
On the varieties of computer experience

STEVEN J. STADLER, GRASON-STADUR C01HPANY, INC.,
West COIlClJrd, Massachusetts 01781

All on-line, real-time, high-level experiment control language is
described. It is written to run on a PDP/8f with 8K memory,
automatic multiply-divide. PT08B and RO-33 Teletype, and a
interface hardware system.

In what I am about to say, I shall proceed on the assumption
that all of you are at the very least positively inclined toward the
use of computers in the laboratory. If we can assume that
common interest, I would like to discuss with you a series of
problems which have, until recently, stood in the way of a
satisfactory interactive relationship between experimenter and
computer for all but a small group of pioneering spirits.

The following list of problems will not include everything that
may have discouraged one or another of you at one time or
another, but is meant to be illustrative of the general categories of
malaise. Once these have been stated, I shall try to show how
recent developments have helped to alleviate or solve some of the
nastier ones.

I suppose that, inevitably, the categories of problems fall into
two broad groups: software and interface hardware. I think we
can assume that the computer hardware itself is no longer a
problem except that we would perhaps like it to be more reliable
than, at certain critical moments, it has sometimes proven to be.
But, we arc all, in one way or another, loyal DEC users, so let's
talk about the remainingcategories.

HISTORICAL OBSTACLES
The Tedium of Machine Language Programming

This includes such factors as the length of time, in months, it
takes to become proficient at writing machine language programs,
time that could be much more productively used doing research.

The Inappropriateness of Machine Language
Machine language is a stylized way of telling the computer

what to do. It has absolutely nothing to do with describing an
experiment. Just as FORTRAN effectively describes what
happens in mathematical computation, a language is needed that
is descriptive of an experiment in the real-worldand in real-time,
and that is user oriented rather than machine oriented.

The Unavailability of a Generalized, Experiment-Control
Interface Package

Although computer manufacturers and other suppliers of
digital logic modules sell a variety of devices that can be used to
construct special-purpose interface, there has been little help
available to the novice. Once again, as with machine-language
programming, it takes a good deal of time and ingenuity to
design, build, debug, and use a tailor-made hardware interface,
not to mention the additional risk of obsolescence when it turns
out that a new and promisingdigression was not anticipated.

These three obstacles-two relating to software, one to
hardware-stand in the way of the typical experimental scientist
pursuing really productive interaction with a computer.

GENERAL SPECIFICATIONS
I would now like to draw up some specifications for a

hypothetical system that circumvents most, if not all, of these
obstacles. (I) The programming language should be a high-level,
user-orien ted, easily- learned language specifically designed for

Behav. Res. Meth. & Instru., 1969, Vol. 1 (7)

experiment process control. It should be capable of operating in
an on-line, real-time, multi-user environment. It should allow the
experimenter to interact with the experiment in a conversational
way, letting him examine the parameters of the experiment and
letting him modify them when he feels so inclined. (2) It should
be a generalized, sophisticated, professional language that derives
its power, in part, from the hardware interface and computer for
which it was written; that is, it should be designed for the
hardware it manipulates and vice versa. (3) The various elements
of the interface hardware should be modular and expandable so
that new and complex experiment requirements can be met by
addition to the interface rather than rebuildingof the interface. It
should do a great deal of useful timing, storing, and
device-identifying work so that the computer itself can devote
most of its time to what it does best, namely the manipulation of
numbers. It should be constructed of high-quality, modern logic
devices and use the highest standards of assembly to assure
long-term reliability of operation. It should be capable of being
connected to virtually any input or output device, digital or
analog in function, that is likely to be found in the laboratory.

