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ABSTRACT 

Finding similar words with the help of word embedding models 

has yielded meaningful results in many cases. However, the no-

tion of similarity has remained ambiguous. In this paper, we 

examine when exactly similarity values in word embedding mod-

els are meaningful. To do so, we analyze the statistical distribu-

tion of similarity values systematically, in two series of experi-

ments. The first one examines how the distribution of similarity 

values depends on the different embedding-model algorithms and 

parameters. The second one starts by showing that intuitive simi-

larity thresholds do not exist. We then propose a method stating 

which similarity values actually are meaningful for a given em-

bedding model. In more abstract terms, our insights should give 

way to a better understanding of the notion of similarity in em-

bedding models and to more reliable evaluations of such models. 
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1. INTRODUCTION 
Motivation. One important objective of so-called distributional 

models [1] [2] is to capture the semantic similarity of words, 

based on their context in large corpora. If one is able to quantify 

their similarity, there will be a good understanding of the actual 

meaning of a word, by knowing which words are similar. Adopt-

ing the taxonomy of Baroni et al. [3], one can discern between 

count-based distributional models [4] [5] and training-based, 

predictive models, also called embedding models [6] [7] [8] [9] 

[10] [11] [12]. Embedding models use vectors to represent words 

in a low-dimensional space to quantify semantic similarities 

between words. All these models have in common that two words 

are semantically similar if the vectors representing them are close 

according to some distance function. 

Embedding models have received renewed popularity after 

Mikolov et al. presented new neural network based models [11] 

[12]. In comparison to count-based models, the training of such 

models scales very well even to huge corpora, while learning 

high-quality word vector representations. With that, embedding 

models have become key tools in Natural Language Processing 

(NLP), showing impressive results in various semantic tasks such 

as similarity detection or analogical reasoning [3]. Despite the 

limited linguistic information distributional models contain, 

embedding models have proven to be successful not only in 

elementary tasks, but also in complex ones such as part-of-speech 

(POS) tagging [7], named entity recognition (NER) [13], 

dependency parsing [14], social media sentiment analysis [15], 

image annotation [16], and machine translation [17] [18] [19].   

It currently is an open question whether embedding models are 

superior to traditional count-based models. Some research sug-

gests that they indeed are, in various similarity and analogy detec-

tion tasks [3] [12]. But others have argued that this superiority is 

only a result of better parameter settings [20] [21] [22] [23]. 

However, these papers are only using the similarity attribute of 

the models, while the following questions remain open: What do 

similarity values from those models actually mean? For instance, 

are low values of similarity comparable to each other? To illus-

trate, if Word A is 0.2-similar to Word B and 0.1-similar to Word 

C on a [-1, 1] scale, should we say that A is more similar to B than 

to C, or does it not make any difference at these low levels of 

similarities? Are there ‘natural’ thresholds for similarity, such that 
values above (beneath) it represent a definite similarity 

(dissimilarity) of two words? For example, if A is more than 0.5-

similar to B, then are A and B always semantically similar? How 

about the same questions with similarity lists, i.e., lists of words 

most similar to a certain words, sorted by similarity? For instance, 

can we say that the 100 words most similar to an arbitrary word 

are always similar to this one, or words not in the top 500 are 

always dissimilar? When exactly is it meaningful to stick to the 

natural idea of taking the top N most similar words for a certain 

word and deem them similar? In this paper we study and answer 

all these questions. These questions are not just academic in 

nature; any paper relying on comparisons of similarity values 

might lack validity if these questions remain open.  

Challenges. Several issues arise when studying similarity in 

computer science: How does an evaluation dataset look like, what 

does it contain? How to create good baseline datasets, how do 

they measure similarity, and how to evaluate a model on them?  

As for the first question there is a generally accepted simple 

structure how the similarity datasets should look like, and any 

widely used dataset such as WordSim353 [24] or MEN [25] is 

formatted like this. These datasets contain a set of word pairs and 

similarity scores for every pair, set by human annotators. To show 

the difficulty of how to create good such datasets, think of the 

following linguistic challenge pointed out by Hill et al. [26] in this 

context: What is the definition of similarity? Are cup and coffee 

similar words or only associated, i.e., dissimilar? In general, does 

relatedness or associatedness imply similarity or not? – They 

argue that word pairs which are only associated should not have 

high similarity scores, in contrast to datasets such as WordSim353 

or MEN, where this is the case, i.e., associated pairs do have high 

similarity scores. Batchkarov et al. [27] also address the problem 

of creating good baseline datasets. They show that it is challeng-

ing even for human annotators to assign similarity scores to cer-

tain word pairs. For example, they show that the similarity scores 

for the tiger-cat pair range from 5 to 9 on a scale of ten in the 

WordSim353 dataset. They also provide example word pairs 

where the similarity scores differ significantly when the pairs are 

contained in different data sets. They argue that this is the result 

of the different notions of similarity these datasets use. 



Next, Avraham et al. [28] identify problems regarding the evalu-

ation of the models. They argue that the use of the same rating 

scale for different types of relations and for unassociated pairs of 

words makes the evaluation biased. For example, they say that it 

is meaningless to compare the similarity value of cat-pet to win-

ter-season, because they are unassociated, and models which rank 

the wrong word pair higher should not be punished. If cat-pet has 

a similarity score of 0.7, and winter-season has one of 0.8 in a si-

milarity dataset, an evaluation should not punish a model which 

ranks cat-pet higher. They also find it problematic how the con-

ventional evaluation method measures the quality of a model. It 

calculates the Spearman correlation of the annotators ranking and 

the model ranking, without considering the similarity values 

further. To illustrate, such an evaluation penalizes a model that 

misranks two low-similarity, unassociated pairs (e.g.: cat-door, 

smart-tree) just as much as one that misranks two objectively 

distinguishable pairs (e.g.: singer-performer, singer-person). 

