
On the variational formulation for linear initial value problems. 

E~zo TO_~TI (Milano) (*) (**) 

Summary. - The paper shows the key place of the choice of the bilinear form in order to give a vari- 

ational formulation to a given problem. In  particular it is shown how the ~se of a convolution 

bilinear form makes possible a variational formulation ]or linear initial value problems. 

A critical survey of the three main methods that was devised in the past to solve the same 

problem is done. 

S u n t o .  - La nota mette in evidenza il ruolo ]ondamentale della scelta di una ]orma bilineare al 

fine di dare ]ormulazione variazionaIe ad un dato problema. In  partieolare ~ mostrato come 

l'uso di una ]orma bilineare di convoluzio¢~e renda possibile la formulazionc variazionale 

dei problemi ai valori iniziali. 

Si  f a u n  esame eritico dei tre principali metodi ehe sono stati escogitati nel passato per 

risolvere lo stesso l~roblema. 

1 .  - I n t r o d u c t i o n .  

A var ia t iona l  formula t ion  for ini t ial  value problems is not  possible in  the  classical 

context  of the  calculus of variat ions.  The reason lies in t h a t  we pers is t  to use as 

scalar  p roduc t  t h a t  g iven b y  
T 

(1.1) j'u(t) v(t)dt 
o 

or one of its va r ian t s  (with weight  factors~ extension to more  variables,  etc.). I t  is 

easily seen tha t  wi th  this scalar p roduc t  ini t ial  value problems do not  fit the  neces- 

sary  conditions in order t h a t  a var ia t iona l  formlf ia t ion does exist .  

Things change when we decide to abandon  the  scalar p roduc t  (1.1) and  to in t ro-  

duce other  bi l inear  forms  us, for ex. t h a t  g iven b y  the  convolut ion of two funct ions 

(1.2) 

T 

f u ( T - -  t)v(t)dt . 
0 

W i t h  this bi l inear  form, in par t icular ,  we can do var ia t iona l  formula t ion  to initial  

va lue  problems.  

(*) This work has been sponsored by the Consiglio I%zionale delle Ricerche. Author 
address: Istituto di Matematica del Politeenico, Piazza Leonardo da Vinci, 32, 20133 ML 
lano (Itaha). 
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Then  the  theorem assert ing t h a t  in order t ha t  an equat ion be the  Euler -Lagrange  

equa t ion  for some funct ional  i t  is necessary t h a t  its opera tor  be  symmet r i c  (if linear) 

or its Ga teaux  der iva t ive  be  symmet r ic  (if nonlinear),  mus t  not  be  considered so 

severe as i t  has  been  up to now. I f  an  opera tor  is not  symmet r i c  wi th  a given bill- 

near  fo rm i t  can becomes  symmet r i c  wi th  another bil inear form. Theq~ the choice 

of dif]erent bilinear ]orms becomes the key to t~'y to give variational ]ormulation to new 

class o] equations. 

I n  § 2 we give ~ brief  account  of the  ideas and  tools for a moclern foundat ion  

of calculus of var ia t ions  st.ressing the  role of bi l inear  forms, ad]oint  of an  operator ,  

symmet r i c  operators ,  circulation of an  opera tor  along a line in t he  funct ion space. 

I n  § 3 we examine  the  var ious methods  devised to give val~iational formula-  

t ion  to  in i t ia l  value problems.  

I n  § ~ a convolut ion bi l inear  fo rm is in t roduced  and  i t  is shown t h a t  l inear  

operators  t h a t  describe ini t ial  value problems become symmet r i c  wi th  such bill- 

near  form.  Then  ~ var ia t iona l  fo rmula t ion  becomes possible. 

I n  § 5 we m a k e  a compar ison of the  present  me thod  with e ther  exist ing methods.  

2. - The essential of  calculus of  variations in operator form. 

2.1. Bilinear ]or~ts. 

Given two vector  spaces U and V, with the  name  bilinear ]orm or bilinear ]unc- 

tional is m e a n t  a funct ional /~[u ,  v] t ha t  is l inear in u and  l inear in v wi th  u e U, 

v ~ V. Once a bi l inear  funct ional  is in t roduced  we suy t h a t  the  two vec tor  spaces 

are pu t  in duality [17, p. 88]. 

U V 

Fig. 1. 

The duat i ty  is called separating in v if, g iven an a rb i t r a ry  u e U  with u V=O, i t  exist  

a t  least  one v such t h a t  (u,  v} =/= 0 [17, p. 88]. The reason for  the  reques t  t ha t  

the  dual i ty  be  separa t ing lies in the  fact  t ha t  if (~, v) ---- 0 for every u t h a t  belongs 

to a dense subset  of U then  mus t  be necessarily v ~ 0. I n  the sequel we shall 

consider only  dualit ies t h a t  are separa t ing  wi th  respect  to u and  v. 

To choose a topology for bo th  spaces the  na tura l  request  is t h a t  they  be such 

t h a t  for every l inear  funct ional  l[~] an e lement  % can be found such t h a t  l[~t] = (u, %) 
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and analogous requ i rement  on V. L a s t  request  is the  analogous of Riesz representa t ion  

theorem.  Such topology will be  said compatible with the  dual i ty  []8, p. 32] [19, p. 152]. 

I~.~A~K I .  - I n  books of funct ional  analysis  the  concept  of dual  space of a given 

vec tor  space is more  f requent  t h a n  t h a t  of spaces in duali ty.  The  algebraic dual of 

a l inear  space is the  space of all linear funct ionals  defined on t ha t  space;  and  the 

topological dual of a topological  l inear space is the  space of all linear and conti- 

nuous funct ionals  defined on t h a t  space, l'7ow with  the  adven t  of the  theory  of 

spaces in dual i ty,  one of the  grea t  mer i t s  of Bom~baki group [17, p. 88], the  concept  

of dual  space can be absorbed in t h a t  theory.  F r o m  the physical  poin t  of v iew 

the  idea of pu t t i ng  two spaces in dual i ty  is more  basic t h a n  t h a t  of dual  space. 

So in mechanics  we learu displacement ,  forces and  the  bi l inear fo rm t h a t  giYes the  

work  (],  s} = ~.~/~s~ in this  order. This makes  useless to  conceive a force as a 

(( l inear funct ional  ~) or (( l inear  fo rm ~) on displacements.  

2.2 The adjoint o] an. operator. 

a) Le t  us consider a l inear  opera tor  L f rom a l inear  space U to a l inear 

space U' and  two more  vector  spaces V and V' t h a t  we pu t  in separa t ing  dual i ty  

wi th  U and U' respectively,  be  means  of two bil inear  forms 

(2.1) (u,  v } l  , ~u , . 