THE SCATSYSTEM
Finally, let's see how the general problems are circumvented

and the general specifications are met by a real-life system that is
now available for experiment process control. The system is
called SCAT, an acronym for State Change Algorithm
Terminology. The basic concept around which the SCAT
language is constructed is that of the STATE. A state is
characterized by two primary attributes: (I) The initiation of a
set of physical events-stimuli of any sort that can be controlled
by the interface hardware, as well as such control conditions as
D-A conversions, attenuator settings, etc. (2) The continuance of
this set of events until a condition has been met-at which time a
transition will be made to a new state. Conditions may be the
completion of a time interval, the arrival of an nth response, the
termination of a D-A conversion, the satisfaction of a logical or
arithmetic expression, etc.

SCAT software offers the following multiprogram,
multiple-station capabilities: (I) All operator inputs to the system
occur by conversation through the teletype. (2) Any station can
be loaded, started, stopped, or deactivated while any or all other
stations are running. When a station is deactivated, its core
memory allocation is released and made available for other
stations and/or programs. (3) Experiment parameters for any
station can be examined and modified while the program is
loaded and/or running. (4) Data can be outputted in a variety of
formats on a separate report Teletype whose operation does not
interfere with query and control through the main Teletype.
(5) Experiments are written in a high-level, easily learned
experiment control language designed expressly for multiple
experiment environments.

Software
The software consists of three parts: (I) The SCA T Editor/

Compiler. This programallows the entry, editing, and compilation
of SCAT language programs. Error checking and diagnostics are
provided. The output of this program is a tape suitable for input
to the SCAT assembler. (2) The SCAT assembler. This program
accepts output tapes from the SCAT Compiler or hand-prepared
SCAT assembly language tapes and produces SCAT binary tapes
which are acceptable to the SCAT Operating System. (3) The
SCAT Operating System. This program controls the interpretation

267

of user programs, communicates with the operator, loads, starts,
stops, kills, and/or queries the SCAT programs which control
the stations.

"CTRn" Causes the current contents of counter n to be
typed out. User may modify contents by typing
new number on Teletype.

Relational Operators
SCAT also provides a variety of relational operators:

The third feature is SCAT's functionals that develop numbers
with certain characteristics and that can be used whenever an
expression is allowed.

The SCATLanguage
In order to illustrate how the SCAT language meets the

specification of user orientation, let me show how simply one
would write a fixed-ratio schedule in SCAT.

For an illustration of the conversational, interactive character
of SCAT, we should discussquery mode. These commands permit
the E to interrogate and modify the parameters of an experiment
schedule either while that schedule is resident in core (and
inactive) or while it is actually running an experiment. They look
as follows:

Referenced in SCAT language as "CTRI"
.... "CTR,O."

Referenced as "CONI" "CONp."

A set of individual cells, each of which can
contain a standard floating point number.
Number of cells limited only by available
space.

Referenced as "CLKI" "CLK~." Each
will be automatically incremented by the
IO-msec hardware clock associated with each
subject station.

Up to I 0 independent histogramsare possible
for any station, although their number and
size may be limited by the amount of storage

available. Referenced as "HIST I "
"HISTcjJ."

Tells the SCAT Operating System to save the data
elements associated with the experiment just run,
to assign new space for data elements, to restart
the experiment, and then to proceed with the
output.

Causes the current contents of clock n to be typed
out. Contents can be changed as above.

Causes constant n to be typed out. Contents can be
modified as above.

Causes current contents of histogram n to be typed
out. No modification is allowed.

"CLKn"

RESTART Tells the Operating System that the experiment
should be run again. Restart saves memory, but
makes the experiment wait for output to
terminate before reassigning data access and
continuing.

"CONn"

I might note that literal character strings are allowed so that
titling and data identification are easily accomplished.

"HISTn"

HISTOGRAMS
(10 per station)

Perhaps I have confused you because 1 did not first define the
data elements, such as COUNTER, CLOCK, CONSTANT, etc. In
general, data manipulated by the SCAT software is in the form of
a two-word floating-point number with sign. five significant
digits, and a range of 101

1 to 10' 7. Except for histograms, the
data elements listed below all manipulate numbers in this form.