Having said this, the concept of similarity remains ambiguous, 

and understanding similarity values remains difficult as well, 

affecting several NLP tasks, especially when it comes to evaluate 

embedding models on these tasks.  

Contributions. To understand what similarity values in embed-

ding models mean, we evaluate how different parameter settings 

(e.g.: size of the corpus they are trained on, vocabulary size) 

influence the similarity values of the models. We do so by sys-

tematically training various models with different settings and 

comparing the similarity value distributions. One intention behind 

these experiments also is to confirm that the meaning of similarity 

values of two terms is not sufficiently clear, and to reveal that this 

also holds for the relationship between model parameters and 

similarity values. We show that indeed it is not always meaningful 

to compare two word pairs by their similarity values. 

A core contribution of ours then is the discovery that meaningful 

similarity threshold values do indeed exist, and we show that they 

can be found. We do so by calculating similarity value and simila-

rity list aggregates based on WordNet [29] similarity as the base-

line and evaluate the resulting similarity distributions of the mod-

els with statistical tests. It turns out that these thresholds are not 

general and should be calculated for every individual model using 

the method we present in this paper. At this point, our evaluation 

connects with the parameter evaluation of the models just men-

tioned: The evaluation shows that altering the parameters does not 

change our method; all similarity value distributions of the models 

are fundamentally similar. This is an important step both regard-

ing the design of future word embedding models as well as the 

improvement of existing evaluation methods. 

2. Fundamentals and Notation 
In the following, we first define embedding models and their 

parameters in general. We then introduce two relevant models 

which we rely on in the paper. 

 Background on Word Embedding Models 2.1
Word embedding models “embed” words into a low-dimensional 

space, representing them as dense vectors of real numbers. Vec-

tors close to each other according to a distance function, often the 

cosine distance, represent words that are semantically related.  

Formally, a word embedding model is a function F which takes a 

corpus C as input, such as a dump of the Wikipedia, generates a 

dictionary D based on the corpus and associates any word in the 

dictionary 𝑤 ∈ 𝐷 with a d-dimensional vector 𝒗 ∈ ℝ𝑑. The di-

mension size parameter (d) sets the dimensionality of the vectors. 

It usually ranges between 50 and 1000 with embedding models. 

The training, i.e., iteratively associating vectors with words in the 

dictionary, is based on word-context pairs 𝑤 × 𝑐 ∈ 𝐷 × 𝐷2×𝑤𝑖𝑛 

extracted from the corpus. win is the window size parameter, 

which determines the context of a word. For example, a window 

size of 5 means that the context of a word is any other word in its 

sentence, and their distance is at most 5 words. However, there are 

further parameters that affect the generation of the dictionary. One 

is the minimum count parameter (min_cnt). When creating the 

dictionary from the corpus, the model adds only words into the 

dictionary which appear at least min_cnt times in the corpus. An 

alternative is to set the dictionary size directly as a parameter 

(dict_size). This means that the model adds only those words to 

the dictionary which are in the dict_size most frequent words of 

the corpus. In this paper we rely on the dict_size parameter, be-

cause we find it easier to handle in our experiments. With this 

variant, the corpus does not influence the size of the dictionary. 

Having said this, we define word embedding models as: 𝐹(𝐶, 𝑑, 𝑤𝑖𝑛, 𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒) ∈ ℝ|𝐷|×𝑑. 

dict_size is not necessarily equal to the size of the dictionary |𝐷|. 
For example, it is unequal when the number of distinct words in 

the corpus is smaller than dict_size.  F is not deterministic, as it 

may use random values when initializing the word vectors. 

 Word Embedding Model Realizations 2.2
In this paper, we work with two well researched embedding mod-

els, Mikolov et al.’s Word2Vec model [12] and Pennington et 

al.’s Glove model [10]. These models learn the vector representa-

tions differently. Word2Vec models use a neural-network based 

learning algorithm. It learns by maximizing the probability of 

predicting either the word given the context (Continuous Bag of 

Words model, CBOW), or the context given the current word 

(Skip-Gram model, SG) [11] [12]. Glove trains the word vectors 

by explicitly factorizing the log-count matrix of the underlying 

corpus, wrt. word-context pairs [10]. Levy et al. [30] have shown 

that the SG model is implicitly factorizing a word-context 

pointwise mutual information matrix. This means that the objec-

tives of the two models and sources of information they use are 

not overly different, and, more important here, is that they share 

the same parameter space. See [31] for a further comparison. 

When building models ourselves, we use the gensim software 

package [32] for the Word2Vec models and the Glove toolkit1 for 

the Glove models. More specifically, we use the gensim toolkit in 

Python. It allows querying any word in the model dictionary for 

its similarity with any other word. This means that for any word 

there is an indexed list containing every other word in the diction-

ary, sorted by similarity. In this paper we use the terms list index 

and position in the list as synonyms. The similarity values are 

floating point numbers between -1 and 1, with 1 being the highest 

similarity. We will differentiate between the similarity values of 

models and similarity lists. In the first case we are only concerned 

with the similarity value of a word pair and not its position in 

those lists. In the second case our interest is the reverse.  

3. Embedding Model Parameter Investigation 
In this section, we investigate how the different parameters affect 

the similarity values of the models. We are particularly interested 

in identifying parameters that change the stochastic distribution of 

the similarity values significantly. These insights are generally 

relevant to understand word embedding models. We also require 

such insights in the next section for our threshold evaluation. 

