Journal of Cryptographic Engineering (2019) 9:243-261
https://doi.org/10.1007/s13389-019-00216-4

REGULAR PAPER O‘)

Check for
updates

On the verification of system-level information flow properties for
virtualized execution platforms

Christoph Baumann'® - Oliver Schwarz?(- Mads Dam3

Received: 31 January 2018 / Accepted: 14 May 2019 / Published online: 25 May 2019
© The Author(s) 2019

Abstract

The security of embedded systems can be dramatically improved through the use of formally verified isolation mechanisms
such as separation kernels, hypervisors, or microkernels. For trustworthiness, particularly for system-level behavior, the
verifications need precise models of the underlying hardware. Such models are hard to attain, highly complex, and proofs of
their security properties may not easily apply to similar but different platforms. This may render verification economically
infeasible. To address these issues, we propose a compositional top-down approach to embedded system specification and
verification, where the system-on-chip is modeled as a network of distributed automata communicating via paired synchronous
message passing. Using abstract specifications for each component allows to delay the development of detailed models
for cores, devices, etc., while still being able to verify high-level security properties like integrity and confidentiality, and
soundly refine the result for different instantiations of the abstract components at a later stage. As a case study, we apply
this methodology to the verification of information flow security for an industry-scale security-oriented hypervisor on the
ARMVS8-A platform and report on the complete verification of guest mode security properties in the HOL4 theorem prover.

Keywords Decomposition - SoC - Information flow security - Formal verification - Hypervisor - ARMv8

1 Introduction controllers have also been identified as potential attack sur-

faces. For instance, an adversary controlling a DMA device

The rise of embedded systems and the internet of things has
been met by a surge of cyber attacks against them. A possible
solution to this security problem is to design provably secure
systems on top of formally verified separation kernels and
hypervisors that provide isolation guarantees through virtu-
alization and help to reduce the trusted computing base.
Reflecting this trend toward increased use of virtualiza-
tion, hardware vendors have started to provide hardware
virtualization support also for embedded system processors
and system-on-chips (SoCs). Tasks previously done in soft-
ware now rely on this hardware and its correct configuration.
At the same time, devices and low-level hardware compo-
nents like caches [23] and direct memory access (DMA)

B Christoph Baumann
christoph.baumann @ericsson.com

Mads Dam

mfd@kth.se

Ericsson Research Security, Kista, Sweden

2 RISE SICS, Kista, Sweden

KTH Royal Institute of Technology, Stockholm, Sweden

(e.g., via a driver [57]) might be able to circumvent the ker-
nel’s memory isolation and install stealthy key loggers [51]
or even take control of the whole system [38]. Input/output
memory management units IOMMUs/SMMUs) allow the
kernel to constrain the address ranges accessible by devices.
However, IOMMU s are not always free from vulnerabilities
either [45] and proper configuration is not entirely trivial.
Whatever protection system designers choose, it is crucial to
include hardware attack surfaces, protection units, and the
configuration of both into the reasoning, when system soft-
ware is formally verified. However, the size and complexity
of current generation SoCs and the general unavailability of
authoritative system-level formal models' make a compre-
hensive security verification a highly challenging task. In
addition, the cost-efficiency of system-level verification is
adversely affected by the heterogeneous nature of and steady
evolution of SoC designs.

I The open-source RISC-V architecture [42] and the recent machine-
readable specifications released by ARM [41] are notable exceptions to
this.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-019-00216-4&domain=pdf
http://orcid.org/0000-0003-4889-8326
http://orcid.org/0000-0003-3434-5640
http://orcid.org/0000-0001-5432-6442

244

Journal of Cryptographic Engineering (2019) 9:243-261

In this paper we report on a tool-assisted experiment using
the HOL4 theorem prover to verify information flow security
for an industry-scale security-oriented bare-metal hypervi-
sor on ARMv8 [8]. Developed in the open-source HASPOC
project [25], the hypervisor provides full virtualization with
low performance overhead and supports several versions of
Linux (Debian, Ubuntu) and Android running on the HiKey
96-boards platform based on the 8-core HiSilicon Kirin 620
Cortex-AS53 SoC. The hypervisor statically partitions sys-
tem resources, i.e., cores, memory, devices, and interrupts
between the guests; thus, there is no resource sharing, except
through a rudimentary, but usable, inter-guest communi-
cation discipline. The verification focuses on the behavior
of the underlying SoC hardware during guest execution.
In particular, we consider memory, peripherals, (SYMMUs,
cores—including their user mode capabilities—as well as
interrupt controllers.

To verify, even partially, a system of this complexity
requires extensive use of composition and abstraction. The
SoC is modeled as a network of distributed automata that
communicate using synchronous message passing. Abstract
specifications for each component allow to delay the devel-
opment of detailed models for cores, devices, etc., while
still being able to verify high-level security properties like
integrity and confidentiality. Subsequently, abstract com-
ponents can be instantiated with more refined models and
overall security is preserved by discharging local verification
conditions identified in the top-level proof. Decomposition
provides the further advantage that guarantees on constant
parts can be reused when other parts change. Such reusability
and adaptability are especially important for embedded sys-
tems, since standard chip sets are rare and verification needs
to be performed for many different custom SoC designs.

The top goal of the verification is to show information
flow security for the hosted guest systems, i.e., that informa-
tion can only be exchanged between guest partitions through
allowed channels. To this end, it is also necessary to prove
integrity of the hypervisor, as any successful attack may break
the isolation guarantees imposed on the system.

The security property is formulated as trace equivalence
between an ARMvVS platform model and an idealized speci-
fication where guest systems are running on dedicated SoCs
with explicit communication channels between them, in the
style of [15]. Both models and the hypervisor design are com-
pletely formalized in the HOL4 theorem prover and based on
the user-level ARMv8 CPU model of Fox [17]. We show trace
equivalence using a bisimulation between the ideal and plat-
form model as an unwinding condition. While verification
work is ongoing, for the part of the bisimulation covering
guest execution, i.e., the steps not virtualized by hypervi-
sor handlers, all corresponding cases have been verified with
reasonable effort. The formal artifacts are available online

@ Springer

along with detailed technical documentation of the models
and theorems involved [9].

The work reported here pushes forward the state of art in
several directions. Previous work, e.g., seL.4 [32], CertiKOS
[22], or Verisoft [39], has focused on core level execution
only with limited attention to system-wide aspects such as
interrupt processing, and in this context little attention has
so far been paid to the formal analysis of information flow
properties. Specifically, the paper makes the following con-
tributions:

— A system model, formalized in HOL4, based on an ear-
lier L3/HOL4-based model by Fox [17], of a multi-core
ARMyvS8-based SoC, including virtualization and Trust-
Zone extensions, two-stage MMUs, SMMU s, devices,
and an ARM-based Generic Interrupt Controller (GIC).

— An ideal hypervisor model expressing the desired iso-
lation properties of a hypervisor in terms of physically
separated “virtual” SoCs, connected through an inter-
rupt interface and shared channel buffers in memory.
The design and requirements of the hypervisor itself are
described in more detail in [8].

— A proof of trace equivalence between the system model
and the ideal model, with key parts machine-verified
using the HOL4 theorem prover.

— A demonstration how the trace equivalence result can
be used to transfer security properties at the ideal model
level to the system model.

— The development of key abstraction-based mechanisms
that help reduce the amount of detail needing to be con-
sidered in the formal proof.

The paper is organized as follows: After discussing related
work in Sect. 2 we present the high-level modeling frame-
work and the general abstraction mechanisms used to realize
the proofs in Sects. 3 and 4. We detail the ARMv8-based plat-
form model in Sect. 5 and the hypervisor model in Sect. 6.
The ideal model is introduced in Sect. 7, and in Sect. 8 we
present the trace equivalence proof. Then, in Sect. 9 we show
how the result can be used to derive information flow secu-
rity. In Sect. 10 we discuss the implementation of the proof
in the HOL4 theorem prover. Finally, in Sects. 11 and 12 we
discuss some of the issues, design choices, and limitations
encountered during this work, as well as directions for future
research.

2 Related work

The merits of compositional reasoning for the design and
validation of embedded systems have been widely acknowl-
edged in the field, c.f. [5,18,27,49,58]. A compositional
approach based on component abstraction and rely-guarantee

Journal of Cryptographic Engineering (2019) 9:243-261 245
reasoning is also at the core of the contract-based design . Y € I i F] ')
and verification paradigm [14,43]. In this work, we apply K(i).snd(s(i), m, s3) K(j).rev(s(4), m, s;) Msa

the same underlying techniques to the formal verification
of security properties for the low-level execution platform,
which are established if the hardware is configured properly
by a trusted or verified piece of software, e.g., a hypervisor.

The first verification exercises of system software date
back several decades [16]. The research discipline has gained
increased traction in recent years through prominent projects
such as selL4 [32] and Verisoft (XT) [4,39]. Since isolation
is both enabled (e.g., by MMUs) and threatened (e.g., by
DMA) by hardware, it is crucial to include underlying hard-
ware into the reasoning. This gains even more importance
with virtualization support that shifts tasks traditionally man-
aged by software to hardware units such as two-stage MMU .
Given the central role of memory management, recent work
modeled the effects of several kinds of MMUs, their proper
configuration, caches, TLBs, and their interplay with system
software [6,7,12,37,52]. The formalization of peripherals has
been done both from a functional and from a security per-
spective. For security, the main concern is the preservation
of memory isolation in the presence of DMA devices [13].
Kernel verification has been studied both for settings with
IOMMUs [21,26,54] and for peripherals configured to com-
ply with constrained access policies [46]. Finally, kernel code
is not the only code executing on the system’s processors.
Instruction sets might grant to low-privileged code access
to sensitive resources in unforeseen ways, as the Meltdown
[34], Spectre [33], and Foreshadow [55] attacks demonstrate
quite strikingly. While it is possible to mitigate such threats,
it is important to be aware of them both in the design and
verification of kernels through the use of precise hardware
models. ARM started to create machine-readable ISA speci-
fications [41] and demonstrated how to exploit them to check
noninterference properties of the ARMvS-M security exten-
sions. Similarly, the information flow behavior of ARMv7
user mode execution has been analyzed in [47]. Arguably,
these models are still not detailed enough to capture all pos-
sible system security attack vectors. Here, instead of focusing
on single system parts at varying levels of detail, we are inter-
ested in a holistic view and system-wide isolation guarantees,
where existing results can potentially be reused as building
blocks for models that may gradually be refined to capture
all possible behaviors of the underlying hardware.

3 System model

Systems are modeled as a (finite) collection K of components
KC(i), where i is a member of some index set /. A component
is a labeled transition system with states o € X, initial states
Yo € X, and transitions snd(o, m, o’), rcv(o, m, ¢’), and
7(0o, o’) representing, respectively, the sending and receiv-

MSG ijm b s — s[i — sj;5 — s5]

e 1 K(4). i), s
PE T K).50)
TAU i b s — s[i — s}]

. I]C . . . , , /'

1€ . () rcv(s(.z) m/sz) -
EXTI im b s — s[i — s;]

el K(i).snd(s(i),m, s

1€ (4).snd(s(i), m, s;) ExTO

EXTO im b s — s[i — s]

Fig. 1 Overall system semantics. Component i in state s is updated to
s/ using notation s[i > s]

ing of message m (the nature of which is left unspecified for
now), and the internal, unobservable transition from com-
ponent state o to component state o’. We use relations and
not functions to represent transitions, in order to not rule out
nondeterministic component models.

