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ON THE VELOCITY OF ENZYMATIC REACTIONS
IN MICHAELIS–MENTEN-LIKE SCHEMES (ENSEMBLE
AND SINGLE-MOLECULE VERSIONS)

In searching non-standard ways of conformational regulation, various Michaelis–Menten-
like schemes attract relentless attention, resulting in sometimes too sophisticated consider-
ations. With the example of monomeric enzymes possessing an only binding site, we define
the minimal schemes capable of bearing peculiar regulatory properties like “cooperativity” or
substrate inhibition. The simplest ways of calculating the enzymatic reaction velocity are ex-
emplified, either in the ensemble or single-molecule case.
K e yw o r d s: enzymatic reactions, Michaelis–Menten schemes, monomeric enzymes, confor-
mational regulation, reaction velocity.

1. Introduction

The Michaelis–Menten (MM) scheme [1] serves as
a basis for the enzymatic kinetics for more than
a century [2, 3]. Early attempts to search for in-
ternal mechanisms of regulating the enzyme activ-
ity, rooted in the conformational lability, and cor-
responding deviations from the classical MM kinet-
ics (see [4] and references therein) were practically
ignored for a prolonged period [5]. Since the begin-
ning of the 2000s, however, the situation has been
changing dramatically [3], and nowadays there is no
lack of theoretical papers devoted to various MM-like
schemes. This is mainly conditioned by implementa-
tion of the single-molecule (SM) methods into enzy-
mology [6], and by similarities to heterogeneous catal-
ysis [7, 8]. Undoubtedly, this activity will be only
intensified. That is why it is expedient to try as-
sessing the intermediate achievements on this way
in order to outline its further direction more thor-
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oughly, and to avoid unnecessary deflections and over-
complications.

With this purpose, the present work is restricted
by the most basic example – precisely, by reac-
tions of monomeric enzymes with an only binding
site. In this generic case, it is especially clear which
new possibilities arise due to conformational fluctu-
ations of the enzyme, how transparent their physi-
cal nature is, how complex their (theoretical) anal-
ysis should be, and eventually, how new the re-
sults of the latter are. In Section II, the difference in
the methods of calculations of the reaction velocity
in the ensemble and SM versions – the point that
often lacks for proper attention – is elucidated. In
Section III, the minimal MM-like schemes which
bear the characteristic regulation phenomena (non-
monotonic dependence of the velocity on the rate
of substrate release, cooperativity, and substrate in-
hibition) caused by the presence of conformational
channels are defined, and the simplest, as distinct
from frequently used, algorithm of calculating this ve-
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locity is pointed out. Section IV contains concluding
remarks.

2. The Classical Scheme
(Ensemble and SM Versions)

This starting point of enzymatic kinetics reads:

𝐸 + 𝑆
𝑎
�
𝑏
𝐸𝑆

𝑅−→ 𝐸 + 𝑃, (1)

where 𝑎 is the rate constant of binding substrate 𝑆
to enzyme 𝐸, forming the enzyme-substrate complex
𝐸𝑆; 𝑏 is the rate constant of the backward “unproduc-
tive” substrate release, and 𝑅 is that of the catalytic
stage of converting substrate 𝑆 into product 𝑃 .

The kinetic equations to scheme (1) are based on
the mass action law. For example, for concentration
[𝐸𝑆] of the complex, one has:

d[𝐸𝑆]/d𝑡 = − (𝑏+𝑅) [𝐸𝑆] + 𝑎 [𝐸], (2)

where the rate constant 𝑎 is in fact of the pseudo-
first order, as the binding reaction is bimolecular, and
𝑎 ≡ 𝑘 [𝑆], where 𝑘 is the second-order constant. Non-
linearity of those equations is avoided due to the
assumption that usually [𝑆] is much greater than
[𝐸] (at least at the starting stages of the reaction)
or maintained constant during many turnovers. Then
Eq. (2) added with the normalization condition [𝐸𝑡] =
= [𝐸] + [𝐸𝑆], where [𝐸𝑡] is the total enzyme concen-
tration, turns into

d[𝐸𝑆]/d𝑡 = − (𝑏+𝑅+ 𝑎) [𝐸𝑆] + 𝑎[𝐸𝑡], (3)

so that the stationary complex concentration is

[𝐸𝑆]st =
𝑎[𝐸𝑡]