                                                                 
1 http://nlp.stanford.edu/projects/glove/ 



 Investigation Objectives 3.1
A core contribution of this paper is to find meaningful thresholds 

both for similarity values and for similarity lists for a given 

model. To this end, we evaluate how different models and their 

parameters affect the similarities. We will show that similarities in 

embedding models when trained with different parameters can 

differ significantly. So our first hypothesis is as follows:  

Hypothesis 1. It is not possible to find general value and list 

thresholds that are reasonable for all embedding models, only for 

specific ones. 

We plan to confirm this hypothesis by showing that the similarity 

value distributions have such statistical characteristics such as 

different mean values of different highest similarity values which 

makes uniform threshold values meaningless. We present two 

examples of such models in the following. 

Example 1. Think of two models, Model A with an average simi-

larity between two words of 0.0, and Model B with an average of 

0.1. This means that the similarity value is negative for roughly 

half of the pairs in Model A and for roughly 1% of the pairs in 

Model B. If one now assumed that a negative similarity value 

implied dissimilarity between the words of the pair, this assump-

tion would have a highly different meaning for the two models. 

Example 2. Again think of two models. The highest similarity 

score of a word pair is 0.9 in Model A and 0.6 in B. Saying that a 

pair with a similarity above 0.7 is definitively similar could be 

meaningful in Model A, but makes less sense in B. This is because 

there is no word pair with this similarity value in this model.  

Although the similarity value distributions of the models can 

significantly differ in certain characteristics, we hypothesize that 

they are all similar in shape, with only their means and standard 

deviations depending on the parameters. 

Hypothesis 2. While the learning algorithms and parameters 

influence the similarity value distributions of the models, these 

distributions are very similar in shape. 

We plan to confirm this hypothesis as follows. First we normalize 

all distributions, so that they have 0 mean and 1 standard devia-

tion. We then randomly draw 1000 values from all distributions 

and pairwise compare the samples by means of the two-sample 

Kolmogorov-Smirnov (K-S) test [33] with 99% confidence. This 

test checks if two samples are drawn from the same distribution. 

For the overall understanding of the similarity values and lists, it 

is important to know how the model selection and the parameters 

affect the similarities. Our main contribution in this section is that 

we do the evaluation systematically for all the parameters and 

models already introduced. This means that we evaluate how the 

model selection (F), the corpus (C), the dimensionality (d), the 

window size (win) and the models dictionary size (dict_size) 

interact with the similarity values and lists.  

 Experiment Setup 3.2
In this paper, we work with Chelba et al.’s 1 Billion word dataset 
[34] as training corpus. It has shown to be a good benchmark 

dataset for language modelling, with its great size, large voca-

bulary and topical diversity. [34] The dataset is around 4 Gb in 

size as a text file and contains almost 1 billion words in approxi-

mately 30 million English sentences. The sentences are shuffled, 

and the data is split into 100 disjoint partitions. This means that 

one such partition is 1% of the overall data. We train all our 

models using this dataset as training corpus.  

In the following, for every parameter, we present our results in the 

same way. In particular, we graph results in two figures. First 

there are similarity value distributions of the models. For these 

plots, we randomly select 10,000 words from the model dictionary 

and calculate the similarity values of every other word to them. 

Then we group the values in 0.01 intervals and count the number 

of values in each group. Thus, the x-axis represents the similarity 

values from [-1,1], the y-axis the share of the values per group. 

The second figures contain the results from the similarity lists 

experiments. In these experiments, we randomly select 10,000 

words (𝑤1, 𝑤2, … , 𝑤10000) from the dictionary of the model. For 

each of these words, we compute the most similar thousand words 𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,1000 for 𝑖 ∈ {1, … ,10000}, together with their 

respective similarity values, 𝑡𝑖,1, 𝑡𝑖,2, … , 𝑡𝑖,1000, i.e., 𝑡𝑖,𝑗  is the 

similarity value between words 𝑤𝑖  and 𝑤𝑖,𝑗 . 𝑤𝑖,1, 𝑤𝑖,2, … , 𝑤𝑖,1000 is sorted by the similarity values. Because of 

this sorting for every 𝑖, it holds that 𝑡𝑖,𝑗1 ≥ 𝑡𝑖,𝑗2 , for any 𝑗1 < 𝑗2. 

We then calculate the average similarity value for every list index 𝑎𝑣𝑔_𝑠𝑖𝑚(𝑗) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑡∙,𝑗). Finally we plot the results with the 

x-axis being the list indices (𝑗) and the y-axis the average similari-

ties (𝑎𝑣𝑔_𝑠𝑖𝑚(𝑗)).  Although the 𝑎𝑣𝑔_𝑠𝑖𝑚() function is only 

defined for arguments that are natural numbers, the plots connect 

the points to arrive at a smooth curve, for better visibility. 

At this point we are not trying to answer why different parameters 

affect the similarity values as they do; we are investigating how 

they affect the values. This means that we are not making qualita-

tive statements, i.e., we are not concerned how parameters affect 

the quality of the models on different semantic tasks. We are not 

making any statement that any model is better or worse than the 

other, but only how and to which extent they are different. In 

other words, we focus on the hypotheses from Section 3.1.  

 Model Selection 3.3
The first parameter whose effect we investigate is the model itself. 

We consider the three already introduced models, Word2Vec SG, 

Word2Vec CBOW and Glove. We build all three models on the 

full 1 billion words dataset with the same parameter settings. As 

we have noted in Subsection 2.2, these models share the same 

parameter space. This means that we can use the exact same 

parameter setting for the models. The parameters we use are 𝑑 = 100, 𝑤𝑖𝑛 = 5, 𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒 = 100,000, the default settings 

for the Word2Vec models. These values have shown to be a good 

baseline setting for different semantic tasks [35] [26]. 

 

 

Figure 1 Learning algorithms similarity value distributions 



 

Figure 2 Learning algorithms similarity values by list indices 

Similarity Values. Figure 1 shows the approaches to differ much 

in similarity values. The CBOW and Glove models are almost 

identical, although Glove has slightly higher values. But the SG 

algorithm generally produces higher similarity values than the 

other two, and only few pairs of words have negative similarities. 