Components synchronize between themselves using syn-
chronization vectors t € 7 defined by:

t :==MSGi jm | TAui | ExTlim | EXTO i m,

wherei, j € I. A vector MSGi j m denotes that a message m
may be sent from component i to j, assuming i # j. Vector
TAU i represents internal actions of component i. Similarly,
vectors EXTI i m and EXTO i m denote external I/O actions
of component i with associated messages m from or to the
system’s environment.

A (global) system state s € S is now a mapping from com-
ponent indices i € I to component states s(i) € K(i).X.
For all transitions ¢ € 7 a corresponding system transition
from state s to s’ is denoted by r - s — s’ and defined
in Fig. 1. There the global system transitions are mapped to
local component actions in the obvious way. In particular, a
message passing transition MSG is only enabled globally, if
both the sending and receiving actions are enabled in the cor-
responding components. We overload our transition notation
for schedules t = #1,...,t, € T* ie.,t s — s means
that s” can be reached from s by executing the transitions 7;
in order for j € [1 : n]. For the empty schedule ¢ we set
eks—>s'=(@6=ys).

4 Modeling and verification approach
Below we discuss the instantiation of the system model for

a given system-on-chip and introduce our abstraction-based
verification methodology.

@ Springer

246

Journal of Cryptographic Engineering (2019) 9:243-261

4.1 Modeling a system-on-chip

When instantiating the above framework to a concrete SoC,
we generally model bus masters, e.g., cores, devices, and
the memory system, including caches and RAM, as sepa-
rate components, and the memory buses and interrupt signals
as synchronization vectors. External inputs and outputs are
specific for each device, modeling, for instance, network
packages, user input, sensor data, or actuator control signals.

Communication through memory buses and interrupt sig-
nals is by its nature mostly asynchronous, i.e., a sender
does not usually know when a message will be received or
a potential reply be returned. In order to map such asyn-
chronous communication to the synchronous rendezvous of
the modeling framework introduced above, the channels can
be modeled as buffers, either separate or merged with the
sending or receiving component. Receiving transitions in
such a system can occur whenever a component is ready to
receive data from a memory bus or an interrupt. Conversely,
sending transitions occur whenever a component is ready to
send data or an interrupt. A component that both receives
and sends information simultaneously can be modeled by
two separate transitions, where the receiving transition is
executed first and then blocks until the sending transition
is completed. As defined above, the synchronized send and
receive transitions represent atomic actions in the SoC model.
When defining the component transitions, care must be taken
wrt. atomicity not to rule out interleavings of actions that may
lead to externally observable behavior. To this end, internal
transitions can be used to control the granularity of compo-
nent transitions and expose intermediate component states
that are observable by other components or the environment
through communication.

The instantiation proposed above does not explicitly
model time. As computer systems are discrete, and external
communication is generally asynchronous, the exact timing
of signals and component transitions can often be neglected
so that the interleaving model captures all system behaviors.
In principle, time can be represented as an additional vari-
able of the model [1] and by restricting possible interleavings
accordingly. In practice, however, current multi-core com-
modity platforms like ARMvVS are generally regarded as too
complex for precise time modeling to be feasible [56].

4.2 Abstraction

Proving properties of an execution platform of ARMv8’s
complexity requires very extensive use of abstraction to not
get overwhelmed by detail. In the work reported here, we
have used a simple abstraction mechanism that in many
cases allows us to greatly reduce the amount of informa-
tion needing to be processed. Formally, we introduce abstract
component states ﬁ‘,-, and abstraction (aka lifting) functions

@ Springer

[K@G).2 — Z:’,- foralli € I.For example, amemory M
may be implemented using a complex hierarchy of storage
elements, such as caches, RAM, and nonvolatile memory.
An abstraction [M]; that hides these details from a top-level
proof may instead view the memory contents as a flat map of
addresses to values, when doing so is adequate to establish
the desired result.

We refrain from also lifting the transitions. Instead, we
introduce a notion of abstract transition specification that
constrains the behavior of the concrete components via pred-
icates on the abstract states. The specifications act as proof
obligations that need to be discharged for any instantiation of
acomponent covered by the abstraction, and can thus be used
in place of a concrete component model in a top-level proof.
We use two types of such specifications. The first is a behav-
ioral specification that restricts the semantics of a component
transition using a condition P on the abstract prestate and a
condition Q to relate the abstract pre- and poststates. For all
transitions sending a message m (and similarly for receiving
and internal steps), we require the following property, given
a behavioral specification (P, Q) for component i:

VYo, m,o’. K@i).snd(o, m,) = P([o];, m)
A Q(ra]ism9 |-G/-|i)

That is, the pre- and postconditions P and Q must be sound
in the sense that if a transition is taken, then the precondition
holds on the abstract prestate, and the postcondition correctly
links the abstract prestate with the abstract poststate, possibly
conditional on some system-level invariant established sepa-
rately. As an example of a behavioral specification, consider a
memory that receives and answers read requests. In the latter
case a necessary precondition (P) is that any answer m sent
by the memory is related to a request pending in the prestate.
Postcondition O would at least require that the value being
sent is consistent with the content of the requested address
in the abstract memory view and that memory contents are
unchanged. Note that, P and Q implicitly induce a transition
relation on the abstract states for messages m. The required
property then effectively states that this relation is a sound
abstraction of the detailed component semantics.

Secondly, an enabling specification gives a sufficient
condition E on an abstract prestate under which a certain con-
crete component transition is enabled. In its simplest form,
we require the following property for a transition out of a
prestate o, sending message m.

VYo, m. E([o];,m) = 3¢’. K(i).snd(co, m, ")

In our memory example, E could, for instance, say that a
matching request for answer m is pending and that the value
in m matches the memory contents in [o];. Then, the speci-
fication would require that the memory is always able to send

Journal of Cryptographic Engineering (2019) 9:243-261

247

this answer. We also allow to existentially quantify over the
sent message m, e.g., saying that for every read request pend-
ing, an answer matching the memory contents may be sent.
In a more general form, enabling specifications are pairs of
predicates (E, F), requiring the following property for send-
ing transitions (and similarly for rcv and t) of a component
i

Vo, x. E([o];,x) = 30’,m.K(i).snd(o, m, o)
AF(x,[oTi,m, [0'1;) (D

Here, we introduce a symbolic variable x to capture any infor-
mation pertaining to prestate o that is used by F' to constrain
the desired transition. For instance, in the example above, x
would represent any pending read request in o and F would
demand that m matches x and the contents of o. In general,
we allow also to demand certain effects of the required transi-
tion by constraining its abstract poststate [o”] via F. Observe
that the simple enabling condition above is an instance of the
general form with x = m and F(x,5,m’,6’) = (x =m’).

A typical application in the verification reported below
(cf. Sect. 8) is to establish a bisimulation relation R between
a high-level ideal model and a refined model reflecting the
behavior realized in the concrete system. Then, if we use
G, 0 to represent ideal states and o, o’ to represent states in
the refined model, then a typical verification condition using
abstractions to aid modeling at both ideal and refined model
levels might look like the following:

Vo,o,m,o’.[0]; R [o];i Asnd(o, m, o) @

= 3o’.snd(@, m,) A o' R [d'1;
In this case the enabling specification (1) is instantiated by
formula (2) as follows:

- x = (o,m,o"),
— E([a]i,x) =[o]; R [o]i Asnd(o,m,c’), and
- F(}C, |—E‘|ivm/? |—E/-|l) = |—U/-|i R |—E/-|i Am= I’I’l/,

Behavioral and enabling specifications are not indepen-
dent. In particular, the sufficient preconditions of a transition
need to imply the necessary ones; otherwise, the specifi-
cations could contradict each other and we would assume
specifications that are logically equivalent to false. For the
same reason, also the predicates F, P, and Q must not be
contradictory. Formally, we expect specifications to pass the
following sanity checks.

Vé6,x,m,6'.E(6,x)AF(x,6,m,6") = P(6,m)

Vx.36,m,6 . F(x,6,m,6" YA P&, m)A Q6,m, &)

The abstraction technique outlined above allows to start
verification with an underspecified abstract model which

passes the sanity checks and only later develop a more
detailed model that concretizes the abstract one, reducing
the initial modeling effort. This approach can also be applied
to the definition of the messages of the system, i.e., leav-
ing certain message parts underspecified when they are not
essential to the proof. In practice, for our case study we have
experienced that component specifications can be made very
abstract using uninterpreted and underspecified types and
functions, without losing expressiveness wrt. the verifica-
tion of platform security properties. During instantiation one
needs to fill in these gaps, i.e., make the definitions of the
abstract states, the messages, and the abstraction function
precise. Also, the proof obligations stated as abstract transi-
tion specifications must be discharged.

An important question is then how detailed the abstraction
should be. There are several considerations. An important
one is instantiation and the corresponding proof obligations:
The abstraction must be detailed enough to identify when
a given transition is enabled. Also the abstraction needs to
expose all state variables required to express a desired prop-
erty. In the area of information flow security, this usually
means that all state variables directly or indirectly observ-
able by an attacker must be represented at the abstract level.
For a given abstraction [-];, this requirement is expressed
by the following completeness proof obligation in case of a
sending transition (and similarly in the other cases).

Yoy, 01,m, 0i.o1]; = [021i A K(i).snd(o1, m, o7)
= Joy. K(i).snd(02, m, 03) A [0]1i = [05]i

Again the completeness proof obligation is an enabling spec-
ification for x = (01, m, o{), E([021;, x) being defined like
the antecedent of the implication, and

F(x, [o2]i, ma, [0y1)) = [o(1i = [03]i Amp =m .

Intuitively, if an abstraction does not fulfill the property for a
given instantiation, it means there is a variable in the instan-
tiation that is not covered by the abstraction function, but
its values leak directly or indirectly into other abstract state
variables. Hence, for such an instantiation the corresponding
abstraction is too weak to be used in arguments about compo-
nent i’s information flow properties. Nevertheless, it can still
be used to prove safety properties of any valid instantiation.

5 ARMv8 platform model

As the basis for our modeling work, we extended the user-
level ARMvS8 CPU model by Fox [17] with system-level
functionality, i.e., the register state and instructions for the
hypervisor and TrustZone execution modes, as well as vir-
tualization extensions in form of a two-stage MMU. For a

@ Springer

248 Journal of Cryptographic Engineering (2019) 9:243-261
interrupt Gic | interrupt an uninterpreted component to encode further instantiation-
l > dependent message information, e.g., memory access types,

. - .
[core i |<—>{ MMU i I<—>ImemoryI<M>[SMMU j}m%device jl;
- T . in—_

memory-mapped I/O

Fig. 2 Decomposed ARMVS platform model: arrows show the pos-
sible flow of messages between different components; other cores,
(S)MMUs, and devices in the system are elided

complete SoC model, detailed models of the System MMU
(SMMU, aka IOMMU), the Generic Interrupt Controller
(GIC), the memory subsystem, and all of the devices were
missing.

The full model decomposes the SoC state s € S into the
following components:

— aparameterized number of ARMvS cores including their
first-stage MMUs,

— the corresponding second-stage MMU for each core,

— a shared flat main memory component,

— a parameterized number of arbitrary devices,

— a corresponding SMMU component for each device,

— the GIC, that is treated as a special kind of device.

There is another special device, the power controller used for
starting and stopping cores, but we omit its description here
for brevity.

