evolution law:

(1.9) V = −Δs

(
1

α
−

1

ξ
Δs

)−1

κ,

where α, ξ ∈ R>0. The flow (1.9) interpolates between surfaces diffusion (1.2) and
SALK, (1.8) with f(r) := r, and was first discussed in [42]; see also [20]. It is similar
to (1.2) and (1.8) in that the enclosed volume is conserved while the area of the
hypersurface decreases. We observe that for α → ∞ and ξ = 1 the solutions to (1.9)
converge to solutions of (1.8) with f(r) := r, as has been shown in [21]. In the limit
ξ → ∞ and α = 1 the solutions to (1.9) should converge to solutions of the law
(1.2), although to our knowledge no rigorous proof exists. Given a parameterization
�x(ρ, t) ∈ R

d of Γ, (1.9) can be written as a system of second order equations:

(1.10) �xt . �ν = −Δs y ,

(
1

α
−

1

ξ
Δs

)
y = κ , κ �ν = Δs �x.

Analogously surface diffusion can be rewritten as

(1.11) �xt . �ν = −Δs κ, κ �ν = Δs �x.
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Fig. 1. The setup of Γ = (Γ1,Γ2,Γ3).

In section 2, we will consider a finite element approximation of a variational formula-
tion of (1.11), as well as (1.7), (1.8), and (1.10), where throughout we will restrict our
attention to the case d = 2, i.e., curves in the plane. In addition, we will compare our
approximation of (1.3) with two other parametric approximations in the literature,
namely, [17, 13].

A network of curves under motion by mean curvature with triple junctions can
also be considered. In the example network in Figure 1, let Γ1, Γ2, Γ3 be the given
curves in R

d, d = 2, that intersect at two triple junction points Λ1 and Λ2. Then the
normal velocity for each curve is given by

(1.12) Vi = σi κi, i = 1 → 3,

where κi is the curvature of Γi and σi is the surface energy density of Γi. Let �τi ∈ R
d

be the unit tangent to Γi pointing away from the triple junction point Λ1 and towards
point Λ2. The curvature is said to be positive if Γi is curved in the direction of the
normal �νi ∈ R

d, which is the unique unit vector such that (�τi, �νi) forms a positively
orientated orthonormal system. For parameterizations �xi : [0, 1] × [0, T ] → R

d of Γi,
i = 1 → 3, (1.12) can be written as a system of second order equations:

(1.13) (�xi)t . �νi = σi κi, κi �νi = Δs �xi.

Then, in addition to (1.12), the following conditions have to hold at the triple junction
points Λ1 and Λ2:

the triple junction does not pull apart,(1.14a)

σ1 �τ1 + σ2 �τ2 + σ3 �τ3 = �0.(1.14b)

The condition (1.14a) is an attachment condition, and (1.14b) is Young’s law, which
is a balance-of-force equation at the triple junction. Young’s law is equivalent to the
angle condition sin θ1

σ1
= sin θ2

σ2
= sin θ3

σ3
, where

(1.15) θ1 = ∢(�τ2, �τ3), θ2 = ∢(�τ3, �τ1), and θ3 = ∢(�τ1, �τ2) .

A variational formulation of (1.13) with (1.14a,b) will form the basis for the scheme
that we present in section 2.

In most physical applications only triple junctions are of interest. However, in
certain situations quadruple junctions are also possible. In the case that four interfaces
meet at a quadruple junction the balance-of-force condition of the quadruple junction
is

(1.16) σ1 �τ1 + σ2 �τ2 + σ3 �τ3 + σ4 �τ4 = �0 ,
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Fig. 2. The second possible setup of Γ = (Γ1,Γ2,Γ3).

where we use notation analogous to that in (1.14b); e.g., the four curves Γi, i = 1 → 4,
meeting at the quadruple junction are parameterized such that the tangent vectors
point away from the junction. In this case the angles at the quadruple junction are not
specified, and in fact there is one degree of freedom. For details we refer to [10, 11, 24].

In [6] the possibility of curve intersections with a fixed external boundary ∂Ω,
where Ω is a domain in R

d, was not considered (see Figure 2 for an example). To
state the necessary conditions that have to hold at an intersection with the external
boundary we assume that ∂Ω is given by a function F ∈ C1(Rd) such that

∂Ω = {�z ∈ R
d : F (�z) = 0} and |∇F (�z)| = 1 ∀ �z ∈ ∂Ω .

Then, for three given curves Γi, i = 1 → 3, evolving according to (1.12), the conditions
(1.14a,b) need to hold only at the triple junction Λ = �xi(0), i = 1 → 3, while at the
boundary intersection points �xi(1), i = 1 → 3, the following conditions have to hold:

the curve endpoint remains attached to ∂Ω,(1.17a)

�τi . [∇F (�xi(1))]⊥ = 0,(1.17b)

where ·⊥ denotes the clockwise rotation by π
2 . The second condition, (1.17b), requires

that forces at the outer boundary act only normal to the boundary, which is equivalent
to a 90◦ angle condition. This is the case when the two phases that meet the external
boundary have the same contact energy with the boundary. If this is not the case,
then condition (1.17b) has to be replaced by the angle condition

(1.18) �τi · �t = �τi · [∇F (�xi(1))]⊥ = cosαi,

where �t is a unit tangent to ∂Ω. Condition (1.18) states that the curve Γi intersects
the outer boundary with a given angle αi; see, e.g., [23] for the physical background.

Before coupling fourth and second order geometric evolution equations at triple
junctions, we now turn our attention to a network evolving according to surface
diffusion. Using the same notation as above, we rewrite the evolution laws

(1.19) Vi = −σi Δs κi, i = 1 → 3,

as

(1.20) (�xi)t . �νi = −σi Δs κi, κi �νi = Δs �xi.
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These equations are coupled at triple junctions and have to fulfill boundary conditions
at points that intersect the external boundary. At the triple junction we require in
addition to (1.14a,b) the conditions

σ1 κ1 + σ2 κ2 + σ3 κ3 = 0,(1.21a)

σ1 �τ1 .∇s κ1 = σ2 �τ2 .∇s κ2 = σ3 �τ3 .∇s κ3,(1.21b)

where ∇s |Γi
≡ �τi

∂
∂s

with s being the arclength. Equation (1.21a) follows from the
continuity of chemical potentials, and (1.21b) is a flux balance condition; see [28] for
details. At an intersection with an external boundary we require (1.17a,b) and the
following no-flux condition at the external boundary:

(1.22) ∇s κi = �0 .

Finally, another possible setup is to require motion by mean curvature only on a
subset of the given curves, while the remaining curves move by surface diffusion. This
is of relevance, e.g., in thermal grooving [36], in interface motion in polycrystalline
two-phase materials [10], and in the evolution of boundaries in the electromigration
of intergranular voids [7]. For parameterizations �xi : [0, 1] × [0, T ] → R

d of Γi,
i = 1 → KC , this gives rise to the following system of equations:

(�xi)t . �νi = σi κi, i = 1 → i0, (�xi)t . �νi = −σi Δsκi, i = i0 + 1 → KC ,

κi �νi = Δs �xi, i = 1 → KC ,(1.23)

subject to the triple junction conditions (1.14a,b). In addition, we require that at
triple junctions

(1.24a) σi �τi .∇s κi = σj �τj .∇s κj

for all interfaces i, j ∈ {i0 + 1, . . . ,KC} which are present at the junction. Further,
we require that

(1.24b)
∑

i∈TSD

σi κi = 0,

where TSD ⊂ {i0 + 1, . . . ,KC} are the interfaces present at the triple junction which
move according to surface diffusion. We note that for practical applications of (1.23)
only triple junctions, where one curve that moves by mean curvature flow and two
curves moving by surface diffusion meet, are of interest. A variational formulation of
(1.23) with the appropriate conditions at triple junctions and along the fixed external
boundary will also be considered in section 2.

As for previous work on the approximation of curve networks, we refer to [9, 43,
37]. Also relevant is [8], where (1.12) and (1.14a,b) are derived from an Allen–Cahn
system. A parametric finite element approximation of the mean curvature flow of a
curve that intersects an external boundary was considered in [15]. A level set approach
for mean curvature flow of curve networks has been considered in [34, 44, 41]. A phase
field model for the combined motion of mean curvature flow and surface diffusion, as
well as SALK, was considered in [7]. A phase field model for a mean curvature flow
system is considered in [27], and a surface diffusion flow system in [4].

This paper is organized as follows. In section 2 we formulate a finite element ap-
proximation of problem (1.13) and derive stability bounds. Here we first introduce our
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approximation for the simpler case of a closed curve, (1.7), and then generalize that
scheme to cover (1.8), as well as (1.20) and (1.14a,b) in the case of a triple junction
configuration, as in Figure 1. We indicate how to generalize the approach to a config-
uration as in Figure 2, as well as to an arbitrary setup of curves, triple junctions, and
external boundary intersections. We will also indicate how to combine this approach
with the algorithm presented in [6] to yield a scheme for combined mean curvature
flow and surface diffusion. Finally, we consider the adaptation of our scheme to ap-
proximate (1.10). In section 3 we present a large number of numerical computations
and compare our results, where possible, with those from other parametric algorithms
in the literature.

2. Finite element approximation.

2.1. Closed curves. We introduce the following finite element approximation.
Let J := R/Z =

⋃N
j=1 Jj , N ≥ 3, be a decomposition of J into intervals given by the

nodes qj , Jj = [qj−1, qj ]. Let hj = |Jj | and h = maxj=1→N hj be the maximal length
of a grid element. Then the necessary finite element spaces are defined as follows:

(2.1) V h
0 := {�χ ∈ C(J,Rd) : �χ |Jj

is linear ∀ j = 1 → N} =: [Wh
0 ]d ⊂ H1(J,Rd),

where Wh
0 ⊂ H1(J,R) is the space of scalar continuous (periodic) piecewise linear

functions, with {φl}
N
l=1 denoting the standard basis of Wh

0 . Throughout this paper,
we make use of the periodicity of J , i.e., qN ≡ q0, qN+1 ≡ q1, and so on.

In addition, let 0 = t0 < t1 < · · · < tM−1 < tM = T be a partitioning of
[0, T ] into possibly variable time steps τm := tm+1 − tm, m = 0 → M − 1. We set

τ := maxm=0→M−1 τm. Let �Xm ∈ V h
0 be an approximation to �x(·, tm), and similarly

κm ∈ Wh
0 for κ(·, tm).

For scalar and vector functions u, v ∈ L2(J,R(d)) we introduce the L2 inner
product 〈·, ·〉m over the current polygonal curve Γm, which is described by the vector

function �Xm ∈ V h
0 , as follows:

〈u, v〉m :=

∫

Γm

u . v ds =

∫

J

u . v | �Xm
ρ | dρ ,

where, here and throughout, �Xm
ρ denotes the derivative of �Xm with respect to ρ,

where ρ ∈ [0, 1] is the parameterization variable, and ·(∗) denotes an expression with
or without the superscript ∗, and similarly for subscripts. In addition, if u, v are
piecewise continuous, with possible jumps at the nodes {qj}

N
j=1, we define the mass

lumped inner product 〈·, ·〉hm as

(2.2) 〈u, v〉hm := 1
2

N∑

j=1

| �Xm(qj) − �Xm(qj−1)|
[
(u . v)(q−j ) + (u . v)(q+

j−1)
]
,

where we define u(q±j ) := limεց0 u(qj ± ε). Furthermore, we note that ∇s u .∇s v =

uρ . vρ

| 	Xm
ρ |2 and �νm = −

( 	Xm
ρ )⊥

| 	Xm
ρ | .