Fo r  the  two pairs  of l inear  spaces in dual i ty  we choose topologies t ha t  are compa- 

t ible  wi th  the  dualit ies (see for  ex. § 4.2). 

The  ad jo in t  of the  l inear  opera tor  L is b y  definition, a l inear opera tor  L f rom 

V' to  V t h a t  satisfies the  iden t i ty  

(2.2) /Lu,  v ' ) ,  ~= (u, [~,'), 

for every  u e U. The adjoint  L is a m a p p i n g  f rom V' to V i.e. Lv '~-  v (see fig. 2). 

h 

<U,V> i 

< U', V'>]I - -  

Fig. 2. 
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We stress the fact  t ha t  to define the adjoint  of an operator we need two bili- 

near forms and ]our spaces. 

b) A particular ease arises when we have a linear mapping between two spaces 

tha t  ~re put  in dual i ty  by  the bilinear form (u, v). In  such case the  adjoint  of 

the operator L satisfies the relation 

(2.3) 

and the corresponding diagram is shown in fig. 3. 

U ~ V  ~ 

> ~ -  . 

-~ L > 

< U , V > -  

Fig. 3. 

V ~ U  ~ 

c) Another particular case arises when U and V are two Hilbert  sp~ces and 

the  bilinear forms are the  scMar products in the two spaces, (ul, u~)~ and (v~, v~)~ 

(fig. 4). The adjoint  of L satisfies ~he relation 

(2.4) (Lu, v) .  ~:~ (~, Lv)~ 

U=-V 

U'~V' 

35 L 

Fig. 4. 

) 

~ ~ ~ =  U'= V=V' 

Fig. 5. 

d) A last particular case arises when U is an t t i lbert  space with scalar 

product (ul, u~) and L go from U to U (fig. 5) then the definition of adjoint  (2.2) 

reduces to 

(2.5) (Lug, u2) = (ul, Z~2). 

This is the most common definition of adjoint  of a linear operator [20, p. 43]. 
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Definition given in a) and the three part icular  eases b), c), d) require tha t  the 

domain of L be all the  l inear space U. Differential  operators defined in L~-spaces 

(more in general in L~-spaces) cannot  have as domain the whole space bu t  a dense 

subset D(L) of U. Moreover they  are not  continuous in such spaces. In  this case 

the problem arises to define the domain D(L) of the adjoint  operator  J~. By  defini- 

t ion the  domain of L is the set of elements v' such tha t  the funct ional  /L~t, e'} be 

continuous in spite of the discontinuous character  of L. 

2.3. Symmetric and sel]adjoint operators. 

A linear operator  is called symmetric with respect to a bilinear form <u, v} if 

it  satisfies the condit ion 

(2.6) %~S 

i.e. if ~ is an extent ion of the operator  S: this means tha t  D(N):9 D(S) and tha t  

~u = Su for u c D(S). 

An operator  is called sel/ad]oint, with reference to a bilinear form, if S = ~. 

The symmet ry  of an operator  can occur only when the operator  works between 

two spaces in dual i ty  i.e. in the  case b) and d) of § 2.2. 

An operator is called formally selfadjoint when the corresponding formal  dif- 

ferential  operator  is equal to its adjoint  [30, p. 1287]. 

Among the properties of symmetr ic  operators we shall use the  following: 

a) The square of a symmetr ic  operator  is also symmetr ic .  

PnooF.  - F r o m  S _c S- follows for eve ry  u, v ~ D(S) 

(mT) @, S2u> = @, ~ S u )  =- <Sv, Su> ~ <S-~v, u ) .  

b) The inverse of a symmetr ic  operator  is also symmetric .  

P~ooF. - F rom (v, Su} =-- (Sv, u) put t ing  u = S- i f ,  v ---- S - l g  follows <S-Ig, f> 

=- <g, s-V>. 

c) I f  S is l inear and symmetr ic  and % is one solution of the  problem Su = J 

then  uo is critical point  of the  functional  

(2.8) F N ]  - } <u, %~> - <u, j> 

i.e. (3/f[u]l~ ° = 0 and viceversa [21, p. 75]. 

d) I f  the  symmetr ic  operator  S is posit ive i.e. <u, Su)>O then the func- 

t ional (2.8) is min imum at uo i.e. ~/Z[u]l~o>0 [21, p. 75]. 
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2.4. Conservative vector fields. 

Calculus of variat ions requires as a fundamentM tool a bilinear form, i.e. ~ bilinear 

functional. To show this we can start  with the discrete form ol the  calculus of varia- 

tions, i.e. the theory of conservative vector fields in finite dimensional spaces. Nothing 

is lost in generMity and much is gained in clarity if we limit ourselves to fields 

in the ordinary three dimensional spaces R 3. 

Let  us consider a vector  field v = v(~t) where u is the r~dius vector, and b e / 2  c R 3 

a convex (~) region in wich thc vector field is defined. I n  order to introduce the 

concept of conservative vector field we must  define the circ~tlation of a vector along 

a line and this requires the introduct ion of ~ bilinear form as 

(2.9) <n, v> -- V ~  ~- v~uT~ -~ v~u~. 

A line is described by  a variable vector ~ == V(£) where ~ ~ parameter  tha t  we 

choose for convenience so tha t  ~. = 0 for V - - n o  and ). = 1 for ~ -  u1 

(2n0) c =f<av(~,), v[v(2)]> • 
),=0 

The circulation depends, in general, from the line connecting the two points ~to 

and ul:  when the circulation between two arbi t rary points does not  depends from 

the line connecting them we say t h a t  the vector  field is conservative. 

Choosing a fixed element uo in the region in which the field is defined, we can 

consider the ch'culation from uo to whathever  u in the region and this circulation 

depends only on , (for fixed no). I n  this way a number  can be associated to 

every qt and we have  constructed a scalar field. The function ](u) so defined is 

called the potential of the vector field. Since the region ~9 is convex we can 

choose stright lines to calculate the circulation from u0 to u. Then ~ ( ~ ) =  u0 ~- 

-~- ~(u - -  uo) and 

du 
(2.11) dV( )~) :-- ~ d). = (u - -  uo) d~ . 

t~elation (2.10) then gives 

(2.1s) l (u)  = f(uo) + f < (u - -Uo) ,  v[uo + ) , (u -  Uo)]>d).. 
2=0 

(1) A convex region is such that lor every pair of points contained in it all points of 

the segment of stright line connecting them belong to the region. Then a convex region is 

simply connected. Particular convex regions are the afline manifolds: in R ~ these are planes 

that does not contMn the origin. 
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In order that  a vector field be conservative in the region Y2 the circulation must 

vanish along any closed path. In  particular this must be true for infinitesimal closed 

paths as the one indicated in fig. 6. 