The first-stage MMUs are merged with the core models.
In a hypervisor scenario the first-stage MMUs are controlled
by the untrusted guests; therefore, their interactions with
the cores are irrelevant to overall system security allowing
to simplify the model. For this reason, we refer to second-
stage MMUs simply by “MMU”. Also, having one SMMU
per device may seem like a strong assumption, but modern
SMMUs usually manage different session IDs for different
devices; hence, we model them as private SMMUSs for each
device.?

The possible communication channels between the com-
ponents, i.e., the synchronization vectors, are depicted in
Fig. 2. We distinguish

— memory requests (QQ) and replies (R),
— virtual and physical interrupts, and
— external input and output signals for the devices,

as messages of our system model. Memory requests are reads,
writes, or page table walks of some (S)MMU, and they record
atleast the address and size of memory accesses as well as the
written values in case of writes. In addition, requests contain

2 Note that, this model requires a correctness proof, showing that
one SMMU virtualizes several SMMUs via different session IDs. We
assume this here for the sake of a simpler model.

@ Springer

cacheability attributes, or unique message identifiers.

Memory replies contain either a result for a matching
request or a fault, e.g., due to failed MMU access permis-
sion checks. Our case study does not cover special memory
instructions like barriers or cache flushes.

Reflecting a modeling decision in our initial CPU model,
the MMU automaton handles all communication between
core and memory (cf. Fig. 2). Similarly, devices access the
memory directly (DMA) via their SMMU. We decided not
to model the memory bus explicitly. It is integrated into the
memory component, which thus needs to distinguish reg-
ular memory accesses from memory-mapped /O (MMIO)
accesses by the cores and forward the latter to the right
device (not involving any SMMU). Devices may send inter-
rupts to the GIC, from where they are forwarded to the cores
according to configuration of the GIC distributor module.
Cores can also request software-generated interrupts (SGIs)
to other cores through MMIO accesses to the GIC distrib-
utor, and the hypervisor can configure virtual interrupts for
the guests through accesses to the corresponding GIC virtu-
alization control interface.

The component configurations in our system model are
uninstantiated, and we describe their behavior instead using
abstract specifications, adapting the level of detail to the
requirements of the top-level security proof. Specifically, the
component state is kept as abstract as possible. To keep track
of sent and received memory requests, as well as received
memory replies, all abstract component states are equipped
with corresponding history variables. We distinguish differ-
ent transitions of components depending on the type of the
transition (send, receive, internal) and the type of message
involved (memory, interrupt, external). For each transition,
we provide a behavioral specification, capturing pre- and
postconditions of the transition, and an enabling specifica-
tion, capturing when a specific transition is enabled. Almost
all components can perform internal transitions, which are
mostly underspecified except for history variable updates.
Further details on the components and their specifications
are given below.

5.1 Core and first-stage MMU

We model explicitly the program counter (PC) and proces-
sor status register (containing among others the execution
level). The remaining register state is split into an uninter-
preted guest register state and a hypervisor register state. The
guest register state contains all registers accessible in execu-
tion levels ELO and EL1, e.g., general purpose registers as
well as system registers controlling the first-stage MMU. The
hypervisor register state contains control registers accessible
in EL2 and EL3, and we only model those relevant for the

Journal of Cryptographic Engineering (2019) 9:243-261

249

hypervisor design, e.g., HCR_EL2 and SCR_EL3, control-
ling traps from guest mode.

In addition to the registers and the history variable record-
ing outstanding memory requests, the abstract core state also
contains an uninterpreted instantiation-dependent state vari-
able thatis used to represent internal core information like the
currently executing instruction(s) or the pipeline state. Since
it is uninterpreted, we can only reason about its semantics
using equality, i.e., stating that two internal states are equal
or not, or by introducing additional abstractions on top of it.
The internal state variable determines, e.g., when the cores
are ready to send memory requests, and we make use of it
when coupling cores in the platform model with correspond-
ing cores in the idealized system model, requiring that they
have the same internal state during guest execution.

The possible transitions of the core are sending or receiv-
ing a memory request and receiving a virtual or physical
interrupt in addition to internal transitions representing, e.g.,
arithmetic operations. We leave transitions that do not change
the execution mode largely underspecified, e.g., for sending
memory requests we assume that all information in guest
registers besides the execution mode may change arbitrar-
ily. We only demand that the history variable recording sent
requests is updated correctly and that hypervisor registers are
unchanged. Note that, the enabling specification for sending
requests cannot be given directly, because it depends on the
internal state of the core. Instead, we provide a specification
in relation to an ideal model core, which is explained later.

Memory replies may be received from the MMU if there is
a matching outstanding request. They are modeled similarly
to send transitions unless a fault is received. Then, on system
calls, and when receiving interrupts, an exception occurs. If
the mode changes to EL2 or higher, we model the behavior
precisely, in order to identify the responsible hypervisor han-
dler. For instance, a behavioral specification of receiving an
asynchronous interrupt requires the necessary precondition
that interrupts are not masked and no outstanding memory
request is waiting for an answer. Only then is the exception
taken, setting the PC to the corresponding interrupt vector,
saving the guest context to banked registers, and changing the
mode to EL2, among other effects prescribed by the postcon-
dition.

5.2 Second-stage MMU

The detailed model of the ARMv8 memory management
units is quite complex, exhibiting a large number of differ-
ent address translation schemes and corner cases. However,
if configured statically by the hypervisor, this complexity
can be handled by representing the explicit MMU configura-
tion (i.e., registers and page tables) as an abstract translation
scheme parameterized for each guest and by keeping track
of the translation status for pending memory requests.

To give a flavor of our abstraction method, we define the
abstract state of an MMU below. It contains the following
variables:

— active € B Denotes whether the second-stage MMU is
enabled (always frue when guest is running),

— QR, OS C Q History variables recording the outstand-
ing memory requests received from the cores and sent
to memory (including page table lookups and translated
requests),

— RR, PTL C R History variables recording received mem-
ory replies that need to be forwarded to the core and the
accumulated set of page table lookup memory replies,

— cfg The uninterpreted configuration of the MMU, defin-
ing, e.g., the page table base or translation mode (constant
after system initialization),

— state : Q — L | TRANS QU L | FINAL QU L | FAULT
The current translation status of core requests to the
MMU. Status state(q) = L means that ¢ is not cur-
rently pending at the MMU, TRANS ¢’ means that ¢ is
being translated and a page lookup ¢’ was requested from
memory, and FINAL ¢’ means that ¢ was translated into
¢’ and sent to memory. In both cases ¢’ = L is used if
a corresponding memory request is yet to be sent. Natu-
rally, status FAULT indicates a translation fault, e.g., due
to lacking permissions.

While the hypervisor is running on a core, we model its
MMU as being turned off and core requests are just forwarded
to memory without translation. If an MMU u is enabled,
i.e., [u].active, we have the following cases and behavioral
specifications for transitions to u':

Receiving a core’s memory request g We require that g is not
already pending, i.e.,q ¢ [u].OR. No abstract state variables
change except [u'].OR = [u].QRU {q} and [u'].state(q) €
{TRANS L, FAULT}, i.e., q isrecorded in the received requests
and either enters the translation phase or it fails directly, for
instance, due to an address size error.

Sending a translation table lookup or a final memory request
q' to memory In either case ¢’ ¢ [u].0S and there must
not be a reply matching ¢’ in [u].RR already. Moreover,
there needs to exist a pending request g with [u].state(q) €
{TRANS L, FINAL L} for which ¢’ is sent. The next state for
q is then either TRANS ¢’ and ¢’ is a page table lookup, or
FINAL ¢’ and ¢’ is an address-translated version of ¢. Nothing
else changes except [u'].0S = [u].0S U {q’}.

Receiving a reply r from memory A matching request g’ €
[u].0S was sent for a core request g with [u].state(q) €
{TRANS ¢, FINAL ¢'}. In the first case r is a page table lookup
reply and [u'].PTL = [u].PTLU{r}. The next state for ¢ may
be FAULT in case of translation faults, TRANS _L if translation

@ Springer

250

Journal of Cryptographic Engineering (2019) 9:243-261

is not finished yet, and FINAL _L otherwise. In the second
case r is the reply for a translated core request. We record
[u'].RR = [u].RR U {r} and leave ¢’ status unchanged. In
both cases we have [u'].0S = [u].0S\{¢’} and no other
changes.

Sending reply r to the core A corresponding request ¢ €
[u].OR has either status FAULT or FINAL ¢'. In the first case r
is afault reply computed for . Otherwise, thereisareply r’ €
[u].RR that matches ¢’ and r is areversely address-translated
version of r’. Moreover, r is not a second-stage translation
fault and we have [u'].RR = [u].RR\{r’}. In both cases we
also demand [u'].QR=[u].QR\{q} and [u'].state(q)=1.

Secure address translation scheme The behavioral specifi-
cations above do not specify when a memory access will
fail or succeed as this behavior of the MMU depends on
its configuration and the page tables in memory. In order to
abstract from the specific page table layout of the architec-
ture and capture the desired memory isolation guarantees,
we introduce an uninterpreted notion of golden page tables
and MMU configurations that implement a given restricted
address map for a guest, which, e.g., does not allow accesses
to other guests’ unshared memory or the locations of the page
tables itself.

Assuming that an MMU has such a golden configuration,
and has only ever looked up page table entries from a cor-
responding golden page table, we can further constrain the
behavior of the MMU, in particular:

— further page table lookups only target the region of the
golden page tables,

— final translations reflect the desired address map,

— faults result only from accesses to unmapped addresses
or write permission faults.

In addition, while a request is being translated, we consider
itnondeterministic when it will reach its final state or result in
a fault. Assuming a golden configuration and page tables, we
require a progress condition that one of the possible outcomes
will occur after a finite amount of MMU lookup steps.

5.3 Memory

In this case study we use a simple coherent, multi-copy
atomic shared memory model without architecturally visi-
ble side effects from the caches or other parts of the memory
subsystem. This is reflected in our abstract memory specifi-
cation, which consists of a single page-addressable map of
physical memory contents along with the message history
variables. Memory transitions consist of:

— receiving a request from an MMU or SMMU (in case of
device DMA access),

@ Springer

— forwarding a core’s MMIO access to a device,
— receiving a device’s reply to an MMIO access,
— sending a reply for an earlier memory request.

In the last case, for RAM accesses we require that the usual
memory semantics apply, i.e., reads return the contents for
requested addresses without changing memory, writes update
only the contents for targeted addresses. MMIO replies from
devices are just forwarded to the requesting cores. The sound-
ness of the flat memory model is discussed in Sect. 11.

5.4 Devices and System MMUs

Since all DMA accesses are protected by the SMMUSs and the
guests have full control over the devices without the hyper-
visor ever touching them, we can leave the device states
completely uninterpreted except for an active flag and a num-
ber of explicitly defined history variables keeping track of
received and sent DMA and MMIO messages. Device tran-
sitions consist of:

— receiving and replying to MMIO accesses from memory
on behalf of a core,

— sending DMA requests to an SMMU (if active holds) and
receiving DMA replies,

— sending or receiving external signals associated with that
device,

— sending an interrupt associated with that device to the
GIC, if active holds.

We provide behavioral specifications only, stating sanity
checks based on the bookkeeping of messages, e.g., that each
sent reply matches a pending MMIO request.

Our synchronous message passing approach fits well with
edge-triggered interrupt signaling, but it also covers level-
triggered interrupts, depending on the GIC’s interpretation
of the edge signals.