We propose the following approximation to (1.7): Find { �Xm+1, κm+1} ∈ V h
0×Wh

0

such that
〈

�Xm+1 − �Xm

τm
, χ �νm

〉h

m

− 〈f(κm+1), χ〉hm = 0 ∀ χ ∈ Wh
0 ,(2.3a)

〈κm+1 �νm, �η〉hm + 〈∇s
�Xm+1,∇s �η〉m = 0 ∀ �η ∈ V h

0 ,(2.3b)
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where, as noted above, the inner products 〈·, ·〉
(h)
m as well as ∇s depend on m.

In order to approximate (1.8), we adapt (2.3a) to
(2.4)〈

�Xm+1 − �Xm

τm
, χ �νm

〉h

m

− 〈f(κm+1), χ〉hm = −
〈f(κm), 1〉hm

〈1, 1〉m
〈1, χ〉m ∀ χ ∈ Wh

0 ,

where κ0 ∈ Wh
0 is suitably chosen; see section 3.

Remark 2.1. We note that in (2.3a,b), and throughout this paper, we use piece-
wise linear finite elements, e.g., as defined in (2.1). This is a sensible choice for the
type of evolution equations in consideration, both from a theoretical and practical
points of view. It is also in line with other approaches in the literature; see, e.g.,
[16, 17, 13, 15, 19, 3]. However, from a computational point of view, one could also
choose to use higher order finite elements.

Before we can proceed to prove existence and uniqueness of (2.3a,b), we have to
make the following very mild assumption.

(A0) Let | �Xm
ρ | > 0 for almost all ρ ∈ J . For j = 1 → N , let �νm

j− 1
2

:= −
( 	Xm

ρ )⊥

| 	Xm
ρ | |Jj

,

and set

�ωm
j :=

| �Xm(qj) − �Xm(qj−1)|�ν
m
j− 1

2

+ | �Xm(qj+1) − �Xm(qj)|�ν
m
j+ 1

2

| �Xm(qj) − �Xm(qj−1)| + | �Xm(qj+1) − �Xm(qj)|

=
−[ �Xm(qj+1) − �Xm(qj−1)]

⊥

| �Xm(qj) − �Xm(qj−1)| + | �Xm(qj+1) − �Xm(qj)|
.(2.5)

Then we further assume that dim span{�ωm
j }Nj=1 = d = 2.

Remark 2.2. We note that one can interpret �ωm
j as a weighted normal defined at

the node �Xm(qj) of the curve Γm, where in general |�ωm
j | < 1. In addition, we note

that (A0) is violated only in very rare occasions. For example, it always holds for
curves without self intersections; see [6, Remark 2.2] for details.

Theorem 2.3. Let the assumption (A0) hold, and assume that f : (a, b) → R with

−∞ ≤ a < 0 < b ≤ ∞ is strictly increasing, continuous, and such that f((a, b)) = R.

Then there exists a unique solution { �Xm+1, κm+1} ∈ V h
0 ×Wh

0 to the system (2.3a,b).
Proof. For later developments involving networks of curves, we first discuss the

linear case when f(r) := r, and so existence follows from uniqueness. To investigate

the latter, we consider the following system: Find { �X, κ} ∈ V h
0 ×Wh

0 such that

〈 �X, χ�νm〉hm − τm 〈κ, χ〉hm = 0 ∀ χ ∈ Wh
0 ,(2.6a)

〈κ�νm, �η〉hm + 〈∇s
�X,∇s �η〉m = 0 ∀ �η ∈ V h

0 .(2.6b)

Choosing χ = κ ∈ Wh
0 in (2.6a) and �η = �X ∈ V h

0 in (2.6b) yields that

(2.7) 〈∇s
�X,∇s

�X〉m + τm 〈κ, κ〉hm = 0.

It follows from (2.7) that κ ≡ 0 and �X ≡ �Xc ∈ R
d, and hence that

(2.8) 〈 �Xc, χ �νm〉hm = 0 ∀ χ ∈ Wh
0 .

Choosing χ = φj in (2.8) yields that �Xc . �ωm
j = 0 for all j = 1 → N . It follows from

assumption (A0) that �Xc = �0. Hence we have shown that (2.3a,b) with f(r) := r has

a unique solution { �Xm+1, κm+1} ∈ V h
0 ×Wh

0 .
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For a general function f : (a, b) → R fulfilling the assumptions of the theorem,

we can rewrite (2.3a,b), on noting (2.2) and (2.5), as: Find �Xm+1 ∈ V h
0 such that

(2.9) 〈∇s
�Xm+1,∇s �η〉m +

〈
f−1

(
�Xm+1 − �Xm

τm
. �ωm

)
, �η . �ωm

〉h

m

= 0 ∀ �η ∈ V h
0 ,

where �ωm :=
∑N

j=1 �ω
m
j φj . Then κm+1 ∈ Wh

0 is uniquely determined from

(2.10) κm+1(qj) = f−1

(
�Xm+1(qj) − �Xm(qj)

τm
. �ωm

j

)
, j = 1 → N.

On noting our assumption (A0), similarly as in the linear case above, it follows that
(2.9) is the Euler–Lagrange variation of the strictly convex minimization problem

min
	η∈V h

0

⎡
⎣ 1

2 〈∇s �η,∇s �η〉m + τm

〈
Φ

(
�η − �Xm

τm
. �ωm

)
, 1

〉h

m

⎤
⎦ ,

where Φ is an antiderivative of f−1. We note that Φ : R → R is strictly convex with
Φ′(f(0)) = f−1(f(0)) = 0, and hence we obtain that Φ is bounded from below and

coercive. Therefore there exists a unique solution �Xm+1 ∈ V h
0 to (2.9), and hence a

unique solution { �Xm+1, κm+1} ∈ V h
0 ×Wh

0 to (2.3a,b).
The above proof immediately applies to the case when (2.3a) is replaced by (2.4).

We remark also that we still obtain uniqueness for strictly increasing continuous func-
tions f : (a, b) → R with −∞ ≤ a < b ≤ ∞. This follows, since Φ defined as above
is still strictly convex. Existence cannot be established as easily as above, because
Φ is not coercive any longer. This discussion is relevant, e.g., for f(r) = −r−1 with
r ∈ (0,∞), which is the case of the inverse mean curvature flow if κ(·, 0) > 0. In this
case we obtain that Φ : (−∞, 0) → R is defined as Φ(r) = ln |r|.

In addition, stability results for (2.3a,b) and the variants involving (2.4) can
be established in certain cases; see Theorem 2.10, and the ensuing comment, be-
low. For example, the term 〈κm+1, κm+1〉hm in the analogue of (2.38) is replaced by
〈f(κm+1), κm+1〉hm, which once again is nonnegative if f is monotonically increasing
with f(0) = 0. Of course, it may be computationally more convenient to consider a
linearized version of (2.3a). For example, for (1.5) with β ≥ 1 one could replace (2.3a)
by

〈
�Xm+1 − �Xm

τm
, χ �νm

〉h

m

−

〈
f(κm)

κm
κm+1, χ

〉h

m

= 0 ∀ χ ∈ Wh
0 ,

with κ0 ∈ Wh
0 suitably chosen. Once again, it is then straightforward to prove

existence and uniqueness and to derive a stability result for this scheme.
In order to solve the (nonlinear) algebraic systems arising from (2.3a,b) and its

generalizations, we apply a Schur complement approach. For later developments
involving networks of curves, we describe it here for the linear case when f(r) := r.

However, it easily caries over to nonlinear f ; see (2.14a,b) below. Let �Idn ∈ (Rd×d)n×n

be the identity matrix, and similarly for Idn ∈ R
n×n. We introduce also the matrices

�N0 ∈ (Rd)N×N , M0 ∈ R
N×N , and �A0 ∈ (Rd×d)N×N with entries

(2.11)

[M0]kl := 〈φk, φl〉
h
m, [ �N0]kl :=

∫

Γm

πh[φk φl]�ν
m ds, [ �A0]kl := 〈∇sφk,∇sφl〉m �Id1 ,
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where πh : C(J,R) → Wh
0 is the standard interpolation operator at the nodes {qj}

N
j=1.

We can then formulate (2.3a,b) with f(r) := r as: Find {δ �Xm+1, κm+1} ∈ (Rd)N×R
N

such that

(2.12)

(
τm M0 − �NT

0
�N0

�A0

)(
κm+1

δ �Xm+1

)
=

(
0

− �A0
�Xm

)
,

where, with an obvious abuse of notation, δ �Xm+1 = (δ �Xm+1
1 , . . . , δ �Xm+1

N )T and
κm+1 = (κm+1

1 , . . . , κm+1
N )T are the vectors of coefficients with respect to the standard

basis for �Xm+1 − �Xm and κm+1, respectively. We can transform (2.12) into

κm+1 =
1

τm
M−1

0
�NT

0 δ �Xm+1,(2.13a)

(
�A0 +

1

τm
�N0 M

−1
0

�NT
0

)
δ �Xm+1 = − �A0

�Xm.(2.13b)

As (2.13b) is clearly symmetric and positive definite under our assumption (A0), there
exists a unique solution to (2.13b). Moreover, the solution to (2.13a,b) uniquely solves
(2.3a,b) with f(r) := r.

For later purposes, we note that for the approximation (2.3a,b) with nonlinear f ,
the linear Schur system (2.13a,b) has to be replaced by the corresponding nonlinear
system

κm+1 = f−1

[
1

τm
M−1

0
�NT

0 δ �Xm+1

]
,(2.14a)

�A0 δ �X
m+1 + �N0 f

−1

[
1

τm
M−1

0
�NT

0 δ �Xm+1

]
= − �A0

�Xm,(2.14b)

where f−1(z) ∈ R
N is defined by [f−1(z)]i := f−1(zi), i = 1 → N , for any z ∈ R

N .
Remark 2.4. In section 3, we will report on computations for our scheme (2.3a,b)

and compare our results in the case of f(r) := r with two other schemes in the

literature. The first scheme is from [17] and can be formulated as: Find �Xm+1 ∈ V h
0

such that

(2.15)

〈
�Xm+1 − �Xm

τm
, �η

〉h

m

+ 〈∇s
�Xm+1,∇s �η〉m = 0 ∀ �η ∈ V h

0 .

The system (2.15) is a discretization of the variational formulation of

(2.16) �xt = �κ, �κ := κ �ν = Δs �x,

as opposed to (1.7) with f(r) := r. From (2.10), we see that our scheme (2.3a,b) with

f(r) := r can be rewritten as: Find �Xm+1 ∈ V h
0 such that

(2.17)

〈
�Xm+1 − �Xm

τm
. �ωm, �η . �ωm

〉h

m

+ 〈∇s
�Xm+1,∇s �η〉m = 0 ∀ �η ∈ V h

0 ,

which clearly highlights the key difference between the two schemes. The second
scheme is from [13] and can be formulated as follows: Find �Xm+1 ∈ V h

0 such that

(2.18)

∫

J

| �Xm
ρ |2 πh

[
�Xm+1 − �Xm

τm
. �η

]
dρ +

∫

J

�Xm+1
ρ . �ηρ dρ = 0 ∀ �η ∈ V h

0 ,
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or equivalently

〈
| �Xm

ρ |
�Xm+1 − �Xm

τm
, �η

〉h

m

+ 〈 | �Xm
ρ | ∇s

�Xm+1,∇s �η〉m = 0 ∀ �η ∈ V h
0 .

We note that the scheme (2.15) changes the approximation of �x predominantly in the
normal direction (recall (2.16)), whereas the scheme (2.3a,b) proposed in this paper,
as well as (2.18), also induce tangential changes. This is a crucial difference. Without
movement in the tangential direction, clustering and coalescence of nodes can occur,
which leads to a breakdown of the algorithm. In addition, we note that the schemes
(2.15) and (2.18) do not easily generalize to the case of nonlinear f , in contrast to
our scheme (2.3a,b). However, it should be noted that the numerical analysis of the
schemes (2.15) and (2.18) is well developed, in that error bounds in the semidiscrete
case have been derived; see [17, 13]. This is something that we hope to achieve for
our scheme in the future.

