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ON THE VECTOR PROCESS OBTAINED BY ITERATED
INTEGRATION OF THE TELEGRAPH SIGNAL

ENZO ORSINGHER

Abstract. We analyse the vector process (X0(t), X1(t), . . . , Xn(t),

t > 0) where Xk(t) =
t
∫

0

Xk−1(s)ds, k = 1, . . . , n, and X0(t) is the

two-valued telegraph process.
In particular, the hyperbolic equations governing the joint distri-

butions of the process are derived and analysed.
Special care is given to the case of the process (X0(t), X1(t),

X2(t), t > 0) representing a randomly accelerated motion where some
explicit results on the probability distribution are derived.

1. General Results Concerning the Integrated Telegraph
Signal

Let us consider the two-valued telegraph process

X0(t) = X(0)(−1)N(t), (1.1)

where X(0) is a random variable which is independent of N(t) and takes
values ±a with equal probability. By N(t) we denote the number of events
of a homogeneous Poisson process up to time t (with rate λ).

Let also

X1(t) =
∫ t

0
X0(s) ds (1.2)

and, in general,

Xk(t) =
∫ t

0
Xk−1(s) ds, k = 1, 2, . . . , n. (1.3)

When n = 2, the vector process (X0(t), X1(t), X2(t), t ≥ 0) has a straight-
forward physical interpretation. Indeed, X2(t) represents the position of
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a particle with acceleration X0 and velocity X1. The same interpreta-
tion is possible for the triple (Xj(t), Xj+1(t), Xj+2(t), t ≥ 0), where j =
0, 1, . . . , n− 2.

Most of the current literature (see [1–4]) concerns the process (X0(t),
X1(t), t ≥ 0) and our effort here is to examine the general situation, with
special attention to the case n = 2.

Let us now introduce
{

F (x1, . . . , xn, t) = Pr{X1(t) ≤ x1, . . . , Xn(t) ≤ xn, X0(t) = a},
B(x1, . . . , xn, t) = Pr{X1(t) ≤ x1, . . . , Xn(t) ≤ xn, X0(t) = −a}

(1.4)

and denote by f = f(x1, . . . , xn, t), b = b(x1, . . . , xn, t) the corresponding
densities. Our first result is the differential system governing f and b.

Theorem 1.1. The densities f and b are solutions of






















∂f
∂t

= −a
∂f
∂x1

−
n

∑

j=2

xj−1
∂f
∂xj

+ λ(b− f),

∂b
∂t

= a
∂b
∂x1

−
n

∑

j=2

xj−1
∂b
∂xj

+ λ(f − b).
(1.5)

Proof. For the sake of simplicity, we divide the time domain into intervals
of length ∆t and assume that changes of the process X0 occur only at the
endpoints of these intervals. The effect of this assumption disappears as
∆t → 0.

In order to be at (x1, . . . , xn) at time t + ∆t one of the following cases
need to occur:

(i) ∆N = 0 and the starting point for each process must be

xk = xk − xk−1∆t + · · ·+ (−1)jxk−j
(∆t)j

j!
+ · · ·+ (−1)ka

(∆t)k

k!
,

where k = 1, 2, . . . , n and x0 = 0.
(ii) ∆N = 1 and the starting point for each process is

xk = xk − xk−1∆t + · · ·+ (−1)jxk−j
(∆t)j

j!
+ · · ·+ (−1)k−1a

(∆t)k

k!
.

(iii) ∆N > 1.
Restricting ourselves only to the first-order terms we have

f(x1, . . . , xn, t + ∆t) =

= (1− λ∆t)f(x1 − a∆t, x2 − x1∆t, . . . , xn − xn−1∆t, t) +

+λ∆tb(x1 + a∆t, x2 − x1∆t, . . . , xn − xn−1∆t, t) + o(∆t). (1.6)
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Expanding in Taylor series and passing to the limit as ∆t → 0, we obtain
the first equation of system (1.5). An analogous treatment leads to the
second equation of (1.5).