SMMU On a detailed level the SMMUs on ARM SoCs differ
from the regular MMUs of the cores. However, the trans-
lation mechanism is similar and on an abstract level both
MMUs and SMMUs implement the same kind of functional-
ity. Hence, we use the same abstract specification for SMMUs
as for MMU s, albeit parameterized with different translation
schemes,’ depending on the guest a device belongs to. It is
a particular strength of our approach to allow the reuse of
abstract models for components with similar functionality,
but different implementation.

3 For simplicity of the model, we forbid DMA accesses to other devices
and the GIC in this work.

Journal of Cryptographic Engineering (2019) 9:243-261

251

5.5 Generic interrupt controller

The interrupt controller used on our ARM platform (GICv2)
contains four different register states:

— the interrupt distributor shared by all cores, and for each
core:

— aphysical interrupt interface,
— avirtual interrupt control interface,
— avirtual interrupt interface.

In the abstract specification we largely leave the registers
underspecified, except for control registers used by the hyper-
Visor.

For modeling the side effects of MMIO accesses to the
GIC and interrupt reception, we introduce uninterpreted
abstraction functions that map the distributor register con-
tents to the physical interrupt state for the whole system and
the control interface registers to the virtual interrupt state per
core. The possible GIC actions are:

— receiving an interrupt from a device,

— signaling a physical or virtual interrupt to a core,

— receiving MMIO accesses from the cores to one of the
register states,

— replying to an MMIO access.

Side effects of such transitions are expressed rather on the
interrupt state than on the register state which can change
either nondeterministically or is unaffected by a given tran-
sition. However, our behavioral specification constrains the
change of registers exposing the current interrupt state to
reflect to the prescribed change in the abstract interrupt
state. For example, as the virtual interrupt interface is only
used by the guest, we leave the effect on corresponding
registers unspecified and overapproximate the side effects
of MMIO accesses on the interrupt state. In particular,
accesses to the virtual interrupt interface only ever affect
interrupts pending or active on that interface and inactive
interrupts stay inactive. Only for the registers explicitly
touched by the hypervisor, e.g., to configure inter-processor
interrupts, we model the effect of accessing the registers in
detail.

For interrupt signaling, the GIC transition is synchronized
with a corresponding receiving transition at the targeted core.
Thus, the signaling is modeled to occur in sync with the core
taking the exception for the asynchronous interrupt. We only
distinguish physical from virtual interrupts (which can only
be received in guest mode) and only model IRQ interrupt
signals.

6 Hypervisor model

The main functionality of the HASPOC hypervisor [8] is
to bring up the platform into a state where different guest
systems can run in statically allocated, isolated partitions,
such that each guest owns a number of cores, devices, and
their interrupts, as well as a region of memory exclusively.
Inter-guest communication (IGC) is allowed only via prede-
fined unidirectional shared memory channels between pairs
of guests and associated inter-processor notification inter-
rupts that can be requested through hypercalls. There is also a
secure boot loader that cryptographically verifies the authen-
ticity of the provided hypervisor and guest images.

For this work we are mainly interested in the platform
invariant Inv : S — B that constrains the abstract states
of all component configurations of the SoC during system
execution to enable the desired information flow policy and
guarantee hypervisor integrity. To name a few of the most
important properties:

— All translated requests sent by an (S)MMU are con-
strained by the translation scheme of the corresponding
guest, i.e., translated core and device requests may access
only the associated guest’s physical memory, including
writes to outgoing and reads to incoming IGC chan-
nels. In addition, cores may access memory-mapped I/O
regions of owned devices and the GIC virtual interrupt
interface.

— Likewise, all pending requests in memory from cores
running in guest mode or devices address the associated
guest’s region of memory. Forwarded MMIO requests are
sent by cores with the same owner as the targeted device
and addresses match the device’s memory-mapped 1/O
region. Requests to GIC registers other than the virtual
interrupt interface are sent by cores running in hypervisor
mode. For reply messages traversing the platform, similar
restrictions hold.

— Page tables are stored in hypervisor memory, disjoint
from guest memory. The page tables are fixed and,
together with the MMU configurations established by the
hypervisor initialization phase, implement a secure trans-
lation scheme for guests, guaranteeing memory isolation
modulo IGC channels.

— The GIC is configured in such a way that physical device
interrupts can only be forwarded to cores of the same
associated guest. SGIs are only pending or active between
cores of the same guest, unless they have a special ID
reserved for IGC notifications. Similarly, only interrupts
from devices belonging to a given guest may be pending
or active at its core’s virtual interrupt interfaces.

— Well-formedness invariants are imposed on messages and
the abstract state of all SoC components. For instance,
for an (SY)MMU u we couple the received and sent

@ Springer

252

Journal of Cryptographic Engineering (2019) 9:243-261

memory messages with the translation state according
to the behavioral specification. We require, e.g., that
q € [u].ORholds iff [u].state(q) # L or that for replies
r € [u].RR, there exists a request ¢ with [u].state(q) =
FINAL ¢’ such that r matches ¢’ which is an address-
translated version of ¢.

— Additional invariants capture intermediate states of the
hypervisor computation; in particular, they restrict the
value of hypervisor system registers and its internal data
structures.

The invariant has to be preserved by all guest and hyper-
visor steps for all components of the SoC. We identify
properties of the abstract component states that must hold
in the initial system states so € Sg with so(i) € K(i). X for
i € I,e.g., thatinitially no memory requests or interrupts are
pending, devices are inactive, and cores start in EL3 execut-
ing the boot loader. Then, we have to prove:

Theorem 1 All computations t &+ sy — s’ starting in an
initial system state so € Sg preserve the platform invariant,
i.e., Inv(s") holds.

The theorem can be proved by induction on #. In particu-
lar, the invariant needs to be defined on the state abstractions
in such a way that Inv(sg) holds for all such sg, requiring
certain invariant parts, like the correct configuration of the
(SYMMUs, only after they have been established by corre-
sponding phases of the hypervisor initialization process. In
the induction step we distinguish all possible component
transitions and use their behavioral specifications to show
that the invariants are preserved. Decomposition allows some
measure of local reasoning as at most two components are
changed in one step and others usually retain their invariants
as they are unaffected.

For example, in the proof of memory isolation we can
focus on the interplay of (S)MMU and memory, arguing that
(1) the MMU is configured correctly to only send translation
requests to the area where the hypervisor stores the secure
second level page tables, (2) memory returns the correct val-
ues of data stored in it, i.e., entries from the secure page table,
and (3) if the MMU translates a guest’s memory request
successfully, only using entries from the secure page table
for that guest, the translated memory request addresses the
guest’s memory region.

In addition to platform initialization, the hypervisor con-
tains handlers for providing virtualized functionality to the
guest. In particular, it:

— virtualizes a GIC distributor for each guest, preserving
the interrupt isolation invariants,

— handles all other second-stage translation faults and
injects them into the core in guest mode,

@ Springer

— receives physical interrupts and registers them as virtual
interrupts in the GIC,

— has ahypercall interface to request IGC notification inter-
rupts for outgoing channels of a guest.

While the set of handlers is small, the design and verification
of the GIC handlers are quite cumbersome, mainly due to the
fact that the interrupt controller of our ARMvS platform is
of an older version that does not provide full hardware sup-
port for distributor virtualization and distribution of virtual
interrupts to cores running in guest mode.

Concerning the modeling of the hypervisor, it would be
infeasible to manually specify it on the low abstraction
level of our system-level semantics. Instead, we introduce
a high-level labeled transition system (LTS) of the hyper-
visor design, where transitions atomically change (parts of)
the system configuration. This kind of reasoning requires
an order reduction argument, showing that the fine-grained
instruction execution of the hypervisor can be abstracted into
atomic blocks [35]. In our case it suffices to design the LTS in
such a way that each transition contains at most one step that
is either a send or receive action addressing the GIC (which
is shared by all cores), or an access to a shared hypervisor
data structure. The LTS can be used later as a specification
to verify the binary hypervisor code [50].

Formally, we introduce such hypervisor transitions in our
system model by adding a new kind of synchronization vec-
tor ORCL w, which specifies a system-wide oracle transition
according to relation @ € S x S. In our case w captures the
hypervisor LTS, allowing state changes in one core and its
MMU, the SMMUs, and hypervisor data structures in mem-
ory, whenever that core is running in hypervisor mode. In the
system model we have ORCL w s — s’ iff (s, s") € w.

7 Information flow security

In order to show information flow security of the SoC as
constrained by the hypervisor, we introduce an ideal model of
the system where each guest is running on an idealized SoC,
connected only through IGC channels. If the ideal model
is a sound and complete abstraction of the system model,
i.e., there exists a bisimulation relation between both, the
information flow restrictions that hold in the ideal model
by construction also hold for the platform model, since the
bisimulation property forces the traces in both systems to be
identical. Then, we can use our platform to build trustworthy
systems where security-critical services are properly isolated
from untrusted software. Figure 3 shows the ideal models for
two applications that have been successfully implemented on
top of the HASPOC hypervisor: a secure network bridge and
a secure VPN solution for Android phones. By construction,
no direct communication is possible between the untrusted

Journal of Cryptographic Engineering (2019) 9:243-261

253

- (e ()
— _)i NETWORKED ,(} | ISOLATED i
e g SUEST! _SUESTL pmmusreo|

TRUSTED (-—-

' ENCRYPTION 3
GUEST —
TRUSTED

GUEST
B X networken £

o i GUEST 2 |, pusteo!
UNTRUSTED ' ~==~=================-====

GUEST2 ——

Fig. 3 Use cases: with correctness of the crypto service, guest 2 only
receives encrypted traffic from guest 1, even if both guests are compro-
mised. Hence, secrets in guest 1 are secure

GIC <

interrupt
-) 1.5 (w1 DMA). bMmA o
[core i }<—>[buffer |buffer JI<—>ldev:ce JI

e IGC buffer memory-mapped I/O——T 2
GUEST 1 :

Y -

m2T <

I GIC I‘%] nE

Fig.4 Ideal model: guest 1 with its share of cores, devices, and memory
regions—connected to guest 2 via an inter-guest communication (IGC)
interrupt and duplicated but synchronized IGC memory channel

interrupt:

GUEST 2

guests and all information leaving guest 1 has to go through
an encrypted channel.

In the context of our formal system model, the ideal model
is a system where each component is instantiated with one
idealized guest SoC. At this level the only interference pos-
sible between guests is by message passing through the IGC
notification channels, or via external I/O through devices
owned by the guest SoCs. In addition, there are oracle tran-
sitions that synchronize the contents of memory for the IGC
channels between the guests in order to simulate shared mem-
ory whenever a guest modifies one of its the outgoing IGC
memory channels.

The idealized guest SoC models are structured as the
underlying ARMvS8 system model itself, containing only
cores and devices of the guest concerned (see Fig. 4). The
ideal SoC models differ from the platform models on a few
important points:

— Ideal cores execute in guest mode only. At ideal level
hypervisor execution is invisible and effects of handlers
on the core are modeled explicitly as part of the ideal core
semantics. For example, hypercall instructions get spe-
cial semantics that reflect a complete handler execution
and memory access faults that are caught by the hypervi-
sor appear as if they cause a direct jump into the guest’s
exception handler. Regular core functionality is specified
as in the system model. In particular, the ideal core model
still contains the first-stage MMU.

