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ON THE VARIETY OF INVARIANT SUBSPACES OF 
A FINITE-DIMENSIONAL LINEAR OPERATOR 

BY 

MARK A. SHA YMAN I 

ABSTRACT. If V is a finite-dimensional vector space over R or C and A E Hom( V), 
the set SA(k) of k-dimensional A-invariant subspaces is a compact subvariety of the 
Grassmann manifold Gk(V), but it need not be a Schubert variety. We study the 
topology of SA(k). We reduce to the case where A is nilpotent. In this case we prove 
that SA(k) is connected but need not be a manifold. However, the subset of SA(k) 
consisting of those subspaces with a fixed cyclic structure is a regular submanifold of 
Gk(V). 

1. Introduction. If V is a finite-dimensional vector space over R or C and 
A E Hom(V), the set SACk) of k-dimensional A-invariant subspaces is a compact 
subvariety of Gk(V), the Grassmann manifold of k-dimensional subspaces of V. We 
study the topological structure of SACk). We show that it suffices to consider the case 
where A is nilpotent. In this case, we prove that SAC k) is always connected (Theorem 
6). However, if A is neither cyclic nor semisimple, SACk) need not be a manifold. We 
show this by completely characterizing the geometric structure of SAC k) for the class 
of nilpotent operators whose Jordan canonical form consists of one block of 
arbitrary size followed by an arbitrary number of I X I blocks (Theorem 5). For 
such an operator, SAC k) is a union of Grassmann manifolds which intersect each 
other along Grassmannian submanifolds. 

This motivates us to consider the subset of SACk) consisting of all k-dimensional 
A-invariant subspaces with a given cyclic structure. We prove that every such subset 
is a regular submanifold of Gk(V) (Theorem 7). Our proof of this result is 
interesting because we construct the submanifold as an orbit space under the action 
of a special subgroup of G/(k). The charts we construct also give convenient 
parametrizations of each of these submanifolds. 

In the final section of this paper, we consider the question of whether SAC k) is 
always expressible as a union or intersection of Schubert varieties. By considering an 
example in some detail, we show that this question has a negative answer. Thus, the 
varieties of invariant subspaces of finite-dimensional linear operators form an 
interesting and, as far as we are aware, unstudied class of subvarieties of the 
Grassmann manifold. 
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722 M. A. SHAYMAN 

The variety SA has an important application in the field of automatic control. A 
crucial equation in linear-quadratic control theory is the algebraic Riccati equation 
-A'K - KA + KBB'K - Q = 0, where A, B, and Q are real matrices of dimensions 
n X n, n X m, and n X n respectively, and Q = Q'. (Prime denotes transpose.) K is 
an unknown real symmetric matrix. J. C. Willems [8] proved that under mild 
assumptions there is an n X n matrix A + which can be constructed from the 
coefficient matrices A, B, Q such that SA + is in bijection with the solution set of the 
equation. We have proved elsewhere [7] that this bijection is actually a homeomor-
phism. Hence, the topological properties of the solution set of the algebraic Riccati 
equation are the same as those of SA +. This was our original motivation for 
exploring the subject of this paper. 

Specialized notation will be defined when it is initially used. Unless otherwise 
stated, all morphisms are to be interpreted as morphisms of algebraic varieties. We 
use the symbol "~ " to indicate an isomorphism of algebraic varieties. 

2. Preliminaries. Let V be an n-dimensional vector space over the field S'f of real or 
complex numbers. Hom(V) is the space of linear mappings of V into itself. Let A be 
a fixed element of Hom(V). A linear subspace S ~ V is A-invariant if A(S) ~ S. Let 
SA be the set of A -invariant subspaces of V, and let SAC k) be the subset of SA 
consisting of all k-dimensional A -invariant subspaces. 

Let Gk(V) be the Grassmann manifold of k-dimensional (linear) subspaces of V. 
Form the disjoint union U~=O Gk(V) and give it the topology generated by the open 
sets in GO(V), ... , Gn(v). Since SA ~ U~=O Gk(V), SA inherits a topology from the 
disjoint union. Since SA(k) ~ Gk(V), it follows that if Sp S2 E SA and dim S1 =1= 
dim S2' then S1 and S2 belong to different connected components of SA" Conse-
quently, to understand the topological structure of SA' it suffices to understand the 
structure of each subset SAC k), k = 0, I, ... , n. 

REMARK 1. If A E S'f, then SA +AI = SA" 

THEOREM 1. SACk) is a compact subvariety of Gk(V). 

PROOF. By Remark I we can assume that A is nonsingular. Define a mapping CPA: 
G\V) --> G\V) by CPA(S) ::==A(S). Then CPA is a regular mapping and SACk) is its 
fixed point set. It follows that SACk) is a subvariety of Gk(V) [5, p. 59]. Since G\V) 
is compact, the same is true of SAC k). 0 

COROLLARY. SA is compact. 

Gk(V) is a projective algebraic variety by the classical Plucker embedding [4, p. 
209]. Let Ak(V) be the kth exterior power of V. A nonsingular linear transformation 
A E Hom(V) induces a nonsingular linear transformation k(A) E Hom(Ak(V». 
Let p(Ak(V» denote the projective space of lines through the origin in Ak(V). If 
X E A\V) - {O}, let [X] denote the corresponding element of P(k(V». Let 
{ v l' ... , V k} be a set of k linearly independent vectors in V. The Plucker map p: 
G\V) --> p(Ak(V» is defined by P(Sp{V1' ... ,vd) = [V1 1\ ... I\vk]. 

Now, Sp{vp ... ,vd = Sp{Avp ... ,Avd iff V1 1\ ... I\vk = AAv1 1\ ... I\Avk 
for some nonzero scalar A. Thus Sp{ v l' ... , v d is A -invariant iff [v 1 1\ ... 1\ v d is 
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ON THE VARIETY OF INVARIANT SUBSP ACES 723 

Ak(A)-invariant. Hence, the image of SACk) under the Plucker map is the intersec-
tion of p(Gk(V» with the union (not the sum) of the eigenspaces of Ak(A). (We do 
not mean generalized eigenspaces here.) Thus, p(SA(k» is a disjoint union of 
projective varieties. Each such variety is defined by a set of homogeneous linear 
equations which define the corresponding eigenspace of Ak(A), in addition to the set 
of homogeneous quadratic equations (the Plucker equations) which define p( G k ( V». 
In particular, if A has only one distinct eigenvalue, then the same is true of Ak(A), 
so in this case p(SA(k» is a single projective variety. 

3. Reduction to the nilpotent case. In this section, we show that there is no loss of 
generality in assuming that A is nilpotent. Let pes) be the characteristic polynomial 
of A, and letp(s) = PI(s)m l •• ·pis)mq be its prime factorization in the ring '1r[s). 
Let Ei == ker Pi(A)mi. Then the decomposition of V into its primary components 
with respect to A is V= EI EB ... EBEq. Let ni be the dimension of Ei. Then 
ni = mi . deg Pies). Let Ai be the restriction of A to the A-invariant subspace Ei' and 
let 'lTi: V ..... Ei be the projection onto Ei along the direct sum of the remaining 
primary components. 

The set of all invariant subspaces of Ai' SA' is the topological disjoint union 
UZ;=oSAi(kJ, and SA,(kJ is a compact sUbvariety of Gki(EJ. We have a natural 
bijection </>: SA ..... SA X··· X SA given by </>(S) = ('IT/S), . .. , 'lTq(S». 

I q 

THEOREM 2. </> is an isomorphism of projective varieties. 

PROOF. First we show that </>-1 is a regular mapping. Since SA is the topological 
disjoint union UZ:=oSA,(ki), it suffices to consider the restrictio~ of </>-1 to SAI(k l ) 

X ... XSA$k q). Let k = kl + ... +kq, let Si E SAi(ki) (i = 1, ... ,q), and let S = 
</>-I(SI' ... ,Sq) = SI EB ... EBSq. By choosing a basis, we can identify V with '1rn, and 
then we can choose an n X n i full rank matrix Bi whose columns span the 
ni-dimensional subspace Ei (i = 1, ... ,q). Choose standard charts for Gk(V) around 
S and for Gki(EJ around Si (i = 1, ... ,q). (The standard charts for the Grassmann 
manifold are described in §5.) Each chart for Gk(V) associates a subspace with an 
n X k matrix which contains a k X k identity submatrix. The remaining (n - k)k 
entries are the coordinates of the subspace. The standard charts for Gk'(EJ are 
described similarly. Then in local coordinates, the mapping </>-1 consists of (1) 
assembling the (ni - kJki coordinates for an element of Gki(EJ together with a 
k i X k i identity matrix into an ni X k i matrix, say Xi (i = I, ... ,q); (2) forming the 
full rank n X k matrix [B1X1, ... ,BqXq); (3) multiplying [B1X1, ... ,BqXq) on the 
right by the inverse of the k X k submatrix corresponding to the chosen chart for 
Gk(V) (thereby obtaining a k X k identity submatrix); (4) reading off the remaining 
(n - k)k entries. This shows that the local expression for </>-1 consists of (n - k)k 
regular functions, so </>-1 is a regular mapping. 

Now we show that </> is a regular mapping. Since </>-1 is continuous, SA X ... X SA 
I q 

is compact, and SA is Hausdorff, it follows that </> is continuous. Since SA X ... X SA 
I q 

is the topological disjoint union Uk ... Uk SA(k l ) X ... XSA(k q), it follows that 
I q I q 

SA is the topological disjoint union of the corresponding inverse images. Conse-
quently, to show that </> is regular, it suffices to examine the restriction of </> to 
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724 M. A. SHAYMAN 

CP-'(SA (k,) x ... XSA(k q». Restricted to this domain, the mapping S ~ 7Ti(S) is a 
I q 

mapping of a (closed and open) subset of SACk) onto SA{k;). Choosing standard 
charts for Gk(V) and Gki(Ei ), the local coordinate exp~ession for this mapping 
consists of (1) a'Ssembling the (n - k)k coordinates for an element of Gk(V) 
together with a k X k identity matrix into an n X k matrix, say X; (2) multiplying X 
on the left by the n X n matrix Pi representing the projection 7Ti ; (3) forming a full 
rank n X k i submatrix, say ~, from the n X k rank k i matrix PiX; (4) multiplying on 
the left by the left inverse Bi of the n X ni basis matrix B i , thus obtaining the ni X k i 
full rank matrix Bi~; (5) multiplying Bi~ on the right by the inverse of the k i X k i 
submatrix corresponding to the chosen chart for Gki(E;) (thereby obtaining a 
k i X k i identity submatrix); (6) reading off the remaining (ni - ki)k i entries. In step 
(3), it is clear that if a certain choice of k i columns is made to obtain ~ from PiX, 
those same k i columns can be chosen in some neighborhood. (I.e. the choice of k i 

columns can be held fixed locally.) It follows immediately that the local expression 
for the mapping S ~ 7Ti(S) consists of regular functions. Thus, cp is a biregular 
mapping. 0 

By Theorem 2, it suffices to characterize SA for the case where the characteristic 
polynomial pes) of A is a power of an irreducible polynomial in '?f[sl, say 
pes) = r(s)m. If '?f = C, then res) is linear, and A differs from a nilpotent operator 
by a multiple of the identity. Since SAHI = SA' there is no loss of generality in 
taking A to be nilpotent. 