If p = f + b and w = f − b, the above system can be rewritten as






















∂p
∂t

= −a
∂w
∂x1

−
n

∑

j=2

xj−1
∂p
∂xj

,

∂w
∂t

= −a
∂p
∂x1

−
n

∑

j=2

xj−1
∂w
∂xj

− 2λw.
(1.7)

A rather surprising fact is that the equation governing p (to be obtained
from (1.7)) is of third order for any n ≥ 2.

Theorem 1.2. The probability density p = p(x1, . . . , xn, t) is a solution
of

∂
∂x1

[∂2p
∂t2

+
n

∑

j=2

xj−1
∂

∂xj

(∂p
∂t

+
n

∑

r=2

xr−1
∂p
∂xr

)

+2λ
(∂p

∂t
+

n
∑

j=2

xj−1
∂p
∂xj

)

+

+
n

∑

j=2

xj−1
∂2p

∂t∂xj
− a2 ∂2p

∂x2
1

]

= − ∂
∂x2

(∂p
∂t

+
n

∑

j=2

xj−1
∂p
∂xj

)

. (1.8)

Proof. Deriving the first equation of (1.7) with respect to time t and insert-
ing the other one derived with respect to x1, we obtain

∂2p
∂t2

= −a
∂2w

∂x1∂t
−

n
∑

j=2

xj−1
∂2p

∂t∂xj
=

= −a
[

− a
∂2p
∂x2

1
− ∂w

∂x2
−

n
∑

j=2

xj−1
∂2w

∂xj∂x1
− 2λ

∂w
∂x1

]

−
n

∑

j=2

xj−1
∂2p

∂t∂xj
=

= a2 ∂2p
∂x2

1
+ a

∂w
∂x2

−
n

∑

j=2

xj−1
∂

∂xj

(

∂p
∂t

+
n

∑

r=2

xr−1
∂p
∂xr

)

−

−2λ
(

∂p
∂t

+
n

∑

j=2

xj−1
∂p
∂xj

)

−
n

∑

j=2

xj−1
∂2p

∂t∂xj
.

A further derivation with respect to x1 then leads to equation (1.8).

Dealing with the third-order equation (1.8) implies substantial difficul-
ties. In order to circumvent them we present the second-order equations
governing the densities f and b.
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For convenience we write f = e−λtf , b = e−λtb and obtain from (1.5)






















∂f
∂t

= −a
∂f
∂x1

−
n

∑

j=2

xj−1
∂f
∂xj

+ λb,

∂b
∂t

= a
∂b
∂x1

−
n

∑

j=2

xj−1
∂b
∂xj

+ λf.
(1.9)

Some calculations now suffice to obtain from the above system the second-
order equations































































∂2f
∂t2

= −2
n

∑

j=2

xj−1
∂2f

∂xj∂t
+ a2 ∂2f

∂x2
1

+ a
∂f
∂x2

−

−
n

∑

j=2

xj−1
∂

∂xj

( n
∑

r=2

xr−1
∂f
∂xr

)

+ λ2f,

∂2b
∂t2

= −2
n

∑

j=2

xj−1
∂2b

∂xj∂t
+ a2 ∂2b

∂x2
1
− a

∂b
∂x2

−

−
n

∑

j=2

xj−1
∂

∂xj

( n
∑

r=2

xr−1
∂b
∂xr

)

+ λ2b.

(1.10)

Remark 1.1. If λ →∞ and a →∞ in such a way that a2

λ → 1, we obtain
from (1.8) the equation

∂p
∂t

+
n

∑

j=2

xj−1
∂p
∂xj

=
1
2

∂2p
∂x2

1
, (1.11)

which is satisfied by the probability law of the vector process (X1(t), . . . ,
Xn(t), t ≥ 0), where X1 is a standard Brownian motion and

Xk(t) =
∫ t

0
Xk−1(s) ds, k = 2, . . . , n.

2. The Special Case n = 2

A deeper analysis is possible in the case of the vector process (X0(t),
X1(t), X2(t), t ≥ 0) representing a uniformly accelerated random motion.