𝑏+𝑅+ 𝑎
=

[𝐸𝑡][𝑆]

[𝑆] +𝐾M
, (4)

where 𝐾M = (𝑏+𝑅) /𝑘, the known Michaelis’ con-
stant. Of prime interest is the stationary velocity 𝑣
of product formation, d [𝑃 ] /d𝑡, which, according to
Eqs. (1, 4), reads

𝑣 = 𝑅 [𝐸𝑆]st =
𝑅𝑎[𝐸𝑡]

𝑎+ 𝑏+𝑅
=

𝑅[𝐸𝑡] [𝑆]

[𝑆] +𝐾M
. (5)

The hyperbolic dependence 𝑣 ([𝑆]) (5) is the main
result of scheme (1) and a primary test for in-
vestigations into any enzymatic reaction. With the
progress in these investigations, the deviations from

this dependence have been revealed even for some
monomeric enzymes with the only binding site. This
has eventually led to the development of various
schemes of such kind of biochemical regulation, cru-
cial for many physiological processes, see, e.g., [9]. All
of them are related to the splitting of the pathway
of scheme (1) by introducing a set of (at least two)
conformational channels of the reaction, see Section
III. So far, we concentrate on the analysis of scheme
(1), when the reaction is traced on a single enzyme –
i.e., in a way that nowadays becomes dominant. In
this case, one and the same enzyme macromolecule
works in a serial regime, converting a substrate into a
product consecutively, one by one. Then the obtained
arrays of the turnover times (up to tens of thousands
of turnovers [10]) undergo statistical processing. The
prime characteristic is the probability density 𝑓(𝑡) of
the first passage time, i.e. of that from the beginning
to the end of a conversion act. Correspondingly, the
kinetic equations related to scheme (1) are formulated
not for concentrations but for probabilities 𝑃𝑖(𝑡) of
the residence in states 𝑖 ∈ {𝐸,𝐸𝑆}. The quantity
of the product released in the interval (𝑡, 𝑡 + d𝑡) is
d𝑃 = 𝑓(𝑡)d𝑡; therefore, 𝑓(𝑡) = d𝑃/d𝑡 = 𝑅𝑃𝐸𝑆(𝑡),
where 𝑃𝐸𝑆(𝑡) can be found from the set⎧⎪⎨⎪⎩

d𝑃𝐸

d𝑡
= −𝑎𝑃𝐸 + 𝑏𝑃𝐸𝑆 ,

d𝑃𝐸𝑆

d𝑡
= 𝑎𝑃𝐸 − (𝑏+𝑅)𝑃𝐸𝑆 ,

(6)

with initial conditions 𝑃𝐸(0) = 1, 𝑃𝐸𝑆(0) = 0.
At this point, it is necessary to make important

remarks in order to avoid some misunderstandings
occurring even in the best recent papers. Precisely,
despite the similarities in appearance of, say, Eq. (2)
and the second equation in (6), one has to bear in
mind the obvious difference between the stationary
problem formulation for the ensemble version and
non-stationary one for the SM version. In the latter,
in particular, there is no normalization conservation,
since 𝑃𝐸(𝑡) +𝑃𝐸𝑆(𝑡) = 1 holds for 𝑡 = 0 only, as it is
obvious from Eq. (6). Moreover, 𝑃𝐸,𝐸𝑆(𝑡 → ∞) → 0
(in the first of Eqs. (6), the term 𝑅𝑃𝐸𝑆 of renewing
𝑃𝐸 due to the return of the enzyme to its free state
is absent, because this stage should not contribute
to 𝑓(𝑡) by definition, while it is mandatory in the
stationary ensemble version!). Nevertheless, in some
works (e.g., [11–13]), wishing to avoid this rather nat-
ural difference, they introduce the stage 𝐸0 𝛿−→ 𝐸 ad-
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a b c
Fig. 1. Generic schemes for the effects caused by introducing
different conformational channels into the classical MM scheme
(see the text)

ditional to (1) and preserve the unnecessary normal-
ization

∑︀
𝑖 𝑃𝑖(𝑡) = 1

(︀
𝑖 = 𝐸,𝐸𝑆,𝐸0...