If '?f = R, res) may be either linear or quadratic. If res) is linear, A can be 
replaced by a nilpotent operator with the same set of invariant subspaces. Therefore, 
suppose that res) is quadratic. Let V+ denote the complexification of the real vector 
space V, and let A + E Hom( V+ ) denote the complexification of A. A + has a pair of 
complex conjugates, say .\ and X, as its distinct eigenvalues. If F is the primary 
component of V+ corresponding to .\, then the conjugate subspace F is the primary 
component of v+ corresponding to X. 

Let A; be the restriction of A + to F. Let 7T F: V+ --> F be the projection onto F 
along F. We define a mapping 1/;: SA --> SAt by I/;(S) == 7TF (S+), where S+ is the 
complexification of the subspace S. 

PROPOSITION 1. I/; is an isomorphism of real projective varieties. 

PROOF. It is clear that I/; is a bijection. Since SA is the topological disjoint union 
UZ'=oSA(2k) and SAt is the topological disjoint union UZ'=oSAt(k), it suffices to 
show that 1/;: SA(2k) --> SAt (k) is a morphism of real projective varieties. SA(2k) is a 
subvariety of the real projective variety G2k(V) (where dimV= 2m). SAt(k) is a 
subvariety of the complex projective variety Gk(F). However, the m-dimensional 
complex vector space F is also a 2m-dimensional real vector space which we denote 
by F,.. Furthermore, every k-dimensional complex subspace M of F is also a 
2k-dimensional real subspace of F,. which we denote by Mr. Thus, the complex 
variety G\F) is naturally identified with a subvariety of the real variety G2k(F,.). By 
this identification, SAt (k) is a subvariety of G2k ( F,.). 
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Each vector z E V+ is of the form z = x + iy with x, y E V. Following the 
obvious analogy, we denote x by Re(z), the real part of the vector z. We have a 
natural mapping 1/: F,. -> V given by 1/(z) == Re(z). 1/ is clearly R-linear and, from 
the fact that F EEl F = V+, it follows that 1/ is bijective. Thus, 1/ is a natural 
isomorphism of F,. onto V. It therefore induces an isomorphism (of real projective 
varieties) ij: G2k(F,.) -> G2k(V) defined by ij(M) == 1/(M). Furthermore, the restric-
tion of ij to SAt (k) is precisely ~-I. To see this, let S E SA(2k) and let M == ~(S) E 
SAt (k). Then by definition, M = 7TF (S+). However, since TTF is the projection onto 
the primary component F, 7TF (S+) = S+ nF. Suppose that x E ij(M). Then 3y E V 
such that x + iy E M. Thus, x + iy E S+ , which means that x, yES. Hence 
ij(M) ~ S. However, dim ij(M) = 2k = dim S, so ij(M) = S, as required. Thus, ~ 
is the restriction to SA(2k) of a biregular mapping. 0 

Combining Proposition 1 with Theorem 2 yields a refinement of Theorem 2 in the 
case where '!j = R. 

THEOREM 3. Let '!j = R. Let E I , ••• ,Ep be the primary components of A correspond-
ing to the distinct real eigenvalues of A, and let F I , FI , ••• ,Fq , ~ be the primary 
components of A + corresponding to its nonreal eigenvalues. Let Ai denote the restriction 
of A to Ei (i = 1, ... ,p), and let A/ denote the restriction of A + to Fj (j = 1, ... , q). 
Then SA is isomorphic to the product SA X··· X SA X SA + X . . . X SA + as real 

I P I q 

projective varieties. 

REMARK 2. Since Ai (i= l, ... ,p) and A/ (j= l, ... ,q) differ from nilpotent 
operators by multiples of the identity, it follows from Theorem 3 that to characterize 
SA for all real operators A, it suffices to characterize SA for all real and all complex 
nilpotent operators A. 

The results of this section show that to characterize the structure of SA for every 
real and every complex A, it is sufficient to do the same for every real and every 
complex nilpotent A. Furthermore, it is trivial to show that if A and B are similar 
operators, then SA and SB are isomorphic. In fact, if B = PAP-I, then SB = PSA, 
where we are identifying P with the mapping of subspaces which it induces. 
Consequently, it suffices to characterize the structure of SA for the case where 
V = '!jn ('!j = R or C) and A is a nilpotent matrix in lower Jordan canonical form. 
For the remainder of this paper, we shall consider such an A. 

4. Topological structure of SACk). Let A be an n X n nilpotent matrix in lower 
Jordan form. Let m l ;;;. m 2 ;;;' ••• ;;;. m r ;;;' 1 be the sizes of the blocks in A (ml 
+ ... +m r = n). Let {e l, ... ,en} be the standard basis for V == '!jn. ThenAej = ej +1 

for j =1= m l, m l + m 2 , ••• ,m l + m 2 + ... +m r , and Aej = 0 for j = m l, m l + 
m 2 , ••• ,ml + m 2 + .,. +m r • Let 

Then W; is an mrdimensional cyclic subspace (with respect to A) and V = WI 
EEl ... EEl w,. We say that V has cyclic structure (m I" .. , m r) and that WI EEl ... EEl W, 
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is a cyclic decomposition of V. Although the cyclic structure of V is uniquely 
determined by A, there is no natural cyclic decomposition of V. In general, there are 
many cyclic decompositions of V (with respect to A). This is in contrast to the 
decomposition of a vector space into primary components (relative to a given 
operator). The primary component decomposition is natural (no choice is involved), 
and it is essentially this feature which enables us to reduce to the special case of 
nilpotent operator. Since the cyclic decomposition is not natural, we do not expect to 
be able to reduce further to the case of a nilpotent operator which is also cyclic. 

Let (cp ... ,cs ) be the partition of n which is conjugate to (m l , ... ,mr ). (c l ,. .. ,cs ) 

is easily found by drawing the Ferrers diagram for (m l , ... ,m r ) and reversing the 
roles of the rows and columns. 

is: 
EXAMPLE 1. Let (ml' m 2 , m 3 ) = (5,3,1). Then the corresponding Ferrers diagram 

5 

3 

1 

I I 

-
3 2 211 

The column sums (3,2,2,1,1) give the conjugate partition (c l , c2 , c3 , c4 , c5 ). 

Now, let V; == Ker Ai, i = 0, 1, ... ,mI' Then 0 = Vo C VI C ... C Vm , = V. It is 
easy to check that ci = dim V;/V;-I' It is important to observe that the flag of 
subspaces Vo C VI C ... C Vm , is naturally determined by A-no choice is in-
volved. This is in contrast to the cyclic decomposition V = WI €a ... €a w,. which 
can be chosen in many different ways. 

Let S E SA(k) and let (PI"" ,PI) be its cyclic structure (PI;;;' ... ;;;. PI;;;' 1, and 
PI + ... +PI = k). Let (ql"" ,qd) be the conjugate partition of (PI"" ,PI)' Let As 
be the restriction of A to S, and let Si == ker A~, i = 0, 1, ... ,PI' Then Si = S n V;, 
so qi = dim S;/Si_1 = dim S n V;/S n V;-I' Define a mapping <p: S n V;/S n 
V;-I -> V;/V;-I by <p(s + S n V;-I) == s + V;-I' Since S n V;-I C V;-I' <p is well 
defined. If <p( s + S n V;-I) = 0 + V; _ I' then s E V;- I' Since s E S n V;, this means 
that s E S n V;-I' so <p is injective. Since <p is a monomorphism, it follows that 
qi = dim S n V;/S n V;-I 0;;; dim V;/V;-I = ci ' Vi. It follows from the Ferrers dia-
gram that 1 0;;; r andpj 0;;; mj,j = 1, ... ,I. 

Let k be fixed, and let (PI"" ,PI) be a partition of k (with PI;;;' '" ;;;. PI;;;' 1). 
We say that (p I' ... ,PI) is a partition of k compatible with the block structure of A if 
10;;; r and Pj 0;;; mj,j = 1, ... ,I. Let SA(k; PI"" ,PI) be the subset of SA(k) consisting 
of those elements of SA(k) which have cyclic structure (PI"" ,PI)' The argument in 
the preceding paragraph shows that SA(k; PI"",PI) is empty unless (PI"",PI) is 
compatible with the block structure of A. The converse is also true. If (PI"" ,PI) is 
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compatible with the block structure of A, then 

is an element of SACk; PI' ... ,PI). We state this as a proposition. 

PROPOSITION 2. SAC k; PI'· .. ,PI) is nonempty iff (p I' ... ,P I) is compatible with the 
block structure of A. 

There are two special cases where the structure of SAC k) is readily apparent and 
well known. 

THEOREM 4. (a) If A is semisimple (diagonalizable), then SACk) = Gk(,?P) (the 
Grassmann manifold of k-dimensional subspaces of qP). 

(b) If A is cyclic, then SACk) consists of exactly one point. 

PROOF. (a) Since A is both nilpotent and semisimple, A = O. Hence, every 
k-dimensional subspace of qJn is A-invariant, so SACk) = Gk(qJn). (Note that the 
block structure of A is (m I' ... , m n) = (l, I, ... , I), and the only partition of k which 
is compatible with this block structure is (PI' ... ,Pk) = (1, 1, ... ,1).) 

(b) Suppose that A is cyclic. Then the block structure of A is (m I) = (n). The only 
partition of k which is compatible with this block structure is (PI) = (k). Thus, 
every element of SAC k) is cyclic. Let S E SAC k). Since S is cyclic, dim S n ~ = i, 
i = 1, ... ,k. In particular, S = S n Vk • Since A is cyclic, dim ~ = i, i = 1, ... ,n. 
Since dim Vk = k = dim S, it follows that S = Vk. Hence, SACk) = {Vd. 0 

PROPOSITION 3. Let k ,,;;; r. The elements of SACk; 1,1, ... ,1) are the k-dimensional 
subs paces of VI. SACk; 1, 1, ... ,1) is a regular submanifold of Gk(qJn) which is 
isomorphic to Gk(qJr). 

PROOF. Let S be a k-dimensional subspace of VI. Since VI == ker A, A(S) = 0, so 
S is A-invariant. Let (PI, ... ,PI) be the cyclic structure of S, and let (ql, ... ,qd) 
be its conjugate. Since S n Vo = 0 and S n ~ = S for i > 0, the formula qi = 
dim S n ~/S n ~_I implies that ql = k, qi = 0 for i> 1 (so d = 1). This means 
that 1= k and PI = P2 = ... = Pk = 1. Thus, S E SACk; 1,1, ... ,1). Conversely, 
suppose that S E SACk; 1,1, ... ,1). Then d = 1 and qI = k, so k = dim S n VIIS 
n Vo = dim S n VI. Thus, S <;;; VI. This shows that SACk; 1,1, ... ,1) consists of all 
k-dimensional subspaces of VI. Since dim VI = r, SACk; 1, 1, ... ,1) "" Gk(qJr). 0 

PROPOSITION 4. If A is cyclic, then SA consists of exactly (n + 1) points. Otherwise, 
SA contains a connected component which is a projective space of positive dimension. 