\ 

O " "  

Fig. 6. 

Simple calculations [2] show that  this path-independence is equivalent to the 

requirement that  the vector field satisfies the condition 

h,k ~,/~ 

where 

(2.14) a~7~ ~ vj~.k. 

Condition (2.13) amount to the request of symmetry of the matrix a~ formed 

with the partial derivatives (2.14). I f  the vector field satisfies conditio~ (2.t3) at 

every point of the region ~ in which the field is defined, and the region £2 is simply 

com~ected then the circulation does not depends from the path for every line 

contained in the region ~2. 

l~ote that  the condition of symmetry oi a~ implies tha t  

(2.15) vt,~7~ -- %.h = 0 

tha t  is the statement that  the carl of the vector field vanishes. Using an operator 

notation relation (2.13) can be written as (see [2]) 

(2.16) (% vu~p} : (% ~ ,~) .  

A fundamental property of conservative vector fields (that becomes the key of 

the calculus of variations) is that  the points in which the vector field vanishes 

are the points in which the potential is stationary and viceversa v(uo)----0-~ 

--~ 8f(uo) ~- 0 [2, p. 143]. These are called critical points [1, p. 77]. 

2 2  - A n n a l ¢  d t  - ' l ~ a t e m a ~ i e a  
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I~E~AgK I I .  - An essential  point  t h a t  is not commonly  stressed in books on cal- 

culus of var ia t ions  is t h a t  the  circulat ion depends f rom the bi l inear  fo rm chosen. 

Then  if we choose another bil inear  fo rm as for ex. 

(2.17) <u, v>c = u~v~ ~- u~v~ + u~v,~ 

we can define a new circulation wi th  this bi l inear  fo rm;  then  we can expect  t ha t  some 

vector  field t h a t  was not  conservat ive  wi th  respect  to the  old bil inear fo rm (2.9) 

becomes conservat ive  wi th  respect  the  new bi l inear  fo rm (2.17). This indicates t h a t  

the fact that a vector field be conservative is not an intrinsic property of the vector field 

but depends from the bilinear form used. 

I t  is au tor ' s  feeling t h a t  this r e m a r k  m a y  becomes the  s ta r t ing  point  for an  inde- 

finite en la rgement  of the  field of appl icat ion of the  calculus of var ia t ions  in future.  

These considerations ex tend  f rom spaces of finite dimensions to /unctions spaces 

where a nonlineax m a p p i n g  v ----2¢(qt) can be considered as describing a vector  field 

on a funct ion space U. The  domain  of the  nonlinear  operator  2~ will be assumed to  

be  a convex region D(2~) of the  funct ion U-space. 

I n  this ease the  bi l inear  fo rm corresponding to (2.9) is 

(2.1s) <u, v> =fu(P) v(p)a~. 
t~ 

A line in a funct ion space becomes a one pa rame te r  fami ly  of functions u(P, 4). 

The circulat ion becomes 

~t=l 

G =f<dv(P ;  ,t/, N[v(P; ,~)]> 
,~=0 

(2.19) 

where 

(2.2o) 6v(P, 4) = ~ d~.  

A str ight  line f rom uo(P) to u(P) is g iven b y  

(2.21) ~7(P, 4) ---- uo(P) + 2[u(P) - -  uo(P)] 

and  the  po ten t ia l  is [1, p. 58] 

(2.22) 
),=1 

/~[u] = F[uo] +f<u(P)  --  no(P), --¥{~o(P) + ~.[u(P) --  uo(P)]}>d),. 
2.=0 

I f  the  domain  of the  operator  £V(u) contains the null e lement  0 (this surely hap-  

pens if the  opera tor  is linear) then  we can simplify the  formula  choosing uo(P) -- O. 
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Then 

(2.23) /~[u] = F[0] -~f<q~(P), N[)~u(P)])d~. 

The condition of path-independence is reduced to the requirement that  [1, p. 59] 

(2.24) <% = <% 

tha t  states the symmetry of the operator N '  defined by 

(2.25) lim N(u + s~v) - -  N(u) _/q~q~ 

and called Gateaux derivative of the nonlinear operator N[1, p. 56]. 

The fulfillement of relation (2.24) is equivalent to the statement of path- 

independence of the circulation for whathever line in function space if the domain 

of the operator is simply connected [1, p. 32]: since we have chosen a convex 

domain this requirement is fulfilled. 

I~E~AnI< I I I . -  Once more we observe that  the fulfillement of relation (2.24) 

depends basically from the bilinear form chosen. Then if we choose a bi~near form 

different from (2.18) we can hope that  operators that  are not of potential kind with 

that  bilinear form become potential now. 

Then when we have an operator that  does not satisfy the symmetry condi- 

tion (2.24) with a given bilinear form one of the first possibility to be explored is the 

change of the bilinear form. Phrases as (, the adjoint of this operator is that  ope- 

rator ,> have a meaning ouly for a specified bilinear form. 

In sec. 4 we present a kind of bilinear form that  makes symmetric first order 

differential operators; this opens the way to give variational formulation to initial 

value problems, usually excluded from variational treatements. 

Before this we give a survey of the three main methods devised to give varia- 

tional formulation to initial value problems. 

3. - Survey of existing methods. 

Various attempts were made in the past and in recent years to give a varia- 

tional formulation to inital value problems using different methods. The most 

used of them are: 

a) a method for formally selfadjoint operators; 

b) the method of adding the adjoint equation; 
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c) Gur t in  me thod  of convolution. 

We summarize briefly these methods  in order to compare them critically (~). 

3.1. The method for formally sel]ad~oint operators. 

This is hysterical ly the first of the  tricks devised to overcome the difficulty 

mentioned.  ]Jet the  init ial  value problem be described b y  a linear operator  t h a t  

is formally salfadjoint with the usual bil inear form 

(3.1) (u, v> =fu(t)v(t)dt. 
0 

This is the case of the operator  of the following problem 

(3.2) 

~2 

u ( t )  = ] ( t )  

u ( o )  = o 

u'(O)  = o 

whose adjoint  is 

d 2 
v(t) = g(t) 

v ( T )  = o 

v ' ( T )  = o .  

The operator  is formally selfadjoint because its formal  part ,  i.e. d2/dt 2 is equal  

to the  formal  par t  of its adjoint ,  bu t  the  domain of the operator  D(L) is neither 

equal nor  contained in tha t  of its adjoint,  and then  i t  is not  symmetr ic  (see § 2.3). 