— The range of ideal memories is restricted to each guest’s
memory region. (S)MMUSs are replaced by simple core

and device message buffers that either forward memory
requests to memory if they are within the guest’s memory
range or produce a fault otherwise. No address transla-
tion is performed by these message buffers; all messages
use intermediate physical addresses throughout the ideal
model. These placeholders for the (SYMMUs are intro-
duced mainly to simplify the bisimulation proof.

— Each guest SoC has an own ideal GIC with a virtualized
distributor and physical interrupt interface. We define the
ideal GIC semantics in such a way that it reflects the
semantics of the hypervisor handlers that virtualize the
distributor and inject virtual interrupts, and only inter-
rupts belonging to the guest may ever become pending
or active.

— To model IGC notification interrupts between guests,
we add a special notification interrupt buffer for each
outgoing channel. The buffers are filled by a hypercall
instruction with idealized semantics mirroring the behav-
ior of the underlying hypervisor handler. Using a global
MSG transition with the receiving guest SoC, an IGC
interrupt is injected into the receiver’s ideal GIC. This
simulates the hypervisor behavior when receiving the
physical inter-processor interrupt and registering it as a
virtual interrupt.

Note that, we use exactly the same device models as in
the platform model. This is possible since the hypervisor
allocates I/O regions of devices in the intermediate phys-
ical address space using an identity mapping, devices in
both models receive exactly the same messages and there-
fore behave identically.

We prove an invariant /Inv on ideal model configurations
5 € S, to support the bisimulation proof and sanity-check our
specifications. With initial states So defined similar to Sp, we
show:

Theorem 2 Given 5y € So, all computations t & 59 — 5’
establish IInv(5").

Given that there is no hypervisor running in the ideal
model, the ideal invariant is much simpler, covering basi-
cally just well-formedness conditions on the components and
messages in each guest. For the memory interface buffers and
the ideal GIC, it also requires security properties, e.g., that
requests sent to memory are within range, or that only inter-
rupts belonging to the guest are pending or active. As initially
no requests or interrupts are pending, /Inv(5g) holds trivially.
In the induction step we first show IInv for internal steps of
a guest SoC. Then, we prove that for each IGC channel the
memory regions in sender and receiver SoC are in sync, if
every write into the channel is directly followed by a syn-
chronizing oracle transition.

@ Springer

254

Journal of Cryptographic Engineering (2019) 9:243-261

interrupt:

buffer j P%device jJ

A A
memory-mapped 110

]

GUEST 1]
T
1 i

! [= L’f‘—'_i
“ ;nterrL\pt I' \\ G|C,

- \ | L‘—i—y—‘
-y y é

’core k}<—>[MMU k|<—>|memow]<—>[SMMU Ilw%ldevxce Il

memory-mapped I/O

s,__’____

\
\
)
1
L
I
terrupt "
I

PLATFORM MODEL

Fig.5 The bisimulation relation (red dashed arrows) between ideal and
platform model is decomposed into component-specific subclauses for
each guest (color figure online)

8 Bisimulation proof

Our final proof goal is to prove a trace equivalence result
relating the platform and ideal models. The proof of trace
equivalence uses a bisimulation R C S x S as an unwinding
condition as illustrated in Fig. 5. For a platform state s and
an ideal state 5, if s R 5 then, among others, the following
properties on the abstract states of the system components
are guaranteed.

— Corresponding cores have the same guest register and
internal states as well as message history variables while
the core is running in guest mode. While the hypervisor
is running, guest registers are either coupled as above,
saved in banked registers, or stored in hypervisor mem-
ory, depending on the kind of register and the hypervisor
program state.

— Guest memory content in the ideal model is identical to
the memory content in the platform model at the trans-
lated addresses. Similarly, memory requests and replies
are normally present in the ideal model if, and only if, they
are present as address-translated guest requests/replies
in the platform model in corresponding components.
Exceptions are requests sent by cores and devices, which
have the same (untranslated) addresses, as well as write
requests to and read replies from the virtualized GIC dis-
tributor, as they are processed and sent by the hypervisor
on behalf of the guest to maintain interrupt isolation. In
the latter case, write requests in the ideal model are pro-
jected to sanitized versions in the platform model, where
any updates to protected parts of the GIC register state
are removed by the hypervisor. Similarly, all read replies
in the platform model appear as filtered versions in the
ideal model, containing only information about interrupts
belonging to the guest as other protected information will
be removed by the hypervisor as well.

@ Springer

— The translation table lookups of the (S)MMUs are invis-
ible in the ideal model.

— Device states and message history variables in both mod-
els are identical.

— The state of interrupts in the GIC distributor of a guest
in the ideal model is the same as in the GIC distribu-
tor of the platform model, while no hypervisor interrupt
handler is running on one of the guest’s cores. Similarly,
for each core the same interrupts are pending or active in
the ideal virtualized physical interface and the platform
virtual interrupt interface. During reconfiguration of the
interrupt state by the hypervisor, a more complex cou-
pling is in place, reflecting the current program state of
the handler, current hypervisor accesses to the GIC, and
the stepping strategy for the bisimulation proof.

— IGC interrupts are active in the ideal IGC notification
buffer, while the corresponding SGI between the cores in
the platform model is pending.

— Theregister states of the virtual interrupt interface and the
virtualized physical interface are equal. GIC distributor
registers are projected to the ideal model using an unin-
terpreted filtering function that removes for each guest
information about interrupts belonging to other guests.

In general, the coupling of components, memory mes-
sages, and interrupts is quite straightforward while the guest
is executing, but more complex during the execution of the
hypervisor handlers, as the ideal model artifacts have to be
linked with the state of the platform during different phases
of the hypervisor execution. Since our case study focused
on the verification of the system properties guaranteed by
the hypervisor, rather than the correctness of the hypervisor
implementation itself, we direct the interested reader to our
technical specification [9]. The desired correctness theorem
can now be stated in two parts.

Theorem 3 Given initial states sy € So and 50 € So with
so R 5o, then (1) for any computation t &+ sy — s’ of
the platform model there exists a corresponding ideal model
computationt & 50 — §' such that s’ R §' holds, and (2) for
any computation t = 5o — §' of the ideal model there exists
a corresponding platform model computation t - sg — s’
withs' R §'.

Theorem 3 is proved by induction on n for the two direc-
tions separately. The base case is trivial. In the induction step
we use the invariants of both models by Theorems 1 and 2.
We perform a case split over the different steps of the sim-
ulated model; the proof of each case then usually consists
of two parts: (1) showing the existence of a—potentially
stuttering—corresponding step sequence in the simulating
model and (2) showing that resulting states are in the bisim-

Journal of Cryptographic Engineering (2019) 9:243-261

255

Bur2MEM
REQUEST ¢

CORE2BUF
REQUEST ¢

MMU2MEM
REQUEST ¢

TEM2MMU
REPLY 1

MU2MEM
REQUEST [

n JORE2MMU
REQUEST ¢

more

N
lookups

Fig. 6 Bisimulation of a successful MMU translation of core request
g to g, matching platform steps (blue, below) with ideal steps (red,
above). The dashed arrow subsumes a finite number of page table lookup
steps (MMU2MEM, MEM2MMU). Blue lines between platform and ideal
states show the bisimulation relation R. Red lines highlight the stepping
strategy when simulating the ideal computation: All address translation
steps are executed for the ideal CORE2BUEF step; all intermediate states
are coupled with the resulting ideal state (color figure online)

ulation relation again, preserving the properties sketched
above.

Existence argument While showing the existence of simu-
lating steps, we apply our enabling specifications, deriving
the sufficient precondition E from relation R and the invari-
ants. Thus, we can conclude that the desired corresponding
transition is indeed enabled.

However, recall that we do not provide enabling speci-
fications for all transitions. For instance, given a platform
core transition from o to ¢’, sending a memory request 1, it
depends on the uninterpreted internal core state, if this step is
indeed possible in a coupled ideal core state o. To solve the
issue, we require a bisimulation obligation in the shape of
(2) that links identical transitions on the ideal and platform
model wrt. an abstract core coupling relation Rcore that is
implied by the bisimulation relation R on the system states.
In the direction from platform to ideal model (and vice versa),
we demand the following property:

V67 o, m, OJ‘ |—O'-| Rcore r6-| A Snd(o7 m, O) =
35", snd (G, m, 5') A [0'] Reore [67] -

Thus, we obtain the existence of the corresponding ideal
core step, as well as the required coupling directly from a
proof obligation that has to be discharged for given platform
and ideal core instantiations. As Rcore requires the registers
as well as the internal state of the cores to be equal, and
since we can define the ideal core model freely, this should
be a straightforward exercise. However, the proof requires
to show that the core architecture does not leak information
from higher exception level registers into guest registers [31,
47].

We demand a similar bisimulation obligation for guest
accesses to the virtual GIC interfaces, as their semantics is
widely underspecified (cf. Sect. 5.5). Hence, also any instan-
tiation of the ideal GIC model needs to match the semantics
of the platform model tightly.

Stepping Strategy and Proving R Whenever the hypervisor
handlers are not involved, steps of both models are mostly
mapped in a one-to-one fashion. Nevertheless, the transla-
tion steps of the (S)MMUs are invisible in the ideal model.
When simulating an ideal core or device sending a request
to its memory interface buffer, we step the (SYMMU until
either a fault occurs or the translation is successful, using
the (S)MMU progress condition. Figure 6 depicts the pro-
cess for sending a request from core to memory. Similarly,
we step hypervisor handlers to completion in the platform
model when simulating the corresponding ideal transitions.

We add an induction hypothesis to the simulation of the
ideal by the platform model encoding our stepping strategy.
It states, e.g., that cores of the platform model are always in
guest mode and that no requests are currently being trans-
lated. This saves us from starting the simulation of an ideal
transition in the middle of a hypervisor handler or an address
translation in the MMU. In the opposite simulation direction
we cover all these intermediate states.

When proving the bisimulation relation, we distinguish
if the simulated step is corresponding to zero, one, or more
steps of the simulating model. In the latter case we identify
one step in the simulating sequence where we step both mod-
els simultaneously. For preceding or subsequent steps the
simulated model stutters and we prove that the bisimulation
relation with the pre- or poststate of the simulated transition
is preserved. Recall, that such stuttering only occurs dur-
ing handler execution and address translation. In all cases
we profit from the compositional approach: As at most two
components change in one model, clauses of R relating other
components are usually preserved trivially.

For clauses related to the implementation of handlers,
however, it may happen that other components need to be
taken into account since here the coupling of ideal and plat-
form model components may be temporarily out of sync and
depend on the state of other components modified by the
hypervisor. For instance, the state of interrupts in the ideal
model depends on the progress of the hypervisor interrupt
handler sending messages through the memory system to the
GIC. Interrupts are injected in the ideal model (virtualized)
core interrupt interfaces as soon as the GIC answers an inter-
rupt acknowledgment request by the hypervisor, as this is
the step at which the hypervisor commits to injecting the
interrupt into the virtual interface.