PROOF. The first assertion follows immediately from Theorem 4. To prove the 
second assertion, assume that A is not cyclic. SA(I) = SA(1; 1)"" GI(qJr) by Proposi-
tion 3. Since A is not cyclic, r;;' 2, so SA(1) is a projective space of dimension 
(r-I);;'1. 0 

Theorem 4 describes the structure of SA in the cases where A is semisimple or 
cyclic. These are the extreme cases. In the semisimple case, A has nIX 1 blocks, 
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whereas in the cyclic case A has one n X n block. A class of nilpotent operators 
which includes both the semisimple and the cyclic cases is the set of operators with 
block structure of the form (m l ,. .. ,mr) = (m l , 1, ... ,1). (Note that n = m l + r-
1.) These are the operators which have at most one block of size greater than I X 1. 
Note that if r = nand m l = 1, then A is semisimple, while if r = 1 and m l = n, then 
A is cyclic. We can describe explicitly the geometric structure of SA for this class of 
operators. 

LEMMA I. Let WI and W2 be subs paces of V of dimensions n I and n 2 such that 
WI ~ W2 ~ V. Suppose that n l ,,;;; k,,;;; n2. Let M == {S E Gk(V): WI ~ S ~ W2}. 
Then M is a regular submanifold of Gk(V) which is isomorphic to Gk- nl(<g"n 2 -n l ). 

PROOF. Choose an (n2 - nl)-dimensional subspace U such that WI EB U = W2. 
Define a mapping cp: Gk-nl(U) ~ Gk(V) by cp(X) == WI EB X. Then cp is clearly an 
embedding with image M. Since Gk-nl(U) "., Gk- nl(<g"n 2 -n l ), the lemma is proved. 

THEOREM 5. Let A have block structure (ml, ... ,mr)==(ml,I, ... ,I), and let 
(p I' ... ,p,) == (p I' I, ... , I) be a partition of k which is compatible with the block 
structure of A. Then 

(i) if PI = lor 1= r, SA(k; pp 1, ... , I)"., G'(<g"r), 
(ii) if PI > I and 1< r, then SA(k; pp I, ... , I) "., G'(<g"r) - G'(<g"r-I), 

SA( k; PI' I, ... , I) ~ G'(<g"r), and 

SA(k;PI,I, ... ,I) -SA(k;ppl, ... ,I) ~SA(k;PI-I,I, ... ,I). 
I I 

(1+ I) terms 

(Overbar indicates closure.) 

PROOF. Let S E SA(k; PI' I, ... , I). Then A I S is nilpotent of index PI' so S ~ ~I 

but S r;, ~I_I' Let (cp ... ,cm ) and (ql, ... ,qp) be the conjugates of (ml,· .. ,mr ) 
and (PI""'P,) respectively. Then (cl, ... ,cm ) = (r, 1, ... ,1) and (ql,· .. ,qp) = 
(l, I, ... , I). It is easy to check that 

PI PI 

dim A(~J = dim ~I - cl = ~ cj - cl = ~ cj = PI - 1. 
j=1 j=2 

Similarly, dim A(S) = "i.f~2qj = PI - 1. Since A(S) ~ A(~) and dim A(S) = PI 
- I = dim A(~), it follows that A(S) = A(~). Since S is A-invariant, this implies 
that A(~) ~ S. Thus, if S E SA(k; PI' 1, ... , I), then S is a k-dimensional subspace 
of V with A(~) ~ S ~ ~I and S r;, ~I_I' Conversely, suppose S satisfies these 
conditions. Then A(S) ~ A(~) ~ S, so S is A-invariant. Since S ~ ~I but S r;, 
~I_I' A I S is nilpotent of index PI' Since the cyclic structure of S must be 
compatible with the block structure of A, S must have cyclic structure (p I' I, ... , I). 
Thus, S E SA(k; PI> I, ... , I). Hence, SA(k; PI' 1, ... , I) = {S E Gk(V): A(~) ~ S 
~ ~I and S 1 ~I-I}' 

Let M == {S E Gk(V): A(~) ~ S ~ ~) and let N == {S E Gk(V): A(~) ~ S 
~ ~,-d. Since dim ~I - dim A(~) = cl = rand k - dim A(~) = k - PI + I 
= I, Lemma I implies that M is a submanifold of G\V) isomorphic to G'(<g"r). If 
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PI = 1, then v;,,-I = 0 and N is empty. (We are assuming that k > O. SA(O) consists 
of one point for any operator A.) HPI > 1, then dim v;,,-I = ~:r"11 cj = r + PI - 2. 
Since k = PI + 1- 1, dim v;,,-I = r + k - 1- 1. Thus, k,,;;; dim v;,,-I iff 1< r. If 
I = r, then N is empty. Otherwise, Lemma 1 implies that N is a sub manifold of 
G\V) isomorphic to G/(<!fr-I). (dim v;,,-I - dim A(v;,) = dim v;" - cp , -

dim A(v;,) = dim v;, , - dim A(v;,) - cp , = r - 1.) In fact, it is clear from its defi-
nition that N is a regular submanifold of M. Since SA(k; PI' 1, ... ,1) = M - N, we 
have showed that 

if P I = 1 or I = r, 

otherwise. 

It remains only to prove the assertions regarding the limit points of 
SA(k; PI' 1, ... ,1) in the case where PI > 1 and 1< r. Since SA(k; PI' 1, ... ,1) = M 
- N with M closed in Gk(V) and N a submanifold of M of codimension I> 0, it 
follows that 

and 

SACk; PI' 1, ... ,1) - SACk; PI' 1, ... ,1) = N. 

Suppose that SEN. Then A(v;,) <: S <: v;,,-I. Then A(S) <: A(v;,,-I) <: 
A(rj,) <: S, so S is A-invariant. The condition A(v;,) <: S <: v;,,-I implies that 
A I S is nilpotent of index PI - 1. Hence, S E SA(k; PI - 1,1, ... ,1). Thus, 
N <: SA(k; PI - 1,1, ... ,1). This completes the proof. 0 

REMARK 3. If the block structrure of A is (m l , ... ,m r ) == (m l , 1, ... ,1), and 
(Pi' ... ,PI) is a partition of k compatible with the block structure of A, then 
P2 = P3 = ... = PI = 1. Thus, Theorem 5 describes SA(k; PI'··· ,PI) for every choice 
of (p I' ... ,PI) which is compatible with the block structure of A. 

REMARK 4. Theorem 5 shows that if A has block structure of the form 
(ml, ... ,m r ) = (mp 1, ... ,1), then the geometry of SA(k; PI' 1, ... ,1) depends only 
on I, the number of terms in the partition of k. Specifically, if PI > 1 and 
PI + j";;; mp then SA(k; PI' 1, ... ,1) has the same structure as SA(k + j; PI + 
j, 1, ... , 1). This is not true for an operator with arbitrary block structure (m I' ... , m r). 
It is easy to show this using the results in the next section. For example, we will 
prove that SA(k; k) has dimension ~7=1 ci - k. Thus, 

k+j 

dim SACk + j; k + j) = L ci - (k + j). 
i=1 

This shows that dim SA(k; k) = dim SA(k + j; k + j) iff Ck+1 = ... = ck+j = 1. 
This is true when the block structure of A is (m I' 1, ... , 1), but it is not true in 
general. 

Let P(k) be the set of all partitions of k. If P == (pp . .. ,PI) and p' == (P'I' . .. ,p;,) 
are two elements of P(k), we say that P -;;Sp' iff 1;;;;.1' and ~{=IPi";;; ~{=I P;, 
j = 1, ... , l'. This defines a partial order on P( k) which we refer to as the natural 
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ordering. If q and q' are the conjugates of P and P' respectively, it can be shown that 
P ;$ p' iff q ;:::: q' [2]. Thus, conjugation is order-reversing. 

Let PAC k) be the subset of P( k) consisting of all partitions of k which are 
compatible with the block structure of A. By using a Ferrers diagram, it is easy to see 
that PACk) contains a largest element, p*, and a smallest element, P*, To determine 
p*, draw the Ferrers diagram for (m l , ••• ,m,) and mark k of the boxes, proceeding 
row by row starting at the upper left-hand comer of the diagram. The marked boxes 
give the partition P*. To determine P*, mark k of the boxes starting in the upper 
left-hand comer, but proceed column by column. 

EXAMPLE 2. Let (m l , m 2 , m 3 ) = (5,3,1). Let k = 6. Then P* and P* are de-
termined by the following diagrams: 

x X X X I X I X X X I I 
X X X 

X 
'-" '--
p* = (5, 1) p* = (3, 2, 1) 

We will use the natural ordering as a tool to prove that SACk) is connected. Our 
approach is to show that if P* == (PI' ... ,PI)' then SACk; PI' ... ,PI) is Grassmannian 
and hence connected. Then we show that if S E SAC k), there is a continuous curve in 
SAC k) which starts at S and which intersects the connected subset SAC k; PI'· .. ,PI). 

PROPOSITION 5. Let P* == (PI> .. ·,PI) be the smallest element of PACk), and let 
(ql'. ··,qd) be its conjugate. Then SACk; PI, ... ,PI) is a submanifold of Gk(V) 
isomorphic to Gqd(CfJCd). (Note that d = PI.) 

PROOF. Let S E SACk; PI' ... ,PI). From the method of computing P* using the 
Ferrers diagram for (m l , ... ,m,), it is clear that qj = cj for j 0;;; d - 1. This implies 
that S contains Jij forj 0;;; d - 1. Since qd+1 = 0, S <;;; Vd. Thus S is a k-dimensional 
subspace of V such that Vd- I <;;; S <;;; Vd. Conversely, suppose that S is such a 
subspace. Then A(S) <;;; A(Vd) <;;; Vd- I <;;; S, so S is A-invariant. Let S E 
SACk; Pl,··· ,PI')' and let (q;, ... ,qd') be the conjugate of (Pl, ... ,PI')· Since Vd- I <;;; 
S, it follows that q; = cj for j 0;;; d - 1. Since S <;;; Vd , it follows that d' 0;;; d. Thus 
d' 0;;; d and q; = qj for j 0;;; d - 1. Since q; + ... +qd' = k = ql + ... +qd, this 
implies that d' = d and qd = qd as well. So S E SAC k; PI'· .. ,PI). Thus, 
SACk; PI'··· ,PI) = {S E Gk(V): Vd- I <;;; S <;;; Vd}· Since dim Vd - dim Vd- I = Cd 
and k - dim Vd- 1 = qd' the conclusion follows immediately from Lemma 1. 0 

COROLLARY. If P* = (PI'·· "PI)' then SACk; PI'··· ,PI) is path-connected. 

REMARK 5. In the next section we prove that SACk; PI' ... ,PI) is connected for any 
(PI,···,PI) E PACk). 