In that case system (1.6) reads as










∂f
∂t

= −a
∂f
∂x1

− x1
∂f
∂x2

+ λ(b− f),

∂b
∂t

= a
∂b
∂x1

− x1
∂b
∂x2

+ λ(f − b)
(2.1)
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and equations (1.10) are reduced to the form














∂2f
∂t2

= −2x1
∂2f

∂t∂x2
− x2

1
∂2f
∂x2

2
+ a2 ∂2f

∂x2
1

+ a
∂f
∂x2

+ λ2f,

∂2b
∂t2

= −2x1
∂2b

∂t∂x2
− x2

1
∂2b
∂x2

2
+ a2 ∂2b

∂x2
1
− a

∂b
∂x2

+ λ2b.
(2.2)

By combining equations (2.2) it is easy to obtain (1.8) once again provided
that functions f and b are inserted.

In our view the most interesting result concerning equations (2.2) is given
in the next theorem.

Theorem 2.1. The function

f(x1, x2, t) = q
(

x2 −
1
2

x1t +
a2t2 − x2

1

4a
, x2 −

1
2

x1t−
a2t2 − x2

1

4a

)

(2.3)

is a solution of the first equation of (2.2), provided that q = q(u,w) is a
solution of

(w − u)
∂2q

∂u∂w
=

∂q
∂w

+
λ2

2a
q. (2.4)

Analogously,

b(x1, x2, t) = g
(

x2 −
1
2

x1t +
a2t2 − x2

1

4a
, x2 −

1
2

x1t−
a2t2 − x2

1

4a

)

(2.5)

is a solution of the second equation of (2.2) provided that g is a solution of

(w − u)
∂2g

∂u∂w
= − ∂g

∂w
+

λ2

2a
g. (2.6)

Proof. Since only simple calculations are involved, we omit the details.

Remark 2.1. It is interesting that equations (2.4) and (2.6) are reduced
by the transformation z =

√
w − u to the Bessel equation

∂2q
∂z2 +

1
z

∂q
∂z

+
2λ2

a
q = 0. (2.7)

This result is due to the fact that q = q(s) is a function depending only
on x1 through z. This is related to the well-known fact (see [1]) that the
marginals

∫

f(x1, x2, t) dx2 and
∫

b(x1, x2, t) dx2

are expressed in terms of Bessel functions of order zero with imaginary
arguments and depending on z =

√

a2t2 − x2
1.

To increase our insight into the vector process (X1(t), X2(t), t > 0) we
first note that possible values of X1 at time t are within [−at, at] and possible
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values of X2 are located in the interval [− 1
2at2, 1

2at2]. However, not all
couples of the set

R =
{

x1, x2 : −at ≤ x1 ≤ at, −1
2

at2 ≤ x2 ≤
1
2

at2
}

can be occupied. For example, it is impossible for the process X1 to take
values close to −at and for X2 to occupy positions near 1

2at2 (the interpre-
tation of X1 as velocity and X2 as the current position of a moving particle
can help here).

We now present the following result.

Theorem 2.2. At time t the support of (X1(t), X2(t)) is the set

S =
{

x1, x2 : −at ≤ x1 ≤ at,
1
2

x1t−
a2t2 − x2

1

4a
≤ x2 ≤

≤ 1
2

x1t +
a2t2 − x2

1

4a

}

, (2.8)

which can be rewritten as

S =
{

x1, x2 : −1
2
at2 ≤ x2 ≤

1
2
at2, at−

√

2a2t2 − 4ax2 ≤ x1 ≤

≤ −at +
√

2a2t2 + 4ax2

}

. (2.9)

Proof. Assume that at time t, X1(t) = x1. If

T+ =
∫ t

0
I{X0(s)>0} ds = meas{s < t : X0(s) > 0},

T− =
∫ t

0
I{X0(s)<0} ds = meas{s < t : X0(s) < 0},

it is clear that a(T+−T−) = x1. In that case the farthest position to the right
of the origin is reached when the entire rightward motion occurs initially,
during time T+.