)︀
with subse-

quent elimination of this stage in not too consis-
tent ways. Consequently, there appear artificial and
needless contradictions between the very set of ki-
netic equations and normalization conditions, confus-
ing and complicating the derivation of the correct ex-
pression for 𝑓(𝑡) considerably.

Thus, solving set (6), one can obtain an explicit
expression for 𝑓(𝑡) as a difference of two time
exponents which is given in many works, see, e.g.,
[11]. The mean first passage time is ⟨𝑡⟩ =

∫︀∞
0

𝑡𝑓(𝑡)d𝑡,
and the inverse quantity 1/⟨𝑡⟩ serves as an analog
of the reaction velocity 𝑣. To calculate 1/⟨𝑡⟩, it is in
fact sufficient to know the Laplace transform 𝑓(𝑠) =
=

∫︀∞
0

𝑓(𝑡)𝑒−𝑠𝑡d𝑡, as ⟨𝑡𝑚⟩ = (−1)𝑚d𝑓(𝑠)/d𝑠|𝑠=0. The
Laplace transformation of set (6) gives 𝑃𝐸𝑆(𝑠) =
= 𝑎[𝑠2 + 𝑠(𝑎+ 𝑏+𝑅) + 𝑎𝑅]−1. Then 𝑓(𝑠) = 𝑅𝑃𝐸𝑆(𝑠),
and ⟨𝑡⟩ = (𝑎+ 𝑏+𝑅)/𝑎𝑅, so that
1

⟨𝑡⟩
=

𝑅𝑎

𝑎+ 𝑏+𝑅
. (7)

Comparing this with the ensemble result (5), we see
their complete identity, if to adopt 𝑣/ [𝐸𝑡] = 1/⟨𝑡⟩.
This identity has been checked experimentally [10],
and Eq. (7) was named “single-molecule Michaelis–
Menten equation” [11]. As it can be seen in the lit-
erature, its validity (which is considered as a version
of the ergodic hypothesis) is not called in question
even under complications of scheme (1) with confor-
mational sub-states. Now, we are prepared to deal
with them consistently.

3. Minimal Schemes of the Effects
Caused by the Presence of Different
Conformational Channels

It is advisable to confine ourselves to two channels –
at least until it is desirable to stay within discrete
(sub)states and understand the content of new ef-

fects within not too cumbersome analytical expres-
sions. There exist high-quality generalizations for an
arbitrary number of channels (see, e.g., [11, 14]),
but they are too overloaded with mathematics, while
the characteristic effects are explained within two-
channel schemes all the same.

Actually, there are three such effects, and each of
them can be realized within its minimal scheme, see
Fig. 1.

Scheme (a) was recently proposed in [15]. It illus-
trates the effect of non-monotonic dependence of the
velocity on the rate constant 𝑏 of “unproductive” sub-
strate release under conditions that the catalytic rate
constants 𝑟 and 𝑅 are essentially different. The effect
takes place even in the absence of conformational fluc-
tuations, and the hyperbolic dependence 𝑣 ([𝑆]) still
holds. The latter can be replaced with a sigmoid de-
pendence 𝑣 ([𝑆]) in schemes of the type (b) [16, 17],
if conformation 𝐸1 of the free enzyme is more sta-
ble, but conformation 𝐸2 binds the substrate better
(𝐴 > 𝑎). If the return to less active sub-state 𝐸1 is
sufficiently slow (𝛼 is small), then, with [𝑆] growing,
the enzyme stays in more active sub-state 𝐸2 increas-
ingly longer. This eventually results in imitation of
cooperativity (in fact, this is a simplified version of
Rabin’s scheme [4, 18]). Lastly, scheme (c), as a more
general one, contains the effects listed above as its
particular cases, added with the possibility of sub-
strate inhibition.