The  me thod  f rom long t ime  devised is t ha t  of ignoring the  init ial  condition 

ur(0) = 0 and add an artificial condition u(T)=  O. In  this way the original initial 

value problem is t ransformed into a boundary value problem that ,  this t ime, is 

governed b y  a symmetric operator  

(3.3) 

d2 
u(t)  = i( t)  

u ( o )  = o 

u(  T )  = o 

whose adjoint  is (with 
the  bil inear form (3.1)) 

d 2 
v(t) = g(t) 

~(o) = o 

v( T )  = o .  

Of course the  solution of the  problem (3.3) is not  a priori  solution of the 

problem (3.2) (3). 

Prob lem (3.3) admits  a variat ional  formulat ion as follows: the solution of the 

(~) In this critical survey We omit the necessary details on the functional class of func- 
tions and on the kinds of function spaces: these matters will be examined in following sections. 

(3) For example if ](t) = 1 and 0~<t~< 1 the unique solution of problem (3.2) is u(t) = ½t ~ 
while the unique solution of the corresponding problem (3.3) is u(t)= ½t(t--1). 
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boundary value problem (3.3) makes stationary the functional 

(3A) 

T 

F[u] =:f { ½[u'(t) ]~ - -  ]( t)u( t) }dt 
0 

among all functions u(t) that  satisfy the same boundary conditions of problem (3.3). 

The unique advantage of this variational formulation lies in tha~ the Euler- 

Lagrange equation of the functional (3A) is the differential equation of the 

problem (3.2). 

But on account of the artificial change from an initial to a final condition direct 

methods cannot be applied to find the solution of the originary problem (3.2), and 

existence or uniqueness of the solution of (3.2) cannot be inferred from the 

functional. 

Briefly stated: the functional (3A) does not give a variational ]ormulation to the in- 

itial value problem (3.2) but to the boundary value problem (3.3) arti[ieially associated to it. 

This procedure extends also to nonlinear operators whose Gateaux derivative 

(see formula. 2.25) is formally seffadjoint with the bilinear form (3.1). 

Even with this handicap this technique is much used in mechanics and theore- 

tical physics: Hamilton principle, the stationary action principles of electroma- 

gmetism, quantum mechanics, general relativity, etc. rest upon this artificial trun- 

formation of an initial to a boundary value problem (4). 

3.2. The method of the adjoint equation. 

The previous technique of changing initial to boundary value problem cannot be 

applied when the operator is not at least formally selfadjoint. This is the case of the 

Fom'ier equation of heat conduction that  contains first order partial time derivatives. 

This is also the case of many dissipative systems charaterized by irreversible 

phenomena. 

One method goes back to MO~SE-FES~AC~ [4, p. 298] and consists in the con- 

sidering alongside with the originary differential equation another artificial equation 

with the adjoint operator (then with final conditions). So for Fom4er's equation 

(3.5) 

AO(P, t) - -  k ~O(P, t) 
3t -- ](P' t) 

O(P, O) = 0 

O(P, t)l~ = 0 

.--> 

A ~ ( P , t ) + ~  ~ ( 2 ,  t) ~t g(P,t)  

~(P, T ) -  0 

~(P, t)T~ = o 

where P belong to a region /2 whose boundary we indicate with S and 0 ~ t  ~.T. 

(~) We remember that ttamilton principle states that the natural motion is privileged 
among those conceivable motions that have the same initial and ]inal configuration, then 
ignoring the physical initial conditions on momenta. 
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more in general 

Zu = /  be the given equation 

{3.6) Lv = g is the adjoint equation. 

These two equations can be cast in the form of the matrix-differential equation 

whose operator is symmetric [5, p. ]16], and then a variational formulation becomes 

possible. The functional can be found with a general procedure [2, p. 159] obtaining 

(3.8) Flu, v] = <% Lu> - -  <], v> - -  ;g, u} 

About this expedient t~Iorse-Feshbach say (( By this arbitrary trick we are able to 

handle dissipative systems as though they were conservative. This is not very sati- 

sfactory if an alternate method of solution is known, but it  will be necessary, in 

order to make any progress when we come to study dissipative fields, as in the 

diffusion equation ~>. [4, p. 299]. 

From the physical point of view the great problem is to justify the (~ mirror ,) 

equation. Which meaning can be attached to the adjoint function ~(P, t), to the 

function g(P, t), to the final condition ~(P, T) ---- 0? 

Various attempts were made in specific fields where this expedient is used, as 

in the domain of reactor physics for transport equation [6~ p. 85], [7] to find pos- 

sible meanings of these adjoint quantities. Apart from some local success the 

method reveals its character of mathematical trick. 

For applications of this method see [23], [8], [9], [25]. The troubles of such 

method are discussed in detail in [247 p. 245]. 

3.3. G~rtin method o/ convolution. 

In  1964 GU~TnX [10] showed how the convolution of two function u(t) and v(t) 

t 

(3.9) z(t) ~ ju ( t - -  v)v(t)dv 
0 

permits to give a variational formniation to the linear initial value problem. Gurtin 

procedure is very sophysticated: we summarize here the fundamental ideas. Let 

us consider for istance the wave equation 

A ~ ( P , t )  e ~ ~t ~ - 0  

~(_p, o) = ~(P) 
(3.]0) 

~ ( p ,  t) l 

~t ,=o= ~(-u) 

~(Q, t) = o 
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where for s impl ic i ty  we consider homogeneous bounda ry  conditions. The first step 

is to replace the given problem with an equivalent on¢. To this end a p re l iminary  

Lap lace  t r a n s f o r m  is done on the  funct ion 9(P~ t). P u t t i n g  

(3.11) ¢ ( P ,  s) ~ j  exp (--st)of(P, t)dt = ~[~] 

0 

equat ion  (3.10) becomes 

1 1 
(3.12) A q~(P, s ) - - ~  s ~ ~(P,  s) ---- --c~- [s , (P)  + f l(P)] .  

Now we divide the  equa t ion  b y  s ~- obta in ing  

1 1 1 

s~  " A ¢ b ( p ,  s )  - -  . ¢ ( P ,  s )  = - - c -  ~ s o 2 s ~ 

At  this poin t  if  we t ake  the  inverse t r ans fo rm £-~[~] we no longer obta in  deri- 

va t ives  in the  second t e r m  because of the  d isappearence  of the  funct ion s ~ in the  

second te rm.  Because the  inverse  t r ans fo rm of the  produc t  of the  two func- 

t ions 1/s ~ and  A~)(P, s) is equal  to  the  convolution of the  two pr imi t ives  according 

to the  rule 
t 

t hen  the  inverse Laplace  t r ans fo rm applied to eq. (3.13) gives 

1 
-- ~ t~(P) 

0 

The equa t ion  obta ined  is now integro-differential  (5). The  funct ions ~(P,  t) t h a t  

(5) Accidentally We observe that  equation (3.15) can be obtained more easily without 
the use of Laplace transform as follows: writing eq. (3.10) as 

~ ( P ,  t) 
- -  c~ Aq~(P, t) 

~t ~ 

and integrating twice on t we obtain 

t 

q~(P, t) = c~(t - T) A~(P, v)dv + A(P)t + B(P) 

0 

where use was made of Dirichlet relation 

t v t 

o 0 o 

Imposing the initial conditions given we find A(P) = ~(P), B(P) = fl(P) eq. (8.15) is thus 
obtained. 
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satisfy this equation automatically satisfy the two initial conditions in (3.10). Then 

the given problem is equivalent to the problem: solve the eq. (3.15) with the 

boundary condition ~(S, t) = 0. 