LEMMA 2. Let P == (PI'· .. ,PI) be any element of PACk) other than P*. Let 
So E SACk; PI' .. · ,PI). Then there exists a partition P' == (Pl, ... ,PI') E PACk) with 
p' < P and a continuous curve y: [0, 1] ~ SACk) such that yeO) = So' y(t) E 
SACk; PI,··.,PI)for t < 1, andy(I) E SACk; Pl, ... ,PI,)· 
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PROOF. Let (ql, ... ,qp) be the conjugate partition of (PI""'P/), Let p = 
min{i: q; < c;}. Using the Ferrers diagram for (m l , ••• ,m r ), it is easy to see that the 
assumption that P =1= P. implies that p < P I' From the definition of P, it follows that 
v,,-I C So' but v" SZ So· Choose w E v" such that", fl So. Choose a basis for So of 
the form {VI' Avl, ... ,AP,-IVI ; V2' Av2,··.,AP2- IV2; ... ;v/,Av/, ... ,API-IV/}. Let 

)'(/) == Sp{{COS!'lT/)V I + (sin!'lT/)w, Avl, ... ,AP,-IVI ; 

To show that )'(t) is A-invariant, it clearly suffices to show that Aw E )'(t). Now, 
Aw E A(v,,) C v,,-I C So, so Aw = ~:=I ~f~1 lX.ijAJ-IV;. Applying AP-I to both 
sides gives 

/ Pi 
0= APw = ~ ~ lX.ijAJ+p-2V;. 

;=1 J=1 

By linear independence, it follows that if AJ+p-2v; =1= 0, then lX.ij = O. Since p < PI' 
AP-Iv i =1= 0, so lX.11 = O. But this shows that Aw E )'(/). Hence, )'(/) is A-invariant. 
Since w fl So, the indicated spanning set for )'(t) is linearly independent. Hence 
dim )'(/) = k, so )'(/) E SA(k). 

Suppose that 1 < 1. Let x(t) == (cos !'lTt)v l + (sin !'lT/)w. Let 13(/) == 
Sp{x(t), Ax(t), ... ,AP,-IX(t); v2, Av2, ... ,AP,-IV2 ; ... ; VI' Av/, ... ,API-IV/}. Since 
)'(/) is A-invariant and contains x(/), it also containsAJx(t). Hence, 13(/) C )'(/). To 
show that p( I) = )'(t), it suffices to prove that dim p( I) = k, which is the same as 
showing that the indicated spanning set for 13(/) is linearly independent. Suppose 
there exists an equation of the form 

p, I Pi 
~ lX.ljAJ-IX(/) = - ~ ~ lX.ijAJ-IV;. 

J=1 ;=2j=1 
Applying AP,-I to both sides of (.) gives lX. l1 Ap,-IX(/) = -~:=2~f~1 lX.ijAJ+p,-2V;. 
SinceAPw = 0 andpi - 1 ;;;. P, this becomes 

I Pi 
lX. l1 Ap,-I{COS!'lT/)VI = - ~ ~ lX.ijAJ+p,-2v;. 

;=2)=1 

Since 1 < 1, cos !'lT1 =1= O. Hence, if lX.11 =1= 0, this equation is a nontrivial linear 
dependence among the vectors in the original basis for Sc, a contradiction. Thus, 
lX.11 = O. Now, apply AP,-2 to both sides of (.). Since lX.11 = 0, this gives 

A P,-I( 1 ) - -~/ ~Pi AJ+p,-3 hi h' l' h - 0 C lX.12 cos 2'ITI VI - """;=2 """J=I lX.;J vi' w c Imp les t at lX.12 - . on-
tinuing in this way, we obtain lX.11 = lX.12 = ... = lX. lp , = O. But then (.) is a linear 
dependence among basis vectors for So' so each coefficient, lX.;J' must be zero. Thus, 
the indicated spanning set is actually a basis for p( 1). This proves that p( I) = )'( I) 
(for 1 < 1), showing that the cyclic structure of )'(1) is (PI"" ,p[)-i.e., )'(1) E 
SA( k; PI" .. ,P [) for 1 < l. (It is definitely not true that P(l) = )'(l). In fact, P(l) 
need not be k-dimensional.) 

Now 
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Let (p;, ... ,PI') be the cyclic structure of y(l), and let (q;, ... ,q;) be its conjugate. 
Let Mo == Sp{Avp ... ,API-IVI ; v 2 , Av2 , ••• ,AP2- IV2 ; ••. ;VI' Avl , .•• ,API-IV/ }. Since 
So n V; C Mo for i < PI and Mo C y(l), it follows that So n V; C y(l) n V; for 
i < PI' Since So n V; = V; for i < P, this implies that y(l) n V; = V; for i < P, which 
means that q: = ci = qi for i < P. 

Now suppose that P .;;; s < PI' y(l) n V, contains So n V, and w, so (So n V,) EB 
Sp{ w} C y(l) n v,. Suppose z E y(l) n v,. Then we can express z as 

Since z E v" 
PI I ~ 

0= ASz = ~ a .A)+s-IV + ~ ~ a· .A)+s-IV 
'" I) I '" '" I) I' 

)=2 i=2 )=1 

where we have used the fact that ASw = O. By linear independence, it follows that 
ail = 0 if A)+s-IVi =1= O. Thus, if the expression for z includes a nonzero multiple of 
A)-IV;, then AS(A)-IV;) = 0 which implies that A)-IV; E So n v,. Thus, z E (So n 
V,) EB Sp{w}. Hence, y(l) n V, = (So n V,) EB Sp{w} if P';;; S <PI' Finally, y(l) n 
Jj,1 = y(l). Thus 

for i < P, 

for P .;;; i < PI' 

fori=PI' 

This implies that q: = q; for i < P, q; = qp + 1, q; = q; for p < i < PI' and q;1 = qPI 
- 1. In particular, q' > q. Since conjugation is order-reversing, this implies that 
p'<p. 0 

COROLLARY. Let P == (PI"" ,PI) E PA(k). Then SA(k; PI"" ,PI) is closed in 
Gk(V) iff P = P*· 

PROOF. Ifp = P*, then SA(k; Pp ... ,PI) is a Grassmannian submanifold of Gk(V) 
(Proposition 5) and is therefore closed. If P =1= P*, then Lemma 2 implies that 
SA(k; PI"" ,PI) is not closed. 0 

THEOREM 6. SA( k) is path-connected. 

PROOF. Letp* == (PI"",PI)' Let So E SA(k). Since PA(k) is a finite set, we can 
apply Lemma 2 successively to obtain a continuous curve y: [0, 1] -> SA( k) with 
y(0) = So and y(l) E SA(k; PI"",PI)' Since SA(k; PI"",PI) is itself path-con-
nected (Corollary to Proposition 5), the same is true of SA(k). 0 

5. Differentiable structure of SA(k; PI"" ,PI). In this section, we investigate the 
geometric structure of SA( k; PI" .. ,PI)' This exploration culminates in Theorem 7, 
which shows that SA(k; Pp ... ,PI) is an analytic manifold which embeds in Gk(<Jn). 

Let F(n, k) be the set of n' X k matrices of rank k with entries in <J. Then F(n, k) 
is open in <J nk . Gl(k, <J) acts freely on F(n, k) on the right by matrix multiplication, 
and the orbit space F(n, k)/Gl(k, <J) is the Grassmann manifold Gk(<Jn) of 
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k-dimensional linear subspaces of '?P. Let a = (a l , ... ,ak ) be a multi-index (i.e., 
a l , ... ,ak are integers such that 1 ,,;;; a l < a2 < ... < ak ";;; n). For each a and each 
FE F(n, k), let Ma(F) be the k X k submatrix formed by rows a l ,. .. ,ak of F. Let 
Ua == {F E F(n, k): det Ma(F) '* O}. Then {Ua} is a cover of F(n, k) by open 
dense subsets. For each a, define lIa: F(n, k) ---> Cff(n-k)k to be the mapping which 
deletes the k X k submatrix Ma(F) from F. Define cf>a: Ua ---> Cff(n-k)k by 1fJ,,(F) == 
lIa(F' Ma(Fr l ). Let '1T: F(n, k) ---> F(n, k)/G/(k, Cff) be the natural projection. lfJa 
induces an injective mapping lfJa of Ua == '1T(Ua) onto Cff(n-k)k such that lfJa = ~" 0 '1T. 
{(if", ~a)} is an atlas for F(n, k)/G/(k, Cff) which has regular functions for the 
change of coordinates. This atlas gives Gk(Cffn) the structure of an Cff-analytic 
manifold of dimension (n - k )k. The charts in this atlas are called the standard 
charts for Gk(Cffn). 

The results of the preceding section show that, in general, SA( k) is not a regular 
submanifold of Gk(Cffn). In particular, there can exist points SI' S2 E SA(k) which 
have neighborhoods UI , U2 which are homeomorphic to open sets in affine spaces of 
unequal dimensions. This raises the question of whether or not there are subsets of 
SA(k) which are submanifolds of Gk(Cffn). In this section, we show that 
SA(k; PI"" ,PI) is a regular submanifold of Gk(Cffn). Our approach is to construct 
SA(k; PI"" ,PI) as the orbit space of a particular submanifold of F(n, k) under the 
free action of a closed subgroup of G/(k, Cff). This construction is analogous to, but 
more difficult than, the construction of Gk(Cffn) as F(n, k)/G/(k, Cff). Finally, we 
show that the orbit space embeds in Gk(Cffn) in a natural way. 

Throughout this section, A is a fixed n X n nilpotent matrix in lower Jordan form 
with block sizes (m l , ... ,mr)' Let (PI"" ,PI) be a partition of k compatible with the 
block structure of A. Let (c I"" ,cs ) and (ql"" ,qd) be the conjugate partitions of 
(m p . .. ,m r ) and (PI" .. ,PI) respectively. 

Let S E SA(k; PI" .. ,PI)' Then S has an ordered basis of the form 
{VI' Av l ,··· ,API-IVp v2 , Av2 ,··· ,AP2- IV2 ,··· ,VI' Avl,··· ,API-IV[}, with AP;vi = 0, 
i = 1, ... , I. Such an ordered basis will be called a cyclic basis for S. Let B be the 
n X k matrix whose columns are the vectors in this ordered basis. Partition the rows 
of B according to the partition (mp ... ,m r ) of n, and partition the columns 
according to the partition (PI" .. ,PI) of k. Then B consists of rl blocks, and the ijth 
block, B ij , is m i X Pj' It is easy to verify directly that Bij has the following structure: 
(i) Bij is constant along diagonals; (ii) if the diagonals of Bij are numbered starting 
with the lower left-hand comer, and if at is the constant value of the entries on the 
tth diagonal (t = 1, ... ,m i + Pj - 1), then at = 0 for t > rnin(mi' p). 

A matrix with properties (i) and (ii) will be called regular lower triangular (RLT). 
The following are examples of RL T matrices. 

o 

A partitioned matrix whose blocks are RLT matrices will be called block regular 
lower triangular (BRL T). Thus, if B is a matrix whose columns form a cyclic basis for 
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a subspace S E SA(k; pp ... ,PI)' then B is a full rank n X k matrix which is BRLT 
when partitioned according to (m p ... ,m r ) and (pp ... ,PI)' Conversely, if B is such 
a matrix, it is clear that the columns of B form a cyclic basis for some S E 

SA(k; PI"",PI)' 
Let '!B( k; PI" .. ,PI) be the set of n X k rank k matrices with entries in '!f which are 

BRLT when partitioned according to (m l , ••• ,m r ) and (PI"" ,PI)' The preceding 
observations are summarized in the following proposition. 

