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Summary. The vertical variation of tidal currents caused by friction at the 
sea-bed is investigated in both qualitative and quantitative ways with the 
Coriolis force being taken into account. The simple model with the assump- 
tion of constant eddy viscosity is employed to study the effects of friction on 
the vertical structure of tidal currents. The model explains these effects in 
vertical change of the maximum velocity, the ellipticity (the ratio of the 
minor to the major axis) of current ellipse, the time and the direction of the 
maximum velocity, and the ratio of diurnal current to semidiurnal current. 

To reach a quantitative agreement with the data observed by Bowden 
& Fairbairn in the Irish Sea, the mixing length theory is applied to numerical 
calculation of the vertical distribution of tidal currents with a finite difference 
scheme. A fair agreement with the observations is obtained in the calculation. 
The results show the following features: (1) the vertical profile of amplitude 
of the main component for the current is almost logarithmic throughout the 
depth; (2) the corresponding profde for the shearing stress is almost linear 
with depth; (3) the maximum stress lags the maximum velocity with the 
delay increasing with elevation; (4) the eddy viscosity coefficient has its maxi- 
mum around the mid-depth; and ( 5 )  the vertically averaged viscosity lags the 
velocity magnitude. 

The dependence of the quadratic resistance coefficient and the coefficient 
K defined by Bowden’s formula V = Khii(h - depth, V and U - depth-averaged 
eddy viscosity and velocity) on the roughness length is given for a steady flow 
in a non-rotating system. The numerical solution shows that these relations 
can be approximately applied to the tidal currents in shallow waters. 

1 Introduction 

The vertical variations of tidal currents caused by friction at the sea-bed have long been the 
subject by many authors. Most of the earlier works, such as Sverdrup (1926), Thorade 
(1931), Proudman (1953), Ichiye (1955), Bowden, Fairbairn & Hughes (1959), made use of 
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constant eddy viscosity coefficient and succeeded in revealing some important features of 
this phenomenon. In the first part the constant eddy viscosity model is used to study 
features of the effects of friction on the vertical structure of tidal currents. The analysis used 
in this part is to a certain extent similar to that of Thorade (193 1, see also Defant 1961). 

The simple model using constant eddy viscosity fails to produce velocity profiles quanti- 
tatively in agreement with the observed ones, especially for the layer close to the sea-bed, 
where the exponential profile for constant eddy viscosity does not match the observed 
logarithmic profile. To reach a quantitative agreement, Kagan (1964) considered v as a 
function of z ,  which increases linearly from the bottom to a certain height, then remains 
unchanged up to the surface. Johns (1966, 1969a,b, 1970) took v as a parabolic function of 
the depth. In these works the Coriolis force was left out. L,ater, Kagan (1966) employed the 
same function for v about z as used in his previous paper and took the Coriolis force into 
account. A reasonable agreement between the theoretical solution and observed values was 
obtained. On the other hand, Bowden & Hamilton (1975) regarded the function v as varying 
only with time. Their numerical calculations indicated that the use of variable v very much 
improved the agreement with observations. It is thus worthwhile to apply Prandtl’s mixing 
length theory directly to the calculation of the vertical distribution of tidal currents. The 
main reason is that Prandtl’s hypothesis has been verified in various kinds of natural flows, 
though in most cases stationary. Further, when the mixing length hypothesis is used, the 
derived eddy viscosity will be variable with the depth and time. This is more reasonable 
according to Kagan (1965) and to Bowden & Hamilton (1975). 

G. Fang and T. Ichiye 

2 The solution with constant eddy viscosity 

The equations of motion for horizontal components can be expressed as follows: 

au 1 a.r, ac ..=fv+ -~ 

a t  p a Z  ax 

a u  1 ar, a{ 
-- = ~ fu + - 
at  p a2 ay 

- g  -,  

~ - - g -  2 

where the advection terms and the lateral friction are ignored, u and u are x- and y-velocity 
components, 7, and ry the x- and y-components of the shearing stress, x,  y and z the right- 
handed Cartesian coordinates with the z-axis vertically upwards, f the Coriolis parameter, 
p the density of the seawater, g the gravity constant and { the elevation of the sea surface. 
Variables u, u, r, and ry  are functions of z and t, and the sea surface gradient components 
a{/ax and a{/ay are independent of z and thus the functions o f t  only. 