The final position is

max X2 =
1
2

aT 2
+ + aT+T− −

1
2

aT 2
−.

Since T+ + T− = t, we obtain

max X2 =
1
2

x1t +
a2t2 − x2

1

4a
.

Conversely, min X2 is reached when the leftward motion is performed
initially.

In writing down (2.9), the sign must be chosen in such a way that for
x2 = ± 1

2at2 we should have x1 = ±at.
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All the information which can be read from the form of S coincides with
the intuition. In particular, when x1 = ±at we have x2 = 1

2at2 and the
closer x1 is to the origin, the bigger the interval of possible values of X2

becomes.
We note that, if X1(t) = x1, at time t the random variable X2(t) can

take any value from the interval [ 12x1t− a2t2−x2
1

4a , 1
2x1t + a2t2−x2

1
4a ].

To realize this we present

Theorem 2.3. If N(t) = m, X0(0) = a, Ti is the random time at which
the i-th event of the driving Poisson process (i ≤ m) occurs, then



















X1(t) = 2a
m

∑

i=1

(−1)i−1Ti + a(−1)mt,

X2(t) = a
m

∑

i=1

(−1)iT 2
i + 2at

m
∑

i=1

(−1)i−1Ti + (−1)m 1
2

at2.
(2.10)

Proof. At the instant the m-th Poisson event takes place, the processes
(X1(t), X2(t), t ≥ 0) take values X1(Tm) and X2(Tm) and thus, after some
substitutions and simplifications, at t < Tm we have (by induction)

X2(t) = X2(Tm) + X1(Tm)(t− Tm) +
1
2

a(−1)m(t− Tm)2 =

= a
m

∑

i=1

(−1)iT 2
i + 2at

m
∑

i=1

(−1)i−1Ti + (−1)m 1
2

at2.

Corollary 2.1. It N(t) = m, X1(t) = x1, X0(0) = a, possible positions
which can be occupied at time t are given by

X2(t) = a
m−1
∑

i=1

(−1)iT 2
i +

(−1)m

4a

(

x1 − a(−1)mt +

+ 2a
m−1
∑

i=1

(−1)i−1Ti

)2

+ tx1 −
1
2

(−1)mat2. (2.11)

Proof. From the first equation of (2.10) we get

Tm =
x1 − a(−1)mt− 2a

∑m−1
i=1 (−1)i−1Ti

2a(−1)m

and rewriting the second equation as,

X2(t) = a
m−1
∑

i=1

(−1)iT 2
i + a(−1)mT 2

m + t
(

x1 − a(−1)mt
)

+
1
2

(−1)mat2,

after a substitution the desired result emerges.
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Remark 2.2. If N(t) = m, X0(0) = a, and the random times T1, . . . , Tm−1

are fixed, possible couples (x1, x2) of velocities and positions form a para-
bola.

Remark 2.3. If X2(t) = x2, Bi = 1
2x1t − a2t2−x2

1
4a , Bs = 1

2x1t + a2t2−x2
1

4a ,
then from (2.11) we derive the special cases.

m = 2 x2 = T1(at− x1) + Bi,

m = 3 x2 = Bs + (T1 − T2)(x1 + at− 2aT1),

m = 4 x2 = Bi + (T2 − T1)
(

2aT2 − (at− x1)
)

+

+ T3
(

at− x1 + 2a(T1 − T2)
)

.

(2.12)

These formulas permit us to show that, if N(t) ≥ 2, at time t for fixed
values of X1(t), possible positions (namely the values of X2(t)) cover the
whole interval [Bi, Bs].

It must be observed that various curves formed by the couples (x1, x2)
must be analysed taking into account the constraints concerning times Ti.

For example, if m = 2, we have 0 ≤ T1 ≤ at+x1
2a . Thus if T1 = 0, then

x2 = Bi and the couples (x1, x2) form one of the parabolas bounding the
set S.

Analogously, if T1 = at+x1
2a , then x2 = Bs and the other curve bounding

S is obtained.
If T1 = at+x1

4a , we obtain the line of symmetry of S, whose equation is
x2 = 1

2x1t.

