On the variational formulation for linear initial value problems.

Enzo TontI (Milano) () (**)

Summary. — The paper shows the key pluce of the choice of the bilinear form in order to give a vari-
ational formulation to a given problem. In particular it is shown how the use of a convolution
bilinear form makes possible a variational formulation for linear imitial value problems.

A eritical survey of the three main methods that was devised in the past to solve the same
problem is dowe.

Sunte. — La nota mette in evidenza il ruolo fondamentale della scelta di una forma bilineare al
fine di dare formulazione variazionale ad un dato problema. In particolare ¢ mostrato come
Puso di une forma bilineare di convoluzione renda possibile la formulazione variazionale
dei problemi ai valori iniziali.

8% fa un esame critico dei tre principali melodi che sono stati escogitati nel passato per
risolvere lo stesse problema.

1. ~ Introduction.

A variational formulation for initial value problems is not possible in the classical
context of the calculus of variations. The reason lies in that we persist to use as
gealar produet that given by

(1.1) fu(t)v(f,)dt

]

or one of its variants (with weight factors, extension to more variables, ete.). It is
easily seen that with this scalar produet initial value problems do not fit the neces-
sary conditiong in order that a variational formulation does exist.

Things change when we decide to abandoun the scalar product (1.1) and to intro-
duce other bilinear forms as, for ex. that given by the convolution of two funetions

(1.2) fu(T—t)v(t)dt .

k]

With this bilinear form, in particular, we can do variational formulation to initial
value problems.

(*) This work has been sponsored by the Consiglio Nazionale delle Rieerche. Author
address: Istituto di Matematica del Politecnico, Piazza Leonardo da Vinei, 32, 20133 Mi-
lano (Italia).

(**) Entrata in Redazione il 19 novembre 1971.
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Then the theorem asserting that in order that an equation be the Euler-Lagrange
equation for some functional it is necessary that its operator be symmetric (if linear)
or its Gateaux derivative be symmetric (if nonlinear), must not be considered so
severe as it has been up to now. If an operator is not symmetric with a given bili-
near form it can becomes symmetric with anofher bilinear form. Then the choice
of different bilinear forms becomes the key to try to give variational formulation to new
class of equations.

In §2 we give a brief account of the ideas and tools for a modern foundation
of caleulus of variations stressing the role of bilinear forms, adjoint of an operator,
symmetric operators, circulation of an operator along a line in the function space.

In §3 we examine the various methods devised to give variational formula-
tion to initial value problems.

In §4 a convolution bilinear form is introduced and it is shown that linear
operators that deseribe initial value problems become symmetric with sueh bili-
near form. Then a variational formulation becomes possible.

In §5 we make a comparison of the present method with other existing methods.

2. — The essential of caleulus of variations in operator form.

2.1. Bilinear forms.

Given two vector spaces U and V, with the name bilinear form or bilinear func-
tional is meant a functional Flu, v] that is linear in % and linear in ¢ with we U,
v€ V. Once a bilinear functional is introduced we say that the two vector spaces
are put in duality {17, p. 88].

U v

<UL, U>

Fig. 1.

The duality is called separating in v if, given an arbitrary w4 €U with u =0, it exist
at least one v such that {u,v)>+0 [17, p. 88]. The reason for the request that
the duality be separating lies in the fact that if (u, v> = 0 for every » that belongs
to a dense subset of U then must be necessarily v = 6. In the sequel we shall
consider only dualifies that are separating with respect to « and ».

To choose a topology for both spaces the natural request is that they be such
that for every linear functional {[#] an element v, can be found such that fu]= (v, v,
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and analogous requirement on V. Last request is the analogous of Riesz representation
theorem. Such topology will be said compatible with the duality [18, p. 321[19, p. 152].

ReMarK I. ~ In books of functional analysis the concept of dual space of a given
vector space is more frequent than that of spaces in duality. The algebraic dual of
a linear space is the space of all linear functionals defined on that space; and the
topological dwal of a topological linear space i the space of all linear and conti-
nuous functionals defined on that space. Now with the advent of the theory of
spaces in duality, one of the great merits of Bourbaki group {17, p. 88], the concept
of dual space can be absorbed in that theory. From the physical point of view
the idea of putting two spaces in duality is more basic than that of dual space.
So in mechanies we learn displacement, forces and the bilinear form that gives the
work (f, s> = Zk .5, in this order. This makes useless to conceive a foree as a
«linear functional» or «linear form » on displacements.

2.2 The adjoint of an operator.

a) Let us consider a linear operator I from a linear space U to a linear
space U’ and two more vector spaces V and V' that we put in separating duality
with U and U’ respectively, be means of fwo bilinear forms

(2.1) Ly vy, U500,

For the two pairs of linear spaces in duality we choose topologies that are compa-
tible with the dualifies (see for ex. §4.2).

The adjoint of the linear operator I is by definition, a linear operator I from
V' to V that satisfies the identity

2.2) (Lu, ', = (u, In'y,

for every we U. The adjoint £ is a mapping from V' to V i.e. Lo'= v (see fig. 2).

U \i
<UL

3 gat
<W,v >}I

Fig. 2.
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We stress the fact that to define the adjoint of an operator we need two bili-
near forms and four spaces.

b) A particular case arises when we have a linear mapping between two spaces
that are put in duality by the bilinear form <{(u,v)>. In such case the adjoint of
the operator L satisfies the relation

(2.3) (g, Dty = Ly, ur>

and the corresponding diagram is shown in fig. 3.