The boundary conditions at the sea-bed and surface are respectively 

u = u = 0,  at z = 0 (bottom), 

.rx = ry = 0, at z = h (surface). 

Two-dimensional vectors can be conveniently expressed by complex numbers as 

(3.3) 

w - u  + iu, 
T r, -t ir,,, 

(3.3) 
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where i E4-1 .  Then 

and 

w = O ,  at z=O,  

T = O ,  at z = h .  

Vertical structure of tidal curretits 67 

2.1) and (2.2) become respectively 

(2.4) 

(2.5) 

In order to study effects of friction on the current qualitatively, analytical solution for 
(2.4) is more convenient. Thus the stress is assumed to be caused by a constant eddy 
viscosity as 

aw 

az 
' = p v  -, 

where v is a constant kinematic eddy viscosity. With (2.6) the equation (2.4) becomes 

aw a2 
a t  a z 2  
- + ifw - v  -- = G ,  

For the tidal currents, w and G can be expanded as Fourier series 

w = c{ai(z) exp(iujt) + bj(z) exp(-iujt)), 

G = c [cj exp(iuit) + di exp(-iuit)], 

i 

i 

(2.6) 

(2.7) 

(2.8) 

where ui is the positive angular frequency of the j t h  constituent and ai, bi, ci ,  di are the 
corresponding Fourier coefficients. Substitution of (2.8) into (2.7) and (2.5) produces 

d 2 a  

dz2 
i(a + f ) a  - v __ = c, 

d 2 b  

dz2 
i t - o + f ) b  - v  - = d ,  

and 

a = b = O ,  at z = 0 ,  

da/ciz = dbldz = 0, at z = h,  

(2 .9)  

(2.10) 

where the subscript j is omitted. 

> 0. Iff # u, the equations (2.9) with the boundary conditions (2.10) have the solution 

a - - I -  
ag 

For definiteness we only consider the case of the northern hemisphere, hence f is always 

cosh X'(7h -2) cos h'z + cosh h'z cos h'(2h -z) 

cosh 2 h'h + cos 2 h'h 
- 

sinh h'(2h -2) sin h'z + sinh h'z sin X'(2h -z) _ _  __. + i  
cosh 2 h'h + cos 2 h'h 
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68 G. Fang and T. Ichiye 

cosh h"(2h -2) cos h"z + cosh X"z cos h"(2h - 2 )  

cosh 2 h"h + cos 2 X"h 

sinh X"(2h-z) sin h'lz f sinh h"z sin h"(2h -2) 

cosh 2 h"h + cos 2 h"h 
\+  i , 

where 

sinh h"(2h - z )  sin X"z f sinh h'lz sin A"(2h -z) 

cosh 2 h"h + cos 2 h"h 
- i  7 

cosh h"(2h -z) cos h"z + cosh h"z cos h"(2h - 2 )  

cosh 2 h"h f cos 2 h"h 
1 -  

U t f  "* 0-fl 
h ' ( 1 y )  2 h" = (i,) 
and 

ag = -ic/(u +f), b, 5 -id/(- u + f ) ,  

with the subscript g representing the frictionless current. 
For very deep water, i.e. h -+ 00, (2.1 1) reduces to 

a/a, = 1 -exp(-h'z)cosh'z t iexp(-h 'z js inh 'z ,  

for u>  f 

for u <  f (2.1 1) 

1 - exp(-h"z) cos ~ " z  - i e x p ( - - ~ " z j  sin ~ " z ,  foro>f  
1 1  -exp(-h"z)cosh"z tiexp(-X"z)sinX"z, fore< f. 

b/b, = I 

(2.12) 

(2.13) 

(2.14) 

If u =J b, will become infinite. However, the solution of (2.9) with conditions (2.10) for 
finite depth is expressed in terms of c and d as 

a - i  
c o + f  cosh 2 h'h f cos 2 A'h 

cosh h'(2h -z) cos X'z + cosh h'z cos h'(2h-z) 

I sinh X'(2h -z> sin X'z + sinh X'z sin h'(2h-z) 

cosh 2h'h + cos 2 h'h 
+ i  (2.15) 

b 1  

d v  

3 Basic characteristics of the vertical structure of tidal currents 

In equation (2.8), for a single tidal constituent, the hodograph of w forms an ellipse. 
Variations of the resultant current w are discussed rather than the variations of the values 
a and b separately. The following quantities represent the characteristics of the resultant 
current: 

M, the length of major semiaxis, or the maximum velocity; 
r ,  the ellipticity, the ratio of minor semiaxis to major semiaxis, positive if the current 

rotates anticlockwise, negative if the current rotates clockwise; 
0, the direction of major semiaxis; 
c0,  the time of maximum velocity, expressed in radian or degrees, representing the phase 

lag of the resultant current w .  