Remark 2.5. Similarly to [6, Remark 2.3], one can consider a continuous-in-time
semidiscrete version of our scheme (2.3a,b). In particular, we let

〈 �Xt, χ �νh〉h − 〈f(κ), χ〉h = 0 ∀χ ∈ Wh
0 ,(2.19a)

〈κ�νh, �η〉h + 〈∇s
�X,∇s �η〉 = 0 ∀ �η ∈ V h

0 ,(2.19b)

where we always integrate over the current curve Γh, described by �X, and so �νh =

−
( 	Xρ)⊥

| 	Xρ|
and 〈·, ·〉(h) is the same as 〈·, ·〉

(h)
m with Γm and �Xm replaced by Γh and

�X, respectively. It is then possible to show that the scheme (2.19a,b) will always
equidistribute the nodes along Γh if the corresponding intervals are not locally parallel;
see [6, Remark 2.4] for details. Although it does not appear possible to prove an
analogue for the fully discrete scheme (2.3a,b), in practice we see that the nodes are
moved tangentially so that they will eventually be equidistributed; see section 3 for
details.

While the scheme (2.18) from [13] also induces a tangential movement of vertices,
it does not appear possible to show an analogous result for that scheme.

2.1.1. Intermediate evolution laws. In this subsection we consider the in-
termediate motion (1.10). We introduce the following approximation to (1.10): Find

{ �Xm+1, Y m+1, κm+1} ∈ V h
0 × [Wh

0 ]2 such that

〈
�Xm+1 − �Xm

τm
, χ �νm

〉h

m

− 〈∇s Y
m+1,∇s χ〉m = 0 ∀ χ ∈ Wh

0 ,(2.20a)

1

ξ
〈∇s Y

m+1,∇s χ〉m +
1

α
〈Y m+1, χ〉hm − 〈κm+1, χ〉hm = 0 ∀ χ ∈ Wh

0 ,(2.20b)

〈κm+1 �νm, �η〉hm + 〈∇s
�Xm+1,∇s �η〉m = 0 ∀ �η ∈ V h

0 .(2.20c)

Remark 2.6. The scheme (2.20a–c) is close in concept to the approximation for

(1.11) in [6]: Find { �Xm+1, κm+1} ∈ V h
0 ×Wh

0 such that

〈
�Xm+1 − �Xm

τm
, χ �νm

〉h

m

− 〈∇s κ
m+1,∇s χ〉m = 0 ∀ χ ∈ Wh

0 ,(2.21a)

〈κm+1 �νm, �η〉hm + 〈∇s
�Xm+1,∇s �η〉m = 0 ∀ �η ∈ V h

0 .(2.21b)
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A semidiscrete version of (2.21a,b) enjoys exact area conservation and an equidistri-
bution of vertices; see [6, Remarks 2.3 and 2.4] for the relevant details. We note that
the same holds true for the semidiscrete analogue of (2.20a–c).

Theorem 2.7. Let assumption (A0) hold. Then there exists a unique solution

{ �Xm+1, Y m+1, κm+1} ∈ V h
0 × [Wh

0 ]2 to the system (2.20a–c). Moreover, we have that

(2.22) |Γk| +
1

α

k−1∑

m=0

τm |∇s Y
m+1|2m + ξ

k−1∑

m=0

τm |κm+1 − 1
α
Y m+1|2m,h ≤ |Γ0|

for all k = 1 → M , where | · |2m(,h) := 〈·, ·〉
(h)
m .

Proof. The uniqueness proof is a straightforward adaption of the proof of The-
orem 2.3. As (2.20a–c) is linear, existence follows from uniqueness, and the latter is
easily established for the relevant equations

〈 �X, χ�νm〉hm − τm 〈∇s Y,∇s χ〉m = 0 ∀ χ ∈ Wh
0 ,

1

ξ
〈∇s Y,∇s χ〉m +

1

α
〈Y, χ〉hm − 〈κ, χ〉hm = 0 ∀ χ ∈ Wh

0 ,

〈κ�νm, �η〉hm + 〈∇s
�X,∇s �η〉m = 0 ∀ �η ∈ V h

0 ,

on choosing χ = α
ξ
κ, χ = τm (ακ− Y ), and �η = α

ξ
�X, respectively. Combining yields

that

(2.23)
α

ξ
〈∇s

�X,∇s
�X〉m +

τm
ξ

〈∇s Y,∇s Y 〉m +
τm
α

〈ακ− Y, α κ− Y 〉hm = 0 .

It follows from (2.23) that �X = �Xc ∈ R
d, Y = Y c ∈ R, and κ = Y c

α
∈ R, and

hence, similarly to (2.8) on recalling assumption (A0), that �Xc = �0 and Y c = 0.

Hence we have existence of a unique solution { �Xm+1, Y m+1, κm+1} ∈ V h
0 × [Wh

0 ]2 to
the system (2.20a–c). Finally, choosing χ = α

ξ
κm+1, χ = τm (ακm+1 − Y m+1), and

�η = α
ξ

( �Xm+1 − �Xm) in (2.20a–c) gives, similarly to (2.23), that

(2.24)

〈∇s
�Xm+1,∇s ( �Xm+1 − �Xm)〉m +

τm
α

|∇s Y
m+1|2m + ξ τm

∣∣∣∣κ
m+1 −

1

α
Y m+1

∣∣∣∣
2

m,h

= 0 .

Combining (2.24) with the closed curve analogue of (2.40), below, yields (2.22).

On recalling the definitions (2.11) and on similarly introducing the matrix A0 ∈

R
N×N , we can reformulate (2.20a–c) as: Find {δ �Xm+1, Y m+1 κm+1} ∈ (Rd)N× [RN ]2

such that

(2.25)

⎛
⎝

0 τm A0 − �NT
0

−M0
1
ξ
A0 + 1

α
M0 0

�N0 0 �A0

⎞
⎠

⎛
⎝

κm+1

Y m+1

δ �Xm+1

⎞
⎠ =

⎛
⎝

0
0

− �A0
�Xm

⎞
⎠ ,

where, with obvious abuse of notation, δ �Xm+1, Y m+1, and κm+1 are the vectors of
coefficients with respect to the standard basis of �Xm+1 − �Xm, Y m+1, and κm+1,
respectively. Introducing the inverse S0 of A0 restricted on the set (kerA0)

⊥ ≡
(span{1})⊥, where 1 := (1, . . . , 1)T ∈ R

N , and noting that the first equation in (2.25)
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implies that 1T �NT
0 δ �Xm+1 = 0, one can transform (2.25) to

Y m+1 =
1

τm
S0

�NT
0 δ �Xm+1 + μ 1,(2.26a)

κm+1 =
1

τm

(
1

α
S0 +

1

ξ
M−1

0

)
�NT

0 δ �Xm+1 +
μ

α
1,(2.26b)

(
�A0 +

1

τm
�N0

[
1

α
S0 +

1

ξ
M−1

0

]
�NT

0

)
δ �Xm+1 = − �A0

�Xm −
μ

α
�N01,(2.26c)

(δ �Xm+1)T �N01 = 0,

where μ = 1TY m+1

1T 1
∈ R is unknown. We introduce also the orthogonal projection �Π0

onto R⊥
0 := { �X ∈ (Rd)N : �XT �N01 = 0} by �Π0 := �IdN − 	w 	wT

	wT 	w
, where �w := �N01. Then

(2.26c), on noting that �Π0 δ �X
m+1 = δ �Xm+1, is replaced by

(2.27) �Π0

(
�A0 +

1

τm
�N0

[
1

α
S0 +

1

ξ
M−1

0

]
�NT

0

)
�Π0 δ �X

m+1 = −�Π0
�A0

�Xm.

As (2.20a–c) has a unique solution, it is easily established that there exists a unique
solution to (2.27). Moreover, the system (2.27) is symmetric and positive definite on
R⊥

0 . For details of a similar situation involving surface diffusion and triple junctions,
we refer to [6, Theorem 2.4].

2.2. Triple junctions. In this section, we consider the case where a network of
curves meeting at triple junction points moves under motion by mean curvature. Here
the curves can meet at triple junction points or can intersect the external boundary
∂Ω. For ease of exposition, from now on we consider the two cases of three curves
(Γ1,Γ2,Γ3) with surface energies σ := (σ1, σ2, σ3) meeting either at two triple junction
points Λ1 and Λ2, as in Figure 1, or meeting at a single triple junction point Λ and
each intersecting the external boundary ∂Ω, as in Figure 2. In particular, we note
the stated choices of the direction of the unit tangents. We will outline also how the
ideas presented for these cases can be carried over to an arbitrary setup of curves; see
Remark 2.13 below.

We begin with the first setup. The main idea for the necessary trial (≡ test)
spaces is to make sure that the conditions (1.14a,b) hold either essentially or weakly
at the triple junctions. Here we will enforce condition (1.14a) explicitly through the
trial space, whereas condition (1.14b) will be enforced weakly, similarly to a Neumann
boundary condition for a standard second order elliptic PDE.

Let I := [0, 1] be the unit interval, and let I =
⋃Ni

j=1 I
i
j , i = 1 → 3, be de-

compositions of I into intervals Iij = [qij−1, q
i
j ] based on the nodes {qij}

Ni

j=0, Ni ≥ 2.

Let hi
j = |Iij | and h = maxi=1→3 maxj=1→Ni

hi
j be the maximal length of a grid el-

ement. Let V := {(�χ1, �χ2, �χ3) ∈ [C(I,Rd)]3 : �χ1 = �χ2 = �χ3 on ∂I} and WM :=
{(χ1, χ2, χ3) ∈ [C(I,R)]3}. The appropriate finite element spaces are then defined by

(2.28) V h := {(�χ1, �χ2, �χ3) ∈ V : �χi |Ii
j

is linear ∀ j = 1 → Ni, i = 1 → 3} ⊂ V

and similarly for the space of scalar functions Wh
M ⊂ WM.

Recall the time partitioning {τm}M−1
m=0 , and let �Xm ∈ V h be an approximation to

�x(·, tm) ≡ (�x1, �x2, �x3)(·, tm), and similarly κm ∈ Wh
M for κ(·, tm). We introduce the

σ weighted L2 inner product 〈·, ·〉m and the mass lumped inner product 〈·, ·〉hm over
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the current surface Γm := (Γm
1 ,Γm

2 ,Γm
3 ), which is described by the vector function

�Xm ∈ V h, for scalar and vector functions u, v ∈ [L2(I,R(d))]3 as follows:

〈u, v〉m :=

∫

Γm

u . v ds :=

3∑

i=1

σi

∫

I

ui . vi |( �X
m
i )ρ| dρ,

〈u, v〉hm :=

3∑

i=1

σi

2

Ni∑

j=1

| �Xm
i (qij) −

�Xm
i (qij−1)|

[
(ui . vi)([q

i
j ]
−) + (ui . vi)([q

i
j−1]

+)
]
.

(2.29)

In addition, we note that

(∇s u .∇s v) |Γm
i

=
(ui)ρ . (vi)ρ

|( �Xm
i )ρ|2

, �νm |Γm
i

= −
( �Xm

i )⊥ρ

|( �Xm
i )ρ|

, i = 1 → 3.

We then propose the following approximation to (1.13) with (1.14a,b): Find { �Xm+1,
κm+1} ∈ V h ×Wh

M such that

〈
�Xm+1 − �Xm

τm
, χ �νm

〉h

m

− 〈σ κm+1, χ〉hm = 0 ∀ χ ∈ Wh
M,(2.30a)

〈κm+1 �νm, �η〉hm + 〈∇s
�Xm+1,∇s �η〉m = 0 ∀ �η ∈ V h.(2.30b)

Observe that (2.30a,b) was derived from (1.13) using integration by parts and the

definition of the space V h. On noting that (∇s
�Xm+1) |Γm

i
approximates �τi �τ

T
i , i =

1 → 3, we see that (2.30b) weakly approximates Young’s law (1.14b) at the triple
junction points Λ1 and Λ2.