This implies that, while words in the CBOW and Glove model fill 

almost the entire space, the SG model learns word vectors posi-

tioned at a high density area of the space, leaving the remainder of 

the space sparse. We test Hypothesis 2. by comparing the nor-

malized distributions pairwise, cf. Section 3.1:  𝐾_𝑆_𝑝_𝑣𝑎𝑙𝑢𝑒(𝑠𝑖𝑚_𝑑𝑖𝑠𝑡𝑖 , 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡𝑗) > 0.01 for every 𝑖, 𝑗 ∈{𝑐𝑏𝑜𝑤, 𝑠𝑔, 𝑔𝑙𝑜𝑣𝑒} 

We conclude that the models are similar in their distributions. 

Regarding Figure 2, although the Glove model generally produces 

higher similarity values than CBOW, the values by list position 

are smaller than with both Word2Vec models. At the end of the 

top 1000 list, the values with the SG model are the highest ones.  

Result interpretation. Both results indicate that our hypotheses 

hold, i.e., the distributions of the similarity values are indeed very 

similar, although at the same time visibly different in certain 

characteristics. This is important: It indicates a certain robustness 

of embedding models and generalizability of empirical results. 

The differences also show that we cannot set general thresholds 

which apply to every model. 

 Corpus 3.4
Now we investigate how the size of the corpus affects similarity 

values and lists. We compare five different models, which are 

trained on differently sized parts of the 1 billion word benchmark 

dataset. Sampling is performed by retaining different percentages 

of the 1 billion words data used for the training. The models have 

every other parameter identical. We train them with the 

Word2Vec CBOW model, with 𝑑 = 100, 𝑤𝑖𝑛 = 5, 𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒 =100,000.  

 

Figure 3 Corpus size similarity value distributions 

Similarity Values. According to Figure 3, the bigger the corpus 

size, the narrower the distribution is. We can see that using 25% 

of the corpus is almost identical to using 50%, and very close to 

using the entire corpus for training. We test the normalized simi-

larity distributions pairwise with the K-S test. Again every p-value 

is above 0.01. This means that the models are very similar. 

Figure 4 shows that at the top 10 similar words there is almost no 

difference between the models. For higher indices, models trained 

on smaller corpora generally have higher similarity values, but the 

three models trained on bigger corpora are almost identical. 

 

Figure 4 Corpus size similarity values by list indices 

Result interpretation. We conclude that models trained on more 

than 1 Gb of text data or approximately 250 million words have 

almost identical similarity value distributions. All distributions are 

similar, but visibly different at the same time, especially for 

smaller corpus sizes. This confirms our hypotheses. 

 Dimensionality 3.5
When measuring similarity with the cosine distance, the dimen-

sionality of the embedding model is a parameter that strongly 

affects its similarity values. In this section we train every model 

with the Word2Vec CBOW model with different dimensionalities 

on the full corpus, with 𝑤𝑖𝑛 = 5, 𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒 = 100,000. 

 

 

Figure 5 Dimension size similarity value distributions 

Similarity Values. Figure 5 shows that the higher the dimension-

ality the model is built with, the narrower the similarity distribu-

tions are. We have expected this, as vector spaces with lower di-

mensionality are denser when filled with 100,000 words than ones 

with higher dimensionality. This leads to closer words and higher 

similarity values. In contrast to the visibly different distributions, 

we again see that the distributions are similar, as the K-S test did 

not distinguish the normalized distributions, with 99% confidence. 

 



 

Figure 6 Dimension size similarity values by list indices 

Figure 6 is even more straightforward – the higher the dimen-

sionality, the lower the similarity values in the similarity lists are. 

Result interpretation. The dimensionality parameter confirms our 

hypotheses in a manner that we deem clearer than the previous 

experiments. Namely, the models are fundamentally very similar 

and at the same time different. We cannot set any general thresh-

old values, because average and highest similarity values are very 

different. But the distributions only differ in their standard 

deviations, which means they are fundamentally very similar.  

 Window Size 3.6
In this section we train every model with the Word2Vec CBOW 

model on the full 1 billion word corpus, with 𝑑 = 100,𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒 = 100,000 and five different window size settings.  

Similarity Values. Figure 7 shows that there is only a slight differ-

ence of similarity values between models trained with different 

window sizes. It is noteworthy that, when the window size is 1, 

the distribution has a higher mean. This implies that the model has 

an area of higher density in the word vector space. The distribu-

tions are very similar without even normalizing them. The pair-

wise K-S test confirms this, as again every p-value is above 0.01. 

So the normalized distributions are almost identical. 

The similarities corresponding to different positions in the simi-

larity lists on Figure 8 tell us that the differences between the 

models are very small. Still we can see that the smaller the win-

dow size, the higher the similarity values are. 

Result interpretation. These results are very similar to the ones for 

dimensionality, with both figures consistently changing with the 

parameters, only on a smaller scale in this current case. Only the 

smallest window size parameter, i.e., 𝑤𝑖𝑛 = 1, interferes with the 

similarity distribution in an inconsistent manner, but it also 

changes the mean of the distribution. 

 

Figure 7 Window size similarity value distributions 

 

Figure 8 Window size similarity values by list indices 

 Dictionary Size 3.7
In this section we evaluate how the dictionary size of the models 

affects their similarity values and lists. We train five models with 

different dictionary sizes with the Word2Vec CBOW model on 

the full corpus, with 𝑑 = 100, 𝑤𝑖𝑛 = 5.  