These quantities are called ellipse parameters. 
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Vertical structure of tidal currents 69 

Godin (1972) has derived the relation between the ellipse parameters and the complex 
Fourier coefficients u and b as follows: 

M = A  + B ,  (3.1) 

r = ( A  -B) / (A  + B) ,  (3 2 )  

where 

In order to study effects of the friction on the current ellipse under various conditions, 
the frictionless current is assumed given. Without loss of generality, the x-axis is taken to 
coincide with the major axis of the ellipse of the frictionless tidal current and the time origin 
is taken at the time of its maximum velocity. From this definition and (3.3-4), it follows 
that a, = f i g  = 0. This means that both ug and b, are positive real numbers, or a, = A , ,  
b, =B, .  

For very deep water, the solution (2.14) is illustrated in Fig. 1. Ignoring wiggles at the 
upper parts of the curves, it can be seen that the functions AIA, and BIB, simply decrease 
from unity at the upper layer to zero at the bottom, and the functions a and f l  change hom 
zero to +45". But the rates of change with elevation z are larger for the functions (Y and 
AIA, than for the functions /3 and BIB,, because A'> ;.'I, and A' and X" represent e-folding 
rates for the former and latter, respectively. 

From (3.1 -4) and with the help of Fig. 1 the following conclusions are obtained about 
the vertical variations of the parameters of current ellipse: 

(1) The maximum velocity M reduces with an increasing depth as expected. 
( 2 )  The ellipticity r increases approaching the bottom. Thus, if the tidal current at the 

upper layer rotates anticlockwise, the ellipse gets broader downwards, whereas an ellipse 
rotating clockwise at the upper layer becomes thinner approaching the bottom and some- 
times becomes a line segment or an anticlockwise ellipse. This rule has been described by 

x'z 

A/A, a n d  a ,  --B/B, a n d  p (when f /5  < I ) ,  ----BIB, a n d  p ( w h e n  f / r  > I1 

Figure 1. Vertical profiles of functions A / A g ,  BIBg, Q and p. The numbers attached to  curvesB/Bg and 0 
indicate the values of f/o. 
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70 G. Fangand T. I c h j e  

Thorade (193 1). The ellipticity near the sea-bed, r b ,  is expressed with the ellipticity of the 
frictionless current, rg , as 

rb Elim r =  [ p ' ( l  + I g )  - p " ( ~ - r ~ ) ] / [ p ' ( ~  + r g )  + p " ( l - r g ) ] ,  

where 
2'0 

(3 .6)  

The increment of the ellipticity from z = 03 to z = 0 is then 

A r = r b - r g  = ( p ' - p " )  (1 - r i , ) / [ p ' ( l  + r g )  + p " ( l - r g ) ] ,  (3.8 1 

which is always greater than zero unless f= 0 or  rg = k 1. For a certain geographic latitude, 
Ar  cannot exceed its maximum value Armax given by 

which occurs under the condition AIB = (p" /p ' )"2 .  For a small flu, the value Arm= is 
approximately (1/2)f/u. Therefore, for a semidiurnal tide, say, the increment of r cannot 
exceed roughly 0.25 at latitude 30"N, f i / 4  at 45"N. 

( 3 )  In the case o f f <  u ,  a + 4 5 "  and fl+ -45" when z+O. It follows that the maximum 
velocity occurs earlier near the bottom than in the upper layer. An intuitive explanation of 
this phenomenon for f = 0 was first given by Proudman (1 953).  Equation (3 .4)  indicates that 
this time-lead caused by friction cannot exceed one eighth of the period (or 45"). The 
change of orientation of the ellipse axis is usually small as predicted by (3 .3) .  

(4) When f> u,  both a and fl tend to 45" as z + O .  Consequently the change of the orien- 
tation angle B becomes large and the change of the phase-lag {,, of the resultant current 
becomes small compared to the casef< u.  From the upper layer t o  the bottom the direction 
of the ellipse axis may turn to the left up to an angle of 45". 