Uy

¢) Another particular case arises when U and V are two Hilbert spaces and
the bilinear forms are the scalar products in the two spaces, (#;, %;), and (v,, v},
(fig. 4). The adjoint of L satisfies the relation

(2.4) (Lu, v),, = (4, fw)I

U=V

-~ AN
U=U’= v=v'

Fig. 4. Fig. 5.

M

d) A last particular case arises when U is an Hilbert space with scalar
product (u, u,) and L go from U to U (fig. 5) then the definition of adjoint (2.2)
reduces to

(2.5) (Lt s uy) = (uy, L~“’~2) .

This is the most common definition of adjoint of a linear operator [20, p. 431
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Definition given in o) and the three particular cases b), ¢), d) require that the
domain of L be all the linear space U. Differential operators defined in IL,-spaces
(more in general in I -spaces) cannot have as domain the whole space but a dense
subset D(L) of U. Moreover they are not continuous in such spaces. In this case
the problem arises to define the domain D(L) of the adjoint operator L. By defini-
tion the domain of I is the set of elements v’ such that the functional {Lu, ¢"> be
continuous in spite of the discontinuous character of L.

2.3. Symmetric and selfadjoint operators.

A linear operator is called symmetric with respect to a bilinear form (w,v)> if
it satisfies the condition

(2.6) sch

i.e. if §is an extention of the operator §: this means that D(S)> D(8) and that
Su = Su for ue D(8).

An operator is called selfadjoint, with reference to a bilinear form, if § = S.

The symmetry of an operator can occur only when the operator works between
two spaces in duality i.e. in the case b) and d) of §2.2.

An operator is called formally selfadjoint when the corresponding formal dif-
ferential operator is equal to its adjoint [30, p. 1287].

Among the properties of symmetric operators we shall use the following:

a) The square of a symmetric operator is also symmetrie.

PROOF. — From SC 8 follows for every u, veD(S)
(2.7) o, B2y = v, S8uy = {(Sv, Su) = (8%, u) .

b) The inverse of a symmetric operator is also symmetric.

Proor. - From {v, Su)> = (Sv, ) putting « = 8-, v = §-1g follows {(S1g,[> =
=g, 87f>.

¢) If 8 is linear and symmetric and %, is one solution of the problem Su = f
then #, is critical point of the functional

(2.8) Flul = §{u, Suy —<u, >

ie. 0F[u]l = 0 and viceversa [21, p. 75].

Hg

d) If the symmetric operator § is positive i.e. (%, Su)>>0 then the func-
tional (2.8) is minimum at %, i.e. 62F[u]]u0>0 [21, p. 75].
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2.4. Conservative vector ficlds.

Caleulus of variations requires as a fundamental tool a bilinear form, i.e. a bilinear
functional. To show this we can sbart with the diserete form of the caleulus of varia-
tions, i.e. the theory of comservative vector fields in finite dimensional spaces. Nothing
is lost in generality and much is gained in clarity if we limit ourselves to fields
in the ordinary three dimengional spaces R®.

Let us eonsider a veetor field v=v{u) where « is the radius vector, and be Qc R®
a convex (1) region in wich the vector field is defined. In order to infroduce the
concept of conservative vector field we must define the circulation of a vector along
g line and this requires the introduction of a bilinear form as

(2'9) <“7 /U> = P e+ Oy Uy T Uy

A line is described by a variable vector 5 ==n{l) where 4 a parameter that we
choose for convenience so that A =0 for 7 =4, and 1 =1 for =1,

A=1

(2.10) € =[<an(z), ola(H -

s

The circulation depends, in general, from the line connecting the two points «,
and %,: when the circulation between two arbitrary points does not depends from
the line connecting them we say that the vector field is conservative.

Choosing a fixed element u, in the region in which the field is defined, we can
consider the cirenlation from u, to whathever « in the region and this circulation
depends only on u (for fixed u,). In this way a number can be associated to
every % and we have constructed a scalar field. The function f(u) so defined is
called the potential of the vector field. Since the region f2 is convex we can
choose stright lines to calculate the circulation from w, to u. Then y(4) = %, +
- A — 1) and

dn

(2.11) dn(A) = 77 Al = (u— ) dA .

Relation (2.10) then gives

A=1

2.12) fl) = flaw) + [ <l — ), oLy + Al — ) D2
A=0

(1) A convex region is such that for every pair of points contained in it all points of
the segment of stright line connecting them belong to the region. Then a convex region is
simply connected. Particular convex regions are the affine manifolds: in R? these are planes
that does not contain the origin.
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In order that a vector field be conservative in the region (2 the circulation must
vanish along any closed path. In particalar this must be true for infinitesimal elosed
paths as the one indieated in fig. 6.

Simple calculations [2] show that this path-independence is equivalent to the
requirement that the vector field satisfies the condition

(2.13) > Onla P = > Ul Pr
A .k

where

(2.14) L% g Up -

Condition (2.13) amount to the request of symmetry of the matrix a,, formed
with the partial derivatives (2.14). If the vector field satisfies econdition (2.13) at
every point of the region £ in which the field is defined, and the region £ is simply
connected then the circulation does not depends from the path for every line
contained in the region .

Note that the condition of symmetry of ¢;, implies that

(2.15) Cup—Vrp = 0

that is the statement that the curl of the vector field vanishes. Using an operator
notation relation (2.13) can be written as (see [2])

(2.16) Lpy v,y = {p, vgD .

A fundamental property of conservative vector fields (that becomes the key of
the caleulus of variations) is that the points in which the vector field vanishes
are the points in which the potential is stationary and viceversa v(u,) = 0=
5 0f(uy) = 0 [2, p. 143]. These are called critical points [1, p. 77).