Similarity Values. Figures 9 show that the dictionary size does not 

affect the similarity value distribution of the models up to a 

certain size. With very large dictionaries however, the numerous 

noise words (typos, unmeaningful words, contraction, etc.) have a 

very strong effect on the distribution. The same effect is visible in 

the dimensionality experiment, i.e., when considering many words 

in the dictionary, the 100 dimensional space is not large enough 

for the models to distribute them sufficiently. This leads to wider 

similarity value distributions and even to an asymmetric 

distribution with the largest dictionary. 

 

 

Figure 9 Dictionary size similarity value distributions  

 

Figure 10 Dictionary size similarity values by list indices 

The K-S test confirms the similarity distribution of the 2 million 

word dictionary model to significantly differ from the others, as 𝐾_𝑆_𝑝_𝑣𝑎𝑙𝑢𝑒(𝑠𝑖𝑚_𝑑𝑖𝑠𝑡2𝑀, 𝑠𝑖𝑚_𝑑𝑖𝑠𝑡𝑖) < 0.01 for every 𝑖 ∈{5𝑘, 25𝑘, 100𝑘, 500𝑘}. 



Let us now look at the similarities of items with the same position 

in the different similarity lists in Figure 10. We find it interesting 

that the big dictionary models are almost identical to the baseline 

100,000 words dictionary model. The smaller dictionary models 

naturally have lower similarity values. This is because there are 

fewer words which are close to each other. 

Result interpretation. This is the only evaluation where one 

distribution does not have the bell shape observable in all other 

experiments. This is a consequence of an unreasonably large 

dictionary. Apart from this, even in a 500 thousand word diction-

ary the hypotheses stand, as the distributions are similar. 

 Summarizing Parameter Effects 3.8
Our evaluations in this section have confirmed the two hypo-

theses. We have shown that different algorithms and parameter 

settings indeed affect the value distributions of embedding models 

significantly, but at the same time they have the same abstract 

shape. All value distributions of the models are Gaussian-like, 

except for one unrealistic setup. This remarkable robustness 

implies that one can now work with one specific model and adjust 

the thresholds calculated to other models later if necessary.  

To our knowledge, such systematic experiments have not been 

done before for embedding models. For systematic evaluations of 

the effect of parameters on the quality of word embedding models 

see Hill et al. [22], Altszyler et al. [36], Chiu et al. [35] and Lin et 

al. [37]. These studies evaluate how the corpus size, window size 

and dimensionality affect the results of the models on similarity 

and analogy tasks. We will show in the next section that all these 

evaluations suffer from one thread of validity: They do not take 

the cardinality of the similarity values into further consideration 

when comparing the similarity of two word pairs. 

4. Finding Meaningful Similarity Values 
In this section, we contribute to the question when exactly simi-

larity values are meaningful in word embedding models. First, we 

show that intuitive similarity thresholds do not exist. Then we 

propose a general method to find meaningful similarity value 

thresholds for a given model and baseline (e.g., WordNet) and 

examine the validity of this method with various models. 

 Investigation Objectives 4.1
Reviewing various approaches [24] [25] has revealed that their 

evaluations compare similarity values and list indices without 

taking their size into account. This means that they deem, say, two 

word pairs with similarity values 0.8 and 0.7 just as different as 

ones with values -0.2 and -0.1. But there is no examination of the 

distribution of the similarity values of word vectors indicating that 

this is reasonable. In fact, it might turn out that a more differenti-

ated perspective is required. From Section 3, we already know 

characteristics of the distributions of the similarity values of the 

word vectors, for example their average and highest similarities. 

But we do not yet know how vector similarity corresponds to 

word similarity, such as similarity measures in WordNet.  

 Intuitive Similarity Thresholds 4.2
We now examine experimentally whether meaningful intuitive 

thresholds for similarity values exist. Many approaches using 

similarity values or lists implicitly presume this, as they for ex-

ample only work with the top k most similar words. Our results 

indicate that respective results may be misleading.  

4.2.1 Experiment setting 
Our procedure is similar to the one in Section 3.2. The main 

difference is that we compare the results to a baseline, WordNet in 

this case. We conduct two series of experiments, one for similarity 

values and one for lists. In both cases, we calculate word pair 

similarity aggregates, one grouped by values, the other one 

grouped by list indices, based on WordNet similarity scores. We 

do so in order to understand at which extent similarity values are 

meaningful in embedding models. We use the Leacock and Cho-

dorow (LCH) [38] similarity measure in WordNet for the eva-

luation. We have chosen this measure because it is knowledge-

based. This means that it does not use any external resource or 

corpus, but only the WordNet ontology itself. It also is a popular, 

highly researched measure and has proven to be a useful baseline 

for semantic similarity [39] [40] [41]. We have implemented our 

experiments with WordNet using the NLTK python toolkit [42]. 

For more information on similarity measures in WordNet see 

Meng et al. [43]. In all our experiments in this section, the base-

line similarity measure (LCH) is replaceable. This means that one 

simply can rerun any experiment with a more specific, say, corpus 

based similarity measure, as well as with another model. 

The model we use in this section is trained with the CBOW algo-

rithm on the full 1 billion word corpus, with 𝑑 = 100, 𝑤𝑖𝑛 =5, 𝑑𝑖𝑐𝑡_𝑠𝑖𝑧𝑒 = 100,000 , the default model and parameter set-

tings in the gensim Word2Vec toolkit.  