PROPOSITION 6. Let (pp ... ,PI) be a partition of k compatible with the block 
structure of A. Then for each S E SA(k; pp ... ,PI) there exists B E '!B(k; PI"" ,PI) 
such that Sp B = M. Conversely, if B E 0?>(k; PI"" ,PI)' then Sp B E 
SA(k; PI"" ,PI)' 

REMARK 6. The notation '!B(k; PI" .. ,PI) suppresses the row partition (m l ,· .• ,m r ) 

corresponding to the block structure of A. Since A is fixed throughout the discussion, 
this should cause no confusion. 

REMARK 7. If (PI"" ,PI) is a partition of k which is not compatible with 
(m l , .•• ,m r ), then no n X k matrix which is BRLT with respect to (m l , •.. ,m r ) and 
(PI"" ,PI) can have rank k. If B were such a matrix, then Sp B would be an 
A -invariant subspace with cyclic structure (p I' ... ,PI) not compatible with the block 
structure of A, which is impossible. 

REMARK 8. Let (PI"" ,PI) be a fixed partition of k which is compatible with 
(m I' ... , m r)' Let R be the k X k nilpotent matrix in lower Jordan form with block 
structure (PI"" ,PI)' Then it is easy to verify that the elements of 01(k; PI"" ,PI) 
are the rank k solutions of the linear matrix equation AX = XR, where X is an 
n X k unknown matrix [3, pp. 215-220]. 

EXAMPLE 3. Let (mp m 2 , m 3 ) = (5,3,1). Then the elements of '!B(5; 3,2) are the 
full rank matrices of the form 

0 0 0 0 0 
0 0 0 0 0 
X3 0 0 0 0 
x 4 X3 0 Y4 0 
X5 x 4 X3 Y5 Y4 

X6 0 0 0 0 
x 7 X6 0 Y7 0 
Xs x 7 X6 Ys Y7 

x9 0 0 Y9 0 

PROPOSITION 7. '!B( k; PI" .. ,PI) is a regular submanifold of F( n, k) of dimension 
"i.1=1 cjqj. 

PROOF. It is obvous from its definition that '!B(k; PI"" ,PI) is a regular submani-
fold of F(n, k). Let BE '!B(k; PI"" ,PI)' B contains rl blocks, and block Bij is 
mj X Pi" Since B jj is RLT, it contains min(mj' p) parameters which are arbitrary 
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except for the condition that B be full rank. Thus 
r I 

dimc:B(k; PI'""PI) = ~ ~ min(m j , Pj)' 
i=1 j=1 

To express this sum more simply, note that there are c j blocks whose minimum 
dimension is at least i. Thus, there are (cjqj - Ci+lqj+l) blocks whose minimum 
dimension is exactly i. So dimc:B(k; PI"",PI) = "i.1=I(c jqj - ci+lqj+l)i. Using the 
fact that qd+ I = 0, this sum simplifies to "i.1= I cjq,. 0 

Let (PI"" ,PI) be a fixed partition of k. Define R as in Remark 8. Let 
G(k; PI"" ,PI) be the subgroup of Gl(k, '!f) consisting of those matrices which 
commute with R. Applying Remark 8 to the special case where the block structure of 
A is (PI"",PI) (and hence A = R) shows that G(k; PI"",PI) consists of the 
nonsingular k X k matrices with entries in '!f which are BRL T when both the rows 
and the columns are partitioned according to (p I" .. ,PI)' 

PROPOSITION 8. G(k; pp ... ,PI) is a closed subgroup of Gl(k, '!f) of dimension 

"i.1=lq?, 

PROOF. It is clear from the structure of the matrices in G(k; PI"" ,PI) that they 
form a closed subgroup of Gl(k, '!f). The dimension formula follows from Proposi-
tion 7 applied to the special case where n = k and the block structure of A is 
(PI"" ,PI)' 

PROPOSITION 9. G(k;PI"",PI) acts freely on c:B(k;pp""PI) on the right by 
matrix multiplication. Let c:B(k; PI"" ,PI)/G(k; PI"" ,PI) be the quotient space, and 
let 1T: c:B(k; PI"" ,PI) --- c:B(k; PI"" ,PI)/G(k; PI"" ,PI) be the natural projection. 
Then 1T( B I) = 1T( B2) iff Sp B I = Sp B2· 

PROOF. Let B E c:B(k; PI"",PI) and Z E G(k; PI"",PI)' Then BZ has rank k 
and A(BZ) = (AB)Z = (BR)Z = B(RZ) = B(ZR) = (BZ)R since AB = BR and 
Z commutes with R. So by Remark 8, BZ E c:B(k; PI"" ,PI)' Thus, G(k; PI"" ,PI) 
acts on c:B(k; PI"" ,PI)' If BZ = B, then Z = 1 since B has full rank, so the action is 
free. If 1T(BI ) = 1T(B2)' then there exists Z E G(k; PI"",PI) with BIZ = B2, so 
SpBI = SpB2. Conversely, suppose SpBI = SpB2. Then there exists Y E Gl(k, '!f) 
such that BIY = B2. Since ABI = BIR and AB2 = B2R, BI(Ry) = (BIR)Y = 
(ABI)Y = A(Bly) = AB2 = B2R = (Bly)R = BI(YR). Since BI is rank k, this 
implies that RY = YR. Hence, Y E G(k; PI"" ,PI)' so 1T(B I) = 1T(B2)' 0 

REMARK 9. Proposition 9 shows that B I , B2 E c:B(k; PI"" ,PI) span the same 
A -invariant subspace iff there exists Z E G( k; PI" .. ,p I) such that BIZ = B2. Thus, 
the action of G(k; pp ... ,PI) on c:B(k; Pi"" ,PI) corresponds to change of cyclic 
basis in k-dimensional A -invariant subspaces of cyclic structure (p I' ... ,PI)' Each 
element of c:B(k; PI"" ,PI)/G(k; PI"" ,PI) is an equivalence class consisting of all 
the cyclic bases for a single subspace in SAC k; PI" .. ,PI)' 

LEMMA 3. Let ~ be an eqUivalence relation on a topological space X such that 1T: 
X -> X/~ is an open mapping. Let E == {(XI' x 2) E X X X: XI ~ x 2}. Then X/~ is 
Hausdorff iff E is closed in X X X. 
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PROOF. (See [l,p. 61].) 

PROPOSITION 10. ~(k; PI"" ,PI)/G(k; PI"" ,PI) is a Hausdorff topological space 
(in the quotient topology) with a countable basis. 

PROOF. To streamline notation, let ~ == ~(k; PI" .. ,PI) and let G == 
G(k; PI"" ,PI)' Since the action of G on ~ is continuous, 'IT is an open mapping. 
Since ~ has a countable basis, the same is true for ~/G. Let D == {(B I , B2 ) E ~ X 
~: 3Z E G such that BIZ = B2}. Let E == {(XI' X2) E F(n, k) X F(n, k): 3Y E 
G/(k, <?f) such that XIY = X2}. By the preceding lemma, ~/G is Hausdorff iff Dis 
closed in ~ X ~. Since F(n, k)/Gl(k, <?f) is Hausdorff, E is closed in F(n, k) X 
F(n, k). Since G is a subgroup of Gl(k, <?f), DeE n (~ X ~). On the other hand, 
if (Xl> X2) E E n ~ X ~, then XI' X2 E ~ and Sp XI = Sp X2. From Proposition 
9 it follows that 'IT(BI) = 'IT(B2), so (XI' X2) ED. Thus, D = E n (~ X ~). Since 
~ X ~ has the relative topology from F(n, k) X F(n, k), D is closed in ~ X ~. 
Hence, ~ / G is Hausdorff. D 

In order to develop coordinate charts for ~(k; PI"",PI)/G(k; PI"",P/)' it is 
necessary to consider the action of G(k; PI"" ,PI) in detail. LetB E ~(k; PI"" ,PI)' 
Let B == [b\, . .. , b;l; b~, . .. , b;2; ... ; bL . .. , b~) be the partition of B by columns. 
Each of the I sets of columns is called a block of columns. Consider the following 
three types of transformations. 

(i) Multiply each of the Pi columns in thejth block of the columns by a nonzero 
A E <?f. 

[b l bl • 'b i bi . 'b l bl] I"'·" PI""" 1"··" Pi'··'" 1""" PI 

..... [b l b l • • 'b i 'b i . . bl bl ] 1"'" PI'···'/\ 1"··'/\ Pj'···' 1'·'" PI . 

(ii) Take the last p columns in thejth block of columns, multiply each of these by 
A E <?f, and add them consecutively to the first p columns in the ith block of 
columns. 

[ bl b l • . bi bi . . bi bi . . bl bl ] 
I"·" PI"·" 1"'" Pi"'" 1"'" Pj"'" 1"'" PI 

..... [b l b l • 'bi + 'b i bi + 'b i bi + 'b i \> ••• , PI"'" I (\ Pj-.+I' 2 (\ Pj-.+2'···', (\ Pj' 

bi bi •• bi bi . . bl bl ] 
.,+1"'" Pi"'" 1"'" Pj"'" 1"'" PI . 

(Obviously, p OS;;; Pi- Also, it is allowable to choose i = j. However, if this choice is 
made, we require that p < Pi' The case where i = j and p = Pi is included in (i).) 

(iii) If Pi = Pi' interchange the ith andjth blocks of columns. 

[b l bl • • bi bi . • bi bi . . bl bl ] 
1"'" PI"'" 1"'" Pi'·'" 1'···' Pj'···' 1'··" PI 

..... [b l bl • • bi bi . . bi bi . . bl bl ] ., •.. , PI"'" 1"'" Pj"'" 1"'" Pi"'" 1"'" PI . 

These transformations can be accomplished by multiplication by the elements of 
G(k; PI"" ,PI) described below. (Zuv is the uvth block of Z E G(k; PI"" ,PI)') 

(i) Zuv = 0 for u =1= v; Zuu = I for u =1= j; Zii = AI. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE VARIETY OF INVARIANT SUBSPACES 737 

(ii) If i 7= j, then Zuu = i for all u; Zji is zero except for the vth diagonal 
(counting from the lower left-hand corner) which is equal to '\; every other block is 
zero. If i = j, then Zuu = J for u 7= j; Zjj is one on the Pjth diagonal, ,\ on the vth 
diagonal, and zero elsewhere; Zuv = 0 for u 7= v. 

(iii) Zij = Zj; = J; Zuu = J for u 7= i, j; all other blocks are zero. 
A transformation of type (i), (ii), or (iii) is called an elementary cyclic column 

operation (ECCO). The corresponding element of G( k; PI" .. ,PI) is called an 
elementary matrix (EM). Later it wil be proved that every matrix in G( k; PI" .. ,p I) 
is a product of elementary matrices. (It is true that the EM's of types (i) and (ii) 
generate G(k; PI'''' ,PI)' However, it is convenient to include type (iii) matrices in 
the class of EM's even though every result could be obtained without using them.) 