To establish the relevant clauses of R for a given com-
ponent, we apply the system invariants and the behavioral
specification of corresponding steps. For instance, the final
pair of steps in Fig. 6 send a (translated) memory request g
(g) from the message buffer u (MMU u) to memory m (m).
From the MMU semantics we know [u](g) = FINAL L and
that ¢ is an address-translated version of g. By Inv we have
that the MMU is configured according to the secure address
translation scheme that is also used for the coupling of guest

@ Springer

256

Journal of Cryptographic Engineering (2019) 9:243-261

messages in R; thus, if g targets an intermediate physical
address in guest memory, then ¢ targets the corresponding
address in physical memory. The behavioral specifications
require updates [u'].Q0S = [u].0S U {q} and [m'].QR =
[m].0OR U {q} for the message bookkeeping components of
MMU and memory, and similarly [#'].0S = [i].0S U {g}
and [/'].OR = [m].QRU{q} in the ideal model of the corre-
sponding guest. Components of other guests are not affected,
since the MMU is dedicated to a single core (and thus a single
guest) and the memory contents are unchanged. The clause
in R that couples the sent MMU requests with the sent core
requests in the ideal message buffer is preserved because the
same requests are added modulo the secure address transla-
tion scheme. We argue similarly for the requests now pending
in [m'].OR and [m'].OR.

For steps that update memory contents, the same strategy
is used, stating first that the same address is updated in guest
memory (modulo address translation) and using the memory
update semantics to show that the same effects occur. For
writes to shared memory we also need to take into account
the synchronization between IGC memory channels in the
ideal world. Before the synchronization is performed only
the sending guest’s IGC memory is coupled with the platform
memory contents. After the synchronization the coupling of
memory contents holds also for the receiving guest.

9 Application: transfer of confidentiality

Having proved the bisimulation theorem, we can apply it to
transfer safety and information flow properties of the ideal
model to the platform model. A caveat is that we can only
transfer properties that can be expressed in terms of the
abstract states, as the bisimulation relation is agnostic to any
underlying instantiations. On the other hand, this approach
has the benefit that property transfer only has to be proved
once for a given property, and that it applies to all valid instan-
tiations of the models. To give an example, we sketch how
confidentiality of secrets within one guest of the model can
be established on the platform model by proving it on the
ideal model and using the bisimulation to transfer it.

Assume victim V is a guest of the system and all other
guests are controlled by an attacker A (cf. Fig. 3, where V is
the crypto process). There is a secret stored in V that shall not
leak to A. The confidentiality of the secret can be expressed
as a noninterference property wrt. the possible observations
of A in the system [20,44]. At a high level the observations in
the ideal model are determined by the sequence of A’s input
messages. Atalower level we define observation functions on
the abstraction of state components in the system, to clarify
which parts of the abstract states are indeed observable for
A. Naturally, in the ideal model all components in all guests
except V are observable.

@ Springer

We now consider transition sequences that have the same
transitions for A (including the same input messages) but may
differ for other actions of V. If we execute such schedules in
ideal system states that are indistinguishable for A, i.e., they
have the same observations, then we can apply the complete-
ness property of our abstract specifications to show that the
resulting states are still indistinguishable. In particular, since
the observations of A cover the complete abstract state of
its components, indistinguishability of two component states
o1, 02 means [01] = [o2]. Then, the completeness property
yields that for each transition on state o1, the same transition
is enabled on o7, resulting in the same abstract states and
thus the same observations.

In order to establish noninterference on the whole ideal
model, it remains to show that the sequences of inputs sent
by V to A are independent of the secret. If there is no IGC
communication channel from V to A, there are no inputs to
A except the external ones. Assuming these are independent
of V’s external outputs, there is nothing left to show. In what
follows we focus on the more interesting case, where there
is an IGC channel from V to A. Additional inputs to A are
V’s writes into the IGC memory region and IGC notification
interrupts. If these events are secret-independent, e.g., if V
never performs secret-dependent accesses to IGC memory
or requests of IGC notification interrupts, the same sequence
of inputs to A is indeed generated for all possible secret val-
ues. Note that, this property can usually not be proved without
considering a specific instantiation of V that includes its pro-
gram code.

The ideal noninterference property now states that for
initial indistinguishable states §1, 5> and schedule 7; such
that 7 F 51 — §|, there exists a schedule 7, with the
same sequence of transitions and inputs for A such that
1 = 52 — §, and §) is indistinguishable from 5.

Next, we define the observations of A on the platform
model. The corresponding input events for A are external
inputs, writes by V to the shared IGC memory, and the regis-
tration of an IGC inter-processor interrupt from V to A in the
GIC distributor. As the memory and GIC are shared between
all guests, the definition of the observation functions is more
tricky. We omit the states of all cores, (S)MMUSs, devices, and
GIC core interfaces belonging to V from the observations of
A. Similarly, we remove all memory contents and messages
belonging to the unshared memory of V. For the GIC distrib-
utor we filter out all information belonging to interrupts of V
from the interrupt and register states, except for IGC notifica-
tion interrupts. We similarly filter out this information from
corresponding data structures in hypervisor memory, which
is otherwise observable by A as it influences the execution
of the handlers that A invokes.

The observations of A are additionally restricted by the
bisimulation, as not all abstract components in the platform
model are covered by relation R. For instance, the intermedi-

Journal of Cryptographic Engineering (2019) 9:243-261

257

ate states of (S)MMU translation are not linked to any ideal
component. Similarly, the stepping strategy for hypervisor
handlers hides intermediate hypervisor program states. Intu-
itively, these states do not reveal any secrets and the attacker
has no way to directly observe them; therefore, we only
consider platform computations that exhibit the block-wise
stepping strategy of the bisimulation proof, i.e., none of these
intermediate states are ever exposed.*

We then need to show that indistinguishable platform
states are also indistinguishable in the ideal model when
coupled via R and vice versa. Since the abstract ideal and
platform component models match so tightly, and because
we hide intermediate translation and hypervisor states, this
is straightforward.

Finally, we prove noninterference as follows. Assume
ideal and platform initial states 51, 52, 51, and s, such that
s1 R §1 and s R 57. Furthermore, consider a schedule #;
resultingins},i.e.,t; F s — s],andlets; and s, be indistin-
guishable for A. As discussed above, this means that also §;
and 57 are indistinguishable. By Theorem 3 we obtain a cor-
responding schedule 71, and 7 - §; — 5] such that s{ R §].
By the noninterference property of the ideal model, we get
a schedule 7, with the same transitions and inputs for A as
in, and , F 5§, —) such that §} is indistinguishable
from §|. Applying Theorem 3 again in the other direction,
we deduce noninterference on the platform model, i.e., there
exists a schedule #, with the same transitions and inputs for
A as 1 and a platform state s/, such that 1, - s, — s and
s} is indistinguishable from s] for A.

The bisimulation result also shows that the only chan-
nels available for a malicious guest system to influence the
hypervisor or another guest system is to use one of the autho-
rized guest-to-guest communication channels or one of the
hypercalls. In particular, any attempt of attacker A to access
memory outside its assigned memory range will lead to a
fault in both the ideal and the platform model.

10 Implementation

We have executed our case study in the theorem prover HOL4
and proved information flow security for the guest execution
[9]. In particular, the induction step for the bisimulation prop-
erty (Theorem 3) comprises 13 hypervisor transitions and 42
transitions that at least partly concern guest execution in the
platform and ideal model combined. For the latter number
of guest steps, we have shown formally that they preserve
all 24 clauses of the bisimulation relation. The ideal invari-

4 An alternative approach could set the observations in intermediate
states to the observations at the beginning or the end of a block, depend-
ing on the stepping strategy.

Table 1 HOLA4 lines of code for basic parts (general data types etc.),
the ideal model, the platform model, the hypervisor, as well as the
bisimulation relation and proof

Basic Platf. Hyp. Ideal Bisim. Total
Model 154 1756 1931 1124 669 5634
Invariant - 613 - 212 - 825
Tools 525 - - 198 675 1398
Proofs 773 2197 1633 1922 15,316 21,841
Total 1452 4566 3564 3456 16,660 29,698

ant (Theorem 2) is verified completely, while the platform
invariant (Theorem 1) is only proven on paper so far [9].

Table 1 provides an overview on the size of the different
parts of our development. We consider “basic” parts and the
developed proof tools as reusable for similar endeavors. The
case study so far took about 15 person months with low to
intermediate level of a priori HOL4-expertise. As can be seen
from the numbers, the modeling effort was moderate con-
sidering the complexity of the underlying platform and the
proofs make up by far the largest part of the development, as
one would expect for an interactive proof system. The num-
bers also hint at the increased complexity of the platform
invariant (and presumably the effort required to formalize its
proof) compared to the ideal model invariant.

We also started to verify hypervisor transitions, but
decided to increase the support for automation first before
tackling the simulation of handler step sequences. To date, we
have developed some first machinery to step through bisim-
ulation proofs that map a transition step of one side to a
number of transition steps on the other side. The ambition is
that the human proof engineer would focus on one transition
step at a time and in particular, on the actual preservation
property, leaving (de-)composition and rather trivial proof
obligations to the machinery. To that end, we employ a canon-
ical form for bisimulation goals that we reestablish between
the different steps. The machinery is able to autonomously
identify relevant pre- and poststates, as well as transitions,
relations, and guarantees on them, with the help of some
form of incremental pattern matching. Several custom tactics
automate unfolding and employ tailored variants of standard
machinery such as first-order reasoning, conditional lifting,
or simplifications for record field updates, case splits, etc.
As future work, we plan to extend the machinery by the
automatic identification and verification of required pre- and
postconditions according to our abstract transition specifica-
tions.

A large part of the proofs is concerned with technical
arguments about the transition system, e.g., the matching of
memory requests and replies, the relation of different address
regions, or the well-formedness of system parameters. We
envision a formal framework for decomposed system mod-

@ Springer

258

Journal of Cryptographic Engineering (2019) 9:243-261

els that provides a lot of these properties by construction for
a given instantiation and avoids the pitfalls discovered in our
ad hoc definition.

While conducting formal proofs can be tedious at times,
we experienced that the decomposed modeling approach
indeed helps speeding up the verification engineering pro-
cess. On the one hand, as system transitions in the decom-
posed model only modify one or two components at a time,
proof goals on all other components could mostly be dis-
charged automatically using resolution solvers. On the other
hand, the proofs seem to be quite robust against local modifi-
cations of the models (which are inevitable when formalizing
models of substantial size), i.e., verification results on unre-
lated parts of the system state were usually unaffected by the
changes. We see these observations as further evidence to
our premise that decomposition is an indispensable tool in
the verification of complex systems.

11 Discussion

The methodology described in this paper combines abstrac-
tion and compositional reasoning to prove reusable top-level
theorems of information flow security. As shown above, it
allows to verify properties like integrity and confidentiality
for the design of complex execution platforms with moderate
effort. Nevertheless, there are some assumptions underlying
our case study and limitations inherent to the approach that
we want to discuss below.

Memory model In our case study we assumed a flat, coherent,
multi-copy atomic memory model. As of late, the ARMvS
processors are required to implement a multi-copy atomic
memory semantics. Hence, all of the weakly consistent mem-
ory behavior results from out-of-order execution in the cores
[40]. Therefore, soundness of the memory model presup-
poses only that neither the hypervisor nor the guests break
memory coherency. This assumption can in fact be broken
by phenomena such as mismatched cache attributes that are
known to produce memory incoherency and to potentially
break guest—guest as well as guest—hypervisor isolation [23].
Similar effects can be created using Rowhammer attacks
[48]. We did not consider these attack vectors when defin-
ing our platform model, a methodology to repair proofs of
integrity in the presence of such storage side channels is
presented in [36]. In brief, the idea is to implement coun-
termeasures and enrich the platform invariant, guaranteeing
that the original platform semantics without storage channels
is preserved.