~ow we look for a variational formulation of eq. (3.15). The convolution kernel 

in eq. (3.15) of the integro-differential equation is not symmetric with respect to 

the ordinary bilinear form (3.1). But  it  becomes symmetric with respect to the 

bilinear map 

t 

f.ff .I+(P, t)dzdV 
V 0 

then, as can be shown, we can deduce eq. 

given by 

(3.17) 

(3.15) by the stationarity of A~[~] 

t 

1 r O 

V 0 0 

A~[~] is, for fixed t, a functional of ~. 

The stationarity of the functional with respect to the functions ~(P, t) that  satisfy 

the boundary condition ~(S, t ) =  0 lead to eq. (3.15) as Euler-IJagrange equation. 

This procedure was used extensively be Gurtin himself [10], [11], [12] and 

others [13], [14], [15], [16]. Functionals obtained by this method are often com- 

plicate. Nevertheless the method has on the previous ones the merit that  neither 

artificial boundary conditions (as in the method a)) nor artificial differential equa- 

tions (as in the method b)) are added. Only manipulations on the given equa- 

tions are done. The functions that  make stationary the functional are exactly 

those tha t  satisfy a problem equivalent to the one given at  the beginning. 

This fact indicates that  convolution is a natural tool to treat initial value pro- 

blems. Previous Laplace trasforming is not necessary as shown in footnote (5) and 

then it has not essential role in the method. I t  becomes natural to t ry to simplify 

this method to obtain directly the given equation. 

A progress in this direction arises when we realize that  a variational formula- 

tion requires the symmetry for the operator and this in turn is dependent on the 

kind of bilineur form. Then if we want to give a variational formulation to initial 

value problems we must find a bilinear form, if any, that  makes symmetric the 

corresponding operator. A bilinear form using convolution of two functions gives 

the hope to be what we need. As ~ matter of fact we show in this paper that  this 

is the case. 

In  order to give a detailed and comprehensive exposition of the new method 

we summarize some useful concepts. 
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4. - The  c o n v o l u t i o n  Mlinear form.  

4.1. The convolution product o] two vectors. 

Given two finitely dimensional vector spaces U and V, both  of the kind R", an 

usual bilinear form on the elements of the two spaces is 

(~.1) 

We shall introduce another  bilinear form, tha t  we call convolution o] the two vectors 

(4.2) <u, " ~°~ V )  c = Ul V n -3 V U2 Vn._l -~  . . .  -~- U n _ l  Vz -~  U,~ V 1 . 

With  such bilinear form the two spaces U and V are put  in duali ty.  We show tha t  

this is a separat ing duality.  I n  fact  if (u, v>~ := 0 for every u, this implies t ha t  

v - - 0  as can be seen considering for u successively the vectors (1, 0, 0 ... 0), 

(o, 1, o, o, ... o), ... (o, o, ... o, 1). 

:Sow a mat r ix  tha t  is symmetr ic  with respect to the secondary diagonal, like, 

for ex. 

(4.3) L = 

a m p / / / !  

q b e p 
/ 

s d b m 
/ 

c s q a 
/ 

is symmet r i c  with respect  to the convolution bilinear form. 

Par t i cu la r  cases of such matr ices  are the  following 

(4.4) 

1 1  o o i ) ( i  l o  0 0 - -1  1 0 1 - - 2  1 0 

0 0 - - 1  1 0 1 - - 2  1 

0 0 0 - - 1  0 0 1 - - 2  

0 0 0 0 - -  0 0 0 1 

tha t  are the finite difference forms associated with the differential operators d/dx 

and d~/dx 0- respectively. 
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This shows in a ve ry  incisive way  tha t  the concept  of s y m m e t r y  of a ma t r i x  

depends s t rongly  f rom the bi l inear  fo rm we choose. Usual ly  a real  m a t r i x  is called 

symmet r i c  if  the  entries t h a t  are symmet r ica l ly  disposed with  respect  to the  ma in  

diagonal  are equal :  this definition is based on the  use of the  bil ineur fo rm (4.1). 

As consequence of the example  shown we ~re convinced t h a t  the notion o/ sym- 

metry ]or a matrix is no$ an priori property bq~t has a meaning only with re]erence to 

a prescribed bilinear/orm. I n  par t icular  i t  cannot  be  based on the  s y m m e t r y  of the  

entries of the  m a t r i x  wi th  respect  to in terchanging rows with  coltmms. 

A re levant  difference between the  two bil inear forms arises when we t ry  to con- 

s t ruc t  wi th  t h e m  a scalar product (u, v) between  two e lements  of the  same space. I n  

order t ha t  this b e  possible, two addi t ional  proper t ies  mus t  be  satisfied: 

(4.5) 

(4.6) 

(u, v) = (v, u) 

( u , u ) ~ 0  and  ( u , u ) = 0 ~ u = 0  

Now the  first of these proper t ies  is satisfied b y  bo th  bi l inear  forms:  in the  case of 

convolut ion bi l inear  fo rm the  p rope r ty  follows f rom the  iden t i ty  

n 

1 1 

On the  con t ra ry  the  second p rope r ty  is satisfied b y  the  first bi l inear form, as is well 

known,  while i t  is no t  satisfied b y  the  second bi l inear  form. To show this  a counter-  

example  is sufficient: le t  u = (1, 2 , - - 3 )  t hen  

(4.8) <u, u)~ : (1)(--3)  ÷ (2)(2) + (--3)(1) = - - 2  < 0 .  

Then  the  convolut ion produc t  of two vectors  cannot  be  t aken  as a scalar p roduc t  

of two e lements  of the  same space, i.e. wi th  a convolut ion bil inear fo rm we cannot  

cons t ruc t  an  I I i l be r t  space (~). Moreover  we cannot  cons t ruc t  a Banach  space. 