Let BE 'i.B(k; PI,,,,,PI)' Let (i, j) be fixed. Suppose that the p}h diagonal 
(counting from the lower left-hand corner) of block Bij is nonzero, say ,\. Multiply 
each column in thejth block of columns (in B) by 1/,\. This is an ECCO of type (i), 
and the p}h diagonal of the ijth block in the resulting matrix is equal to one. For 
convenience use "B" to denote the new matrix. Now suppose that the (Pj - l)th 
diagonal of (the new) Bij is nonzero, say'\. Multiply by -,\ the last (Pj - 1) columns 
in the jth block of columns (in V) and add them consecutively to the first (Pj - 1) 
columns in the jth block of columns. This is an ECCO of type (ii), and the 
(Pj - l)th diagonal of the new Bij is zero. The p}h diagonal of Bij remains equal to 
one. Now suppose that the (Pj - 2)th diagonal of (the new) Bij is nonzero, say,\. 
Multiply by -A the last (Pj - 2) columns in thejth block of columns and add them 
consecutively to the first (Pj - 2) columns in the jth block of columns. The new Bij 
has diagonal Pj equal to one and diagonals (Pj - 1) and (Pj - 2) equal to zero. By 
continuing in this way, we obtain a new matrix B such that the p}h diagonal of Bij is 
one and the other diagonals of Bij are zero. 

Now consider block Bij' (in the transformed matrix). Suppose that the p}h 
diagonal of Bij' is nonzero, say A. Multiply by -,\ the Pj columns in the jth block of 
columns and add them consecutively to the first Pj columns in the j'th block of 
columns. The p}h diagonal in Bij' is now zero. Now suppose that the (Pj - 1 )th 
diagonal of Bij' is nonzero, say'\. Multiply by -,\ the last (Pj - 1) columns in thejth 
block of columns and add them consecutively to the first (Pj - 1) columns in the 
j'th block of columns. The new Bij, has both diagonals Pj and (Pj - 1) equal to zero. 
Continuing in this way, we eliminate the first Pj diagonals of Bij'- Next we eliminate 
the first Pj diagonals of Bij" etc. Eventually we obtain a transformed matrix B such 
that diagonals 1, ... ,Pj of Bil , Bi2 , . .. ,Bi/ are all zero except that diagonal Pj of Bij is 
one. This result is summarized in the following lemma. 

LEMMA 4. Let BE 'i.B(k; PI"" ,PI)' Let (i, j) be fixed. Suppose that the p/h 
diagonal of Bij is nonzero. Then by applying a sequence of ECCO's, B can be 
transformed into a matrix 13 such that the first Pj diagonals of 13il , . .. , 13i/ are all zero 
except that the p/h diagonal of 13ij is one. 

Let Y = (YI" .. 'Y/) be a multi-index of length I such that YI"'" YI are distinct 
integers between 1 and r. They need not be in increasing order. We say that Y is 
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compatible iff my} ;;;. Pi'} = 1, ... ,I. Since (Pi"" ,PI) is compatible with the block 
structure of A, mj;;;'p},}= 1, ... ,1, so y==(l,2, ... ,/) is always a compatible 
multi-index. Let f( k; PI" .. ,p,) be the set of compatible multi-indices correspond-
ing to the partition (p I' ... ,p,) of k. (As usual, the partition (m I' ... , m r) of n is 
suppressed.) For each y E f(k; PI"" ,PI) and each BE 0I>(k; PI"" ,PI)' let MiB) 
be the k X k sub matrix formed by taking the last Pj rows from the y}h block of 
rows,} = 1, ... , I. 

LEMMA 5. Let BE 0I>(k; PI"" ,PI)' Then there exists y E f(k; PI"" ,PI) such that 
det M/B)"* O. 

PROOF. Consider the blocks B II ,. .. ,Brl in the first column of blocks in B. Bil is 
m i X PI' Since each block is RLT, it is zero above the Pith diagonal. If the Pith 
diagonal of Bil is also zero, then the last column in Bil is identically zero. If this is 
true for B ll , ... ,Bri' then the Pith column in B is identically zero, which is 
impossible since B has full rank. Thus one of these blocks, say By!.I' has a nonzero 
Pith diagonal. By Lemma 4, a sequence of ECCO's can be applied to B to make the 
first PI diagonals in By"I" .. ,By!.! equal to zero except for the Pith diagonal of By!,1 
which is equal to one. Since By"j is automatically zero above the p}h diagonal (since 
it is RLT), and since PI ;;;. Pj' this means that By!,I"" ,By", are zero except for the 
Pith diagonal of By!,1 which is one. 

Now consider the second column of blocks, B I2 , ... ,Br2 , in the new matrix. Since 
the (PI + P2)th column of B is not identically zero, one of these blocks, say By,,2' 
has a nonzero P2th diagonal. Since By,,2 is zero, Y2 "* YI' By Lemma 4, a sequence of 
ECCO's can be applied to B to make the first P2 diagonals in By"I"" ,By", equal to 
zero except for the P2th diagonal of By,,2 which is equal to one. Since By"j is 
automatically zero above the p}h diagonal, and since P2 ;;;. Pj if) ;;;. 2, this means that 
By,,2' ... , By,,[ are zero except for the P2th diagonal of By,,2 which is one. Also, it is 
not hard to see that since By!,2 is zero, the ECCO's used to put By"I"" ,By,.! into the 
described form do not change the entries in By"I"" ,By,,[. Thus, the form of 
By" I' ... , By!.! is not disturbed. 

Continuing in this way, we obtain a compatible multi-index y == (YI"" ,y,) and a 
transformed matrix, call it B, s~ch that the first PjA diagonal~ of By},i" .. , By}. [ are zero 
except for the P}~ diagonal of BY]'j which is one. By},}" .. ,By},! are zero except for the 
p}h diagonal of By,j which is one. 

1 A A 

Form the k X k sub matrix M/B). Both the rows and the columns of My(B) are 
naturally partitioned according to (PI""'P[), Let {Mij} be the blocks in MiB). 
Mij is Pi X Pj and consists of the last Pi rows of ~Yi'}' Thus ~j ~s an identity matrix, 
and Mij is a zero matrix if i <j. Thus, det MlB) = 1. Since B is obtained from B 
by ECCO's there exists Z E G(k; Pi'''' ,PI) such that B = BZ. Then My(B) = 
My(B)Z, so det MlB)"* O. D 

EXAMPLE 4. Let (m l , m 2, m 3 ) = (5,3,1). Let k = 5 and (PI' P2) = (3,2). The 
elements of 01>(5; 3,2) were described in Example 3. f(5; 3,2) = {(l,2),(2, I)}. Let 
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B E 0iJ(5; 3,2). By Lemma 5, at least one of the submatrices 

X3 0 0 0 0 X6 0 0 0 0 
x 4 X3 0 Y4 0 x 7 X6 0 Y7 0 
Xs x 4 X3 Ys Y4 Xg x 7 x6 Yg Y7 

x 7 X6 0 Y7 0 x 4 X3 0 Y4 0 
Xg x 7 x6 Yg Y7 Xs X 4 X3 Ys Y4 , 

corresponding to the multi-indices (1,2) and (2, 1) respectively must be nonsingular. 
Note that if X6 =1= 0, the first submatrix is not BRLT. Similarly, if X3 =1= 0, the second 
sub matrix is not BRLT. 

Let M be an r X s matrix which is constant on diagonals and is zero above the s th 
diagonal. Then we say that M is regular weakly lower triangular (R WL T). If s .;;; r, 
then RWLT is equivalent to RLT. However, if r < s, then RWLT is a less stringent 
condition than RLT. For example, 

(~ 
c 
b ~) 

is RWLT but is not RLT unless c = O. A partitioned matrix whose blocks are 
RWLT is called block regular weakly lower triangle (BRWLT). 

Let H( k; PI' . .. ,PI) be the set of all nonsingular k X k matrices which are 
BRWLT when both the rows and columns are partitioned according to (PI'··· ,PI). 
It is easy to check that H( k; PI' . .. ,PI) is invariant under each of the three types of 
ECCO's. It is also clear that G(k; PI, ... ,PI) is a regular sub manifold of 
H(k; PI'··· ,PI)· 

Let M E H(k; PI' ... ,PI)' and let Mij be the ijth block of M (i,j = 1, ... ,I). We 
say that M is in standard form iff the first Pi diagonals of Mi!' ... ,Mil are all zero 
except for the Pith diagonal of Mu which is one. Note that since Mij is Pi X Pj and is 
RWLT, the diagonals above the p}h are automatically zero. Thus, if M is III 

standard form, then Mii is a Pi X Pi identity matrix and Mij = 0 for i < j. 
EXAMPLE 5. The elements of H(5; 3,2) are the nonsingular matrices of the form 

XII 0 0 0 0 
X 21 XII 0 X 24 0 
X 31 X 21 XII X 34 X 24 

X 41 X 42 0 X 44 0 
X SI X 41 X 42 X S4 X 44 

The elements of H(5; 3,2) which are in standard form are of the form 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 
0 X 42 0 1 0 
0 0 X 42 0 
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LEMMA 6. Let ME H(k; PI" .. ,PI)' Then there exists a matrix M E 
H(k; PI"" ,PI) which is standard form and a sequence of ECCO's which transform M 
into M. 

PROOF. Suppose first that PI> P2' Consider the blocks in the first row of blocks in 
M, namely MIl'" . ,MJI. Since M lj is RWLT, it is zero above the p}h diagonal. Since 
PI> P2' this means that M I2 , ... ,MJI are zero above the (PI - l)th diagonal. This 
implies that the top row of Mlj is zero for j = 2, ... , I. Since M is nonsingular, the 
top row of MIl cannot be zero, for otherwise the first row of M would be identically 
zero. This means that the PIth diagonal of Mll is nonzero. Noting that the proof of 
Lemma 4 applies to H(k; PI"" ,PI) just as well as it applies to ~(k; PI"" ,PI)' we 
conclude that there exists a sequence of ECCO's which can be applied to M to make 
the first P I diagonals of M ll ,· .. , MJI zero except for the PIth diagonal of Mll which 
is one. Since M lj is zero above the p}h diagonal, and PI;;;' Pj' it follows that Mll is a 
PI X PI identity matrix and M I2 , ... ,MJI are all zero. 

Now suppose that PI = P2 = ... = P. > P.+I· Since PI > P.+I, it follows that 
MI,v+ I"" ,MIl are zero above the (PI - l)th diagonal. Thus, the top row of each of 
MI,v+ I" .. , MIl is zero. Since the top row of M is not identically zero, as least one of 
Mil' ... , MI. has a nonzero top row and hence a nonzero PIth diagonal. By 
performing an ECCO of type (iii) if necessary, we can assume that the PIth diagonal 
of MIl is nonzero. Then we can proceed as in the case where PI> P2' Thus in either 
case we obtain the indicated form for the first row of blocks. 

Next, consider the second row of blocks in the (new) matrix M. Since Mll is an 
identity matrix and M I2 , . .. , MJI are zero matrices, it is clear that for det M to be 
nonzero, the top rows of M 22 , ... ,M2I cannot all be zero. If P2 > P3' this implies that 
the P2th diagonal of M22 is nonzero. If P2 = P3 = ... = Pv > Pv+I' we perform an 
ECCO of type (iii) (if necessary) to make the P2th diagonal of M22 nonzero. Then by 
Lemma 4, there exists a sequence of ECCO's which makes the first P2 diagonals of 
M2l'" ., M21 zero except for the P2th diagonal of M22 which is one. Since M 12 ,· •• ,MJI 
are zero matrices, these ECCO's do not change any entries in the first row of blocks. 
Since M 2j is a P2 X Pj RWLT matrix, it is automatically zero above the p}h 
diagonal. Since P2 ;;;. Pj if 2 .e;;; j, this implies that B22 is a P2 X P2 identity matrix and 
B23 , ... , B2I are all zero. 