22 — dnnali &0 Matemalica
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REMARK IX. — An essential point that is not commonly stressed in books on eal-
culus of variations is that the circulation depends from the bilinear form chosen.
Then if we choose another bilinear form as for ex.

(2*17} <u§ 17>c = 4y Vg - Uy Uy - U Ca

we can define a new circulation with this bilinear form; then we can expect that some
vector field that was not conservative with respect to the old bilinear form (2.9)
becomes conservative with respect the new bilinear form (2.17). This indicates that
the fact that a vector field be conservative is not an intrinsic property of the vector field
but depends from the bilinear form wused.

It is antor’s feeling that this remark may becomes the starting point for an inde-
finite enlargement of the field of application of the calculus of variations in future.

These considerations extend from spaces of finite dimensions to functions spaces
where a nonlinear mapping v = N{u) can be considered as deseribing a vector field
on a function space U. The domain of the nonlinear operator N will be assumed to
be a convex region D(N) of the function U-gpace.

In this case the bilinear form corresponding to (2.9) is

(2.18) Cuy vy = f w(P)o(P)dQ .
2

A line in a function space becomes a one parameter family of functions #(P, 4).
The circulation becomes

A=1
(2.19) 0 =[<on(P; 2), Nin(P3 2D
A=0
where
_ o
(2.20) On(P, B) =z di.

A stright line from u,(P) to «(P) is given by
(2.21) (P, 4) = uo(P) - Alu(P) — uo(P)]

and the potential is [1, p. 58]

yE
(2.22)  Flu]= Flwn] +[u(P) = w(P), N{ua(P) + Mu(P) —w(P)}>d2

=0

If the domain of the operator N(u) contains the null element 6 (this surely hap-
pens if the operator is linear) then we can simplify the formula choosing %.(P) = 8.
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Then
J=1
(2.23) Flu] = F[6] +f<u(P), NDu(P)dA .

A=0

The condition of path-independence is reduced to the requirement that [1, p. 59]

(2.24) Cp, Nogd = {g, N,)
that states the symmetry of the operator N ; defined by

(2.25) lim YD =N _

e—>0 &

and called Gateaux derivative of the nonlinear operator N[1, p. 561

The fulfillement of relation (2.24) is equivalent to the statement of path-
independence of the circulation for whathever line in function space if the domain
of the operator is simply connected {1, p. 32]: since we have chosen a convex
domain this requirement is fulfilled.

RemMark I1I. — Onee more we observe that the fulfillement of relation (2.24)
depends basically from the bilinear form cehesen. Then if we choose a bilinear form
different from (2.18) we can hope that operators that are not of potential kind with
that bilinear form become potential now.

Then when we have an operator that does not satisfy the symmetry condi-
tion {2.24) with a given bilinear form one of the first possibility to be explored is the
change of the bilinear form. Phrases as « the adjoint of this operator is that ope-
rator » have a meaning only for a specified bilinear form.

In sec. 4 we present a kind of bilinear form that makes symmetric first order
differential operators; this opens the way to give variational formulation fo initial
value problems, usually excluded from variational treatements.

Before this we give a survey of the three main methods devised to give varia-
tional formulation to initial value problems.

3. — Survey of existing methods.

Various attempts were made in the past and in recent years to give a varia-
tional formulation to inital value problems using different methods. The most
used of them are:

a) a method for formally selfadjoint operators;

b) the method of adding the adjoint equation;
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¢) Gurtin method of convolution.

We summarize briefly these methods in order to compare them critically (2).

3.1. The method for formally selfadjoint operators.

This is hystorically the first of the tricks devised to overcome the difficulty
mentioned. Let the initial value problem be described by a linear operator that
is formally salfadjoint with the wusual bilinear form

7

(3.1) qhwzpmmmm.

This is the case of the operator of the following problem

a2 s
=5 ¥ =1(0) gt =4g(0)
(3.2) u(0) = 0 whose adjoint is o(T) =0
w'(0) =0 ?'(T)=0.

The operator is formally selfadjoint because its formal part, i.e. d*/df* is equal
to the formal part of its adjoint, but the domain of the operator D(L) is neither
equal nor contained in that of its adjoint, and then it is not symmetric (see § 2.3).

The method from long time devised is that of ignoring the initial eondition
%'(0) = 0 and add an artificial condition «(T)=0. In this way the original initial
value problem is transformed into a boundary value problem that, this time, is
governed by a symmeiric operator

2 dg
& =100 L oty g1t
3.3) whose adjoint is (with
. #(0) =0 the bilinear form (3.1)) 2(0) =0
wT)=0 o(T)=0.

Of course the solution of the problem (3.3) is not a priori solution of the
problem (3.2) (3).
Problem (3.3) admits a variational formulation as follows: the solution of the

(2) In this eritical survey we omit the necessary details on the functional clags of fune-
tions and on the kinds of function spaces: these matters will be examined in following sections.

{8) For example if f(f) = 1 and 0<i< 1 the unique solution of problem (3.2) is u(t) = 32
while the unigue solution of the corresponding problem (3.3) is u{t) = §i{t—1).
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boundary value problem (3.3) makes stationary the functional
”

(3.4) Plu) = [{31w' (0 — f0yu)}at
0

among all functions «(¢) that satisfy the same boundary conditions of problem (3.3).

The unique advantage of this variational formulation lies in that the Euler-
Lagrange equation of the functional (3.4) is the differential equation of the
problem (3.2).

But on account of the artificial change from an initial to a final condition direct
methods cannot be applied to find the solution of the originary problem (3.2), and
existence or uniqueness of the solution of (3.2) cannot be inferred from the
funetional.