4.2.2 Similarity value and list experiments 
For the first experiment, we compute the similarity values of 

every word to any other word in the dictionary: 𝑤𝑝𝑖,𝑗 is a word 

pair containing words 𝑤𝑖 and 𝑤𝑗  for 𝑖, 𝑗 ∈ {1, … ,100000}, 𝑡𝑖,𝑗 is 

their similarity. We now group these word pairs by their similarity 

value in 0.01 intervals: 𝐺−1.0,  𝐺−0.99, … , 𝐺0.0,  𝐺0.01, … , 𝐺1.0 are 

these groups. To illustrate, 𝐺0.05 contains all 𝑤𝑝𝑖,𝑗 word pairs 

where 0.04 < 𝑡𝑖,𝑗 ≤ 0.05 holds. Then we calculate the average 

similarity with the LCH measure in each group: 𝑎𝑣𝑔_𝑠𝑖𝑚(𝐺𝑘) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐿𝐶𝐻_𝑑𝑖𝑠𝑡(𝑤𝑝𝑖,𝑗)), where 𝑤𝑝𝑖,𝑗 ∈ 𝐺𝑘. 

In the second experiment, we create the full similarity lists for 

every word in the dictionary, 𝑤𝑖,1,  𝑤𝑖,2, … ,  𝑤𝑖,100000, i.e., for 

every 𝑖 ∈ {1, … , 100000}. We create groups of word pairs (𝐺1, … , 𝐺100000). 𝐺𝑘 contains the pair (𝑤𝑖 , 𝑤𝑖,𝑘) for every 𝑖 ∈ {1, … , 100000}. We then calculate the average similarity for 

every group with the LCH measure: 𝑎𝑣𝑔_𝑠𝑖𝑚(𝐺𝑘) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐿𝐶𝐻_𝑑𝑖𝑠𝑡(𝑤𝑝𝑖,𝑗)), where 𝑤𝑝𝑖,𝑗 ∈ 𝐺𝑘. 

For both experiments, if a word is not in the WordNet dictionary, 

we remove all word pairs including it from the groups, in order to 

make the aggregation unbiased. We observe that the standard 

deviations are relatively high in the groups: In the similarity value 

groups, it is between 0.25 and 0.55, in the similarity list groups 

between 0.25 and 0.6. We will return to this observation when 

discussing the outcomes of the experiments. 

 

Figure 11-12 LCH scores aggregates by similarity values 

In the similarity value distribution experiments, we evaluate the 

results only for values between -0.4 and 0.8. This is because the 

small number of word pairs with similarity values outside of this 

interval makes the data in these ranges noisy. This is in line with 



our parameter evaluation results, as we can see from the graphs in 

Section 3 that the vast majority of word pairs have similarity 

values in this range for the model used in this section.  

 

Figure 13-14 LCH score aggregates by list indices 

To find meaningful threshold values, we check the plots of the 

averages of the similarity value distributions for patterns that 

could imply meaningful values. We do so in two steps. Our first 

step is an intuitive inspection of the figures; the second step is a 

statistical analysis of the graphs. We now discuss these steps. 

 On the Existence of Intuitive Similarity 4.3

Thresholds 
When analyzing the results visually, we hope to find horizontal 

segments in the result graph or other phenomena such as breaks, 

i.e., flat segments of the graph followed by a steep incline or 

decline, which might stand for certain properties of the models. A 

horizontal segment, for example, would mean that there is no 

difference in similarity between the values forming this line. To 

illustrate further, if Figure 14 was horizontal between list indices 

800 and 1000, we could interpret this as follows: There is no 

general difference in similarity between a word being the 800th or 

the 1000th most similar word to a given word. Thus, it is mean-

ingless to differentiate between words at these similarities. The 

same would follow for the similarity value distribution if there 

was a horizontal segment there. Other phenomena such as a break 

in the figure would imply a general change in similarity. For 

example, if there was a break, we could interpret it as a threshold 

between relevant and irrelevant similarity values at first sight. 

However, as observable in Figures 11-14, such an intuitive ap-

proach does not yield any useful result in our case. This is because 

there are no obvious horizontal segments or breaks in the graphs.  

 Towards Meaningful Threshold Values 4.4

Based on Unequal Mean Values 
The previous step has not identified any patterns pointing to 

intuitive threshold values for similarity. Hence, we now aim for a 

statistically sound derivation of meaningful threshold values, in 

contrast to a mere visual inspection. 

4.4.1 Confidence-based threshold identification 
The general idea is examining the results of our experiments with 

statistical tests. We test the hypothesis that two populations have 

equal means, without assuming that they have equal variance. 

Here, these populations are the LCH scores of two groups of word 

pairs. Formally, such a group (𝐿𝐶𝐻_𝐺𝑘) is as follows: 𝐿𝐶𝐻_𝐺𝑘 ={𝐿𝐶𝐻_𝑑𝑖𝑠𝑡(𝑤𝑝𝑖,𝑗) ∶  𝑤𝑝𝑖,𝑗 ∈ 𝐺𝑘}, where 𝐺𝑘 is either a similarity 

value or a similarity list group, as introduced in Section 4.2.2. We 

use Welch’s unequal variances t-test [44] for our experiments, a 

widely used two-sample statistical test for this problem. So the 

answers to the research questions from the introduction are statis-

tical in nature, i.e., we will give answers with a certain confidence 

such as 99%, based on Welch tests. 

Our tests are as follows: We compare two groups (𝐿𝐶𝐻_𝐺𝑘, 𝐿𝐶𝐻_𝐺𝑙), as introduced above, with the Welch test. The groups 

are obtained by similarity values (Experiment 1) or by similarity 

list indices (Experiment 2). The null hypothesis in a Welch test is 

that the two groups have equal means. One either rejects the null 

hypothesis at a confidence level chosen apriori (99% in our case), 

or there is not enough evidence to do so. In case of a rejection, we 

conclude that there is a significant difference between the two 

groups in terms of similarity. I.e., the group with the higher LCH 

mean contains significantly more similar word pairs. 

4.4.2 Experimental results for similarity values 
For the similarity value group evaluation, we first test the exem-

plary questions asked in the introduction. We then investigate 

generally at which extent similarity value groups are different. 

Q1. Are low values of similarity comparable to each other?  