An extension of the scheme (2.18) that incorporates intersections with an external
boundary was given in [15]. The authors considered a setup where a single curve
intersects a fixed external boundary, and, for their fully discrete scheme, introduced
the following trial and test space: For a given �Xm ∈ C(I,Rd),

(2.31) Ṽ ( �Xm) := {�χ ∈ C(I,Rd) : �χ .∇F ( �Xm) = 0 on ∂I},

and in addition Ṽ h( �Xm) := {�χ ∈ Ṽ ( �Xm) : �χ |I1
j

is linear ∀ j = 1 → N1, } ⊂

Ṽ ( �Xm). Then their fully discrete approximation can be formulated as: Find δ �Xm+1 ∈

Ṽ h( �Xm), where �Xm+1 := �Xm + δ �Xm+1 such that

(2.32)

∫

I

| �Xm
ρ |2 πh

[
δ �Xm+1

τm
. �η

]
dρ +

∫

I

�Xm+1
ρ . �ηρ dρ = 0 ∀ �η ∈ Ṽ h( �Xm) .

We now adapt the definition (2.31) to the setup as depicted in Figure 2. For a given
�Xm ∈ [C(I,Rd)]3, let

V ∂( �Xm) := {(�χ1, �χ2, �χ3) ∈ [C(I,Rd)]3 : �χ1(0) = �χ2(0) = �χ3(0) and

�χi(1) .∇F ( �Xm
i (1)) = 0 ∀ i = 1 → 3}.

The finite element space V h
∂( �Xm) is then defined accordingly, similarly to (2.28).

Moreover, the system (2.30a,b) is then adapted to: Find {δ �Xm+1, κm+1} ∈ V h
∂( �Xm)×
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Wh
M, where �Xm+1 := �Xm + δ �Xm+1, such that

〈
δ �Xm+1

τm
, χ �νm

〉h

m

− 〈σ κm+1, χ〉hm = 0 ∀ χ ∈ Wh
M,(2.33a)

〈κm+1 �νm, �η〉hm + 〈∇s
�Xm+1,∇s �η〉m = 0 ∀ �η ∈ V h

∂( �Xm).(2.33b)

Once again (2.33a,b) was derived from (1.13) using integration by parts and the

definition of the space V h
∂( �Xm). On recalling that (∇s

�Xm+1) |Γm
i

approximates �τi �τ
T
i ,

i = 1 → 3, we see that (2.33b) weakly approximates Young’s law (1.14b) at the triple
junction point Λ and (1.17b) at the boundary intersections. In order to approximate
the general contact angle condition (1.18), we need to replace (2.33b) by

〈κm+1 �νm, �η〉hm + 〈∇s
�Xm+1,∇s �η〉m

=

3∑

i=1

σi

[∇F ( �Xm
i (1))]⊥

|∇F ( �Xm
i (1))|

. �ηi(1) cosαi ∀ �η ∈ V h
∂( �Xm).(2.34)

Furthermore, the constraint δ �Xm+1 ∈ V h
∂( �Xm) weakly enforces (1.17a), as it is a

linearized approximation of these constraints. In particular, for curved boundaries the
equations F ( �Xm+1

i (1)) = 0, i = 1 → 3, are only approximately satisfied. Similarly to

[15, p. 651] it formally follows, on assuming that F ( �X0
i (1)) = 0 for i = 1 → 3, that

|F ( �Xm+1
i (1))| ≤

m∑

k=0

|F ( �Xk+1
i (1)) − F ( �Xk

i (1))| = O(τ), i = 1 → 3.

Hence, for small time steps the endpoints of the curve segments should stay close to
∂Ω, and this is what one observes in practice; see section 3 for details. However, one
could also employ a projection step that orthogonally projects �Xm+1 onto ∂Ω at every
time step, which would have the advantage of satisfying (1.17a) exactly throughout
the evolution. But this complicates the stability proof below; hence our preference
for the approximation (2.33a,b). However, we do include numerical results using both
approaches in section 3.

We remark that as the parameterization �Xm+1 does not “see” the boundary for
ρ < 1, it is possible that the evolving curves touch the external boundary at some
interior point, in which case the evolution is no longer described by the approximation.
We note that for a convex domain this cannot happen for mean curvature flow; see
[39]. However, in the surface diffusion case this can happen even for convex domains.

Remark 2.8. We note that, as stated in [15, p. 640], it is not clear how to naturally
generalize the scheme (2.32) to triple junctions, as there are severe difficulties with
how to approximate the condition (1.14b) within that scheme.

Before we can proceed to proving existence and uniqueness for (2.30a,b), we have
to make the following very mild assumption, the analogue of (A0) for a network of
curves.

(A) Let |( �Xm
i )ρ| > 0 for almost all ρ ∈ I, i = 1 → 3. Let

�νm
i,j− 1

2

:= −
( �Xm

i )⊥ρ

|( �Xm
i )ρ|

|Ii
j
, j = 1 → Ni,
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and set

�ωm
i,j :=

| �Xm
i (qij) −

�Xm
i (qij−1)|�ν

m
i,j− 1

2

+ | �Xm
i (qij+1) −

�Xm
i (qij)|�ν

m
i,j+ 1

2

| �Xm
i (qij) −

�Xm
i (qij−1)| + | �Xm

i (qij+1) −
�Xm
i (qij)|

,

j = 1 → Ni − 1, i = 1 → 3.

Then we assume further that dim span{{�ωm
i,j}

Ni−1
j=1 }3

i=1 = d = 2.

The assumption (A) basically assures that none of the curves Γm
i , i = 1 → 3,

is a “zig zagging” connection between the two triple junctions points Λ1 and Λ2. A
sufficient condition for (A) to hold is that at least one of the three curves is not a “saw
tooth”-like curve, similar to the one in [6, Figure 3], where all the vertex normals �ωm

i,j ,
j = 1 → Ni − 1, are linearly dependent.

Theorem 2.9. Let assumption (A) hold. Then there exists a unique solution

{ �Xm+1, κm+1} ∈ V h ×Wh
M to the system (2.30a,b).

Proof. As (2.30a,b) is linear, existence follows from uniqueness. To investigate

the latter, we consider the system: Find { �X, κ} ∈ V h ×Wh
M such that

〈 �X, χ�νm〉hm − τm 〈σ κ, χ〉hm = 0 ∀ χ ∈ Wh
M,(2.35a)

〈κ�νm, �η〉hm + 〈∇s
�X,∇s �η〉m = 0 ∀ �η ∈ V h.(2.35b)

Similarly to (2.6a,b), choosing χ = κ ∈ Wh
M in (2.35a) and �η = �X ∈ V h in (2.35b)

yields that

(2.36) 〈∇s
�X,∇s

�X〉m + τm 〈σ κ, κ〉hm = 0 .

It follows from (2.36) that κ ≡ 0 and �X ≡ �Xc = ( �Xc
1 ,

�Xc
2 ,

�Xc
3)T ∈ (Rd)3 with

�Xc
1 = �Xc

2 = �Xc
3 , and hence

(2.37) 〈 �Xc, χ �νm〉hm = 0 ∀ χ ∈ Wh
M.

Similarly to (2.8), choosing χ = ϕi
j in (2.37) and noting that �Xc

1 = �Xc
2 = �Xc

3 yields

that �Xc
1 . �ω

m
i,j = 0 for all j = 1 → Ni − 1, i = 1 → 3. Assumption (A) then yields

that �Xc
1 = �0, and hence �Xc = �0. Hence we have shown that (2.30a,b) has a unique

solution { �Xm+1, κm+1} ∈ V h ×Wh
M.

The proof immediately carries over to the system (2.33a,b).
Furthermore, we can establish that our scheme is unconditionally stable.
Theorem 2.10. Let { �Xm, κm}Mm=1 be the solution of (2.30a,b). Then for all

k = 1 → M we have that

(2.38) |Γk| +

k−1∑

m=0

τm 〈σ κm+1, κm+1〉hm ≤ |Γ0| ,

where |Γk| :=
∫
Γk 1 ds ≡

∑3
i=1 σi |Γ

k
i | on recalling the definition (2.29).

Proof. Choosing χ = κm+1 ∈ Wh
M in (2.30a) and �η =

	Xm+1− 	Xm

τm
∈ V h in (2.30b)

yields that

(2.39) 〈∇s
�Xm+1,∇s ( �Xm+1 − �Xm)〉m + τm 〈σ κm+1, κm+1〉hm = 0 .
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We now analyze the first term in (2.39), using the ideas in [18]. Let �hi,m
j := �Xm

i (qij+1)−
�Xm
i (qij). Then it holds that

〈∇s
�Xm+1,∇s ( �Xm+1 − �Xm)〉m =

3∑

i=1

σi

∫

Γm
i

[∇s
�Xm+1] . [∇s ( �Xm+1 − �Xm)] ds

=

3∑

i=1

σi

Ni−1∑

j=1

[
|�hi,m+1

j |2 − �hi,m+1
j .�hi,m

j

|�hi,m
j |

]

≥
3∑

i=1

σi

Ni−1∑

j=1

[
|�hi,m+1

j | − |�hi,m
j |

]
= |Γm+1| − |Γm| .

(2.40)

Combining (2.39) and (2.40) yields that

(2.41) |Γm+1| − |Γm| + τm

∫

Γm

σ |κm+1|2 ds ≤ 0.

Summing (2.41) for m = 0 → k − 1 yields the desired result.
The proof above is written explicitly for (2.30a,b), but as it depends solely on a

specific choice of test functions, it immediately carries over to (2.33a,b), as well as
(2.3a,b) with the changes, in the case of nonlinear f , stated after Theorem 2.3.

Let N :=
∑3

i=1(Ni + 1). We define the orthogonal projection �P : (Rd)N →
X := {(�z1, �z2, �z3) ∈ (Rd)N : [�z1]0 = [�z2]0 = [�z3]0, [�z1]N1

= [�z2]N2
= [�z3]N3

} onto the
Euclidean space associated with V h.

In order to give a matrix formulation for (2.30a,b) we introduce the matrices

M i ∈ R
(Ni+1)×(Ni+1), �N i ∈ (Rd)(Ni+1)×(Ni+1), Ai ∈ R

(Ni+1)×(Ni+1), and �Ai ∈
(Rd×d)(Ni+1)×(Ni+1), i = 1 → 3, defined by

M i
kl := σi

∫

Γm
i

πh
i [φi

k φ
i
l] ds, �N i

kl := σi

∫

Γm
i

πh
i [φi

k φ
i
l]�ν

m ds,

Ai
kl := σi

∫

Γm
i

∇s φ
i
k .∇s φ

i
l ds, �Ai

kl := Ai
kl

�Id1 ,(2.42)

where {φi
l}

Ni

l=0 is the standard basis of Sh
i := {χ ∈ C(I,R) : χ |Ii

j
is linear ∀ j =

1 → Ni} and πh
i : C(I,R) → Sh

i is the standard interpolation operator at the nodes
{qij}

Ni

j=0. Then on introducing the matrices
(2.43)

M :=

⎛
⎝
σ1 M

1 0 0
0 σ2 M

2 0
0 0 σ3 M

3

⎞
⎠ , �A :=

⎛
⎝

�A1 0 0

0 �A2 0

0 0 �A3

⎞
⎠ , �N :=

⎛
⎝

�N1 0 0

0 �N2 0

0 0 �N3

⎞
⎠ ,

where M : R
N → R

N , �A : (Rd)N → (Rd)N , and �N : R
N → (Rd)N , the system of

equations (2.30a,b) can be written as: Find {δ �Xm+1, κm+1} ∈ X × R
N such that

(2.44)

(
τm M − �NT �P
�P �N �P �A�P

)(
κm+1

δ �Xm+1

)
=

(
0

−�P �A�P �Xm

)
.