( 5 )  When both diurnal and semidiurnal constituents are considered, the ratio of the maxi- 
mum velocities of these two constituents determines the type of the tidal current. The 
analyses on the eddy viscosity in tidal current heretofore conducted have been mostly con- 
cerning the semidiurnal tide except by Ichiye (1955). Thus there are no data suitable for 
comparing effects of viscosity on these two constituents. The magnitude of vertical eddy 
viscosity may depend on the maximum current speed and time-and-space scale as well as 
vertical stability. However, for periodic motion with a frequency range of semidiurnal and 
diurnal tides there may be no serious difference in its magnitude as suggested by the results 
of Ichiye (1955).  In the following analysis the eddy viscosity is regarded as independent of 
frequency. 

In the absence of the Coriolis force, the ratio M,/M2 will decrease with the depth and 
tend to (fi/2) ( M 1 g / M 2 g )  as z+O, where the subscripts 1 and 2 indicate the diurnal and 
semidiurnal constituents, respectively. For the general case, its variation with depth is depen- 
dent on the Coriolis parameter and the ellipticities of these two constituents. The limit of 
M, /M2,forz+0, i s  

(3 .10)  

(3.1 1) 
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Table 1. The factor C for various latitudes in the case of r l g  = r I g  = 0. 

do) 0 10 20 30 40 50 60 70  80 90 

C 0.71 0.70 0.67 0.52 0.77 0.91 1.02 1.14 1.25 1.37 

The values of C are independent of v and thus are listed in Table 1 for various latitudes 4 in 
the case of rlg = rzg = 0 ,  where the approximations ul = 1/2 uz and f = uz sin 4 have been 
used. 

It is then expected that the ratio M l / M Z  usually decreases with increasing depth at low 
and middle latitudes and increases with depth at  high latitudes. But the except is 
possible, because the factor C is also dependent on r lg  and rzg.  It is sometimes observed at 
low and middle latitudes that the type of tidal current is diurnal near the surface but 
becomes of mixed type near the bottom, or of mixed type near the surface but becomes 
semidiurnal near the bottom. Reverse situations may occur at high latitudes, though there is 
no definite observed evidence. 

For the finite depth water, the solution ./ag is shown in Fig. 2. This figure indicates that 
the depth does not change the feature that the magnitude of a reduces and the argument of 
a increases towards the sea-bed. However, the magnitude of the changes from surface to 
bottom is smaller in the shallow water than in the deep water. This rule also hold for the 
function b/bg. It follows that an effect of the finite depth is only to reduce the differences 
between the upper and lower layers. 

For the case o f f  = u, the solution (2.15) indicates that the argument of b is independent 
of z ,  therefore both the direction of the ellipse axis 0 and the phase-lead of the resultant 
current -c0 are equal to (1 /2)a .  This means that the direction of the ellipse axis at the layer 
very near the bottom deviates to the left of the one at the surface by up to 22.5", and the 
maximum velocity at that layer occurs earlier than at the surface by up to one-sixteenth of 
the period. 

4 

3 

C 

A/A ,  

- 

\Xfh = 03 
\ 
\ 

X'h = 03 

= 2  

X'h 
\ 
A 

75 

= 0.5 

J 
90 

a ( " )  
- A/A, - - - a  

Figure 2. Functions "/Ag  and 01 for the sea o f  various depths. 
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72 G. Fangand i7 Ichiye 

4 Application of the mixing length theory to calculation of the tidal current 

The constant eddy viscosity models may be too simplified to produce observed vertical 
structures of tidal currents. Thus Prandtl’s hypothesis of the shearing stress is extended to 
a two-dimensional unsteady flow as 

where 1 represents a mixing length. If 1 is taken as a real function of z ,  expression (4.1) 
implies that the stress is parallel t o  the velocity gradient and the stress changes periodically 
in phase with the velocity gradient. A more complicated and probably more accurate rela- 
tion than (4.1) is not warranted considering the quality of data available so far. 