Continuing in this way, we obtain a sequence of ECCO's which transform Minto 
a matrix M which is in standard form. 0 

COROLLARY. Every element of G(k; PI"" ,PI) is a product of EM's. 

PROOF. Let Z E G(k; PI'''' ,PI)' By Lemma 6, there exists a matrix i E 
H(k; PI""'P,) which is in standard form and a sequence ZI"",Zm of EM's such 
that i = ZZIZ2 ... Zm' Since Z, ZI"" ,Zm E G(k; PI"" ,PI) and G(k; PI"" ,PI) 
is a group, it follows that i E G( k; PI" .. ,PI)' But the elements of G( k; PI" .. ,PI) 
are BRLT -not just BRWLT. From the definition of standard form, it is clear that 
the only matrix in H(k; PI"" ,PI) which is BRLT and in standard form is I. So 
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A -I Th Z-I· d f EM' I = Z = ZZIZ2 ... Zm. Hence, Z = ZIZ2 ... Zm. us IS a pro uct 0 s. 
Since Z is arbitrary, this shows that every element of G(k; PI' ... ,PI) is a product of 
EM's. 0 

LEMMA 7. Let M, N E H(k; PI' . .. ,PI) be in standard form, and suppose there 
exists Z E G(k; PI' ... ,PI) such that N = MZ. Then Z = I and N = M. 

PROOF. For convenience, let LT(X) denote the lower triangular part of a matrix 
X. This proof is by induction on [. 

Let Mjj' N;j> Zjj be the ijth blocks of M, N, Z respectively. Suppose that [= 1. 
Then N = Nil = I and M = Mil = I, so Z = I and the result is trivial. Suppose the 
result holds for [= 1, ... ,v - 1. Let I = v. Since N = MZ, Nlj = ~~=I MlrZrj . Since 
Mil = I and M I2 , ... ,Mil are zero, this becomes Nlj = Zlj. Since Nil = I and 
N I2 , ... ,Nil are zero, this means that ZII = I and Z12' ... ' ZII are zero. 

Now, N21 = ~~=I M 2rZrl = M 21 Z Il + M 22 Z 21 = M21 + Z21. (Here we have used 
the facts that M22 = I, M 23 , ... ,M21 are zero, and ZII = I.) Taking the lower 
triangular part of this equation gives LT(N21 ) = LT(M21 ) + LT(Z21)' which gives 
0=0 + LT(Z21). Hence LT(Z21) = O. Since Z21 is RLT, this implies that Z21 = O. 
Next, consider the equation 

I 

N31 = ~ M 3rZrl = M 31 Z Il + M 32 Z 21 + M33 Z31 = M31 + Z31· 
r=1 

Hence, 0 = LT(N31 ) = LT(M31 ) + LT(Z31) = LT(Z31)' so Z31 = O. Continuing in 
this way gives Z41' ... ,ZII = O. Thus, the equation MZ = N can be written as 

Mil M12 ... Mil 

If, Nil NI2 ... Nil 

M21 N21 

M : Z IV 
Mil 0 Nil 

This implies that Mt = IV. Clearly, M, IV E H(k - PI; P2' ... ,PI) and are in stan-
dard form, and t E G(k - PI; P2' ... ,PI). Thus, the induction hypothesis may be 
applied to conclude that t = I. Hence, Z = I and the proof is complete. 0 

By Lemmas 6 and 7, it follows that for each M E H(k; PI' ... ,PI) there exists a 
unique ME H(k; PI, ... ,PI) which is in standard form and a unique Z E 
G(k; PI' ... ,PI) such that M = MZ. From the proof of Lemma 6, it is clear that the 
entries in M are regular functions of the entries in M. Since Z = M-IM, the entries 
in Z are regular functions of the entries in M. Define a: H(k; PI'··· ,PI) ~ 
G(k; PI' ... ,PI) witha(M) = M-IM. Note that if ME G(k; PI'··. ,PI)' then M = I, 
so a(M) = M-I. Thus, the restriction of a to G(k; PI, ... ,PI) is the inversion 
mapping. 

Let 7/": <iB(k; PI, ... ,PI) ~ <iB(k; PI, ... ,PI)/G(k; PI, ... ,PI) and 7/"': F(n, k) ~ 
F(n, k)/G[(k, <?J) be the natural projections, and let i: <iB(k; PI' ... ,PI) ~ F(n, k) 
be the inclusion map. Let B I' B2 E <iB( k; Pl> . .. ,PI). By Proposition 9, 7/"( B I) = 7/"( B2) 
iff Sp B I = Sp B2 • But Sp B I = Sp B2 iff 7/"' 0 i( B I) = 7/"' 0 i( B2). Thus, there exists 
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an injection p.: GJlJ/G ---> F(n, k)/GI(k, 'lJ) such that p. 0 'TT = 'TT' 0 i-i.e., such that 
the diagram 

GJlJ ---> F(n,k) 

J,'7T' 

GJlJ/G ---> F(n, k)/GI(k, 'lJ) 
I" 

is commutative. By Proposition 6, the image of Jl is precisely SA( k; PI'· .. ,PI). This 
leads to the principal result of this section. 

THEOREM 7. GJlJ(k; PI, ... ,p,)/G(k; pp ... ,p,) is an 'lJ-analytic manifold of dimen-
sion '1.f=1 q;(ci - qJ. The induced mapping p.: GJlJ/G ---> F(n, k)/GI(k, 'lJ) is an embed-
ding with image SA( k; PI'· .. ,PI)· 

PROOF. For each y E f(k; pp ... ,PI)' let V; == {B E GJlJ(k; PI'··· ,PI): det My(B) 
=1= O}. Let Uy == {F E F(n, k): det M/F) =1= O}. Since Uy is open in F(n, k) and 
V; = Uy n GJlJ, V:r.Js open in the relative topology on GJlJ. Bl Lemma 5, {VY}YEr is a 
cover of GJlJ. Let Vy == 'TT(Vy). Since 'TT is an open mapping, {VY}YEr is an open cover of 
GJlJ/G. 

If BEVy, B has '1.f= I ciqi diagonals which are not automatically zero (see 
Proposition 7). B . a(My(B)) has '1.f=1 q? of these diagonals fixed at either one or 
zero and therefore contains '1.f= I qi( ci - qJ nontrival diagonals. Let 

d 

N == ~ qi(Ci - qi). 
i=1 

For each y E f, define a mapping 1/y: GJlJ ---> 'lJN which maps B E GJlJ to the 
N-tuple consisting of its entries on the N diagonals just described (in some 
preassigned order). (1/y is just a projection mapping which maps B to a vector 
composed of N of its entries.) Define a mapping I/;y: V; ---> 'lJN by l/;y(B) == 
1//B· a(MlB))). Suppose that B I, B2 E Vy with 'TT(B I ) = 'TT(B2). Then 

'TT(BI . a(My(BI))) = 'TT(B2· a(My(B2)))' 

so there exists Z E G such that B I · a(MlBI)) . Z = B2 . a(M/B2)). Thus, 
MlBI . a(My(BI))) . Z = M/B2 . a(M/B2))). Since My(BI . a(MlBI))) and 
M/B2 . a(M/B2))) are both in standard form, Lemma 7 implies t~at ~ = I. Hence, 
BI . ~M/BI)) = B2 . a(M/B2))· This shows that there exists I/;y: Vy ---> 'lJN such 
that I/;y 0 'TT = I/;y. 

Now suppose that BI . a(M/BI)) = BJ:..· a(MlB2)). It follows immediately that 
'TT(B I ) = 'TT(B2). Hence, the mapping of Vy into Vy given by [B] ---> B . a(My(B)) is 
one-to-one. From its definition it is clear that 1/y is one-to-one when restricted to the 
image of this mapping. Thus ;Jy is injective. It is easy to se~ tha~ ;Jy maps ~ 
homeomorphically onto 'lJN. It is clear that if y, y' E f and Vy n Vy' =1= 0, then 
each component of the mapping ;Jy' 0 ;J;I: ;J/~ n ~,) ---> ;Jy'(~ n ~,) is a regular 
function. Thus, {(~, ;JY)}YEr is an atlas for GJlJ/G which gives it an 'lJ-analytic 
structure. So GJlJ /G is an 'lJ-analytic manifold of dimension N = '1.1= I q/ ci - q;). 
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We have already showed that p, is a one-to-one mapping of gj/G onto 
SACk; Pl'···'P[)· It is trivially true that 7T'(i(gj) n Uy) ~ 7T'(i(gj)) n 7T'(Uy). Let 
S E 7T'(i(gj)) n 7T'(Uy). Then there exist B E gj and F E Uy such that S = 7T'(i(B)) 
= 7T'(F). But this implies that there exists Y E G/(k,~) such that B~T = F. 
Since det My(F) =1= 0, it follows that det MiB) =1= 0, so B E Uy. Hence, S E 
7T'(i(gj) n Uy). S07T'(i(gj) n Uy) = 7T'(i(gj)) n 7T'(Uy). Then, 

p,(~) = J.t( 7T(V:J) = 7T'(i(~)) = 7T;(i(gj) n Uy ) 

= 7T'(i(gj)) n 7T'(Uy) 

= p,(7T(gj)) n ~ = SACk; Pl' ... 'P[) n ~. 

The completion of this proof is postponed until after an example. 
EXAMPLE 6. Let (m]> m 2, m 3) = (5,3,1). Let k = 5 and (PI' P2) = (3,2). Then 

from Example 4, r(5; 3,2) consists of two multi-indices, y == (1,2) and y' == (2, 1). 
Let B E gj(5; 3,2). The form of B is described in Example 3 which shows that B 
contains 12 nontrivial diagonals. Suppose that BEVy. Then the 5 X 5 submatrix 
MiB) is nonsingular. Multiplying B by (J(MiB)) puts this sub matrix in standard 
form. (This standard form is shown in Example 5.) Thus, B . (J(My(B)) has the form 

0 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 

B· (J(My(B)) = 0 0 1 0 0 
X6 0 0 0 0 
0 X6 0 1 0 
0 0 X6 0 

X9 0 0 .99 0 

This matrix contains only three nontrivial diagonals. X6, X9' .99 are regular functions 
of the twelve variables (X3' X 4 , X S, X 6 , X 7 , X g, X 9 , Y4' Ys, Y7' Yg, Y9) in B. Then 
'T/y(B . (J(MiB))) ~ (X6' X9' .99)· Thus, with B as in Example 3, l/Iy(B) = (X6' X9 ' .99)· 
The induced map l/Iy is the mapping 

0 0 0 0 0 
0 0 0 0 0 
1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 t¥y 

Sp 
X6 0 0 0 0 -> (X6' X9' .99)· 

0 X6 0 0 
0 0 X6 0 1 

X9 0 0 .99 0 
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Now, the corresponding chart Uy for F(9,5) consists of all 9 X 5 matrices F such 
that MiF) is nonsingular. The usual coordinate system on the chart fJ., for 
F(9, 5)/GI(5, '!J) is given by the mapping 