4.2. The convolution bilinear /orm /or /unctions. 

The  analogous wi th  f lmetions of the  two bi l inear  forms (4.1) and (4.2) are 

respect ively  

T 

(4.9) <u, v> =fu(t)v(t)dt 
0 

(6) Spaces with a scalar product that does not satisfy condition (4.6) are of some interest 
in physics particularly in relativistic quantum mechanics. For the mathematical literature 
see [27], [28], [1, p. 89]. For applications in physics see [29]. 
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(,t.lo) 

T 

<u, v>~ = f u ( T - -  t)v(t)dt. 
o 

I f  U and  V are two vector  spaces and u e U, veV,  then  everyone  of these 

bilinear forms pu t  the  two spaces in dual i ty.  The dual i ty  is separat ing as can easily 

be shown. A topology compatible  with the  dual i ty  for bo th  spaces is U = L [ 0 ,  T] 

and  V = Lq[O, T] with 1/p ÷ 1/q = 1. This choice assures tha t  the  bilinear forms 

are bo th  continuous in u and v and moreover  t h a t  every  l inear functional  in u 

(or in v) can be represented by  means of the  bilinear forms. 

Le t  us consider the  operator  

d 

dt 

(4.11) L 0 < t < T  

u(o) = o 

u(t)  c c~[o, T].  

We search its adjoint  with the  scalar products  (4.9) and (4.10) respectively. Is 

(4.12) 

(4.13) 

T T 

<~., zv> = f  u(t)v'(t)dt = f --u' (t)v(t)dt ÷ [u( T)v( T) - u(O)v(O)] 

o 0 

T T 

~ ~ tit + [u(O)~(T) - -  u(T)v(o)]. 

0 0 

Then  the  adjoints  of the  operator  L are respect ively 

(4.14) 

d 

dt 
L =  

v( T)  = o 

v(t) e A.C. 

with (u, v> 

d 

Z =  
~(o) = o 

v( t)  e A.C. 

with <u, v}~ 

where A.C. denotes the  class of absolutely continuous functions.  Then  while in 

the  first case the  operator  L is not  symmetric ,  in the  second case i t  is, since 

L c L (7). Thus we discover that the convolution bilinear ]orm makes symmetric the 

operator d/dt with homogeneous initial conditions. Since the  symmet ry  is necessary 

(7) The inclusion sign depends from the ~act that functions of class C1[0, T] form a 
subset o~ functions A.C. [0, Y]. 
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condition in order that  a linear operator be the gradient of a functional and it  

becomes sufficient if the domain is symply connected [1, p. 32], it follows that  in 

this way one can give a variational formulation to linear initial value problems [22]. 

The functional is found with formula (2.23): see § 4.1. Let  us consider the 

operator 

dt ~ 

(4.15) Q = I u(0) = 0 0 < t < T  

I u'(O) = 0 u(t) e ¢°-[0, T] 

that  appears in initial value problems for second order ordinary differential equa- 

tions. Since this operator is the square of the symmetric operator L given in (4.11), 

i.e. Q = L ~ it  follows that  it is also a symmetric operator (see § 2.3) 

RE~A~C IV. - The operators L and Q are not positive on account of the inde- 

finite character of the convolution bilinear form: then the variational formulation 

leads to critical points that  are not minima. Since the inverse of a symmetric 

operator is also symmetric (see § 2.3) and the inverse of a differential operator is 

an integral operator we are lead to examine which kind of integral operators arises 

by inversion of operator (4.15). Now if 

(4.17) ~ u(t)  = ] ( t ) ,  u(O) = o, u'(O) = o 

integrating twice by parts we obtain 

(4.1s) 
t 

u(t) = f ( t - -  ~) ](~) d r .  
0 

The kernel of this integral operator is of the kind known as (( convolution ~> kernel 

and then this operator is symmetric with respect to the convolution bilinear form 

(4.10). More in general we show in the next  paragraph that  all integral operators 

with convolution kernel are symmetric with the convolution bilinear form. 

4.3. The symmetry o] ~redholm and Volterra operators with convolution kernel. 

We now show that  the Fredholm integral operator 

T 

(4.19) 3 7 --:f k(t--  v) ... dv 
o 

that  is not symmetric with respect to the bilinear form <u, v> becomes symmetric 
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with respect to the convolution bitine~r form 4~, v>~ given by (4.10) 

(4.2o) 
T T 

I O 

T T • T 

0 0 0 0 

With the substitution T -  ~ - ~  a ~nd T -  t--~ v the last integral becomes 

(~t.21) 
0 0 T T 

T T O 0 

With another change (inessential) a t, v-~-7: the integral becomes 

(4.22) 
T T 

0 0 

that  shows the symmetry of the Fredholm operator ~xdth convolution kernel with 

respect to the convolution bilinear form. 

Now a Volterra integral operator with convolution kernel can be reduced to a 

Fredholm integral operator with convolution kernel observing that  

t T 

(~.23) f/(~) dr ~fH(t-- 3)i(~)a~ (0 < t <  T) 
0 0 

being H($) the Heaviside function 

1 for $ ~> 0 

(4.24) H ( ~ ) =  0 for ~ < 0 .  

Then 

(4.25) 
t T 

f k(t-  3) /(~:)a3 ~ f  B( t -  3)k(t- 3) i(~)d3 
0 0 

and the product i t ( t - -1:) l~:( t -  v) is a new kernel of convolution kind. Then 

(4.26) 

t T 

fk( t -  ~)i(3) a3 =f~( t -  ~:)-1(7:) d3. 
o 0 

With that  reduction of the Volterra to Fredholm integral operator, our previous 
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result implies that  also the Volterra integral operator with convolution kernel is sym- 
metric with the convolution bilinear /orm. 

This permits to give variational formulation to linear integral and integro- 

differential equation with convolution kernel. This fact is of interest in connection 

with hereditary phenomena [12] [26] [31]. 

4.4. Applications. 

PROBLE)~ 1. - Give a variational formulation to the initial value problem 

(4.27) 

d 
u(t) =/(t) 

0 < t < T  

u(O) = o 

~(t) ~ C~[o, T] .  

Since the operator is linear we can use the reduced formula (2.23) that  becomes 

(4.28) 

I=I T 

i=o o 

T T 

o 0 

The /unction u(t) that solves the initial value problem (4.27) makes stationary the ]unc- 
tional F[u] given by (4.28). As a check we calculate the Euler-Lagrange equation 

with the (( 3 ~> process 

(4.29) 

T T 

0 0 

T T 

__ 1 d u ( T -  t)u(t)] d t -  f (~u(T- t)/(t)dt -- - -2  f [ (~u(T--t)u'(t) + d d(T--t)  
D 0 

T T 

= ~ f 2(~u(T--t)u'(t)dt ÷ 2 [(~u(Z--t)u(t)]:--f ~u(Y--t) /(t)dt ~ 
0 o 

T 

f du(T--tl[u'(t)--/(t)]dt + lz [(3u(O)u(T)- (~u(T)u(O)]. 

o 
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Since /~u(0) -  0 and &~(T--t) is a rb i t ra ry ,  we obta in  bo th  equat ions (4.27). 