For the layer in the vicinity of the boundary, Prandtl assumed the mixing length 1 to vary 
directly with the distance as 

(4.2) 
where ko is the Karman constant approximately equal to 0.4, and zo is the roughness length. 
From the measured velocity profde in pipes with a circular cross-section, Nikuradse (1933, 
see Schlichting 1968, p. 568) found that relation (4.2) should be revised so that the ratio of 
the mixing length to the distance from the boundary decreases with increasing distance. 
Montgomery (1943) proposed a hypothesis by taking the shape of the cross-section into 
account. Applying this hypothesis to a circular cylinder, he obtained a formula for a mixing 
length in good agreement with Nikuradse’s empirical formula. Reid (1957) adopted 
Montgomery’s hypothesis for a steady flow in a non-rotating wide channel. He assumed that 
the water surface was also the fixed boundary and took 1 as 

(4.3 ) 

where z1 is the roughness parameter at the surface and very small compared with the water 
depth. Since the free surface is unlikely to impose restriction on the turbulence to the same 
extent as the sea-bed does, and there is no solid information on z1 in relation to other 
factors like wind or waves, z1 is neglected in the present investigation. Instead a parameter 
p is introduced as 

1 = ko(z + zo), 

1 = (ko/h)  (Z + zO) (h - z + z,), 

l = k o ( z  + z ~ ) ( l - z / p h ) ( y .  1). (4.4) 

This function has its maximum at z = (1/2)ph ( zo<  p h ) ,  zero at z = p h ,  which is on or 
above the surface. When p = 1, (4.4) reduces to (4.3) with z1 negligible, when p tends to 
infinity, it becomes (4.2). 

Both (4.3) and (4.4) tend to (4.2) in the vicinity of the bottom, where the value of 1 
becomes more crucial for the vertical velocity distribution than at the upper layer. 

Equations (2.4), (4.1) with boundary conditions (2.5) form a complete set of differential 
equations for determining the vertical structure of the tidal currents. 

5 Quadratic resistance and eddy viscosity coefficients for a steady flow 

A steady flow caused by a uniformly sloped sea-level is considered without the Coriolis 
effect in order to determine relationships among the mixing length given by (4.4), the 
vertical profiles, the eddy viscosity and the bottom friction. 

In this case, the first two terms of (2.4) vanish and the shearing stress should be a linear 
function of z: 

T =  Tb(1 -z/h), 
with Tb representing the stress at the sea-bed. 
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From (4.1), (4.4) and (5.1) we have 

du - u* d w h  

dz ko ( Z  + z O )  (I - z /ph)  ’ 

where u* (q,/p)1/2 is the friction velocity. The integral of (5.2) is 

(5.2) 

where the condition zo/h Q 1 has been used. When p + 00, i.e. (4.2) is valid, (5.3) reduces to 

When p = 1, i.e. (4.3) is applicable, (5.3) reduces to 

u = - l n  
U* 4 ( 1 - d i q )  

ko (1 +- . 

(5.4) 

(5.5) 

For the general case, the second term of (5.3) is usually smaller by one order of magnitude 
than the first term. In the layer near the bottom, z/h < 1 ,  and (5.3) reduces to 

u* z 

ko zo 

The depth-averaged velocity of (5.3) is 

u = - l n - ,  

which is the well-known logarithmic profde and is independent of p .  

- 2p + 2 ( p -1)3/2 arc tan ( p -1)-112 

When p -+ 00, (5.7) becomes 

- u* 4h 8 
u =- (In ; - ? ) .  

k0 

When p = 1, (5.7) becomes 

which has been obtained by Reid (1957). 

7b = R p l G  16, (5.10) 

and thus this coefficient can be expressed in terms of p and zo from (5.7) as 

As pointed out by Reid (1957), the resistance coefficient R is defined by 

R = k$ [ ln(4h/zo) - 2 p  + 2 ( p  - arc tan ( p  - 1)-1’2]-2. (5.1 1) 

The numerical relation is shown in Table 2. Reid (1957) determined the relation between 
R and zo  from (5.9) which corresponds to the first column of Table 2. 

The coefficient of eddy viscosity, defined by v = r/p(au/az), is then 

.~ 
v = k o u * ( z  + z o ) ( l  -z/ph). \ /1-z/h.  (5.12) 

It is zero at the surface, has very small value kou,zo at the bottom, and has the maximum 
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Vertical structure of tidal currents 75 

value at a mid-depth. The vertically averaged value of v is 
c = - J b h v d z = -  1 4 ( l -4;)kou,h,  

h 15 
(5.13) 

where the relation zo < h has been used. Bowden (1962, see also Bowden & Hamilton 1975) 
has suggested on the basis of dimensional analysis that the maximum eddy viscosity can be 
expressed as proportional to the product of the water depth and the velocity. He found that 
the proportional factor in the region near Anglesey was 2.5 x low3. Relation between the 
mean eddy viscosity and the mean velocity seems to  be more practical and is expressed by 
E; = KhG, (5.14) 
where K is a dimensionless coefficient and may be called the Bowden turbulence coefficient. 
For a steady flow in non-rotating system, K can be obtained from (5.10) and (5.13) as 
follows: 

K = ' (  1 - - ::) - kOR1l2, 
15 

which, like R itself, also depends on h/zo and f i  and is listed in Table 2. 
For the layer near the bottom, (5.12) tends to 

v=kou*(z +zo)=koR"2ii(z tz,) ,  f o r z < h ,  

which is the same form as for the logarithmic profile, as it should be. 