Briefly stated: the functional (3.4) does not give a variational formulation to the in-
itial value problem (3.2) but to the boundary value problem (3.3) artificially associated to it.

This procedure extends also to nonlinear operators whose Gateaux derivative
(see formula 2.25) is formally selfadjoint with the bilinear form (3.1).

Even with this handicap this technique is much used in mechanics and theore-
tical physies: Hamilton prineciple, the stationary action principles of electroma-
gnetism, quantum mechanics, general relativity, ete. rest upon this artificial tran-
formation of an initial to a boundary value problem (2).

3.2. The method of the adjoint equation.

The previous technigue of changing initial to boundary value problem cannot be
applied when the operator is not at least formally selfadjoint. This is the case of the
Fourier equation of heat conduction that contains first order partial time derivatives.
This is also the case of many dissipative systems charaterized by irreversible
phenomena.

One method goes back to MorsE-FESHBACH [4, p. 298] and consisfs in the con-
sidering alongside with the originary differential equation another artificial equation
with the adjoint operator (then with final conditions). So for Fourier’s equation

a0, o) —x 220 _ gp ag(e, 0+ 525D _ gip g
(3.5) 6(P,0) =0 T @, T =0
6(P7t)i»€:0 (p(Pat”s:O

where P belong to a region @2 whose boundary we indicate with § and 0 <t <CT.

(*) We remember that Hamilton principle states that the natural motion is privileged
among those conceivable motions that have the same initial and final configuration, then
ignoring the physical initial conditions on momenta.
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More in general

Lu=#f be the given equation
{3.6)

In=yg is the adjoint equation .

These two equations can be cast in the form of the matrix-differential equation

6 (2 ()= 0)

whose operator is symmetric [5, p. 116}, and then a variational formulation becomes
possible. The functional can be found with a general procedure [2, p. 159] obtaining

(3.8) Flu, v] = <{v, Luy —{f, vy —{g, u>

About this expedient Morse-Feshbach say « By this arbitrary trick we are able to
handle dissipative systems as though they were conservative. This is not very sati-
sfactory if an alternate method of solution is known, but it will be necessary, in
order to make any progress when we come to study dissipative fields, as in the
diffusion equation ». {4, p. 299].

From the physical point of view the great problem is to justify the «mirror»
equation. Which meaning can be attached to the adjoint function ¢(P, 1), to the
function ¢{P, 1), to the final condition ¢(P, T') = 0?

Various attempts were made in specific fields where this expedient is used, as
in the domain of reactor physics for fransport equation [6, p. 85], [7] to find pos-
sible meanings of these adjoint quantifies. Apart from some local success the
method reveals its character of mathematical trick.

For applications of this method see [23], [8], [9], [25]. The troubles of such
method are discussed in detail in [24, p. 245]

3.3. Gurtin method of convolution.

In 1964 Gurriv [10] showed how the convelution of two function «(t) and »(f)

3
(3.9) 2(1) = |u(t— v)o(t)dr

9
permits to give a varjational formulation to the linear initial value problem. Gurtin
procedure is very sophysticated: we summarize here the fundamental ideas. ILet
us consider for istance the wave equation

1 2P, 1)

App, 1) — 5 =202 =0
PP, 0) = (P)
(3.10) P 1)
WD —pe)
(P(Qy t)=0




Bxzo ToNTI: On the variational formulation for linear initial value problems 343

where for simplicity we consider homogeneous boundary conditions. The first step
is to replace the given problem with an equivalent one. To this end a preliminary
Laplace transform is done on the function ¢(P, ). Putting
(3.11) &P, 5) & J'exp (— st) (P, t)dt = L[]

0
equation (3.10) becomes

1 1
(3.12) AD(P, ) — 5 s2Q(P, s) = — [so(P) + B(P)].
Now we divide the equation by s? obtaining
1 1 11 11
(3.13) s AD(P, s) —= DP, ) = —%; a{P) — g (P).

At this point if we take the inverse transform £- @] we no longer obtain deri-
vatives in the second term because of the disappearence of the function s? in the
gsecond term. Because the inverse transform of the product of the two funec-
tions 1/s? and AG(P, s) is equal to the convolution of the two primitives according

to the rule
i

(3.14) £ [ f w(t — f)'()(‘{}d’{} = Clu(t)]- Llo(t)]

0

then the inverse Laplace transform applied to eq. (3.13) gives
k3

(3.15) f (t— ) dg(P, r)d’r-—% @(P, 1) = — 37 B(P) —052 ta(P) .

2

o

The equation obtained is now integro-differential (*). The functions (P, t) that

(5) Accidentally we observe that equation (3.15) can be obfained more easily without
the use of Laplace transform as follows: writing eq. (3.10) as
SPp(P, t)
o2
and integrating twice on ¢ we obtain
13
PP, 1) = czf(tw ) Ap(P, v)dv + A(P)t + B(P)
0
where use was made of Dirichlet relation

= ¢* Ap(P, t)

it i
Gfﬂf f(r)drdt xof(t——t)f(r)a'r.

Imposing the initial conditions given we find A(P) = o(P), B(P) = f(P) eq. (3.15) is thus
obtained.
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satisfy this equation automatically satisfy the two initial conditions in (3.10). Then
the given problem is equivalent to the problem: solve the eq. (3.15) with the
boundary condition ¢(§,1) = 0.