3.1. Direct calculations
of the velocity in the ensemble
and SM versions

In the ensemble version, the stationary velocity can
be easily found from the corresponding set of linear al-
gebraic equations, with one of them being the conser-
vation condition of the total enzyme concentration. In
the SM version, however, one has to be more care-
ful with calculation of this velocity and manifesta-
tion of the validity of 𝑣/ [𝐸𝑡] = 1/⟨𝑡⟩. Let us illustrate
this, starting from the example of simplified scheme
(c). To avoid cumbersome formulae, set 𝛽 = 0, and
also 𝐴 = 𝑎, 𝐵 = 𝑏. Then the only distinction of the
channels is the difference in the catalytic rates, 𝑅 > 𝑟:

𝐸1

𝑎
�
𝑏
𝐸𝑆1

𝑅−→

𝛼 ↑↓ 𝛼

𝐸2

𝑎

�
𝑏
𝐸𝑆2

𝑟−→

. (8)
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In the ensemble version, the corresponding set of ki-
netic equations reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[𝐸1]

d𝑡
= − (𝑎+ 𝛼) [𝐸1] + 𝛼[𝐸2] + (𝑏+𝑅) [𝐸𝑆1],

d[𝐸2]

d𝑡
= 𝛼[𝐸1]− (𝑎+ 𝛼) [𝐸2] + (𝑏+ 𝑟) [𝐸𝑆2],

d[𝐸𝑆1]

d𝑡
= 𝑎[𝐸1]− (𝑏+𝑅) [𝐸𝑆1],

[𝐸1] + [𝐸2] + [𝐸𝑆1] + [𝐸𝑆2] = [𝐸𝑡],

(9)

with its stationary solution

[𝐸1]st=[𝐸2]st=[𝐸𝑡]
(𝑏+𝑅) (𝑏+ 𝑟)

𝑎 (2𝑏+𝑅+𝑟)+2 (𝑏+𝑅) (𝑏+𝑟)
,

[𝐸𝑆1]st = [𝐸𝑡]
𝑎 (𝑏+ 𝑟)

𝑎 (2𝑏+𝑅+ 𝑟) + 2 (𝑏+𝑅) (𝑏+ 𝑟)
, (10)

[𝐸𝑆2]st = [𝐸𝑡]
𝑎 (𝑏+𝑅)

𝑎 (2𝑏+𝑅+ 𝑟) + 2 (𝑏+𝑅) (𝑏+ 𝑟)
,

so that

𝑣 = 𝑅 [𝐸𝑆1]st + 𝑟 [𝐸𝑆2]st =

= [𝐸𝑡]
𝑎 [𝑅 (𝑏+ 𝑟) + 𝑟 (𝑏+𝑅)]

𝑎 (2𝑏+𝑅+ 𝑟) + 2 (𝑏+𝑅) (𝑏+ 𝑟)
. (11)

One can see that Michaelis’ hyperbola still holds here
(since 𝑎 = 𝑘 [𝑆]), but there appears the effect of non-
monotonicity of 𝑣(𝑏), provided that the inequality

𝑘 [𝑆] >
2𝑟𝑅 (𝑅+ 𝑟)

(𝑅− 𝑟)
2 (12)

is satisfied (a similar inequality was obtained in [15]
for the scheme in Fig. 1, a).