Hypervisor model Our formalization of the hypervisor han-
dlers needs to correctly capture the actual implementation
of the hypervisor. In particular, as the hypervisor is a con-
current piece of software, each step in the hypervisor LTS

@ Springer

needs to be implemented by an atomic block of code that
is implementing a locking policy to synchronize on shared
hypervisor data structures and the GIC distributor. Validat-
ing these assumptions requires at least a method for verifying
lock implementations in weakly consistent memory seman-
tics [2,53], an order reduction argument [35], and a binary
code verification approach [24]. Consisting of some 8000
lines of source code, formal verification of the hypervisor
implementation is feasible, albeit out of scope for this work.

Timing channels The platform model presented above does
not model time explicitly; hence, the hypervisor design
is potentially susceptible to timing side-channel attacks
[19]. However, the attack surface is reduced as cores and
accompanying L1 caches are not shared by different guests.
Nevertheless, the cores are shared with the hypervisor and
its timing behavior when accessing shared hypervisor data
structures could in principle leak information about hypervi-
sor thread activity on behalf of other guests. Attacks based on
speculative execution seem a slightly more credible thread.
While MMU-circumventing attacks like Foreshadow-NG
[55] do not seem to be possible on ARM processors, Spectre-
type attacks [33] on hypervisor handlers may enable an
attacker to read hypervisor data structures and leak informa-
tion about the behavior of other guests. The biggest thread
to information flow security is possibly the last-level cache
that is shared between all cores [29]. Timing attacks in this
concurrent scenario can be prevented by a cache-coloring
scheme [30]; however, in the presence of communication
channels, the performance overhead is likely to be high, as
each IGC channel would need a separate cache color to iso-
late shared from private memory access behavior.

Message definitions As discussed earlier, the bisimulation
theorem proved in this work can only transfer properties that
are expressible on the abstract component models. The same
issue arises when considering the definition of messages M
of the platform. If the definition is precise, i.e., if it does
not contain uninterpreted placeholder variables that can be
refined by an instantiation later, then the information that can
be exchanged by components is fixed. For instance, in our
case study, the memory replies R have a fixed definition and
they only contain the original request as well as a return value
for reads or fault information. Thus, in hindsight we cannot
easily add additional information, e.g., about cache hits or
misses, to the memory reply messages without adapting the
overall proof.

Leaving parts of messages underspecified, as we do for
requests Q, allows to add information during instantiation
of the platform model, but this comes at a cost when verify-
ing transitions that create such messages. For instance, when
proving the bisimulation for sending transitions of ideal and
platform cores, we need a bisimulation obligation to ensure
that the same message is sent by coupled core components.

Journal of Cryptographic Engineering (2019) 9:243-261

259

Moreover, instantiations of components receiving such mes-
sages may only use the additional information in ways that
are consistent with their behavioral specification. For mem-
ories in particular, this means that the additional message
information in requests must not affect the memory contents
when executing read or write requests.

Modeling shared caches As argued above, timing channels
pose a security thread to the confidentiality of secret guest
data, mainly due to the shared last-level cache. While a pre-
cise model of the platform’s timing behavior seems out of
reach, at least the cache state may be exposed in order to
be able to reason about cache-based channels. It should be
straightforward to add an explicit cache model to the abstract
states and transition specifications of ideal and platform
memories. If the hypervisor implemented a cache-coloring
scheme, the platform invariants have to be adapted to con-
strain the mapping of guest memory addresses to cache lines.
The bisimulation relation would map the corresponding parts
of the cache state to partial cache states in each guest, in a
similar fashion as we couple the shared GIC distributor state.
Inits current shape, the hypervisor leaves the handling of tim-
ing channels to the guests. Thus, if caches are modeled, the
ideal model would need to contain an additional communi-
cation channel between all guests, synchronizing the cache
state for each memory access in the platform.

Complications arise if cache state and semantics are left
uninterpreted at the abstract level, i.e., to be defined precisely
during instantiation. In principle, this is desirable, as it allows
the overall bisimulation to cover any cache implementation.
In practice, however, this approach would require bisimula-
tion obligations to couple the uninterpreted cache states in
the ideal and platform model. In any case, the abstract models
would have to take the presence or absence of countermea-
sures employed by the hypervisor into account. Defining an
uninterpreted model of shared caches, that can be success-
fully instantiated, seems like a hard problem.

An alternative, potentially more practical approach is to
leave the caches out of the abstract models and handle cache-
based information flow at the instantiated platform level.
Similar to the handling of cache-based storage channels [36],
the platform invariant could be enriched to cover countermea-
sures that prevent the cache state to leak secret information
of one guest to another, e.g., cache partitioning by the hyper-
visor, or secret-independent memory accesses by a guest.
Then, having confidentiality on the platform model, mod-
ulo the cache state, the observations of the attacker can be
extended to include the cache state as well. The correctness
of the countermeasures then ensures that also the cache states
of an attacker are indistinguishable for different values of a
victim’s secret.

Defining abstractions The definitions of the abstract states
and transition specifications for the platform components are

the cornerstone of this work. Throughout the proof process,
we have identified specifications that are sufficiently strong to
allow the bisimulation to be proved. The bisimulation proof
guarantees that all detailed component instantiations, sat-
isfying the abstract specifications, exhibit the same secure
information flow as in the ideal model.

Naturally, it is easy to make too strong assumptions here;
hence, it is crucial to discharge the proof obligations on
detailed component models. If such a proof fails, the abstract
state and abstraction function, transition specifications, or
the coupling relation for that component need to be adapted.
Here, the decomposed verification approach reduces the cost
of re-verification, too, as hopefully only local changes are
required.

Trustworthy hardware models When instantiating compo-
nents and proving that abstractions correctly model their
behavior, there is a shift in the assumptions of our bisimula-
tion theorem. Instead of the relying on the correctness of the
abstractions, the soundness of the theorem now relies on the
assumption that the detailed component models describe the
behavior of the actual hardware correctly. This is a common
problem for all formal treatments of computer systems and
not specific to our approach. In the absence of a machine-
readable hardware specification provided by the vendors
[41], trust in the models can be increased by simulating them
against the actual hardware [3] or other extensively tested
hardware emulators [10,11]. Recently, there have also been
efforts to synthesize instruction semantics using machine
learning [28]. While these approaches usually target proces-
sor semantics, their application to system components like
(S)MMUs, devices, or the interrupt controller, are an open
problem.

A more philosophical question is why other people should
trust a formal development that is as large as ours. Leaving
aside the correctness of HOL4 (which we take for granted), a
critical reader of our work, e.g., a certification agent, would
have to assess all our definitions and formulations of theo-
rems in order to judge if they correctly capture the problem.
To assist such a process, we provide extensive technical doc-
umentation and guidance describing the formal artifacts and
their underlying intentions [9].

Nevertheless, these are in nature just informal assurances.
We believe that a more structured approach to the creation
of platform specifications and top-level proofs is a way to
greatly increase trust in formal verification. Having a formal
framework that enshrines the methodology outlined in this
paper ensures that models, specifications, and theorems are
presented in a uniform style and proofs may be increasingly
automated. Moreover, it allows to apply sanity checks on
the given definitions and the integration of domain-specific
languages to either define models in a more readable way or
import existing ones automatically.

@ Springer

260

Journal of Cryptographic Engineering (2019) 9:243-261

12 Conclusion

With the increasing hardware support for virtualization and
enhanced security threats through malicious devices, secu-
rity analysis of embedded systems today needs to consider
the behavior of all SoC components. To address this issue,
we presented an approach for the compositional verification
of SoC level security properties in a virtualization context.
It enables a top-down approach to system verification, by
modeling SoC components as communicating automata with
relatively abstract specifications, that can be refined gradu-
ally by more detailed component models.

Our HOL4 case study for an ARMv8 hypervisor high-
lighted the reusability and adaptability of the approach. The
preliminary results suggest that the verification of secu-
rity properties for a complete SoC is feasible, yet still
time-consuming, especially for complex COTS systems. For
future work we therefore envision a formal framework sup-
porting both the modeling (e.g., with a domain-specific
language) and the reasoning (with more automation). The
discussed case study provided valuable insights toward that
goal. Further directions of work include discharging the proof
obligations posed by our abstract transition specifications
for the existing detailed component models of ARMvS8 core
and MMU, transferring information flow properties along
the lines of Sect. 9, and verifying countermeasures against
cache-based information leakage.

Acknowledgements We kindly thank Thomas Tuerk for his help in
improving our HOL4 definitions. This work was supported by the
PROSPER Project funded by the Swedish Foundation for Strategic
Research (SSF), the HASPOC Project funded by the Swedish Inno-
vation Agency VINNOVA, and the KTH CERCES Center for Resilient
Critical Infrastructures funded by the Swedish Civil Contingencies
Agency.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Abadi, M., Lamport, L.: An old-fashioned recipe for real time.
ACM Trans. Program. Lang. Syst. 16(5), 1543-1571 (1994).
https://doi.org/10.1145/186025.186058

2. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software
verification for weak memory via program transformation. In:
European Symposium on Programming, pp. 512-532. Springer
(2013)

3. Alglave,J., Maranget, L., Tautschnig, M.: Herding cats: modelling,
simulation, testing, and data mining for weak memory. ACM Trans.
Program. Lang. Syst. (TOPLAS) 36(2), 7 (2014)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Alkassar, E., Hillebrand, M.A., Paul, W.J., Petrova, E.: Automated

verification of a small hypervisor. In: Proceedings of VSTTE,
LNCS, vol. 6217, pp. 40-54. Springer (2010)

. Alur, R., Dang, T., Esposito, J., Fierro, R., Hur, Y., Ivanci¢, F.,

Kumar, V., Lee, 1., Mishra, P., Pappas, G., Sokolsky, O.: Hierarchi-
cal hybrid modeling of embedded systems. In: Embedded Software
(EMSOFT), pp. 14-31. Springer (2001). https://doi.org/10.1007/
3-540-45449-7_2

. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Formally verifying

isolation and availability in an idealized model of virtualization.
In: Formal Methods, pp. 231-245 (2011)

. Barthe, G., Betarte, G., Campo, J.D., Luna, C.: Cache-leakage

resilient os isolation in an idealized model of virtualization. In:
Proceedings of CSF’12, pp. 186-197. IEEE (2012). https://doi.
org/10.1109/CSE.2012.17

. Baumann, C., Nislund, M., Gehrmann, C., Schwarz, O., Thorsen,

H.: A high assurance virtualization platform for ARMvS. In: Euro-
pean Conference on Networks and Communications (EuCNC), pp.
210-214 (2016)

. Baumann, C., Schwarz, O., Dam, M.: GitHub repository of for-

mal artifacts and technical documentation. https://github.com/
rauhbein/haspocproofs. Accessed 23 May 2019

Bellard, F.: QEMU, a fast and portable dynamic translator. In:
USENIX Annual Technical Conference, FREENIX Track, vol. 41,
p. 46 (2005)

Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A.,
Basu, A., Hestness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen,
R., Sewell, K., Shoaib, M., Vaish, N., Hill, M.D., Wood, D.A.:
The gem5 simulator. SIGARCH Comput. Archit. News 39(2), 1-7
(2011). https://doi.org/10.1145/2024716.2024718

Bolignano, P., Jensen, T., Siles, V.: Modeling and abstraction of
memory management in a hypervisor. In: FASE/ETAPS, pp. 214-
230. Springer (2016)