Q2. If Words A and B have a higher similarity value than A and C 

(say 0.2 and 0.1), is A more similar to B than to C?  

For Q2, we test the following null hypothesis: The aggregated 

LCH scores have the same mean values for the word pairs with a 

0.10 and with a 0.20 similarity value. – The number computed on 

our corpus is as follows: 𝑤𝑒𝑙𝑐ℎ_𝑡𝑒𝑠𝑡_𝑝_𝑣𝑎𝑙𝑢𝑒(𝐿𝐶𝐻_𝐺0.10, 𝐿𝐶𝐻_𝐺0.20) =  5.19𝑒−9 < 0.01 

So we conclude with 99% confidence that the hypothesis is false. 

We infer that the word pairs with 0.20 similarity values in general 

are more similar to each other than the pairs with 0.10 similarity 

values. In other words, to answer Q1, even at these low levels of 

similarity, differences in value have a meaning. 

We now turn to the systematic experiment. For every group, we 

search the next group with higher index which significantly dif-

fers in LCH scores with 99% confidence. See Figure 15. The 

values can be understood as follows: For the -0.30 similarity value 

group (X axis), to give an example, the next successive group 

which significantly differs in similarity is the -0.17 similarity 

value group (Y axis). Starting from the -0.18 (X axis) group every 

successive group has a significantly higher LCH score mean than 

the previous one. On the other hand, there is a bend in the figure 

at -0.18. It means that at low values of similarity, i.e., below -0.18, 

there is no significant evidence that the higher similarity value 

group implies higher LCH similarity scores. We conclude that 

below the -0.18 similarity value there is no significant difference 

between the groups.   

 

Figure 15 Groups with significant differences in LCH mean 

scores by similarity values 

Another way to understand these values is as follows: Somewhat 

naturally, we assume that the -0.40 similarity value group contains 

dissimilar word pairs. This is because it is the group with the pairs 

with the smallest similarity values. For this group we calculate the 



next group with significantly higher LCH mean score, the -0.18 

similarity value group. This means that between -0.40 and -0.18 

there is no significant difference in LCH scores between the 

groups. Based on our assumption that the -0.40 group contains 

dissimilar word pairs, we conclude that the word pairs with simi-

larity values between -0.40 and -0.18 are dissimilar.  

Because of the relatively high standard deviation in the groups, 

we cannot conclude that all word pairs in these groups are dissim-

ilar, but we can say that the groups do not differ significantly. For 

higher similarity values, i.e., above -0.18, every group is signifi-

cantly different, as we have seen. This means that any increase in 

similarity, even if it is only 0.01, implies a higher similarity of the 

word pairs. Again, we cannot say this for every specific word 

pairs, because of the high deviation, but only in general terms, for 

the groups as a whole. 

Overall, we conclude that the similarity value groups are signifi-

cantly different from each other above -0.18 and not different 

below this value. This also can be seen visually, as there is a 

characteristic bend in Figure 15 at -0.18 on the x-axis. 

4.4.3 Experimental results for similarity lists 
We now investigate the same exemplary questions asked in the 

introduction with similarity lists. 

Q3. Can we say that being in the top 100 list of most similar 

words always implies similarity, or not being in the top 500 list 

always implies dissimilarity?  

Q4. What are meaningful cutoff values, and how to find them? 

We answer these questions with the following experiments. Our 

experiments with similarity lists actually are the same as just 

before, but with the word pairs being grouped by list indices. 

Figure 13 shows that there is a long almost horizontal noisy stripe 

of LCH averages. We are making the same tests for the index 

groups (𝐺𝑘 , 𝑘 ∈ {1, … ,100000}) as we have with the similarity 

value groups, again with 99% confidence.  

 

 

Figure 16 a, b, c Groups with significant differences in LCH 

mean scores by similarity indices 

For every index group, we search the next group with higher 

index with a significantly different LCH similarity mean using 

that test. The figure shows the following: At the smallest indices 

even small differences in the indices imply significantly different 

mean score. But as the indices increase, the bigger the differences 

have to be between groups to yield a significant difference in the 

mean. 

Figures 16a-c show that there are certain indices which generally 

identify the significant differences. These indices correspond to 

groups with particularly high LCH mean scores, and because of 

that, they are significantly different from many lower index 

groups. The horizontal lines in Figure 16a identify them.  

 

Figure 17 Meaningful list indices 

Just as we have done with the similarity values, we assume that 

the last group of word pairs, i.e., pairs consisting of a word and its 

least similar word, are dissimilar. We test two items:  

 What is the last group with an LCH similarity score signifi-

cantly different from the last group overall? Formally, what 

is the highest index (𝑖) so that, for every 𝑗 > 𝑖, 𝑤𝑒𝑙𝑐ℎ_𝑡𝑒𝑠𝑡_𝑝_𝑣𝑎𝑙𝑢𝑒(𝐿𝐶𝐻_𝐺100000 , 𝐿𝐶𝐻_𝐺𝑗) > 0.01 holds? 

 What is the first group that is not significantly different from 

the last group? Formally, what is the lowest index (𝑖) so that 𝑤𝑒𝑙𝑐ℎ_𝑡𝑒𝑠𝑡_𝑝_𝑣𝑎𝑙𝑢𝑒(𝐿𝐶𝐻_𝐺100000 , 𝐿𝐶𝐻_𝐺𝑗) < 0.01 holds, 

for every 𝑗 < 𝑖? 

The answers to these questions are the 31584th group and the 

6094th group, respectively. Namely, the horizontal line in Fig-

ure 17 is the one separating the groups whose LCH mean scores 

are significantly higher than the one of the last group from the 

rest. We conclude that indices higher than 31584 are statistically 

not different from the last group. Based on our assumption, our 

interpretation is that they contain dissimilar word pairs. On the 

other side, all groups with indices below 6094 have a higher LCH 

mean than the last group. This means that they all contain signifi-

cantly more similar word pairs. Again this does not mean that all 

the word pairs in these groups are dissimilar or similar, respec-

tively, but that the groups differ significantly. 