PROBLE~ 2. -- Give va, r iat ionM formula t ion  to the  ini t ial  va lue  p rob lem 

(4.30) 

d ~ 
~(t) =/(t) 

u(O) = 0 O < t < Y  

u'(o) = o u(t) e C~[o, 1]. 

Applying  the formula  (2.23) one finds the  funct ional  

(4.31) G[u]=l f du(T--t) du(t) dt-- f d t  

o tl 

We now show t h a t  the ]unction uo(t) that solves the initial value problem (4.30) makes 

stationary the /unetional G[u] with respect to all ]unctions u(t) that satis/y the initial 

condition u(O)= 0 and vieeversa. The sevond initial condition u'(O)-----0 becomes a 

natural condition /or the /unctional. 

The first va r ia t ion  of the  funct ional  G[u] is 

T 

du(t) 
(4.32) •G[u] =f ~u(T--t)[u"(t)--j(t)]dt-- 6u(O)~t  ) z+ ~u(T) -d~  o 

O 

I f  we require t h a t  this var ia t ion  vanishes  for every  u(t) t ha t  satisfies the  con- 

di t ion u(0) = 0 we obta in  the differential  equat ion  (4.30) and  the  initial  condition 

u' (o )  = o .  

0 

~u(t) 
! 

I no(t)  

I 

! 

T 

I 

~t 

Fig. 7. 

R ~ , ~ A ~  V. - I f  we use the  usual  bi l inear fo rm (4.9) we find t h a t  the  opera tor  

is not  syrmnetr ie  while i t  is formal ly  symmetr ic .  This  implies  t h a t  the  s y m m e t r y  

can be obta ined  changing the domain  i.e. the  bounda ry  condit ions:  the  init ial  condi- 
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t ion u'(0) = 0 must  be ignored and an artificial boundary  condition u(£r) = 0 must  

be added. I n  this way we obtain a symmetr ic  operator. Such a variat ional  formu- 

lation is of little use because it is l imited to the fact tha t  the Euler-Lagrange equa- 

t ion of such functional is the differential equation in (4.30). Since the domain 

TABLE 1, -- Variational ]ormulatio~ o] the simplest initial value problems 

bilinear form 

T g' 

<u, v>c~ f u ( T - - t ) v ( t ) d t ~  f u ( t ) v ( T - - t ) d t  

o o 

] J L ] 
] P _ [du(t) 

/flu] = ~ ]u(~'--t)[-  ~ --21(t) at 

1 ° 
~(0) = o 

i ~2~ = 0 

du(t) 
- d T  = i(t) 

u ( o )  = o 

T 21 

G[u]= 2.] dt { --  ) 3 
0 o 

,~(o) = o 
1 

l (~G = 0 

] d~u(t) 
~ - =  l(t) 

u ( o )  = 0 

u'(O) = o 

of the functional is different from tha t  of the originary problem the funct ion u*(t) 

tha t  makes the functional s tat ionary is not, in general, a solution of the initial value 

problem because it does not  satisfies a priori the forgotten initial condition u ' ( 0 ) =  0. 

PROBLE~ 3. -- Give a variat ional  formulation to the initial value problem 

(4.33) 

d 
~t(t) = o 

O < t < / '  u(t)~C~[O, Y] 

u(O) = a (a  :/: O) .  

On account  of inhomogeneous boundary  condition the operator is not  linear 

(linearity of an operator requires the l ineari ty of the domain). The Ggteanx deri- 

vat ive  of this operator is d/dt applied to ~,(t) such tha t  ~(0) = 0. Then the Gate- 

aux derivative is a linear operator tha t  satisfies the symmet ry  requirement with the 

convolution bilinear form. 
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Since the  domain  does not  contain  the  null e lement  we mus t  use relat ion (2.22). 

P u t t i n g  uo ( t )=  a we ob ta in  

(4.34) 

~ = 1  0 

a]dt [a + ~(u--a)]dt  d~ 

t h a t  af ter  some simplifications becomes 

(4.35) 

T 

H[u]  =: ½fu(T - -  t) u ' ( t )dt--  ½au(T) 

0 

where we have  omi t t ed  the . inessent ia l  addi t ive  constant  /g[a]-+-½a% The stat ion- 

a r i ty  of this funct ional  wi th  respect  to a rb i t r a ry  var ia t ions  of u(t) t ha t  vanish  for 

t = 0 (i.e. 6 u ( 0 ) =  0) leads to the  Euler-LagTange equat ion and to the  ini t ial  con- 

di t ion (4.33). I n  fact  

(4.36) 

T 

(~H[u] -= f au( T - -  t)u'(t)dt + [½u(O) au(t) - -  ½u( T) au(O)] - -  ~-aau( T) 

0 

f rom which the  s t a t emen t  follows. 

PROBLE~ 4. -- Give a var ia t ional  formula t ion  to the  l inear ini t ial  value prob lem 

(4.37) 

d 
~t uJ,(t) = ~,~ a,,7~uk(t) + fh(t) 

1 

uh(O) = b~, , al~ = a~ 

O~<t<T,  u(t) e C~[O, T] 

where  a~,~ is t ime- indipendent .  

Because of the  relat ion ah~--ak~, and of the  init ial  conditions we can use the  

bi t inear  fo rm 

(4.38) 

The opera tor  

(4.39) 

(u, v)~ = uh(T--t)v~(t)dt h 

0 

n 

1 

2 3  - A n n a l i  d i  . ] I a t e m a t i c a  
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is symmet r i c  wi th  t ha t  bi l inear fo rm and then  a var ia t ional  formula t ion  can be given. 

The funct ional  can be found with  formula  (2.22): on ob ta in  

(4.40) 

T 

1 

0 
'2 

1 
@ 

This var ia t ionM formula t ion  can be useful in l inear  ne twork  theory  and  in the  

theory  of small v ibra t ions  around a configuration of stable equil ibrium, 

PI~OBLE~ 5. -- Give a var ia t ional  formula t ion  to the  integral  equat ion 

(4.41) 

T 

u(t) ÷ f k ( t -  = fit) 
0 

with  convolut ion kernel.  The  opera tor  is l inear and  then  we can use formula  (2.23). 

Then  the  funct ional  becomes 

I=I T T T 

t = 0  0 0 0 

z z z z 

0 0 0 0 

This is the funct ional  whose Euler -Lagrange  equations is the integral  equat ion (4.41). 

5. -Comparison with other methods. 