Chen, H., Wu, X.N., Shao, Z., Lockerman, J., Gu, R.: Toward
compositional verification of interruptible OS kernels and device
drivers. In: Proceedings of Programming Language Design and
Implementation, PLDI’ 16, pp. 431-447. ACM (2016). https://doi.
org/10.1145/2908080.2908101

Cimatti, A., Tonetta, S.: Contracts-refinement proof system for
component-based embedded systems. Sci. Comput. Program. 97,
333-348 (2015)

Dam, M., Guanciale, R., Khakpour, N., Nemati, H., Schwarz,
O.: Formal verification of information flow security for a simple
ARM-based separation kernel. In: Proceedings of Computer and
Communications Security, CCS’13, pp. 223-234. ACM (2013)
Feiertag, R.J., Neumann, P.G.: The foundations of a provably
secure operating system (PSOS). In: National Computer Confer-
ence, pp. 329-334. AFIPS Press (1979)

Fox, A.C.J.: Improved tool support for machine-code decompila-
tion in HOL4. In: Interactive Theorem Proving (ITP), pp. 187-202
(2015)

Gajski, D.D., Vahid, F.: Specification and design of embedded
hardware—software systems. IEEE Des. Test Comput. 12(1), 53-67
(1995). https://doi.org/10.1109/54.350695

Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microar-
chitectural timing attacks and countermeasures on contemporary
hardware. J. Cryptogr. Eng. 8(1), 1-27 (2018)

Goguen, J.A., Meseguer, J.: Security policies and security models.
In: Security and Privacy, 1982 IEEE Symposium on, pp. 11-11.
IEEE (1982)

Gu, L., Vaynberg, A., Ford, B., Shao, Z., Costanzo, D.: CertiKOS:
a certified kernel for secure cloud computing. In: Proceedings of
the Second Asia-Pacific Workshop on Systems, APSys’11, p. 3.
ACM (2011)

Gu, R., Shao, Z., Chen, H., Wu, X., Kim, J., Sjoberg, V., Costanzo,
D.: CertiKOS: An extensible architecture for building certified

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/186025.186058
https://doi.org/10.1007/3-540-45449-7_2
https://doi.org/10.1007/3-540-45449-7_2
https://doi.org/10.1109/CSF.2012.17
https://doi.org/10.1109/CSF.2012.17
https://github.com/rauhbein/haspocproofs
https://github.com/rauhbein/haspocproofs
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2908080.2908101
https://doi.org/10.1145/2908080.2908101
https://doi.org/10.1109/54.350695

Journal of Cryptographic Engineering (2019) 9:243-261

261

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

concurrent OS kernels. In: Operating Systems Design and Imple-
mentation, pp. 653-669. USENIX Association (2016)

Guanciale, R., Nemati, H., Baumann, C., Dam, M.: Cache stor-
age channels: alias-driven attacks and verified countermeasures.
In: Security and Privacy, pp. 38-55 (2016). https://doi.org/10.1109/
SP2016.11

Guanciale, R., Nemati, H., Dam, M., Baumann, C.: Provably secure
memory isolation for linux on ARM. J. Comput. Secur. 24(6), 793—
837 (2016). https://doi.org/10.3233/JCS-160558

HASPOC Project. http://haspoc.sics.se/. Accessed 23 May 2019
Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B.,
Zhang, D., Zill, B.: Ironclad apps: end-to-end security via auto-
mated full-system verification. In: Operating Systems Design and
Implementation, pp. 165-181. USENIX Association (2014)

He, N., Kroening, D., Wahl, T., Lau, K.K., Taweel, F., Tran, C.,
Riimmer, P., Sharma, S.: Component-based design and verification
in X-MAN. In: Proceedings of Embedded Real Time Software and
Systems (2012)

Heule, S., Schkufza, E., Sharma, R., Aiken, A.: Stratified synthesis:
automatically learning the x86-64 instruction set. In: ACM SIG-
PLAN Notices, vol. 51, pp. 237-250. ACM (2016)

Inci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.:
Cache attacks enable bulk key recovery on the cloud. In: Inter-
national Conference on Cryptographic Hardware and Embedded
Systems, pp. 368-388. Springer (2016)

Kessler, R.E., Hill, M.D.: Page placement algorithms for large real-
indexed caches. ACM Trans. Comput. Syst. (TOCS) 10(4), 338-
359 (1992)

Khakpour, N., Schwarz, O., Dam, M.: Machine assisted proof of
ARMVT7 instruction level isolation properties. In: Certified Pro-
grams and Proofs, pp. 276-291. Springer (2013)

Klein, G., Andronick, J., Elphinstone, K., Murray, T.C., Sewell,
T., Kolanski, R., Heiser, G.: Comprehensive formal verification of
an OS microkernel. ACM Trans. Comput. Syst. 32(1), 2 (2014).
https://doi.org/10.1145/2560537

Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.:
Spectre attacks: exploiting speculative execution. arXiv preprint
arXiv:1801.01203 (2018)

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh,
A.,Horn, J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y.: Melt-
down: reading kernel memory from user space. In: 27th USENIX
Security Symposium (USENIX Security 18), pp. 973-990 (2018)
Lipton, R.J.: Reduction: a method of proving properties of parallel
programs. Commun. ACM 18(12), 717-721 (1975)

Nemati, H., Baumann, C., Guanciale, R., Dam, M.: Formal verifica-
tion of integrity-preserving countermeasures against cache storage
side-channels. In: International Conference on Principles of Secu-
rity and Trust (POST 2018), pp. 109-133. Springer (2018)
Nemati, H., Guanciale, R., Dam, M.: Trustworthy virtualization
of the ARMv7 memory subsystem. In: SOFSEM, pp. 578-589.
Springer (2015). https://doi.org/10.1007/978-3-662-46078-8_48
Nohl, K., Lell, J.: Badusb—On Accessories that Turn Evil. Black
Hat USA, Las Vegas (2014)

Paul, W.J., Schmaltz, S., Shadrin, A.: Completing the automated
verification of a small hypervisor—assembler code verification. In:
SEFM, Lecture Notes in Computer Science, vol. 7504, pp. 188—
202. Springer (2012)

Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell,
P.: Simplifying ARM concurrency: multicopy-atomic axiomatic
and operational models for ARMvS8. Proc. ACM Program. Lang.
2(POPL), 19 (2017)

Reid, A.: Trustworthy specifications of ARMv8-A and v8-M sys-
tem level architecture. In: Proceedings of Formal Methods in
Computer-Aided Design (FMCAD), pp. 161-168. IEEE (2016)

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

RISC-V Foundation: RISC-V—The Free and Open RISC Instruc-
tion Set Architecture. https://riscv.org/. Accessed 23 May 2019
Rowson, J.A., Sangiovanni-Vincentelli, A.: Interface-based design.
In: Proceedings of the 34th Annual Design Automation Confer-
ence, DAC’97, pp. 178-183. ACM (1997). https://doi.org/10.1145/
266021.266060

Rushby, J.: Noninterference, Transitivity, and Channel-Control
Security Policies. SRI International, Computer Science Labora-
tory, Menlo Park (1992)

Sang, F.L., Lacombe, E., Nicomette, V., Deswarte, Y.: Exploiting
an /OMMU vulnerability. In: 2010 5th International Conference
on Malicious and Unwanted Software pp. 7-14. IEEE (2010)
Schwarz, O., Dam, M.: Formal verification of secure user mode
device execution with DMA. In: Hardware and Software: Verifica-
tion and Testing (HVC), No. 8855 in Lecture Notes in Computer
Science, pp. 236251 (2014). https://doi.org/10.1007/978-3-319-
13338-6_18

Schwarz, O., Dam, M.: Automatic derivation of platform nonin-
terference properties. In: International Conference on Software
Engineering and Formal Methods, pp. 27-44. Springer, Cham
(2016)

Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer
bug to gain kernel privileges. In: Black Hat 15 (2015). https:/
googleprojectzero.blogspot.com/2015/03/exploiting-dram-
rowhammer-bug-to-gain.html. Accessed 23 May 2019

Sewell, P., Vitek, J.: Secure composition of insecure components.
In: Computer Security Foundations, CSFW’99, p. 136. IEEE Com-
puter Society (1999)

Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for
averified OS kernel. In: Programming Language Design and Imple-
mentation, pp. 471-482 (2013). https://doi.org/10.1145/2491956.
2462183

Stewin, P., Bystrov, I.: Understanding DMA malware. In: Detec-
tion of Intrusions and Malware, and Vulnerability Assessment
(DIMVA), pp. 21-41 (2012). https://doi.org/10.1007/978-3-642-
37300-8_2

Syeda, H., Klein, G.: Reasoning about translation lookaside buffers.
In: LPAR-21. 21st International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning, EPiC Series in
Computing, vol. 46, pp. 490-508. EasyChair (2017)

Vafeiadis, V.: Program verification under weak memory con-
sistency using separation logic. In: International Conference on
Computer Aided Verification, pp. 30—46. Springer (2017)
Vasudevan, A., Chaki, S., Maniatis, P., Jia, L., Datta, A.: tiberSpark:
enforcing verifiable object abstractions for automated composi-
tional security analysis of a hypervisor. In: 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association (2016)
Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B.,
Piessens, F., Silberstein, M., Strackx, R., Wenisch, T.F., Yarom,
Y.: Foreshadow-NG: breaking the virtual memory abstraction with
transient out-of-order execution. Technical Report (2018)
Wilhelm, R., Grund, D., Reineke, J., Schlickling, M., Pister, M.,
Ferdinand, C.: Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems. IEEE Trans. Com-
put. Aided Des. Integr. Circuits Syst. 28(7), 966 (2009)
Wojtczuk, R.: Subverting the Xen hypervisor. Black Hat USA, Las
Vegas (2008)

Xie, F., Yang, G., Song, X.: Component-based hardware/software
co-verification for building trustworthy embedded systems. J. Syst.
Softw. 80(5), 643-654 (2007). https://doi.org/10.1016/j.jss.2006.
08.015

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1109/SP.2016.11
https://doi.org/10.1109/SP.2016.11
https://doi.org/10.3233/JCS-160558
http://haspoc.sics.se/
https://doi.org/10.1145/2560537
http://arxiv.org/abs/1801.01203
https://doi.org/10.1007/978-3-662-46078-8_48
https://riscv.org/
https://doi.org/10.1145/266021.266060
https://doi.org/10.1145/266021.266060
https://doi.org/10.1007/978-3-319-13338-6_18
https://doi.org/10.1007/978-3-319-13338-6_18
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.1007/978-3-642-37300-8_2
https://doi.org/10.1007/978-3-642-37300-8_2
https://doi.org/10.1016/j.jss.2006.08.015
https://doi.org/10.1016/j.jss.2006.08.015

	On the verification of system-level information flow properties for virtualized execution platforms
	Abstract
	1 Introduction
	2 Related work
	3 System model
	4 Modeling and verification approach
	4.1 Modeling a system-on-chip
	4.2 Abstraction

	5 ARMv8 platform model
	5.1 Core and first-stage MMU
	5.2 Second-stage MMU
	5.3 Memory
	5.4 Devices and System MMUs
	5.5 Generic interrupt controller

	6 Hypervisor model
	7 Information flow security
	8 Bisimulation proof
	9 Application: transfer of confidentiality
	10 Implementation
	11 Discussion
	12 Conclusion
	Acknowledgements
	References