COUNTERS
(10 per station)

LIST
(1 per station)

CONSTANTS
(1Cper station)

Please note that CONSTANT cannot be modified by the
program itself, but only by the E, and, conversely, that
HISTOGRAM can be modified by the program but not by the E.

Finally, here is a brief description of the output facilities of
SCAT, which allow a variety of output commands that facilitate
titling and formatting the information contained in counters,
clocks, list, etc., when these are printed out on the report
Teletype. In addition, it allows the following two commands.

CLOCKS
(10 per station)

CYCLE

(1SRI)"'" (2) I

(3SEC) ...,. (J) ,

Initializes the pseudorandom number sequence
from the value of the expression x.

Generates a uniformly distributed random
number in the range 0 to 1.

Generates a random variable from a normal
distribution about x, with a standard deviation
y.

CI: SION:
C2: S2 ON;

RANSET(x)

NORM (x,y)

RAND

Arithmetic Operators
An expression in SCAT consists of an element or of two

elements and an arithmetic operator surrounded by parentheses.
The arithmetic operators are "+," "-," "*," "I," which stand for
add, subtract, multiply, and divide. An element may be a literal
(e.g., "I," "17," "30.5"), a constant, a counter, a clock, or a list
element (e.g., "CONI," "CTR2," "CLKI," "LIST (17)"). An
element may also be another expression, e.g., "(CTR2 +CONI),"
«LIST (2) + 4)/CON2)."

.E. equal

.GE. equal or greater

.LE. less or equal

.NE. not equal

.L. less

.G. greater

Control State I (C1) turns on the stimulus (SI) and after 15
responses(1SRI) of Type 1 have occurred, a transition is made to
State 2 (C2). State 2 reinforces (S2) the S, and after 3 sec, a
transition to State 1 occurs and the cycle repeats.

The program is admittedly a trivial one, but it does illustrate
dramatically the simplicity of the language, the ease of using it,
and its appropriateness, because it does describe the experiment
precisely in the way the E would if he were engaged in a
conversation with a colleague. In this instance, the colleague
happens to be a computer.

The SCATlanguage offers a seriesof features designed to make
it useful and powerful. The first two of these features are SCAT's
arithmetic and relational operators.

268 Behav.Res. Meth. & Instru., 1969, Vol. 1 (7)

CONCLUSION
You have now heard and seen the specifications of the ~Cf.T

language. We should go on and discuss the interface hardware of
the SCAT system because many interesting ideas are contained in
it. But I thought that. given the limited time available, you would
like to hear first about the language. If you are interested, we can
talk hardware during the discussion period.

In conclusion, I hope you will agree with me that the SCAT
system is a significant jump forward on the path of experi­
mentor computer interaction. The SCAT system has been
designed to simplify enormously the problems enumerated at the
beginning of this paper, or to eliminate them altogether. I look
forward to your questions and comments.

REFERENCES

CtOFALO, V. B., TEDFORD, R. H., GOLDBERG, M. E., & DODGE, D.
L. The use of a digital computer for control of behavioral research in
animals. Behavioral Science, 1968, 13, 252-256.

HABER, R. N. An on-line computer in a visual perception laboratory.
Behavior Research Methods & Instrumentation, 1968,1,86-93.

MARKOWITZ, J., & NICKERSON, R. S. On timing events in
computer-controlled experiments. Behavior Research Methods &
Instrumentation, 1968, 1,82·86.

UTTAL, W. R. "Basic Black" in computer interfaces in psychological
research. Behavior Research Methods & Instrumentation, 1968, I,
35·40.

UTALL, W. R. Real time computers-Technique and application in the
psychological sciences. New York: Harper & Row, 1968.

Can a small dedicated machine find happiness
in a company that pioneered tlme-sharlna?'