Remark 2.4. The direct calculation of

Pr
{

X2(t) ∈ dx2
∣

∣ X0(0) = a, X1(t) = x1, N(t) = m
}

(2.13)

presents considerable difficulties even when m is small.
We have been able to derive these results when m = 2, 3. From the

formulas obtained it follows that general expressions of the distribution
densities of (X1(t), X2(t), t ≥ 0) are of form (2.3) and (2.5) and are solutions
of equations (2.4) and (2.6).

To evaluate (2.13) it is necessary to know the conditional distribution:

Pr
{

T1∈dt1, . . . , Tm−1∈dtm−1
∣

∣N(t)=m, X1(t)=x1, X0(0)=a
}

. (2.14)

In particular, we have obtained

Theorem 2.4.

Pr
{

T1 ∈ dt1
∣

∣ X1(t) = x1, N(t) = 2, X0(0) = a
}

= 2a/(at + x1)

when 0 < t1 < (at + x1)/2a, (2.15)

Pr
{

T1 ∈ dt1, T2 ∈ dt2
∣

∣ X1(t) = x1, N(t) = 3, X0(0) = a
}

=
4a2

a2t2 − x2
1
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when 0 < t1 < (at + x1)/2a and t1 < t2 < t1 + (at− x1)/2a. (2.16)

Proof. When m = 3, from (2.12) we immediately have

Pr
{

N(t) = 3, X1(t) ≤ x1, X0(0) = a
}

=

=
3!
t3

{
(at+x1)/2a

∫

0

dt1

t1+(at−x1)/2a
∫

t1

dt2

t2−t1+(at+x1)/2a
∫

t2

dt3 +

+

(at+x1)/2a
∫

0

dt1

t
∫

t1+(at−x1)/2a

dt2

t
∫

t2

dt3

}

=
(at + x1)2(2at− x1)

(2a)2t3a
.

Furthermore, when 0 < t1 < at+x1
2a , we have

Pr
{

T1 ∈ dt1, T2 ∈ dt2
∣

∣ X1(t) = x1, N(t) = 3, X0(0) = a
}

=

=











3!
t3

(at + x1

2a
− t1

)

dt1dt2 if t1 < t2 < t1 + at−x1
2a ,

3!
t3

(t− t2) dt1 dt2 if t > t2 > t1 + at−x1
2a .

distribution (2.16) follows from the above results.

On the basis of all the previous results we can present the following
explicit formulas.

Theorem 2.5.

Pr
{

X2(t)∈dx2
∣

∣X1(t)=x1, N(t)=2
}

=
dx2

Bs −Bi
, Bi <x2 <Bs, (2.17)

Pr
{

X2(t) ∈ dx2
∣

∣ X1(t) = x1, N(t) = 3
}

=

= − dx2

Bs −Bi
log

(

1− x2 −Bi)
Bs −Bi

)

, Bi < x2 < Bs. (2.18)

Proof. From the first formula of (2.12) we readily have

Pr
{

X2(t) < x2
∣

∣X1(t) = x1, N(t) = 2
}

=

= Pr
{

T1 <
x2 −Bi

at− x1

∣

∣ X1(t) = x1, N(t) = 2
}

=
2a

at + x1

x2−Bi
at−x1
∫

0

dt1,

where the last step is justified by (2.15).
The derivation of (2.18) requires some additional details.
Taking into account the second formula of (2.12), we have

Pr
{

X2(t) < x2
∣

∣ X1(t) = x1, N(t) = 3
}

=
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= Pr
{

T2 < T1 +
Bs − x2

x1 + at− 2T2

∣

∣ X1(t) = x1, N(t) = 3
}

=

=
∫∫

0<t1< x2−Bi
at−x1

t1+
Bs−x2

x1+at−2at1
<t2<t1+

at−x1
2a

4a2

a2t2 − x2
1

dt1 dt2 =

=
x2 −Bi

Bs −Bi
+

Bs − x2

Bs −Bi
log

(

1− x2 −Bi

Bs −Bi

)

.
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