Now, consider the SM version of scheme (8). Ta-
king the remarks after Eq. (6) into account, the cor-
rect equations to this non-stationary problem read:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d𝑃𝐸1

d𝑡
= − (𝑎+ 𝛼)𝑃𝐸1 + 𝛼𝑃𝐸2 + 𝑏𝑃𝐸𝑆1 ,

d𝑃𝐸2

d𝑡
= 𝛼𝑃𝐸1

− (𝑎+ 𝛼)𝑃𝐸2
+ 𝑏𝑃𝐸𝑆2

,

d𝑃𝐸𝑆1

d𝑡
= 𝑎𝑃𝐸1

− (𝑏+𝑅)𝑃𝐸𝑆1
,

d𝑃𝐸𝑆2

d𝑡
= 𝑎𝑃𝐸2

− (𝑏+ 𝑟)𝑃𝐸𝑆2
,

(13)

but the initial conditions should be distributed now
between sub-states 𝐸1 and 𝐸2. So far, designate them
as 𝑃𝐸1

(0) = 𝑛1, 𝑃𝐸2
(0) = 𝑛2, and 𝑃𝐸𝑆1

(0) =
= 𝑃𝐸𝑆2

(0) = 0. Obviously, 𝑛1 + 𝑛2 = 1.

Applying the Laplace transformation to set (13)
and taking into account that now 𝑓(𝑡) = 𝑅𝑃𝐸𝑆1

(𝑡)+
+ 𝑟𝑃𝐸𝑆2

(𝑡), after some straightforward algebra, one
has:

1

⟨𝑡⟩
=

Δ2

𝑅
(︀
Δ𝐸𝑆1Δ

′−Δ′
𝐸𝑆1

Δ
)︀
+𝑟

(︀
Δ𝐸𝑆2Δ

′−Δ′
𝐸𝑆2

Δ
)︀ ,
(14)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ = 𝑎 [𝛼𝑏 (𝑅+ 𝑟) + (𝑎+ 2𝛼) 𝑟𝑅],

Δ′ = 𝑎 [(𝑎+ 𝑏+ 2𝛼) (𝑅+ 𝑟)+ 2𝛼𝑏+ 2𝑟𝑅] +

+2𝛼 (𝑏+ 𝑟) (𝑏+𝑅),

Δ𝐸𝑆1
= 𝑎 [𝑎𝑟𝑛1 + 𝛼 (𝑏+ 𝑟)],

Δ′
𝐸𝑆1

= 𝑎 [𝑛1 (𝑎+ 𝑏+ 𝑟) + 𝛼],

Δ𝐸𝑆2 = 𝑎 [𝑎𝑅𝑛2 + 𝛼 (𝑏+𝑅)],

Δ′
𝐸𝑆2

= 𝑎 [𝑛2 (𝑎+ 𝑏+𝑅) + 𝛼].

(15)

To find the necessary initial values of 𝑛1 and 𝑛2, we
note that, in the serial working regime of a single en-
zyme, the ratio 𝑛1/𝑛2 is equal to that of stationary
flows of the returns to sub-states 𝐸1 and 𝐸2 after the
catalytic stage. That is, 𝑛1/𝑛2 = 𝑅[𝐸𝑆1]st/𝑟[𝐸𝑆2]st,
where [𝐸𝑆1,2]st are taken from Eqs. (10) of the sta-
tionary ensemble version (in fact, this was noted,
for example, in [19], although sometimes 𝑛1 and 𝑛2

are erroneously called steady-state probabilities [11,
12]). According to (10), 𝑛1/𝑛2 = 𝑅(𝑏+ 𝑟)/𝑟(𝑏+𝑅),
then

𝑛1 =
𝑅 (𝑏+ 𝑟)

𝑟 (𝑏+𝑅) +𝑅 (𝑏+ 𝑟)
,

𝑛1 =
𝑟 (𝑏+𝑅)

𝑟 (𝑏+𝑅) +𝑅 (𝑏+ 𝑟)
.

(16)

Substituting (16) into Eqs. (14), (15) and comparing
the result with Eq. (11), one can eventually make sure
that the identity 𝑣/ [𝐸𝑡] = 1/ ⟨𝑡⟩ really holds.