III 112 113 114 115 
121 122 1;3 124 125 
1 0 0 0 0 III 112 113 114 115 
0 1 0 0 0 <1>1 121 122 123 124 125 Sp 0 0 1 0 0 -> h4 hi 162 h3 164 h5 hi h2 h3 h5 

191 192 193 194 195 0 0 0 1 0 
0 0 0 0 1 
191 192 193 194 195 

This is the coordinate system for Uy described at the _ begin~ng of this section. 
However, it is trivial to check that the coordinate system <p; for Uy defined by 

III 112 113 114 115 
121 122 123 124 125 
1 0 0 0 0 III 112 113 114 115 0 1 0 0 0 

~; 121 122 123 124 125 Sp 0 0 1 0 0 -> 

hi h2 h3 h4 h5 hi h2 h3 h4 h5 
0 hi 0 1 0 191 192 193 194 195 
0 0 161 0 

191 192 193 194 195 
is related to $y by a regular change of coordinates. Since 

0 0 0 0 0 

$; 0 IL 0 ;kl(.x6, X9, Y9) = 0 0 0 0 0 
X6 0 0 0 0 
X9 0 0 Y9 0 

IL is an immersion on Uy • Similarly, one shows that IL is an immersion on Uy " 

Now return to the proof of the theorem. It is easy to see that Example 6 illustrates 
the general situation. By modifying the usual coordinate system $y for fJ., by a 
regular change of coordinates, we obtain new coordinates $; for fJ., such that 
$; 0 IL 0 f;1 is the canonical immersion of '!IN into '!J(n-k)k. Thus, IL is a one-to-one 
immersion of 0l>/G into Gk('!Jn) == F(n, k)/Gl(k, '!J) with image SA(k; PI"" ,PI)' 
To prove that IL is an embedding, it remains only to show that IL- I is continuous as a 
mapping from SA(k; PI'''' ,PI) onto 0l>/G. Let hy == $; 0 IL 0 f;l. hy maps '!IN = 
fy(~) injectivelx onto $; 0 IL(~) = $-lSA(k; PI',:,' ·_:'pI) n fJ.,), so h~1 exists as a 
mapping from <p;(SA(k; PI"" ,PI) n Uy) onto "'iVy), Since hy is the canonical 
immersion of '!IN into '!J(n-k)k it follows immediately that h~1 is continuous. Now, 
on SA(k; PI"" ,PI) n fJ." IL- I is equal to f;1 0 h~1 0 $; which shows that IL- I is 
continuous on SA(k; PI"",PI) n fJ.,. Since {SA(k; PI"",PI) n fJ.,}yEr is an open 
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cover of SACk; PI' ... ,PI) (in the relative topology from Gk(g:n)), this shows that fL- I 
is continuous. Hence, fL is an embedding of GJiJ/G into Gk(g:n) with image 
SACk; PI, ... ,PI). Thus, SACk; PI, ... ,PI) is a regular submanifold of Gk(g:n) of 
dimension '2.1= I q;( c; - q;). 0 

COROLLARY OF PROOF. SACk; Pi' ... ,PI) is connected. 

PROOF. Let y_ E f(k; £.1' ... ,PI). Since V; is dense in :!!!>(k; Pi'··· ,PI)' ~ is dense 
in GJiJ/G. Since 1/11' maps VI' homeomorphically onto g:N, Vy is connected. Hence, GJiJ/G 
is connected. 0 

In §4, we showed that SACk) is connected (in the relative topology from Gk(g:n), 
g: = R or C), but it is not generally a submanifold. Theorem 7 shows that if we fix 
not only the dimension, k, but also the cyclic structure, (p I' ... ,P I)' then the set of 
k-dimensional A -invariant subspaces with this cyclic structure, SAC k; PI' . .. ,PI)' is a 
regular submanifold of Gk(g:n). Recall that PACk) is the set of partitions of k which 
are compatible with the block structure of A, and PAC k) contains a smallest element 
P* in the natural ordering. By Proposition 5, SACk; P*) is a Grassmannian submani-
fold of Gk(g:n). By the Corollary to Lemma 2, if P E PA(k), then SACk; p) is closed 
in Gk(g:n) iffp = P*. Thus, SACk) is the set-theoretic disjoint union UPEPA(k) SACk; p) 
of submanifolds of Gk(g:n), only one of which is closed. 

REMARK 10. The results in this section have been derived under the assumption 
that A is nilpotent. In §3, we showed that this is no loss of generality. 

6. Schubert varieties. As before, let V be an n-dimensional vector space over the 
field g: of real or complex numbers. Let WI C ... C Wk be a flag, or nested 
sequence of linear subspaces of V, and let n j be the dimension of UJ (j = I, ... , k ). 
Let [WI, ... ,Wd={SEGk(V): dimSn UJ;;;.j, j= l, ... ,k}. The image of 
[WI' . .. , Wd under the Plucker map P is the intersection of p( Gk(V)) with the zero 
set of a family of homogeneous linear polynomials [6]. In particular, this means that 
[WI' ... ' Wd is a subvariety of Gk(V). It is known as a Schubert variety. We have 
seen in §2 that p(SA(k)) is also the intersection of p(G\V)) with the zero set of a 
family of homogeneous linear polynomials. (If A has more than one distinct 
eigenvalue, then strictly speaking, p(SA(k)) is a disjoint union of such objects.) Thus, 
a natural question to ask is whether SAC k) is a Schubert variety, or more generally, a 
union or intersection of Schubert varieties. By analyzing an example in detail, we 
show that this need not be the case. 

Consider the operator A: R4 -> R4 defined by 

Using the notation introduced in §4, the partition of n = 4 corresponding to the 
block structure of A is (m l , m 2 ) = (2,2). The 2-dimensional A-invariant subspaces, 
SA(2), form a compact subvariety of G2(R4). We examime the geometric structure of 
this subvariety. 
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There are 2 partitions of "2" which are compatible with the block structure of A, 
namely (2) and (1,1). Thus SA(2) is the set-theoretic disjoint union SA(2; 2) U 
SA(2; 1,1). If {e l , e2 , e3 , e4 } is the standard basis for R4, then SA(2; 1,1) contains 
only 1 point, Sp{ e2 , e4 }. 

The elements of SA(2; 2) are the cyclic 2-dimensional subspaces. Every such 
subspace can be expressed in the form Sp{(XI' x 2 , x 3 , x 4 )(0, XI,O, x 3)} where XI 

and X3 are not both zero. By normalizing, we may assume that x~ + x~ = 1, so we 
can let XI == cos 0 and x 2 == sin O. Thus, every element of SA(2; 2) has the form 
Sp{ (cos 0, x 2 , sin 0, x 4 ), (0, cos 0, 0, sin O)}. However, there is no loss of generality in 
requiring that the spanning vectors be mutually orthogonal. This gives a representa-
tion of the form Sp{(cosO,-rsinO,sinO, rcos 0),(0, cos 0,0, sinO)}. Thus we have a 
surjectionf: SI X RI --> SA(2; 2) given by 

f( ( cos 0, sin 0), r) = Sp { (cos 0, - rsin 0, sin 0, r cos 0), (0, cos 0, 0, sin 0) } . 

It is easy to check that f«cos 01, sin 01), r l ) = f«cos O2 , sin O2 ), r2 ) iff (cos 01, sin 01) 
= ±(cos O2 , sin O2 ) and r l = r2 • Hence, if we define an equivalence relation - on 
SI X RI such that «cos 01, sin 01), r l ) - «cos O2 , sin O2 ), r2 ) iff (cos 01, sin 01) = 
±(cos O2 , sin O2 ) and r l = r2 , then the induced mapping j: SI X Rlj ---> SA(2; 2) is 
bijective. It is in fact a homeomorphism. Since S I X RI j - is homeomorphic to 
SI X RI, this shows that SA(2; 2) is a cylinder. 

Since SA(2) is compact, the single point Sp{e2 , e4 } E SA(2; 1, 1) must compactify 
the cylinder. It is not hard to see that this point compactifies SI X RI to give a 
pinched torus. In particular, Sp{ e2 , e4 } is a singular point of the variety SA(2) and is 
the only such point. 

There are only 4 types of nontrivial Schubert varieties in G2(R4) [4, p. 197]. In 
codimension 1, there is the Schubert hypersurface consisting of all 2-planes which 
intersect a given 2-plane. In codimension 2, there are 2 types: the set of all 2-planes 
which are contained in a given 3-plane, and the set of all 2-planes which contain a 
given I-plane. In codimension 3, there is the set of all 2-planes which contain a given 
I-plane and are contained in a given 3-plane. The codimension 2 Schubert varieties 
are both isomorphic to G2(R3) while the codimension 3 Schubert variety is isomor-
phic to GI(R2). Thus, it is clear that SA(2) is not a union of Schubert varieties in 
G2(R4). 

The remaining question is whether SA(2) is the intersection of 2 Schubert 
hypersurfaces. Every element of SA(2) intersects Sp{ e2 , e4 }, so SA(2) is contained 
in the Schubert hypersurface determined by Sp{ e 2 , e 4 }. Let M == 
Sp{(m ll , m21 , m31 , m41 ),(m I2 , m 22 , m 32 , m42 )} be a 2-plane in R4. From §5, SA(2; 2) 
is covered by 2 charts: (x3' x 4 ) --> Sp{(1,O, x 3, x 4 ), (0,1,0, x 3)} and (XI' x 2 )--> 
Sp{(XI' x 2 ' 1,0),(0, XI' 0, I)}. If SA(2; 2) is contained in the Schubert hypersurface 
determined by M, then 

det{(1,o, x 3 , x 4 ), (0, 1,0, x 3 ), (mil' m 21 , m31 , m41 ), (mI2' m 22 , m 32 , m 42 )} 

must vanish for every x 3 , x 4 • An elementary calculation shows that this occurs iff 
mil = ml2 = m31 = m 32 = 0- i.e. iff M = Sp{e2, e 4 }. Hence the only Schubert 
hypersurface which contains SA(2) is the one determined by Sp{ e2 , e4 }. So SA(2) is 
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not the intersection of 2 Schubert hypersurfaces. Thus, SA(2) IS not a umon or 
intersection of Schubert varieties in G2(R4). 

REMARK 11. In §4 we discussed the natural flag of subspaces 0 = Vo C VI C 
... C Vm \ = V associated with a nilpotent operator A with block structure 
(ml, ... ,m r ). V; is the kernel of Ai. Letp = (PI"",PI) be a partition of k which is 
compatible with the block structure of A. Let (ql" .. , qd) be the conjugate partition 
of (PI"" ,PI)' If S E SA(k), then S E SA(k; PI"" ,PI) iff dim S n VI = ql' dim S 
n V2 = ql + q2"" ,dim S n Vd = ql + ... +qd = k. Let a(ql"" ,qd) == {S E 
Gk(V): dim S n V; ;;;., ql + ... +qi (i = 1, ... ,d)}. Then a(ql"" ,qd) is a Schubert 
variety, and SA(k) n a(ql, ... ,qd) is the union Up'.;;pSA(k; P;"",PI')' In this 
expression, pi = (p;, . .. ,PI') and the union is taken over every partition pi of k 
which is compatible with the block structure of A and which is less than or equal to 
P in the natural ordering on partitions of k. (We use here the fact that conjugation is 
order-reversing. ) 
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