Here, with an obvious abuse of notation as in (2.12), κm+1 = (κm+1
1 , κm+1

2 , κm+1
3 )T

with κm+1
i = ([κm+1

i ]0, . . . , [κ
m+1
i ]Ni

), i = 1 → 3, and δ �Xm+1 = (δ �Xm+1
1 , δ �Xm+1

2 ,
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δ �Xm+1
3 )T with δ �Xm+1

i = ([δ �Xm+1
i ]0, . . . , [δ �X

m+1
i ]Ni

), i = 1 → 3, are the vectors of

coefficients with respect to the standard basis {{φi
l}

Ni

l=0}
3
i=1 of κm+1 and �Xm+1 − �Xm

in (2.30a,b), respectively.
As M is nonsingular, we can reformulate (2.44), similarly to (2.13a,b), as

κm+1 =
1

τm
M−1 �NT �P δ �Xm+1,(2.45a)

(
�P �A�P +

1

τm
�P �N M−1 �NT �P

)
δ �Xm+1 = −�P �A�P �Xm.(2.45b)

Theorem 2.11. Let {δ �Xm+1, κm+1} ∈ X × R
N be the unique solution to (2.44).

Then δ �Xm+1 uniquely solves (2.45b). Moreover, the operator in (2.45b) is symmetric

positive definite.

Proof. The proof is straightforward.
The system (2.45a,b) is easily adapted to cover the approximation (2.33a,b)

of the setup displayed in Figure 2. In particular, we need to introduce the or-
thogonal projection �P∂ : (Rd)N → X∂ := {(�z1, �z2, �z3) ∈ (Rd)N : [�z1]0 = [�z2]0 =

[�z3]0 and [�zi]Ni
.∇F ([ �Xm

i ]Ni
) = 0 ∀i = 1 → 3} onto the Euclidean spaces associated

with V h
∂( �Xm). Then (2.45b) is readily replaced by

(2.46)

(
�P∂

�A�P∂ +
1

τm
�P∂

�N M−1 �NT �P∂

)
δ �Xm+1 = −�P∂

�A �Xm.

We note that (2.13b) and (2.46) can easily be generalized to curve networks with
an arbitrary number of triple junctions and external boundary intersections; see Re-
mark 2.13 below for the relevant details.

2.2.1. Surface diffusion of curve networks. We recall the following approxi-
mation to (1.19), with (1.14a,b) and (1.21a,b), as proposed in [6]: Find { �Xm+1, κm+1}
∈ V h ×Wh such that

〈
�Xm+1 − �Xm

τm
, χ �νm

〉h

m

− 〈σ∇s κ
m+1,∇s χ〉m = 0 ∀ χ ∈ Wh,(2.47a)

〈κm+1 �νm, �η〉hm + 〈∇s
�Xm+1,∇s �η〉m = 0 ∀ �η ∈ V h,(2.47b)

where

(2.48) Wh := {(χ1, χ2, χ3) ∈ W : χi |Ii
j

is linear ∀ j = 1 → Ni, i = 1 → 3} ⊂ W

and W := {(χ1, χ2, χ3) ∈ [C(I,R)]3 : σ1 χ1 + σ2 χ2 + σ3 χ3 = 0 on ∂I}. We recall
further that the system (2.47a,b) can be solved by applying a Schur complement

approach and then solving for δ �Xm+1 ∈ X:

(2.49) �Π �P

(
�A +

1

τm
�NK SK �NT

)
�P �Π δ �Xm+1 = −�Π �P �A�P �Xm.

Here K : R
N → X := {(z1, z2, z3) ∈ R

N :
∑3

i=1 σi [zi]0 =
∑3

i=1 σi [zi]Ni
= 0} is

the orthogonal projection onto X, and S is the inverse of KAK, where A is defined
similarly to (2.43) using Ai in (2.42), on the space (kerKAK)⊥. Also �Π : (Rd)N → R⊥

is the orthogonal projection onto R⊥, where R := span {�P �NK ei : i = 1 → 2} ≡
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{�P �NK v : v ∈ kerKAK} ⊂ X with {ei}
2
i=1, e1 := ( 1

σ1
11,− 1

σ2
12, 0) ∈ X and e2 :=

(0, 1
σ2

12,− 1
σ3

13) ∈ X, where 1i := (1, . . . , 1)T ∈ R
Ni+1, i = 1 → 3, being a basis of

the space E = kerA ∩ X.
We now want to adapt the above scheme to include possible boundary intersec-

tions. Naturally in the case of (1.17b), (2.47a,b) is changed to: Find {δ �Xm+1, κm+1} ∈

V h
∂( �Xm) ×Wh

∂ such that

〈
δ �Xm+1

τm
, χ �νm

〉h

m

− 〈σ∇s κ
m+1,∇s χ〉m = 0 ∀ χ ∈ Wh

∂ ,(2.50a)

〈κm+1 �νm, �η〉hm + 〈∇s
�Xm+1,∇s �η〉m = 0 ∀ �η ∈ V h

∂( �Xm),(2.50b)

where W∂ := {(χ1, χ2, χ3) ∈ [C(I,R)]3 : σ1 χ1(0)+σ2 χ2(0)+σ3 χ3(0) = 0} and Wh
∂ is

defined similarly to (2.48). On defining the orthogonal projection K∂ : R
N → X∂ :=

{(z1, z2, z3) ∈ R
N :

∑3
i=1 σi [zi]0 = 0} and using the projection �P∂ defined earlier, we

can apply a Schur complement approach to yield

(2.51) �Π∂
�P∂

(
�A +

1

τm
�NK∂ S∂ K∂

�NT

)
�P∂

�Π∂ δ �X
m+1 = −�Π∂

�P∂
�A �Xm,

where S∂ is the inverse of K∂AK∂ on the space (kerK∂AK∂)⊥ and �Π∂ is the or-

thogonal projection from R
N onto R⊥

∂ with R∂ := �P∂
�NK∂(kerK∂AK∂). In fact, for

the setup in Figure 2, �Π∂ ≡ �Π. However, in general this is not always the case; see
Remark 2.14 below. Of course, the above is extended to (1.18) by replacing (2.50b)
by (2.34).

Remark 2.12. A possible definition for the projection �Π is �Π := �IdN − �Q �QT ,
where im �Q = R and �QT �Q = Id2. In other words, the columns of �Q ∈ (Rd)N×2 are an

orthonormal basis of the subspace R ⊂ (Rd)N spanned by �P �NKei ≡ �P �N ei, where
ei ∈ X, i = 1 → 2, are the above mentioned null vectors of KAK. We note that the
definitions of �P and �N yield that dimR = 2. Hence �Π is the orthogonal projection
from (Rd)N onto (im �Q)⊥ ≡ R⊥.

Remark 2.13. The definitions of the spaces V and W can easily be generalized
to a situation with KB bubbles (enclosed areas), KC curves, and KT triple junction
points. Note that Euler’s formula yields that 6 (KB−1) = 2KC = 3KT in the absence
of external boundary intersections. For example, KB = 2, KC = 3, and KT = 2 in
Figure 1. In particular, we would have that V := {(χ1, . . . , χKC

) ∈ [C(I,Rd)]KC :
χij (pj,ij ) = χ1j

(pj,1j
), i = 2 → 3, ∀j = 1 → KT } and

W :=

{
(χ1, . . . , χKC

) ∈ [C(I,R)]KC :

3∑

i=1

(−1)pj,ij σij χij (pj,ij ) = 0 ∀j = 1 → KT

}
.

(2.52)

Here ij ∈ {1, . . . ,KC}, i = 1 → 3, denotes the three curves meeting at triple junction
j, while pj,ij ∈ {0, 1} denotes whether these curves start (pj,ij = 0) or end (pj,ij = 1)
at the triple junction point j. That is, |{ij : i = 1 → 3}| = 3 for all j = 1 → KT ,

|{j : ij = c}| = 2 for all c = 1 → KC , and
∑KT

j=1 pj,c = 1 for all c = 1 → KC .
The above definitions are easily generalized to the possible presence of external

boundary intersections. Let KB denote the number of bubbles (enclosed areas), KT

the number of triple junctions, KC the number of curves, and KI the number of
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intersections with the external boundary. Then Euler’s formula yields that 6 (KB −
1) = 2 (KC + KI) = 3 (KT + KI). (Note that the special case KI = 0 corresponds
to the formula given above.) For example, KB = 3, KC = 3, KT = 1, and KI = 3

in Figure 2. The corresponding precise definitions of the spaces V ∂( �Xm) and W∂ are
straightforward, and we omit the details here.

Remark 2.14. The definition of �Π can easily be adapted to a situation with KB

bubbles. In the case of no external boundary intersections, the subspace E := X∩kerA
of the kernel of KAK has dimension KB , and a possible basis consists of vectors that
each “describe an admissible orientation of the boundary of a bubble” in terms of
the given KC curves. For example, if KB = 3, one area is enclosed by curves 1, 2, 4,
and curve 2 is parameterized in the opposite direction to curves 1 and 4, then the
corresponding eigenvector would be ( 1

σ1
11,− 1

σ2
12, 0, 1

σ4
14, 0, 0). See the appendix in

[6] for a more rigorous definition.
When boundary intersections are present, the subspace E has dimension KB − 1,

and a possible basis consists of vectors that each “describe an admissible orientation
of the boundary of a bubble” (ignoring the boundary part of any bubble that is made
up by the external boundary ∂Ω) in terms of the given KC curves. Similarly to [6,
Appendix] one can show that it indeed holds that dimE = KC −KT = (KC +KI)−
(KT + KI) = 3 (KB − 1) − 2 (KB − 1) = KB − 1.

One can interpret each set of basis vectors of E as a linearly independent collection
of regions that preserve their areas. Then it is intuitive that the respective dimensions
of E in the two described cases are KB and KB − 1.

2.2.2. Combined surface diffusion and mean curvature flow. We now
adapt (2.47a,b) so that it approximates the evolution law (1.23), with (1.14a,b) and
(1.24a,b). Choosing V h based on V , as defined in Remark 2.13, and Wh

⋆ based on

(recall (2.52)) W⋆ := {(χ1, . . . , χKC
) ∈ [C(I,R)]KC :

∑3
i=1 H{i0+1→KC}(ij) [(−1)pj,ij

σij χij (pj,ij )] = 0 ∀ j = 1 → KT }, where HF is the indicator function for the set F ,

yields the following approximation: Find { �Xm+1, κm+1} ∈ V h ×Wh
⋆ such that

〈
�Xm+1 − �Xm

τm
, χ �νm

〉h

m

− 〈σ κm+1, χ〉⋆m = 0 ∀ χ ∈ Wh
⋆ ,(2.53a)

〈κm+1 �νm, �η〉hm + 〈∇s
�Xm+1,∇s �η〉m = 0 ∀ �η ∈ V h,(2.53b)

where 〈σ η, χ〉⋆m := 〈σ η |Γm,MC , χ |Γm,MC 〉hm + 〈σ∇s η |Γm,SD ,∇s χ |Γm,SD 〉m for all

η, χ ∈ Wh
⋆ . Here Γm,MC :=

⋃i0
i=1 Γm

i and Γm,SD :=
⋃KC

i=i0+1 Γm
i . The above (weakly)

approximates the correct conditions at the triple junctions, (1.14a,b) and (1.24a,b).
Once again, it is a straightforward matter to derive an existence and uniqueness result
and a stability result for (2.53a,b) under an appropriate mild assumption.