Adding conformational fluctuations of the com-
plex and possible distinctions between the bind-
ing (unbinding) rates (𝐴 ̸= 𝑎 and 𝐵 ̸= 𝑏, see
Fig. 1, c) into consideration does not change the cal-
culation algorithm and eventually leads to the follow-
ing expression:

𝑣/ [𝐸𝑡] = 𝐺/𝐻,

𝐺 = 𝛼 [𝑎𝑟 (𝐵 +𝑅) +𝐴𝑅 (𝑏+ 𝑟)] +

+𝛼𝛽 (𝐴+ 𝑎) (𝑟 +𝑅) + 𝛽𝐴𝑎 (𝑟 +𝑅),
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a b c
Fig. 2. (a) Non-monotonic 𝑣(𝑏) in the scheme in Fig. 1, a. 𝑎 = 10. Curve 1: 𝑅 = 𝑟 = 3; curve 2: 𝑅 = 10, 𝑟 = 1. (b)
Weak cooperativity in the scheme in Fig. 1, b with the return after the catalytic stage to sub-state 𝐸2. The flexion of 𝑣(𝑥)

is negligible unless one looks at the concave in the inset for extremely small 𝑥 (see the text below Eq. (20)). Here, 𝛼 = 1,
𝑘1 = 𝑎/[𝑆] = 0.1, 𝑘2 = 𝐴/[𝑆] = 1, 𝑏 = 10, 𝑅 = 100. (c) Substrate inhibition in the scheme in Fig. 1, c, according to Eq. (17).
𝛼 = 10, 𝛽 = 1 𝑘1 = 𝐴/[𝑆] = 10, 𝑘2 = 𝑎/[𝑆] = 1, 𝑏 = 10, 𝐵 = 1, 𝑟 = 1, 𝑅 = 10

𝐻 = 𝛼 [𝑎 (𝐵 +𝑅) +𝐴 (𝑏+ 𝑟) + 2 (𝐵 +𝑅) (𝑏+ 𝑟)] +

+2𝛼𝛽 (𝐴+ 𝑎+𝐵 + 𝑏+𝑅+ 𝑟 + 𝛼)+

+𝛽 [2𝐴𝑎+ 𝑎 (𝐵 +𝑅) +𝐴 (𝑏+ 𝑟)], (17)

which, again, coincides with 1/⟨𝑡⟩ obtained with the
help of the Laplace transform 𝑓(𝑠), thereby confirm-
ing this peculiar ergodic hypothesis (expression (17)
coincides, to the accuracy of designations, with that
obtained for 1/⟨𝑡⟩ in Ref. [11], albeit in a much more
complex way, via fictitious 𝐸0 and 𝛿, so that it was
called approximate [12], while being in fact rigor-
ous). In the general case, Eq. (17) does not follow the
classical ММ-dependence on [𝑆] any longer. The lat-
ter, however, still holds (at least, with rather good
precision) in many limiting cases [11, 14]. On the
whole, as mentioned above, the scheme in Fig. 1, c)
and Eq. (17) admit realization of practically all the
interesting deviations from the standard MM kinetics
which are related to regulatory abilities rooted in the
presence of (multiple) conformational channels: non-
monotonic 𝑣(𝑏), “cooperativity”, and substrate inhi-
bition, see Fig. 2.

3.2. Fractional polynomials

From the formal point of view, all these effects can
be analyzed within the so-called fractional polynomi-
als, i.e., expressions of the type 𝐹𝑛(𝑥)/𝐺𝑛(𝑥), where
𝐹𝑛 and 𝐺𝑛 are polynomials of the 𝑛-th order, with
𝑛 depending on the number of intermediates and dis-
crete conformational channels in an MM-like scheme
(see, e.g., [4, 20]). Henceforth, 𝑥 stands for substrate
concentration [𝑆]. In particular, for the scheme in

Fig. 1, c) 𝑛 = 2, and 𝑣(𝑥) reads:

𝑣(𝑥) = 𝑣(∞)
𝑥2 + 𝑝𝑥

𝑥2 + 𝑞𝑥+ 𝑐
, (18)

where 𝑝, 𝑞, and 𝑐 are positive combinations of the rate
constants involved, as Eq. (17) adopts this form af-
ter replacements 𝐴 → 𝑘1𝑥, 𝑎 → 𝑘2𝑥. Generalizations
of Eq. (18) for more complex schemes can be found
in [14], although they seemingly do not lead to prin-
cipally new regulation mechanisms. The general con-
clusions of such analyses are quite transparent, since
one can arrive at them by simply equating the deriva-
tive 𝑣′(𝑥) or 𝑣′′(𝑥) to zero. The presence of a pos-
itive root of the equation 𝑣′(𝑥) = 0 testifies to
the possibility of substrate inhibition. In our case,
this condition is reduced to the quadratic equation
(𝑞 − 𝑝)𝑥2 +2𝑐𝑥+ 𝑝𝑐 = 0 which has a positive root, if
only 𝑞 < 𝑝. In terms of parameters of the scheme in
Fig. 1, c, this condition reads

𝑘1 (𝑏+ 𝑟)− 𝑘2 (𝐵 +𝑅)

𝑘1 (𝑏+ 𝑟) + 𝑘2 (𝐵 +𝑅)
>

𝛽 (𝑅+ 𝑟)

𝛼 (𝑅− 𝑟)
, (19)

and the greater the difference between the catalytic
rates, the better the validity of Eq. (19) (see an ex-
ample given in Fig. 2, c).

Possible cooperativity (i.e., flexion of 𝑣(𝑥)) is re-
lated to the presence of positive roots of the equation
𝑣′′(𝑥) = 0. Here, the latter is cubic,

(𝑞 − 𝑝)𝑥3 + 3𝑐𝑥2 + 3𝑝𝑐𝑥+ 𝑐 (𝑝𝑞 − 𝑐) = 0. (20)

According the known Descartes rule, Eq. (20) can
have positive roots, if only changes of signs of the
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coefficients in its l.h.s. take place, i.e., if the following
alternative is satisfied: 𝑝 > 𝑞, or 𝑝 < 𝑞, but 𝑐 > 𝑝𝑞. It
is hardly appropriate to write down these inequalities
in terms of the parameters of Eq. (17); an illustrative
example is given in Fig. 2, b). One can notice that
cooperativity is barely seen (the corresponding Hill
coefficient would only slightly exceed 1), as it is a
commonplace in models with discrete conformations
[16, 17]. No wonder that, in many cases, the classic
MM hyperbola holds practically true [11]. Examples
of “phase diagrams” of regimes of cooperativity or
substrate inhibition are given in [14].

As for a non-monotonic dependence of 𝑣(𝑏) on the
rate of “unproductive” substrate release – the effect
that attracted attention quite recently [21], albeit
in an unnecessarily sophisticated way – its simplest
scheme is shown in Fig. 1, a [15], see also Fig. 2, a. It
includes no conformational fluctuations at all. This
effect is also possible within more general scheme in
Fig. 1, c, even in its simplified version (8) (𝐴 = 𝑎,
𝐵 = 𝑏, 𝛽 = 0). With 𝑏 as an argument, Eq. (11) has
even simpler form than (18):

𝑣(𝑏) ∼ 𝑏+ [2𝑟𝑅/ (𝑅+ 𝑟)]

𝑏2 + (𝑅+ 𝑟 + 𝑎) 𝑏+ 𝑟𝑅+ 𝑎 (𝑅+ 𝑟) /2
,

and the analysis of the equation d𝑣(𝑏)/d𝑏 = 0 shows
that its positive root exists under the condition

𝑘𝑥 >
2𝑟𝑅 (𝑅+ 𝑟)

(𝑅− 𝑟)
2 (21)

(it is equivalent to Eq. (12), since 𝑎 = 𝑘𝑥 here) which
requires a sufficiently high substrate concentration;
the greater the difference 𝑅−𝑟, the lower the concen-
tration is required. Then, staying too long in the less-
active conformational sub-state 𝐸𝑆2, the enzyme can
return to its free state 𝐸 with a chance to perform the
catalytic act in a more effective way via sub-state 𝐸𝑆1

[15]. An analysis (again, somewhat over-complicated
and involving unnecessary 𝐸0 and 𝛿) of this effect in
another version of the scheme in Fig. 1 a) was given
in the recent paper [13].