Now we look for & variational formulation of eq. (3.15). The convolution kernel
in eq. (3.15) of the integro-differential equation is not symmetric with respect to
the ordinary bilinear form (3.1). But it becomes symmefric with respect to the
bilinear map

3

(3.16) f f f { PP, t— 1) p(P, )dvdV

v o

then, as can be shown, we can deduce eq. (3.18) by the stationarity of AJ¢]
given by

611 Adel=[[] [o(P, 1= Dip(P, 7) —20P) —27B(P)] +

+[] f {82“ — TJV??{P, 7—0) V(P G)da} azav.

Aol is, for fixed ¢, a functional of ¢.

The stationarity of the functional with respect to the functions ¢(P, t) that satisty
the boundary condition ¢(S,t) = 0 lead to eq. (3.15) as Euler-Lagrange equation.

This procedure was used extensively be Gurtin himself [10], [11], {12] and
others [13], [14], [15], [16]. Functionals obtained by this method are often com-
plicate. Nevertheless the method has on the previous ones the merit that neither
artificial boundary conditions (as in the method @)} nor artificial differential equa-
tions (as in the method b)) are added. Only manipulations on the given equa-
tions are done. The functions that make stationary the functional are exactly
those that satisfy a problem equivalent to the one given ab the beginning.

This fact indicates that convolution is a natural tool to treat initial value pro-
blems. Previous Laplace trasforming is not necessary as shown in footnote (°) and
then it has not essential role in the method. It becomes natural to try to simplify
this method to obtain directly the given equation.

A progress in this direction arises when we realize that a variational formula-
tion requires the symmetry for the operator and this in turn is dependent on the
kind of bilinear form. Then if we want to give a variational formulation to initial
value problems we must find a bilinear form, if any, that makes symmetric the
corresponding operator. A bilinear form using convolution of two funections gives
the hope to be what we need. As a matter of fact we show in this paper that this
is the ecase.

In order to give a detailed and comprehensive exposition of the new method
we summarize some useful concepts.
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4. — The convolution bilinear form.

4.1. The convolution product of two vectors.

Given two finitely dimensional vector spaces U and V, both of the kind R", an
usual bilinear form on the elements of the two spaces is

4.1 oy ) = Uy ¥y + Bg Vs A+ e U 1 Vpg -+ UV o
We shall introduce another bilinear form, that we call convolution of the two wvectors
(4.2) (ty 00 U 0 A Uy e Uy 0y U,

With such bilinear form the two spaces U and V are put in duality. We show that
this is a separating duality. In fact if (u, 0D, =0 for every u, fthis implies that
v=>0 a8 can be seen considering for w successively the vectors (1,0,0..0)
0,1,0,0, ...0), ... (0,0,...0,1).

Now a matrix that is symmetric with respect to the secondary diagonal, like,
for ex.

b

(4.3) L=

is symmetric with respect to the convolution bilinear form.
Particular cases of such matrices are the following

—~1 1 0 0 0 1 —2 1 0 0
0 —1 1 0 0 1 —2 1 0
(4.4) 0 —1 0 0 o0 1 —2 1
0 0 0 —1 1 60 0 0 1 —2
0 0 0 0 —1 o 0o o0 o0 1

that are the finite difference forms associated with the differential operators d/dw
and d*/dx® respectively.



346 Enzo Tontl: On the variational formulation for linear initial value problems

This shows in a very incisive way that the concept of symmetry of a matrix
depends strongly from the bilinear form we choose. Usually a real matrix is called
symmetric if the entries that are symmetrically disposed with respect to the main
diagonal are equal: this definition is based on the use of the bilinear form (4.1).

As consequence of the example shown we are convinced that the notion of sym-
metry for a matriz is not an priori property but has a meaning only with reference to
a preseribed bilinear form. In particular it cannot be based on the symmefry of the
entries of the matrix with respeet to interchanging rows with columns.

A relevant difference between the two bilinear forms arises when we try to con-
struet with them a secalar product (u, v) between two elements of the same space. In
order that this be possible, two additional properties must be satisfied:

(4.5) (w, v) = (v, u)

(4.6) (%, w) >0 and (w,u) =0=u=20

Now the first of these properties is satisfied by both bilinear forms: in the case of
convolution bilinear form the property follows from the identity

kg n

4.7} DU Vs = g Uty U -

i 1

On the contrary the second property is satisfied by the first bilinear form, as is well
known, while it is not satisfied by the second bilinear form. To show this a counter-
example is sufficient: let % = (1, 2, — 3) then

(4.8) <y up, = (1)(—3) + (2)(2) + (—=3)(1) = —2<0.

Then the convolution product of two vectors cannot be faken as a sealar product
of two elements of the same space, i.e. with a convolution bilinear form we cannot
construct an Hilbert space (¢). Moreover we cannot construet a Banach space,

4.2, The convolution bilinear form for functions.

The analogous with functions of the two bilinear forms (4.1) and (4.2) are
respectively

T

(4.9) ity vy = f u(t)o(t)dt

() Spaces with a scalar product that does not satisfy condition (4.6) are of some interest
in physies particularly in relativistic quantum mechanics. For the mathematical literature
see [27], [28], [1, p. 89]. For applications in physics see [29].
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T

(4.10) Cuty v, = f w(T — 1) o(t)dt .

o

If U and V are two vector spaces and ue U, veV, then everyone of these
bilinear forms put the two spaces in duality. The duality is separating as can easily
be shown. A topology compatible with the duality for both spaces is U = L [0, T]
and V= LJ0, T] with 1/p + 1/g=1. This choice assures that the bilinear forms
are both continuous in % and » and moreover that every linear functional in #
(or in v) can be represented by means of the bilinear forms.

Let us consider the operator

a

d

(4.11) ryo<i<T

u(0) =0

u(t) € C1[0, 1.