Using the natural extensions from the setup in Figure 1 to KC curves of the ma-
trices defined earlier, recalling (2.42) and (2.43), introducing A⋆ := diag(σ1 M

1, . . . ,
σi0 M

i0 , σi0+1 A
i0+1, . . . , σKC

AKC ), extending the associated operators, and intro-
ducing the orthogonal projection K⋆ onto the Euclidean space X⋆ associated with
Wh

⋆ , we can derive the following equations for the extended coefficient vectors:

(2.54)

(
τm K⋆A⋆K⋆ −K⋆

�NT �P
�P �NK⋆

�P �A�P

)(
κm+1

δ �Xm+1

)
=

(
0

−�P �A�P �Xm

)
.

Introducing the inverse S⋆ of K⋆A⋆K⋆ restricted on the set (kerK⋆A⋆K⋆)
⊥ = X⋆ ∩

kerA⋆, i.e., S⋆ K⋆A⋆K⋆ v = K⋆A⋆K⋆ S⋆ v = v for all v ∈ X⋆ ∩ kerA⋆, we can employ
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a Schur complement approach in order to transform (2.54) to

κm+1 =
1

τm
S⋆ K⋆

�NT �P δ �Xm+1 + z, z ∈ X⋆ ∩ kerA⋆,(2.55a)

�Π⋆

(
�P �A�P +

1

τm
�P �NK⋆ S⋆ K⋆

�NT �P

)
�Π⋆ δ �X

m+1 = −�Π⋆
�P �A�P �Xm,(2.55b)

where �Π⋆ : (Rd)N → R⊥
⋆ is the orthogonal projection onto R⊥

⋆ with R⋆ := �P �NK⋆ E⋆

and E⋆ := X⋆ ∩ kerA⋆.
Remark 2.15. A basis of R⋆ can be found similarly to the pure surface diffusion

case; see Remark 2.14. The corresponding basis of E⋆ is now made up of vectors that
assign orientations for bubble boundaries to linear independent collections of curves
Γm
i with i > i0. Of course, one can extend the approximation (2.53a,b) to include

external boundaries in the natural way. Although we omit the details here, some
numerical results are given in section 3.

2.3. Quadruple junctions. A further generalization of the schemes (2.33a,b),
(2.50a,b), and (2.53a,b) in this paper is the extension from triple junction points to
quadruple junction points. This needs only a minor change to the introduced finite
element spaces, and we omit the exact details here. However, numerical results for
this practically interesting situation can be found in the next section.

3. Results. The Schur complement systems (2.13b), (2.26c), (2.45b), (2.46),
(2.49), (2.51), and (2.55b) can be easily solved with a conjugate gradient solver.
Where necessary, the solution of KAK y = x and its variants in order to compute
S x, S∂ x, S⋆ x, and S0 x, respectively, can be obtained with an (inner loop) CG solver
without a projection, as the right-hand-side vector x always satisfies the necessary
compatibility condition, e.g., x ∈ (kerKAK)⊥. See [30] for a justification for using a
CG solver for a positive semidefinite system.

The system (2.14b), on the other hand, can be solved with an inexact Newton
method. When f is given by (1.6), because of the singularity of f−1 = f at the origin,
the discrete system (2.14b) needs to be solved with a damped inexact Newton method,

where as initial guess for the Newton iteration we choose δ �Xm+1,0 := �N0 1. Moreover,
we perform computations only for (1.7) with (1.6), where the evolution is well defined
for all times, e.g., where the initial data �x(·, 0) is such that that κ(·, 0) > 0. In
practice, the damped Newton method always converged in these cases and we always
observed that κm > 0, m = 0 → M . In addition, for the scheme (2.4), (2.3b) we

will use the initial data κ0 := −( �N0
T �N0)

−1 �N0
T �A0

�X0, on noting that �N0
T �N0 is a

diagonal matrix with strictly positive diagonal entries.
Throughout this section we use uniform time steps τm = τ , m = 0 → M − 1. For

later purposes, we define �X(t) := t−tm−1

τ
�Xm + tm−t

τ
�Xm−1 for t ∈ [tm−1, tm], m ≥ 1.

3.1. Closed curves. Here we compare our scheme (2.3a,b) with f(r) := r, i.e.,
(2.17), with two other algorithms in the literature, namely the schemes (2.15) from
[17] and (2.18) from [13]. As a first test, we repeat the computations for a true solution
as given in [17, p. 604]. An exact solution to (1.7) with f(r) := r, so that the resulting
Γ(·) solves (1.3), is given by

�x(ρ, t) = (1 − 2 t)
1
2 (cos g(ρ), sin g(ρ))T , κ(ρ, t) = (1 − 2 t)−

1
2 , t ∈ [0, T ), T = 0.5,

(3.1)
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Table 1

Absolute errors ‖ �X − �x‖L∞ for T = 1
2
T = 0.25 and T = T − τ , respectively.

(2.15) (2.18) (2.17)
N T = 1

2
T T = T − τ T = 1

2
T T = T − τ T = 1

2
T T = T − τ

16 3.9879e-02 1.3476e-01 4.2132e-02 1.3978e-01 3.1574e-02 1.1731e-01
32 1.2994e-02 1.2155e-01 1.3973e-02 1.2496e-01 1.0287e-02 1.1149e-01
64 3.4556e-03 8.4151e-02 3.7408e-03 8.5576e-02 2.7043e-03 7.8982e-02

128 8.7924e-04 5.3324e-02 9.5359e-04 5.3825e-02 6.8469e-04 5.0839e-02
256 2.2112e-04 3.1728e-02 2.3963e-04 3.1887e-02 1.7184e-04 3.0545e-02
512 5.5339e-05 1.8217e-02 5.6193e-05 1.8270e-02 4.2953e-05 1.7655e-02

1024 1.3846e-05 1.0227e-02 1.4049e-05 1.0245e-02 1.0735e-05 9.9610e-03

Fig. 3. A plot of �X(t) at times t = 0, 0.1, . . . , 1.5 and at time t = T (scaled).
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Fig. 4. A plot of the ratio r = h �Xm/ℓ �Xm for the three schemes (2.15), (2.18), and (2.17).

where g(ρ) = 2πρ + 0.1 sin (2πρ) in order to make the initial distribution of nodes
nonuniform. We note that �xt . �τ = 0 for the solution (3.1). We compare our results
from (2.17) to the schemes (2.15) and (2.18); see Table 1. We use τ = 0.5h2 and
either T = 1

2 T or T = T − τ . Here and in what follows we always compute the error

‖ �X − �x‖L∞ := maxm=1→M ‖ �X(tm) − �x(·, tm)‖L∞ , where ‖ �X(tm) − �x(·, tm)‖L∞ :=

maxj=1→N minρ∈J | �Xm(qj)−�x(ρ, tm)| between �X and the true solution on the interval
[0, T ]. We note that the experiments indicate that the convergence rate for the error
away from the singularity is O(h2), and up to the singularity at time T is of order
less than O(h), for all three schemes, as is to be expected.

The next experiment is for a mild ellipse. The parameters were chosen as follows.
N = 128, τ = 10−2, T = 1.5, and the initial curve is a 3 : 1 ellipse with a unit
semiminor axis. In order to highlight one difference between the three schemes in
consideration, we plot for each of them the ratio r := h 	Xm/ℓ 	Xm , where h 	Xm :=

maxj=1→N | �Xm(qj) − �Xm(qj−1)| and ℓ 	Xm := minj=1→N | �Xm(qj) − �Xm(qj−1)|, over
time. The evolution of our scheme (2.17) can be seen in Figure 3. Plots of the ratio
r for the three schemes can be seen in Figure 4. One can clearly see that the ratio
increases for scheme (2.15), while the tangential movement of vertices induced by the
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Fig. 5. Plots of �X(t) at t = 0, 0.1, . . . , T = 10, |Γ(t)| for t ∈ [0, 1], and log r(t) for t ∈ [0, T ].

Fig. 6. Plot of �X(t) at times t = 0.08, 0.085, 0.0885, 0.9 (scaled).

other two schemes, as discussed in Remark 2.5, results in a decrease of the ratio r,
which approaches the optimal value 1. In order to underline this point further, we
conducted an experiment for area preserving mean curvature flow, (1.8). The initial
curve for our approximation (2.4), with f(r) := r, and (2.3b) consists of a semicircle
and a single additional node on the periphery of the circle with unit radius. We
used the parameters N = 100, T = 10, and τ = 10−3. In Figure 5 we show �X(t)
at different times, as well as a plot of |Γ(t)| and log r(t) over time. One can clearly
see that although an approximation to the true steady state, a circle, is reached very
quickly (at around time t = 0.6), in the remaining time the vertices are continually
moved tangentially, which results in a further decrease in the ratio r that eventually
approaches the optimal value 1.

In addition, we computed (2.3a,b) with f(r) := r for a self-intersecting curve
that exhibits cusps during the evolution. The initial curve is taken from [13, Figure
1] and can be parameterized by �x(ρ, 0) = cos(4π ρ) (cos(2π ρ), sin(2π ρ))T . We used
the parameters N = 100, τ = 10−3, and T = 0.09. We see in Figure 6 that for this
example the mesh points are clustered in regions where the curvature is high, due
to the very fast evolution there. Of course this clustering decreases as the time step
size τ is reduced in line with an equidistribution result for the semidiscrete scheme;
recall Remark 2.5. Similarly to other parametric algorithms, our approximation jumps
across the singularity in the evolution; see, e.g., [13, Figure 1] for (2.4) and [14, Figure
4.2] for (2.15).

For the first experiment for the nonlinear approximation (2.3a,b) we used the
exact solution to (1.4) with (1.5):

�x(ρ, t) = (1−(β+1) t)
1

β+1 (cos g(ρ), sin g(ρ))T , κ(ρ, t) = (1−(β+1) t)−
1

β+1 , t ∈ [0, T ),

where T = 1
β+1 and g is given as in (3.1). We note once again that here �xt . �τ = 0.

We report on a corresponding error table for β = 1
2 and β = 1

3 in Table 2, where we
used τ = 0.5h2.
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Table 2

Absolute errors ‖ �X − �x‖L∞ for T = 1
2
T = 1

2(β+1)
, T = T − τ , and T = 1, respectively.

β = 1
2

β = 1
3

f(r) = −r−1

N T = 1
2
T T = T − τ T = 1

2
T T = T − τ T = 1

16 1.8812e-02 8.4620e-02 1.2804e-02 6.0554e-02 2.6054e-01
32 5.4838e-03 6.0185e-02 3.3827e-03 3.8905e-02 7.5559e-02
64 1.4210e-03 3.4475e-02 8.6680e-04 1.9613e-02 1.9709e-02

128 3.5637e-04 1.7774e-02 2.1613e-04 9.0762e-03 4.9869e-03
256 8.9173e-05 8.6226e-03 5.3925e-05 3.9824e-03 1.2502e-03
512 2.2226e-05 4.0244e-03 1.3431e-05 1.6607e-03 3.1255e-04

Fig. 7. V = κ
β , with β = 1, 1

2
, 1
3
. We plot �X(t) at times t = 0, 0.05, . . . , T , with T = 0.3, 0.5,

and 0.6, respectively.

Next, we considered (2.3a,b) with (1.5) for the initial curve as given in [35, p.
1494] for the three different choices β = 1, 1

2 ,
1
3 ; i.e., we chose

�x(ρ, 0) =

(
cos g0(ρ),

1

2
sin g0(ρ) + sin (cos g0(ρ)) + sin g0(ρ)

[
1

5
+ sin g0(ρ) sin2 g0(3 ρ)

])T

,

where g0(ρ) = 2π ρ, and set �X0 = πh �x(·, 0) for a uniform partitioning of J . The
numerical results for the approximation (2.3a,b) can be seen in Figure 7, where we
used N = 256 and τ = 10−3. It should be noted that in [35] a system of second
order PDEs is derived to model (1.4), which introduces a tangential movement that
locally equidistributes nodes under discretization by a finite difference approximation.
However, the system and subsequent approximation is far more complicated than our
simple approximation (2.3a,b).