JOSEPH MARKOWITZ, BOLT Bt"RANEK AND NEWMAN,
INC., Cambridge, Massachusetts 02138 2

In the context o]an automated psychophysical laboratory, the
adequacies and inadequacies of a small computer are discussed.
Attention is given to the rationale [or choosing the
implementation in particular a dedicated small system as
opposed to time-shared use o[a larger system. The variables
discussed include cost, flexibility, language level, and storage
capabilities in addition to reliability. A compromise position that
appears most viable [or the future is also suggested.

Several years ago, we had the opportuni ty to build a new
laboratory facility for psychological research. Specifically, the
laboratory was to be used for basic psychophysical research with
acoustic signals. In certain instances, the implementation choices
may have been closely tied to the portended nature of our work.
In general, we think they were not. Indeed, with small
modification, the same facility now serves a much broader range
of psychological research interests. Perhaps such versatility owes
its due to the way in which the facility was, in fact, implemented.
For various reasons, which are the very point of this paper, we
decided to automate our laboratory. The medium we chose was a
small, dedicated, general-purpose digital computer--the PDP-8.

Our need for automation arose, we felt, because of the
drudgery that defines psychophysics. Our psychophysical
experimentation is characterized by a simple, repetitive, short
sequence of events where all the alternatives are drawn from a
small closed set. It is characterized by a need for numerous
observations in each of a few fixed conditions. The operations are
routine and boring. Errors made by the E as to what he presents
(or did present) are indistinguishable from errors on the part of
the a as to what he observed. In this sense, errors are very costly.

Psychophysics, then, does not demand a computer of high
intellectual ability or blinding speed. Its tasks are not that
challenging. Rather, psychophysical research requires a tireless
and accurate drone.

Quite simply, precision increases as E errors decrease, and as
the number of observations increases. Unfortunately, the rate of
an E's errors accelerates as the number of observations increases.
On the other hand, a computer can keep its own error rate
satisfactorily and constantly low.

Behav.Res. Meth. & Instru., 1969, Vol. 1 (7)

In designing our laboratory facility, we were confronted with
several options. Because all of these options are nominally open,
even today it is worthwhile reviewing them.

The first option we examined was construction of a
special-purpose facility out of logical building blocks. This was, of
course, a proven approach. We, ourselves, had had experience
with three generations of logical building blocks. We were
intimately familiar with the clatter and electromagnetic splatter
of relays, the shocking and geriatric nature of vacuum tube logic,
and the unforgiving frailties of transistors. Weknew, too, the joys
and sorrows of a variety of connectors and programmable patch
panels. Finally, we knew the disproportionate number of logic
modules and readout devices required for even the Simplest of
data analyses. All of these lessons stood us in good stead, we felt,
and we never regretted the experiences of the past. Yet, we were
firm in our resolve to depart from the past, for the lure of
computers was irresistible.The printout was on the wall.

Another way in which we could have accomplished the
automation of our psychophysical laboratory was to use
time-sharing facilities available to us. Wecould conveniently have
run our experiments on one of several operating systems. Our
colleagues interested in running manual-control experiments were
setting out to do precisely that. Moreover, ruling out such an
alternative would be particularly significant in view of our past
history with time-sharing and with computerized psychological
experimentation.

Bolt Beranek and Newman Inc. (BBN) has actively pursued
time-sharing system research, development, and application for
nearly a decade. Historically, we developed one of the first
operational interactive time-sharingsystems in 1962. That system
was implemented on a DEC PDP-I with the support of the
National Institutes of Health.

A succession of hardware and software improvements enabled
us to move from 4 to 64 simultaneous users and to increase the
number and diversity of languages available to the individual user.
In 1963, development was undertaken on a second PDP-l
interactive. time-sharing system. This system provided a number
of operational programs in a specialized language at remote
terminals in the Massachusetts General Hospital. In 1966, we
implemented a real-time hybrid I/O interface to our time-shared
SD8-940. This interface is called a Hybrid Processor, and is
capable of accurately timing real-time data transfers between

269