We search its adjoint with the scalar products (4.9) and (4.106) respectively. Is

(4.12) {u, Lod :fu(t)'v’(t)dt :f— w' (Byu(t)ydt + [u(T)v(T) — u(0)v(0)]

(4.13) {uy L), =fu(T — ) @%ﬁ dt :f d%u(t)v(l’ — i + [w(0)o(T) — w(T)v(0)].

Then the adjoints of the operator L are respectively

_4 d
_ di di
(414 L= o(T) = 0 L= 9(0) = 0
v(f) € A.C. o(f) € A.C.
with {u, v> with <{u, v,

where A.C. denofes the class of absolutely continuous functions. Then while in
the first case the operator L is not symmetric, in the second case it is, since
Lclk (7). Thus we discover that the convolution bilinear form makes symmeltric the
operator d/dt with homogeneous imitial conditions. Since the symmetry is necessary

(") The inclusion sign depends from the fact that functions of elass Ci0, T] form a
subset of funetions A.C. [0, 11.
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condition in order that a linear operator be the gradient of a funeciional and it
becomes sufficient if the domain is symply connected [1, p. 32], it follows that in
this way one can give a variational formulation to linear initial value problems [22].

The functional is found with formula {(2.23): see §4.1. Let us consider the
operator

ﬁ

at?

%(0) =0 O<t<T

w'(0) =0 u(t) e C*[0, T']

(4.15) Q =

that appears in initial value problems for second order ordinary differential equa-
tions. Since this operator is the square of the symmetric operator L given in (4.11),
i.e. @ = L* it follows that it is also & symmetric operator (see § 2.3)

ReMark IV. — The operators L and @ are not positive on account of the inde-
finite character of the convolution bilinear form: then the variational formulation
leads to critical points that are not minima. Since the inverse of a symmetric
operator is also symmetric (see §2.3) and the inverse of a differential operator is
an integral operator we are lead to examine which kind of integral operators arises
by inversion of operator (4.15). Now if

2

(4.17) Lty =fw),  w0)=0, w(©)=0

integrating twice by parts we obtain

(4.18) w(t) = f (t— 1) f(r) d .

The kernel of this integral operator is of the kind known as « convolution » kernel
and then this operator is symmetric with respect to the convolution bilinear form
(4.10). More in general we show in the next paragraph that all integral operators
with convolution kernel are symmetric with the convolution bilinear form.

4.3. The symmetry of Fredholm and Volierra operators with convolution kernel.

We now show that the Fredholm integral operator
T

(4.19) grsz(t—r) wedr

o

that is not symmetric with respect to the bilinear form (w, v)> becomes symmetric
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with respect to the convolution bilinear form {u, ¢), given by (4.10)

(4.20) luy, Foy, E‘T[ w(T —t)JT kit—T)v (’r)d‘l‘] dt =
f (T — 1) (i — 7)o(7) Az dt fq; [

[

.
o‘a‘i

(1 — 7)u (T—t)dt]dr

With the substitution 7' — 1 —o¢ and T —17 -9 the last integral becomes

0 T

(4.21) f@( ma)H (U——v)u(w)(——dv)](-——da) zfv(:r-.-o-){fk(a-—w)u(ar)dw]da.

7 7 o
With another change (inessential) ¢ ¢, v —> v the infegral becomes

(4.22) f o(T— t)[ fk(t —1) u(r)dr] dt = (Fu, 5,

) o

that shows the symmetry of the Fredholm operator with convolution kernel with
respect to the convolution bilinear form.

Now a Volterra integral operator with convolution kernel can be reduced to a
Fredholm integral operator with convolution kernel observing that

(4.23) f f(7)dr = J’H(z — ) f(r)dr (0<t<T)

g ]

being H{(&) the Heaviside function

1 for £>0
(4.24) H(E) = {
0 for §<C 0.
Then
(4.25) f k(t— 1) f(z)dr = f H(t— 1) k(t — 1) f(7)dr

and the product H(f— 7)%(t — 7) is a new kernel of convolution kind. Then

3

(4.26) J‘k(

(r)dt

0

With that reduction of the Volterra to Fredholm integral operator, our previous
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result implies that also the Volterra integral operator with convolution kernel is sym-
metric with the convolution bilinear form.

This permits to give variational formulation to linear infegral and integro-
differential equation with convolution kernel. This fact is of interest in connection
with hereditary phenomena [12] [26] [31].

4.4, Applications.

ProBLEM 1. — Give a variational formulation fo the initial value problem

d
= ult) = f(t)

(4.27) 0<t<T
u(0) = 0
u(t) e C1[0, 1.

Since the operator is linear we can use the reduced formula (2.23) that becomes

i=1 7

(4.28)  Flu] = T —1) & qulty — (T — 1) f() | @t a2 =
di

A=0 0
T

= ; ~[u(i!’mi)u’(t)dt —fu(T-—t)f(t)dt .

0

The function u(t) that solves the initial value problem (4.27) makes stationary the func-
tional Flu] given by (4.28). As a check we calculate the Fuler-Lagrange equation
with the « d » process

(4.29)  OF[u]= f [Ou(T — )y () dt + w(T —1t) 6w’ (¢ ]dtwféu ") f(t)dt =

T

E%f [6@5(1’ Du'(t) + 0 d((:'i’ } J‘éu — 1]

o

E%fzau(z’_t)w{z}dt -§-%{éu(T-t)u(t)}§~—f§u(T—t) f(t)di

0

i

= f&u{T—t)[u’(t) —f{t)]dt + % [Su{0yul{T) — Su(T)Yu(0)].
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Since du(0) =0 and du(T —1) is arbitrary, we obtain both equations (4.27).
ProBLEM 2. — @ive variational formulation to the initial value problem

a

“t) = ()

(4.30) w(0) =0 o<t<?

w(0)=0  u(t)eCo,1].