3.1.1. Inverse mean curvature flow. Here we consider the flow (1.4) with
(1.6). First, we performed a convergence test for the approximation (2.3a,b) with f
given by (1.6). A true solution to (1.7) and (1.6) with �xt . �τ = 0 is given by

�x(ρ, t) = exp(t) (cos g(ρ), sin g(ρ))T , κ(ρ, t) = exp(−t), t ∈ [0,∞),

where g is defined as in (3.1). We report on the corresponding errors for τ = 0.5h2

in the last column of Table 2. The evolution for N = 256 can be seen on the left
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Fig. 8. �X(t) for t = 0, 0.1, . . . , T = 1 for the inverse mean curvature flow of a circle (left) and
an ellipse (right).

Fig. 9. Different evolutions for surface diffusion, area preserving mean curvature flow, and the
intermediate flow (1.9), with α = ξ = 1. In each case, we plot �X(t) for t = 0, 1, . . . , T = 20.

of Figure 8. The next experiment is for a 3 : 1 ellipse that expands to a circle. The
discretization parameters are N = 128, τ = 10−3, and T = 1; see the right-hand side
of Figure 8.

3.1.2. Intermediate evolution laws. In this subsection, we report on numer-
ical results for our approximation (2.20a–c) of the intermediate evolution law (1.10).
First, we compare the different evolutions of (1.2), (1.8) with f(r) := r, and (1.9)
with α = ξ = 1, for an initial curve that is given by an elongated tube of dimensions
10 × 1. As discretization parameters for the schemes (2.21a,b), (2.4) with (2.3b) and
f(r) := r, and (2.20a–c) we used N = 256, τ = 10−3, and T = 20, and the cor-
responding results are shown in Figure 9. One can clearly see that while the curve
that moves under area preserving mean curvature flow remains convex throughout the
evolution, this is not the case for the other two evolution laws. The area losses for the
respective schemes were 0.004%, 0.016%, and 0.002%. As noted before for α → ∞
and ξ = 1, the solutions to (1.9) converge to solutions of (1.8), while ξ → ∞ and
α = 1 corresponds to the law (1.2). We now investigate this property numerically.
To this end, we repeat the above experiments for (2.20a–c) with ξ = 1, α = 1000
and ξ = 1000, α = 1, respectively. The results, for which the respective area losses
were 0.008% and 0.004%, can be seen in Figure 10. One can clearly see the similarity
between these evolutions and their corresponding limits in Figure 9. We note also
that the curve in the first evolution remains convex, while the curve for the second
evolution does not.

3.2. Triple junctions. In the first experiment for triple junctions (see Figure
11) we simulate how two initially elliptic bubbles move under motion by mean cur-
vature. Throughout, we assume equal surface energies, σi = 1, i = 1 → KC , unless
stated otherwise. The plot on the left-hand side of Figure 11 shows the evolution
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Fig. 10. The flow (1.9) with ξ = 1, α = 1000 (left) and ξ = 1000, α = 1 (right). In each case,

we plot �X(t) for t = 0, 1, . . . , T = 20.

Fig. 11. �X(t) for t = 0, 0.2, T = 0.4. An equal area double bubble under mean curvature flow
is shown on the left, and a nonequal area case on the right.

Fig. 12. �X(t) for t = 0, 0.2, T = 0.4. An equal area double bubble under mean curvature flow
is shown for surface energies (1, 1, 3

2
) and (1, 1, 7

4
), respectively.

for two equal area bubbles, while the nonequal area case is displayed on the right-
hand side. The chosen parameters were N = 128, τ = 0.01, and T = 0.4. The
initial shapes are given by two segments of a 2 : 1 ellipse with unit semiminor axis
and a straight line, or a semicircle together with an elliptic segment from the above
ellipse and a straight line, respectively. We repeated the experiment on the left-hand
side of Figure 11 for different surface energies. The surface energies were chosen to
be (σ1, σ2, σ3) = (1, 1, 3

2 ) and (1, 1, 7
4 ). That means that the length of the curve Γ3

is weighted more in the overall energy |Γ|, so that it will shorten faster during the
evolution; see Figure 12.

The next experiment is for motion by surface diffusion. The initial setup, as
depicted in Figure 13, consists of a segmentation of the [−1, 1]2 square, with the
middle segments having width 0.3. Our discretization parameters were N = 256,
τ = 10−3, and T = 0.04. The evolution leads to one curve segment shrinking to a
single point. Of course, our approximation cannot compute beyond that singularity.
However, on the right-hand side of Figure 13 we show how, after a topological change,
the evolution continues to a numerically steady state. This numerical result was
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Fig. 13. A curve shrinks to a point: �X(t) for t = 0, T (left). The eventual numerically steady
state after a change of topology (right).

Fig. 14. A triple junction inside the unit circle moving under mean curvature flow.

obtained by restarting the computation from a curve network that was topologically
equivalent to the steady state, and with enclosed regions having the same area as
before, i.e., 0.7, 0.3, 0.7, and 0.3.

3.3. Boundary intersections. In the first experiment for curve networks with
triple junctions and intersections with the external boundary (see Figure 14), we
simulate how an initial “letter Y” inside the unit circle moves under motion by mean
curvature. We varied the initial angle θ3 between the two upper curves, which meet
at the origin. Here and throughout, θ := (θ1, θ2, θ3) is defined as the angles formed
by the three curve segments meeting at a triple junction, and θi, i = 1 → 3, denotes
the angle opposite the curve Γi at a triple junction; recall (1.15).

The values used for θ3 are 120◦, 125◦, and 115◦ with θ1 = θ2. The first setup
is a steady state for this law of motion, while the other two experiments show that
the symmetric boundary intersections will either move up or down the unit circle.
The chosen discretization parameters for (2.33a,b) were N = 128, τ = 0.01, and
T = 1, 2.6, and 2, respectively. The times shown in Figure 14 are t = 0, 0.2, . . . , T .
The maximum distance d∂Ω := maxi=1→3 dist( �XM

i (1), ∂Ω) of the curve endpoints at
time T was d∂Ω = 0, 8.6 × 10−3, and 1.8 × 10−3, respectively. Moreover, note that
eventually the solution for the latter two experiments becomes either a single point
(on the boundary ∂Ω) or a single straight line.

We repeated the last experiment inside the square [−1, 1]2. Note that in this case
F �∈ C1(R2), but as the points of the derivative discontinuities are never reached by
the evolving curves, this has no effect on the evolution; this will always be true in
all examples below for such F . Here no steady state solution exists for this law of
motion. For the results see Figure 15, where we chose as angles θ3 = 180◦, 95◦, 85◦

and integrated until time T = 1.4, 2, and 0.4, respectively. We observe that in the first
two cases the solution exhibits a traveling wave character. In fact, an exact solution
can be found for this setup; see [27, p. 313]. Let γ(ρ, t) := 6

π
ln(cos(π6 (1−ρ)))− π

6 t+1
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Fig. 15. A triple junction inside the square [−1, 1]2 moving under mean curvature flow.

Table 3

Absolute errors ‖ �X − �x‖L∞ and triple junction angles for the test problem. On the right is
shown an approximation of the exact solution (3.2) for t = 0, 0.2, . . . , 3

N ‖ �X − �x‖L∞ Angles θ = (θ1, θ2, θ3)
16 3.1156e-02 (115.9, 115.9, 128.1)
32 8.7298e-03 (118.2, 118.2, 123.7)
64 2.2632e-03 (119.2, 119.2, 121.6)

128 5.7263e-04 (119.6, 119.6, 120.7)
256 1.4362e-04 (119.8, 119.8, 120.4)
512 3.5954e-05 (119.9, 119.9, 120.2)

and

�x1(ρ, t) =

(
−ρ

γ(ρ, t)

)
, �x2(ρ, t) =

(
ρ

γ(ρ, t)

)
, �x3(ρ, t) = (1 − ρ)

(
0

γ(0, t)

)
+ ρ

(
0
−1

)
.

(3.2)

Then �x := (�x1, �x2, �x3) is a solution to (1.12), (1.14a,b), and (1.17a,b). We used
this exact solution to perform a convergence test for our approximation (2.33a,b).

See Table 3, where we show the error ‖ �X − �x‖L∞ on the time interval [0, T ] for

T = 3 and τ = 0.5h2. Here ‖ �X − �x‖L∞ := maxm=1→M ‖ �X(tm) − �x(·, tm)‖L∞ with

‖ �X(tm) − �x(·, tm)‖L∞ := maxi=1→3 maxj=0→Ni
minρ∈I | �X

m
i (qij) − �xi(ρ, tm)| is com-

puted by employing a Newton method for the curved segments of the true solution.
The evolution for N = 128 is shown on the right of Table 3.

3.3.1. Surface diffusion with boundary intersections. We repeated the
above type of experiments for motion by surface diffusion, i.e., the approximation
(2.50a,b) of the system (1.19)–(1.22) and (1.17a,b). In the first experiment we simulate
how an initial “letter Y” inside the unit circle moves under motion by surface diffusion.
We varied the initial angle θ3 between the two upper curves at the origin with values
120◦, 180◦, and 45◦. While the first setup is already a steady state for this law of
motion, the other two experiments soon reach a steady state. The chosen parameters
were N = 128, τ = 10−4, and T = 0.05. In Figure 16 we show �X(t) at times t = 0, T .
Note that the maximum distance of the curve endpoints to the external boundary ∂Ω
at time T was d∂Ω = 0, 3× 10−5, and 8× 10−5, respectively. The results for the same
experiments inside the domain Ω = [−1, 1]2 can be found in Figure 17. We note that
here d∂Ω = 0 in each case, as the external boundary consists of straight lines.

We repeated the experiment on the left-hand side of Figure 16 for different sur-
face energies. The surface energies were chosen to be (σ1, σ2, σ3) = (1, 1, 3

2 ) and
(1, 1, 7

4 ), respectively. We observe that as the length of the curve Γ3 is weighted
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Fig. 16. A triple junction inside the unit circle moving under motion by surface diffusion.

Fig. 17. A triple junction inside the square [−1, 1]2 moving under motion by surface diffusion.

Fig. 18. A triple junction inside the unit circle moving under motion by surface diffusion for
surface energies (1, 1, 3

2
), (1, 1, 7

4
), and (1, 1, 2).

more in the overall energy |Γ|, it shortens in comparison to the other two curves
during the evolution; see Figure 18. The observed angles at the triple junction are
θ = (138.4, 138.4, 83.2) and θ = (150.6, 150.6, 58.8). (Note that Young’s law yields
θ = (138.6, 138.6, 82.8) and θ = (151, 151, 57.9), respectively, for the exact solution.)
Finally, we give the same evolution for the surface energies (1, 1, 2) on the right-hand
side of Figure 18. Here in the true steady state the curve Γ3 has shrunk to a point
on the boundary ∂Ω, which, as it represents a change of topology, our approxima-
tion cannot compute. We give a plot of �X(T ) for T = 0.5, when the observed triple
junction angles are θ = (178.2, 178.2, 3.7).

An example with only two enclosed areas can be seen in Figure 19. Here the initial
curve is given by a straight line through the origin that forms an angle of 10◦ with the
x-axis inside a 2:1 elliptic domain Ω with unit semiminor axis. The chosen parameters
were N = 128, τ = 10−4, T = 2. On the left-hand side of Figure 19 we plot �X(t) at
times t = 0, 0.05, . . . , T = 2. The right-hand side shows a similar experiment, where
the initial curve goes through the point (0,− 1

2 )T . The parameters were N = 32,

τ = 10−3, and T = 10, and we display �X(t) at times t = 0, 0.5, . . . , T = 10. In both
cases the evolution finds the minimum of a corresponding partitioning problem in
which the length of the interface between two phases is minimized subject to an area
constraint for the phases.
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Fig. 19. A curve inside an elliptic domain moving under motion by surface diffusion.