Le t  us compare  the  three  methods  examined  a t  § 3 with the  me thod  exposed in 

this paper .  

W e  examine  the  three me thods  in the  reverse order. 

a) Gurtin method o] convolution. 

The t r ans fo rmat ion  of the  initiM value prob lem into an  equivalent  bounda ry  

value p rob lem governed b y  an  integro-differentiM equation,  t h a t  is character is t ic  

of Gur t in  method ,  become superflous. We  can deduce direct ly the  init ial  value 

prob lem in differential fo rm f rom the s ta t ionar i ty  of a funct ional  (see table  3). 
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T~L]~ 2. - Comparison among different methods (see next table). 

® 

O(x, o) = ~(x) , O(x, t)I= = ~(x=, t) 

@ z j j j  j [  
V 0 0 

O(x, t)[= = ~(x=, t) 

t 

2 ( k~(x) O ( x , t - - 3 ) d r d V  f.'If 
V I 

® F[O, ~] = f f f f {vq~(x, t). VO(x, t)-- ~O(x, t) ~ }  dt~v--f f f lc~(x) ~(x, O) d~ 
V 0 V 

O(x, t)l= = fl(x=, t) , q~(x, t)l= = b(x=, t) , q~(x, T) = a(x) 

(~ Transient heat con- 

due~ion problem 

I v=0(x, t ) -  k ~O(x, ) = o 
at 

O(x, O) = ~(x) 

O(x, t)l= = ~(x=, t) 

(3) Adjoint problem 

V~tp(x, t) + k ~q~(x, t) 
~t 

~(x, T) = a(x) 

~(x, t)t= = b(x=, t) 

- -0  

(~) Integrodifferential problem equi- 

valent to the problem (~ 

t 

f v~O(x, ~) -- kO(x, t) = k~(x) dv 

0 

O(x, t)r= = ~(x=, t) 

TABLE 3. - Comparison among different methods (see preceeding table). 

I Gu.i. ,.et~odl 
functional (~ ] 

1 
dFt(O) = 0 

l 
integro differ. 
problem ,(~,.,, ,} 

equiralent 
"( 'problems )~ 

]'Preseutmethod I IAdjointeq. methodl 
functional (~  functional (~  

a~[o] = o ~[o, e] = o 

J h~at cond.c,,o. 1~ I odjo,., 
,.=.m L-o=em 
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The Gurtin method is substantially simplified. In  particular if we search for a va- 

riational formulation for the intergro-differential equations associated with the ini- 

tial value problem, using the convolution bilinear form <u, v>~ we obtain exactly 

Gurtin's funetionals. In this sense Gurtin method becomes a particular case of that 

presented here. 

b) The adjoint equation method. 

We now show that  this method is automatically absorbed in the method 

presented here. 

Since the heat  conduction problem must be valid for every O<t.~T,  is valid 

also at the instant ~ = T - - t  

(5.1)  

~O(x, T - - t )  
V20(x, T - - t ) - - k  

~(T- - t )  

O(x, T--t)i~=~-o = o 

O(x, T - - t ) l ~  = o 

- l(x,  T - - t )  

where x denotes the set of three variables x, y, z. Tow if we put 

(5.2) ~(x, t) ~ O(x, T --  t) g(x, t) ~ f(x,  T --  t) 

the heat conduction problem can be written 

(5.3)  

v-°~(x, t) + k ~ ( x '  t) ~t -- g( x, t) 

~ ( x ,  t)l~=~ = 0 

~ ( x ,  t)]~ = 0 ,  

tha t  is exactly the adjoint problem. Then the function ~ whose physical meaning 

does not appear to be found up to now, is the temperature 0 o] the same physical 

system evaluated at the instant T - - t .  

Tow if we ignore this identification and multiply by ¢$?(x, t) the heat equation 

(3.5) and by ~O(x, t) the adjoint eq. (5.3) and integTate on [0, T] and on V we obtain 

T 

~W--t(x,t) + 

17 o 

Ot g(x, t) dtdV = . 
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After an integration by parts this functional reduces to 

(5.5) 

+k [~(x, t)~°(~t~'t-)- + . . . . . . .  

T 

V 0 

~q~(x,~t t) cSO(x, t)] + [5~(x, t)f(x, t) + 50(x, t)g(x, t)]} dtdV + 

+ [c3~o(x, t) n. VO(x, t) + dO(x, t) n 'V~(x, t)]~'dV = 0 .  

V 

If  we evidcntiate the <( ~ >> operator we obtain 

T 

(5.6) --  Vtp(x, t).VO(x, t) + k~v(x, ~t + kO(x, t) 3---7-- + 

V 0 

+ ~( . ,  ~),(., ~)+ o(=, ,, .(., ,)] ~, +fff[~<=,,)~O~=,,)~n + DO(x, t)~JoOq~(x' t)]~ 

V 

dt V = 0 . 

This is the usual functional for the pair of problems (5.5) and (5.3). l~ow if we 

do the identification (5.2) and use the commutative property of the convolution, 

equation (5.5) becomes 

(5.7) 

T 

V 0 

r DO(x, t) 
2 | VO( x, T--t). VO( x, t) + kO( x, T--t) 

~t t_ 
+O(x, T-- t) l (x , t )]dt=O 

on account of 

(5.8) tO(x, T - - t ) - } - n  + O0(x, t) 

V 

The functional in (5.7) is exactly those that we obtain using the convolution 

bilinear form: its Euler-Lagrange equation is the heat conduction equation. Then 

the addlug of the adjoint equation becomes superfluous once we have recognized 

that the adjoint function is no more than the same function 0 evaluated at the 

time T - - t .  With this identification the functional obtained with that  method is 

exactly that  obtained applying directly the convolution bilinear form to the heat 

equation. 

Then the method of adding the adjoint equation inaugurated by  Morse and 

Feshbaeh has no more reason to be used. 

a) The method for ]ormally sel]adjoint operators. 

This method is not completely absorbed, at present, in the method presented 

here. The inclusion is valid for linear equations with constant coeffients. 



358 ENzo To~TI:  On the variational formulation for l i ~ a r  initial value problems 

I n  spite of this,  such class of equutions is large enaugh for the  equat ions  of 

physics.  So wuve equations,  Maxwell  equations,  Sehrodinger,  Klein-Gordon,  Dirac  

equat ions are of this kind. The nonlinear case remains  to be  explored. I n  par t icular  

we h~ve not  sucee4ded in doing n var ia t iona l  formulut ion  t h a t  be  ~n a l t e rna t ive  to 

t h a t  of Humi l ton  ( tha t  deals wi th  nonlinear  differential equations) ~hat e l iminate  

the  unplea, sant  features  exposed in § 3. 
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