Figure 18 contains our experiments in pseudo-code. 

4.4.4 Implications and external validity 
The experimental results indicate that a confidence-based compa-

rison based on statistical tests identifies large ranges of steady si-

milarity values as well as large ranges of list positions where the 

similarity of word pairs is meaningful. However, the results so far 

are exemplary to the model and text corpus used. In the next 

section we generalize our insights with further models trained on 

different corpora to find meaningful similarity values. 



 

Figure 18 Experiment procedure 

 Generalization with Additional Corpora 4.5
The results from the prior subsection indicate that our approach to 

identify meaningful similarity values with a statistical test is 

promising. The results in Section 4.4.2 and 4.4.3 are already 

interesting for practitioners, as the corpus, embedding model (with 

these parameters), and the baseline are widely used. We now 

show that our approach yields meaningful results with other 

corpora as well. 

4.5.1 Rationale behind the experiments 
With the model algorithm (e.g., SG or Glove model) and the 

parameters changing, the similarity values and lists change as 

well, cf. Section 3. This means that one must adjust the specific 

numbers that identify ranges where similarity is meaningful for 

any other model. To show that the procedure we propose is gener-

ally relevant we train two other models with different underlying 

corpora, but with the same model and parameter setting. To make 

the results of the experiments comparable we use corpora of the 

same size as before. If the results from this section (i.e., the plots) 

will be highly similar to those from Section 4.4, we will claim that 

our method to find meaningful similarity thresholds or list sizes is 

valid in general. 

4.5.2 Experimental results 
The first dataset we train a model on is a Wikipedia dump with 

the articles shuffled and trimmed to contain approximately 

1 billion words2. The second one is a 5-gram corpus extracted 

from the Google Books n-gram dataset [45]. We have extracted 

the 5-grams, shuffled them, and trimmed the data to have the 

same size as our original 1 billion word dataset. We note that 

working with 5-grams as the underlying corpus is slightly 

different from working with full text corpora. This is because of 

the limited size of the 5-grams, i.e., all the sentences considered 

by the learning algorithm only have a length of 5. We conduct the 

same experiments with the models trained on these corpora as in 

Section 4.4. 

                                                                 
2 Available at http://download.wikimedia.org/enwiki/ 

 

Figure 19 Significantly different groups by similarity value 

 Figure 19 shows that the results are almost identical to the ones in 

Section 4.4. The structure of the figures and even the values are 

very similar. For all three models, the similarity values which are 

not meaningful are between -0.4 and approximately -0.2. 

 

Figure 20 a, b Significantly different groups by list indices for 

the models trained on 5-grams (Fig. 20a), Wikipedia (Fig. 20b) 

As for the similarity lists, we again see that the figures are very 

similar, but they naturally differ in the actual values. We also test 

the two models regarding the same questions we have asked 

earlier, namely: What is the last group which is significantly 

different in LCH similarity score from the last group overall? 

What is the first group that is not significantly different from the 

last group? The results are 28570 and 5889, respectively, for the 

model trained on the Wikipedia corpus and 35402 and 6408, 

respectively, for the model trained on the 5-grams. These numbers 

also are very much like the ones calculated before.  

All this shows that our approach to derive those threshold values 

is fairly independent of the underlying corpus. The approach is 

applicable on any kind of corpus, and only the model selection 

and their parameters influence the resulting numbers. 

 Robustness of Evaluations Methods 4.6
The results of Section 4 so far indicate that meaningful ranges of 

similarity values exist. More specifically, for these values it is 

meaningful to compare two word pairs with different similarity 

values and to conclude that higher values imply greater semantic 

similarity. In contrast, the values outside of these regions are 

either very noisy, because of the lack of word pairs with the re-

spective values, or indistinguishable in terms of similarity.  

As the introduction has pointed out, evaluation methods compare 

word pair similarities on the full scale of similarity values and 

lists. Based on our results so far, we propose that the comparison 

should only be done at certain ranges of similarities. One can 

determine these ranges using the method proposed in Section 4.4. 

In particular, we propose that only those values should be com-

pared which significantly differ in mean similarity scores, 

cf. Figure 15. For example, when evaluating the model in this 

section one should only compare word pair similarity values when 

the values are above -0.20. It is also noteworthy that every 0.01 



difference in this range implies a significantly different similarity. 

For the list indices, similar conclusions are feasible. For example, 

with the model of this section we recommend to compare only 

indices below approximately 31500.  

With other models, these values and indices could be different, 

but the method how to calculate them and the implications are the 

same. This means that for any embedding model we propose to 

calculate these values first, to improve any evaluation. 

5. Conclusions 
Word embedding models allow to quantify similarities of words. 

However, the notion of similarity and the meaning of similarity 

values has remained ambiguous. In this paper we have studied 

when exactly such values are meaningful in word embedding 

models. To this end, we have designed and conducted two series 

of experiments. With the first experiments we have shown how 

the distribution of similarity values change when changing the 

embedding-model algorithms or their parameters. As a result, we 

see that similarity values highly depend on the algorithms and 

parameters, i.e., the same value can represent different grades of 

similarity in different models. The second set of experiments has 

resulted in an evaluation method based on statistical tests, in order 

to find meaningful similarity values in embedding models. An 

important insight is that meaningful intervals of similarity values 

do exist, and one can actually find them for a specific embedding 

model. We have shown that these results are corpus-independent; 

they only depend on the learning algorithms and parameters 

already evaluated. Finally, we have proposed amendments to any 

evaluation method of word embedding models. 
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