4. Concluding Remarks

Our main goal is to distinguish the minimal schemes
of enzymatic reactions that lead to deviations from
the classic MM kinetics and are a signal for the rel-
evant above-listed effects of conformation regulation.

We point out the simplest and straightforward algo-
rithm of calculation of the reaction velocity, avoiding
unneeded complications that occur in the current lit-
erature. The reactions of monomeric enzymes with a
single binding site fit these goals best.

We elucidate the important difference in the prob-
lem formulation in its ensemble and SM versions, de-
spite the similarity of the corresponding kinetic equa-
tions. It is the difference that ensures the identity
𝑣/ [𝐸𝑡] = 1/⟨𝑡⟩ even in the presence of several con-
formational pathways of the reaction. Consequently,
if interested in the velocity only, one can restrict
her/himself to the stationary ensemble version, where
calculations are quite trivial. Not much harder is to
find 𝑓(𝑠) in the non-stationary SM version in order
to calculate, if needed, the higher moments ⟨𝑡𝑚⟩ and
disorder parameters.

For the demonstrative purposes, it is sufficient
to involve two conformational pathways. Considering
multiple pathways makes only relative sense, since,
apart from producing extremely bulky expressions, it
can hardly be used in practice because of too many
parameters involved.

In addition, one should bear in mind that the
schemes described above, as well as the overwhelm-
ing majority of similar schemes in the literature, are
those of the classical linear kinetics based on the
mass action law 1, with constant coefficients (rate
constants). They were, are, and will be an impor-
tant tool of the enzyme kinetics. Their simplicity is
their undisputable merit, as well as the fact that
they help to clarify the physical nature/mechanisms
of the effects – but mainly qualitatively. Since, as it
is well known from, for example, extensive investiga-
tions into ligand binding to myoglobin [22] or electron
transfer in photosynthetic reaction centers [23], the
rate “constants” of protein reactions often change in
time and are distributed along “perpendicular” (i.e.,
structural) coordinates [16, 24]. This entails essen-
tially non-exponential kinetics and nonlinear effects
of structural memory/feedback based on an adequate
treatment of the substrate-conformational interac-
tions and inevitable, essentially non-equilibrium flux
conditions of the enzyme functioning [25]. All these
eventually lead to the molecular self-organization ef-
fects and changes of the functional regimes of the

1 Even if the kinetic equations are formulated for the proba-
bilities in the SM version.
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enzyme by means of non-equilibrium phase transi-
tions. We have proposed and developed a proper con-
cept quite long ago (for more details, see, e.g., [17] and
references therein).

Apart from enzymes, the MM-like schemes con-
cern many transport processes, absorption on soft
substrates, and especially nanocatalysis [7, 8], so
that nowadays they are in intensive use. That is why
the above-presented analysis of their features seems
important for the modern theory of conformational
regulation.

The present work is performed within the project
0116U002067 of the NAS of Ukraine.
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ПРО ШВИДКIСТЬ ФЕРМЕНТАТИВНИХ
РЕАКЦIЙ У МIХАЕЛIС–МЕНТЕН-ПОДIБНИХ
СХЕМАХ. АНСАМБЛЕВА
ТА ОДНОМОЛЕКУЛЯРНА ВЕРСIЇ

Р е з ю м е

У пошуках нестандартних шляхiв конформацiйної регуля-
цiї активно використовують рiзноманiтнi, iнодi переускла-
дненi, версiї схеми Мiхаелiса–Ментен. На прикладi моно-
мерних ензимiв з одним мiсцем зв’язування визначено мi-
нiмальнi схеми, що уможливлюють особливi регуляторнi
властивостi типу “кооперативностi”, субстратного iнгiбува-
ння тощо. Проiлюстровано найпростiшi шляхи розрахунку
швидкостi ензиматичної реакцiї в ансамблi або на рiвнi по-
одинокої молекули ензиму.
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