Fig. 20. Initially straight lines that are unstable (left), neutral (middle), or stable (right). On

the left, �X(t) at times t = 0, 2, . . . , 16. The remaining plots show �X(t) at times t = 0, 6.

Next, we investigate numerically the stability of some of the setups discussed in
[25]. We start by considering a domain Ω that has a boundary with piecewise constant
curvature. The analysis in [25, Figure 6] predicts that a straight line inside Ω is only
stable if it is sufficiently short. In the situation considered in Figure 20, it must not
exceed twice the radius of the two arcs. In the first experiment, the total dimensions
of the domain are 4 × 2. The initial line has a slope of 0.1◦, and as the straight line
on the x1-axis is not stable, it evolves to a straight line on the x2-axis. If, however,
the dimensions of the domain are only 3

2 × 2, then the straight line is stable, and
this is seen in the corresponding experiment. The case where the domain is a circle
is neutral, as any straight line through the origin is a steady state solution. As an
example, we show an initially straight line with slope 5◦, which does not change under
the surface diffusion flow. The final solutions depicted in Figure 20 are all numerically
steady states.

The next experiment investigates the behavior for the setup in [25, Figure 7].
In each case, we use a domain where the lower boundary follows a sine shape. In
particular, the lower boundary is given by x2 = −1 + 1

8 sin(2π x1). The initial profile
is always a semicircle with radius 0.5. Depending on the sign of the curvature of
the domain boundary, that solution is either stable or unstable. We investigate the
stability numerically, by using �z = (∓0.24,−1 ± 1

8 ) as the center of the half-circle.
Note that �z = (∓ 1

4 ,−1 ± 1
8 ) corresponds to a steady state. The results are shown in

Figure 21, where we also include the neutral case of a semicircle attached to a straight
part of the boundary.

Next, we performed computations with three enclosed areas and two vertices on
the external boundary ∂Ω; see Figure 22. Starting with an initially circular area (with
radius 0.75) that is connected by two straight lines to the external boundary inside
a 2 : 1 rectangular domain, we observe different steady state solutions depending on
the chosen surface energies σ = (σ1, σ2, σ3, σ4). We note that for a physically relevant
setup σ1 = σ4, where Γ1 and Γ4 are the straight line curve segments. We used the
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Fig. 21. Stable (left) and unstable (right) setup. In the middle a neutral situation is shown.

Each plot shows �X(t) at times t = 0, 1.

Fig. 22. Steady state solutions for different angles θ1.

Fig. 23. Solution for circular setup for pure surface diffusion (left) and combined mean curva-

ture and surface diffusion inside an elliptic domain. In the middle �Xm(t) at times t = 0, 0.5, . . . , 2

and on the right �Xm(T ) at T = 40.

values σ = (1, λ, λ, 1) with λ = 1,
√

7
2 , ( 5

8 )
1
2 , corresponding to [7, Figures 3 and 8], so

that the true triple junction angle is θ1 = 120◦, 135◦, 102◦, respectively. The chosen
discretization parameters for each experiment were N = 256, τ = 10−4, and T = 0.2.
The observed angles inside the circular area were θ1 = 118.6◦, 133.9◦, and 100.2◦,
respectively.

For later purposes, we repeated the first experiment in Figure 22, but now inside
a 2 :1 elliptic domain and with the initial profile at the height y = −0.2. The chosen
parameters were N = 128, τ = 10−3, and T = 2, by which time the numerical solution
has reached a steady state. The results are shown on the left-hand side of Figure 23.

Next, we report on some experiments for (2.50a) and (2.34), i.e., for the surface
diffusion of a curve network with specified contact angles αi that the curves form
with the external boundary ∂Ω. Here we use as initial data a “letter Y” inside the
unit circle, similarly to Figure 14. We varied the angle αi, i = 1 → 3, that the three
curves form with the external boundary. In Figure 24 we show the solution �X(t) at
times t = 0, T for the values α1 = α2 = α3 = α with α = 60◦, 30◦, and 5◦. The
chosen discretization parameters were N = 128, τ = 10−3, and T = 0.1. The same
experiments inside the square [−1, 1]2, where the initial profile is now a “letter T,”
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Fig. 24. A triple junction inside the unit circle with different contact angles at ∂Ω.

Fig. 25. A triple junction inside the square [−1, 1]2 with different contact angles at ∂Ω.

Fig. 26. Tangential movement and boundary vertex mislocation for different time step sizes,
τ = 10−k, k = 2 → 5. Results for (2.50a,b) (top) and the corresponding scheme with a projection
onto ∂Ω at each time step (bottom).

can be seen in Figure 25.

We note that in practice we observe a tangential movement of mesh points away
from the boundary intersection towards the triple junction. On the other hand, we
have mentioned in Remark 2.5 that it was shown in [6] that for a semidiscrete in time
approximation the vertices equidistribute along each curve Γh

i , i = 1 → 3. Hence for

τ sufficiently small, we expect the parameterizations �Xm
i to become more and more

uniform. We investigate this behavior with the following set of experiments. We
repeat the last experiment in Figure 24 and integrate until time T = 1 for different
choices of τ = 10−k, k = 2 → 5. In the top row of Figure 26 we see clearly that
the distribution of vertices improves as τ decreases. For comparison, we include the
results for the same set of experiments for a version of our scheme, where one employs
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Fig. 27. A steady state solution for given boundary contact angles inside the square [−1, 1]2,
and the corresponding evolution inside the unit circle.

a projection step that orthogonally projects the boundary vertices of �Xm+1 onto ∂Ω
at every time step. As can be seen from the results in the bottom row of Figure 26, for
small time step sizes the results are virtually indistinguishable, while for large time
steps it can be beneficial to employ the described projection step.

Finally, we provide an experiment for a steady state inside the domain Ω =
[−1, 1]2. The chosen contact angles are α1 = 60◦, α2 = 120◦, and α3 = 90◦, so that
the initial “letter Y” is a true steady state solution. We confirm this with a numerical
experiment for (2.50a) and (2.34) with N = 128, τ = 10−3, and T = 0.5; see Figure
27, where we complement this result with the corresponding evolution inside the unit
circle.

3.3.2. Combined surface diffusion and mean curvature flow. In this sub-
section, we report on numerical results for the approximation (2.53a,b) of (1.23).
First, we repeated the experiment reported on earlier, shown on the left-hand side
of Figure 23, but now for a combined motion of surface diffusion and mean curva-
ture flow. In particular, we prescribe surface diffusion on the two initially circular
curves, while the initially straight-lined curves experience motion by mean curvature.
See Figure 23 for the results, where we plot �Xm(t) at different times. The chosen
parameters were N = 128, τ = 10−3, and T = 40. One can clearly see the very
different evolution compared to the pure surface diffusion flow, and note in particular
that each of the two curves moving under motion by mean curvature now shrink to a
single point (on the boundary ∂Ω).

The next experiment is motivated by the considerations on a traveling wave so-
lution to (1.23) that was first mentioned in [36] and which plays a major role in the
study of grain boundary motion; see also [33] and [7, Figure 7]. The computations
shown in Figure 28 start with three curves meeting at a single triple junction, of which
the two horizontal ones experience motion by surface diffusion, while the third curve
undergoes motion by mean curvature. As surface energies we chose σ = (1, 1, σ3) with
σ3 = 1 and σ3 = 3

2 , respectively. Moreover, the evolution law for the curve moving
under motion by mean curvature is here given by V3 = μ3 σ3 κ3 in place of (1.12),
where for the mobility we chose either μ3 = 1 or μ3 = 2. Note that our approxima-
tion (2.53a,b) can easily be adapted to this situation by replacing σ3 with μ3 σ3 in
(2.53a). The domain Ω is an 8 × 2 rectangle. The chosen discretization parameters
were N = 256 and τ = 10−3.

3.4. Quadruple junctions. Here we consider a setup of three enclosed areas
meeting at two triple junctions and one quadruple junction. A physical interpretation
of this configuration is an alloy material with two grains and two phases, similar to
the situation considered in [10, 26]. For the initial curves depicted in Figure 29 this
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Fig. 28. Traveling wave solutions �Xm(t) at times t = 0, 0.1, . . . , T , with T = 1, 0.6, 0.7, and
0.4, respectively. Surface energies are σ3 = 1 (left) and σ3 = 3

2
(right), with mobilities μ3 = 1 (top)

and μ3 = 2 (bottom).

Fig. 29. �X(t) for t = 0, 0.1, . . . , T for a quadruple junction with λ = 3
2

(left) and λ = 2
3

(right).

Fig. 30. �X(t) for t = 0, T for a quadruple junction with λ = 3
2

(left) and λ = 2
3

(right).

means that the two left enclosed areas represent phase B, while the rest of the plane
is made up of phase A. Moreover, the lower two enclosed areas represent grain I, with
the rest of the domain being grain II. Then we have motion by surface diffusion for
the interfaces Γ1 and Γ3 separating the two phases, and mean curvature flow for the
interfaces Γ2 and Γ4 between the two grains. The surface energies were chosen to be
σSD = 1 for the curves moving by surface diffusion and σMC = λ for the remaining
curves. Two evolutions for λ = 3

2 and λ = 2
3 , where the initial curves create a

collection of 3 :1 rectangles, can be seen in Figure 29. The discretization parameters
were N = 128, τ = 10−3, and T = 0.49 and T = 1.2, respectively. In both evolutions
we can see that the two curves enclosing grain I in phase A eventually shrink to a
point. The change of topology needed to continue the evolution is beyond the scope
of our direct parametric approximation. We also give the corresponding numerical
steady states for the pure surface diffusion flow version of this experiment in Figure
30. The discretization parameters were N = 128, τ = 10−3, and T = 8.
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Finally, we remark that, on recalling σSD = 1 and σMC = λ, the balance of forces
equation (1.16) becomes (�τ1 + �τ3) + λ (�τ2 + �τ4) = �0. It follows from this that θ1 = θ3

and θ2 = θ4, where θi := ∢(�τi, �τi+1), i = 1 → 3, and θ4 := ∢(�τ4, �τ1), as adding the
four vectors �τ1, λ �τ2, �τ3, λ �τ4 in the plane leads to a 4-polygon with two opposite sides
having length 1 and two opposite sides having length λ. This implies that the 4-
polygon is a parallelogram, and hence opposite angles in the parallelogram have to be
equal. This fact can be seen clearly in the numerical computations. For example, on
labeling the curves anticlockwise starting from the top most one, the angles observed
in Figure 30 at the quadruple junction are θ = (133.1, 44.6, 133.7, 48.6) and θ =
(107.5, 69.6, 105.8, 77.1), respectively; i.e., the stated angle condition is approximately
satisfied.

4. Conclusions. We have presented a fully practical finite element approxima-
tion for the (combined) motion by mean curvature and motion by surface diffusion
of curves in R

2, as well as for other related second and fourth order geometric evo-
lution equations. Our scheme can handle both triple and quadruple junction points
between different curves, and intersections of curves with a fixed external boundary
∂Ω. To our knowledge, this is the first such scheme in the literature. Moreover, the
presented scheme intrinsically moves the vertices tangentially along the curves, so
that no artificial redistribution of vertices is necessary in practice. Finally, we note
that a generalization of the presented method to geometric flows of two-dimensional
hypersurfaces in R

3 will be considered in the forthcoming manuscript [5]. More-
over, extending our schemes for curves and hypersurfaces to include the case of fully
anisotropic surface energies is the subject of our ongoing research in this area.
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