Applying the formula (2.23) one finds the functional

(4.31) Gu] :% %(-(I‘r,p—_?ti)) ‘-l%t) at — j W(T—t)f(t)dt.

]

We now show that the function wu,(t) that solves the initial value problem (4.30) makes
stationary the functional Glu] with respect to all fumctions w(t) that satisfy the initial
condition w(0) = 0 and viceversa. The second initial condition #'(0) = 0 becomes a
natural condition for the functional.

The first variation of the funectional Gl«] is

(4.32) 86 u] —-—f@u(T-t)[u”(t)—f(t)]dt——éu(O) d“T(tt) + du(m) 20

It we require that this variation vanishes for every w(t) that satisfies the con-
dition #(0) = 0 we obtain the differential equation (4.30) and the initial condition
#'(0) = 0.

;»u(t)

u,{t)

£

0 \i;'r ¢

Fig. 7.

ReMARK V. — If we use the usual bilinear form (4.9) we find that the operator
is not symmetric while it is formally symmetrie. This implies that the symmetry
can be obtained changing the domain i.e. the boundary conditions: the initial condi-
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tion #'(0) = 0 must be ignored and an artificial boundary condition #(7') = 0 must
be added. In this way we obtain a symmetric operator. Such a variational formu-
lation is of little use because it is limited to the fact that the Buler-Lagrange equa-
tion of such functional is the differential equation in (4.30). Since the domain

TaABLE 1. — Vartational formulation of the simplest initial value problems

x il
bilinear form L, v, gfu(T — £y v(t) di Ef’ll/(t) v(T —t)dt
] 0
T 7 T 7
Y [0 _ _LfayddT )
Fiu) —Efu(T t)[ 5 2j(t)}dt Glu] = ZJ‘ a dT—1) dat fu(T RO
o ¢ 0
! w(0) = #(0) =
! !
ldF = 0 léG == 0
du(t) ity
ar = f{#) [ diz 1
u{0) =0 uw(0) =0
w'(0) =0

of the functional is different from that of the originary problem the function u*(f)
that makes the functional stationary is not, in general, a solution of the initial value
problem because it does not satisfies a priori the forgotten initial econdition #/(0)==0.

PrOBLEM 3. - Give a variational formulation to the initial value problem

d
%u(t) ={

O0<t<T u(t) e C{6, T
4(0) =a (a=£0).

(4.33)

On account of inhomogeneous boundary condition the operator is not linear
(linearity of an operator requires the linearity of the domain). The Gateaux deri-
vative of this operator is d/dt applied to g(t) such that ¢(0) = 0. Then the Gate-
aux derivative is a linear operator that satisfies the symmetry requirement with the
convolution bilinear form.
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Since the domain does not contain the null element we must use relation (2.22).
Putting u,(f) = a we obtain

0 z

(4.34) Hiu] = Fla] -+ [ {f{u(T—-—i) —a]% fa + A(u-——c&)}dt} dai

A=1 0
that after some simplifications becomes

{4.35) H[@]:%f@(f'wt)u’(t)dtw tau(T)

0

where we have omitted the.inessential additive constant Fla]-+ 1a® The station-
arity of this funectional with respect to arbitrary variations of #(t) that vanish for
t==0 (i.e. 0u(0)=0) leads to the Euler-Lagrange equation and to the initial con-
dition (4.33). In faet

(4.36) SH{ul :f(%c(T-—— ' () dt -+ [3u(0) dult) — (1) 6u(0)] — La du(T)

from which the statement follows.

ProBiLEM 4., — Give a variational formulation to the linear initial value problem

d

?1%“"(” = ;k nUs(t) 4 falt)

(4.37) un(0) = by, App = Oy

0<i«T, #(t) e 01[0, T']

where a,, is time-indipendent.

Because of the relation a,, = a;, and of the initial conditions we can use the
bilinear form

T
(4.38) ity 03, = f S tn (T — t)o,(t) i .
b 1
The operator

(4.39) L= St — 3ol

23 — dnnall di Matematica
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is symmetric with that bilinear form and then a variational formulation can be given.
The functional can be found with formula (2.22): on obtain

(440)  Flul=} f Sl T —8)[) — S arpun(t)] @t —

ST — ) Fult) At — 3 S Bl T .

1
o

This variational formulation can be useful in linear nefwork theory and in the
theory of small vibrations around a configuration of stable equilibrium.

ProBLEM 5. — Give a variational formulation to the integral equation
T
(4.41) w{t) +fk(t»~ Tyu({t)dr = f{1)
0

with convolution kernel. The operator is linear and then we can use formula (2.23).
Then the functional becomes

=1 T r T

(4.42) F[u]:F[O]+f fu(Tmt)[Mc(t) +fk(t~r)?m(r)dr]dtd/1~— w(T—t)f)dt,
=0 ¢ 0 o

T

Flu]= F[0] - %fu(T—~t)u(t)dt+ lf fu(ff— k(T — t)u(r)drdt-——ju(T—t);i(t)dt .

This is the functional whose Euler-Lagrange equations is the integral equation (4.41).

5. — Comparison with other methods.

Let us compare the three methods examined at § 3 with the method exposed in
this paper.
We examine the three methods in the reverse order.

a) Gurtin method of convolution.

The transformation of the initial value problem into an equivalent boundary
value problem governed by an integro-differential equation, that is eharacteristic
of Gurtin method, become superflous. We can deduce directly the initial value
problem in differential form from the stationarity of a functional (see table 3).
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TaBLE 2. — Comparison among different methods (see next table).

@ F[6] = %fﬂf{ve(x, T—1)-V(x, t) + k0(x, T —1) 8_6(;’ 1"l)}dth—%Jffkoc(:x:)0(;\:, HdvV
vy o 14
8{(x, 0) = a{x), O(x, 1) = Blxg, 8)
k3 T H
o o) = %ffff{ve(x, t—1) -fVB(x, oydo + kO(x, t — r)}d‘ch—— 2f [ffkos(x) Ox, t—)dedV
14 0 0 ; 0
O0(x, )| = Blxgs t)
® F[8, ¢} -—fff f {V«p{x, ) VO(x, ) — k6(x, {) qy(;’ “} dth——fffkoc{x} olx, 0)dV
v
O, s = Blxs, 1), @, )]s =blxs, 1),  glx, T) = alx)
@ Transient heat con- (5 Adjoint problem ©® Integrodifferential problem equi-
duction problem valent to the problem @
o0(x, t) oplx, 1) i3
V20 —f el = 0 2 k =
(. ) ot Vipla, t) + k=== 0 f V20(x, 7) dr — k(x, 1) = ko)
6(x, 0) = a(x) o(x, T) = a(x) 0
b(x, 1)]s = Blxs, 1) pla, t)]s = blxg, 1) O(x, t)|s = Blxs, t)

TABLE 3. — Comparison among different methods {(see preceeding table).

Gurtin method

functional (2)

integro differ.
problem @

Present method

Adjoint eq. method

Junctional @ functional
A A
oF[6]=10 8F[0, ¢l =0

5

equiralent keat conduection

problem @

problems

adjoint
problem @
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The Gurtin method is substantially simplified. In particular if we search for a va-
riational formulation for the intergro-differential equations associated with the ini-
tial value problem, using the convolution bilinear form {w,v). we obtain exactly
Gurtin’s functionals. In this sense Gurtin method becomes o partioular case of that
presented here.

b)Y The adjoint equation method.

We now show that this method is automatically absorbed in the method
presented here.

Since the heat conduction problem must be valid for every 0<t<T, is valid
also at the instant v =T —1

00(x, T—1)
S(TH—T_ﬂx* T—1t)

Ve(x, T—1) —k

(5.1) 0(%, T—1)|r—10=0

O(x, T —t)|s=10

where x denotes the set of three variables #,y, 2. Now if we put
{(5.2) o(x, t) ¥ 0(x, T —1) glx, 1) & f(x, T —1)
the heat conduction problem can be written

ool t)

Vip(x, 1) + b—"—="—"= g(x, 1)

(5.3) (%, )] p = 0

qo(xf i){s =0,

that is exactly the adjoint problem. Then the function ¢ whose physical meaning
does not appear to be found up to now, is the temperature O of the same physical
system evaluated at the imstant T —1.

Now if we ignore this identification and multiply by d¢(x, {) the heat equation
(83.5) and by 60(x, ?) the adjoint eq. (5.3) and integrate on [0, T] and on V we obtain

(5.4) f H f {&:vix, 1 [vg@(x, -1 20 i, t)} 4
T (x>_t)

+ 86(x, 1) {‘7999(.%, T—1)+ kg%~—-g(x, #) }} atdv =0.
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After an integration by parts this functional reduces to

(5.5) —f f f f {+ [V dp(x, 1)-VO(x, 1) -+ Vp(x, 1)+ 86(x, 1)] +

+k [6¢<x, p DD | 0 s, t)} + [g(x, 0)f(x, 1) - 00(x, ©) (s, m} @av +

—{—.an{@qo(x, tyn-Vo(x,t) + 00(x, t) n-Ve(x, ) FdV =0 .

If we evidentiate the « 6 » operator we obfain

(5.6 — f f f f [V«p(x, -V, 1)+ ke, 0 0D g, ) B0

+ @, 0 f(x, 1)+ O(x, 1) g, t)] it + f f f [a.p(x, AL w]f ar—o.

This is the usual functional for the pair of problems (5.5) and (5.3). Now if we
do the identification (5.2) and use the commutative property of the convolution,
equation (5.5) becomes

(5.7) 5ffff——2[VB(x, T—1t)-VO(x, t)+ kO(x, T—1) aﬂ(%’-ﬁ +0(x, T—1) f(x, t)]dt:()

on account of

(5.8) Uf [aO(x,T_t)a—ola%’”+ae<x, ) ?-ei’ﬁaff—"ﬁ]"’dvzo.

The funetional in (5.7) is exactly those that we obtain using the convolution
bilinear form: its Buler-Lagrange equation is the heat conduction equation, Then
the adding of the adjoint equation becomes superfluous onee we have recognized
that the adjoint function i3 no more than the same function 6 evaluated at the
time T —¢. With this identification the functional obtained with that method is
exactly that obtained applying directly the convolution bilinear form to the heat
equation.

Then the method of adding the adjoint equation inaugurated by Morse and
Feshbach has no more reason to be used.

a) The method for formally selfadjoint operators,

This method is not completely absorbed, at present, in the method presented
here. The inclusion is valid for linear equations with constant coeffients,
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In spite of this, such class of equations is large enaugh for the equations of
physics. So wave equations, Maxwell equations, Schrodinger, Klein-Gordon, Dirac
equations are of this kind. The nonlinear case remains to be explored. In particular
we have not succedded in doing a variational formulation that be an alternative fo
that of Mamilton (that deals with nonlinear differential equations) that eliminate
the unpleasant features exposed in §3.
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