(5.15) 

(5.16) 

6 Difference scheme for the calculation of the vertical distribution of tidal current 

The vertical distribution of the current is highly sensitive to the roughness length zo.  There- 
fore the grid spacing along the z-direction should be comparable to zo in the neighbourhood 
of the sea-bed. To avoid using too many grid points we introduce the transform 
s = in (1 + z/zo), (6.1) 

where s = 0 at z = 0 and s = In (1 + h/zo) = sh at z = h.  Substitution of s for z changes equa- 
tions (2.4) and (4.1) into 
aw art  
at  as 
- + + f w - -  exp[ - ( s+so ) ]  = G ,  

aw aw 
as 

+ = I 2  lasl - exp[-2(s+so)l ,  
(6.2) 

where so and 7 '  represent In zo and .c/p respectively. 
An implicit finite difference scheme is employed to avoid possible computational insta- 

bility. The mesh used in the present investigation is shown in Fig. 3 .  This arrangement makes 
the calculation and the boundary condition (2.5) simpler. For all n (2.5) becomes 

w: = o ,  
7; = 0. 
The difference equations are 

46.3 j 

where s m ,  and sm, represent the values of s at the points w, and TI , ,  respectively. 
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Figure 3. Computational mesh. 

After rearrangement, the difference equations are written 

For a specific n ,  (6.4) and (6.5) constitute a set of linear algebraic equations with a 
tridiagonal matrix, though its elements are complex numbers. For simplicity the initial 
condition is taken as 

TZ =w; = o ,  fo rm = 1, 2, . . .  , M .  (6.6) 

At = T/(lZN), (6.7) 

When a single tidal constituent is considered, it is recommended to use time spacing 
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where N is an integer and T the period of the constituent. This means that the period is 
divided into 1 2 N  steps. By comparing w k  with ~ k - ~ ~ ~  stable periodicity can be verified. 
If the differences for all m = 1, . . . , M are sufficiently small, computation is judged to 
produce the stable periodic state. If several constituents are considered, A t  may be taken as 
the common period of the constituents divided by an appropriate integer. 

In solving (6.5), the quantity zo and function G must be given. The roughness length can 
be determined empirically by the sediment characteristic and the configuration of the sea- 
bed (see, for example, Heathershaw 1979). However, the sea surface slope is difficult to 
measure. There are a few alternatives to apply the preceding difference method to an actual 
situation. 

(1) For the deep ocean, when currents are measured at several depths including the upper 
layers, which are located far from the bottom boundary layer, then the current averaged 
over such layers can be assumed to represent wg, which are free from the bottom friction. 
The function G is thus obtained from (2.4) by omitting the friction term and substituting 
wg for w. The thickness of the bottom boundary layer depends on the current magnitude 
and roughness parameter, but in general is considered as several metres in the deep ocean 
(Wimbush & Munk 1980). 

(2) For the shallow water, where the bottom friction can influence the current at the 
upper layer, G may be estimated from the vertically averaged observed velocity. Averaging 
(2.4) from z = 0 to h gives 

The stress at the bottom can be given approximately by 

T,!, = R IWlW. (6.9) 
If R is assumed to be the same as that for a non-rotating channel, then it can be obtained 
from Table 2. Because of the inadequacy of (6.9) and the inaccuracy of the coefficient R ,  
the function G thus obtained is only an estimate. When it is used for numerical calculation, 
the calculated depth-averaged velocity will differ from the observed velocity W. Therefore, 
adjustment for G is usually necessary. Further details will be shown in an example in the 
next section, where R is given and zo is derived from R and W. In the literature on ocean 
tides the parameter R seems to be better estimated than the parameter zo. 

7 A comparison of the calculated result with the observed current 

Careful measurements were carried out in the Irish Sea by Bowden & Fairbairn (1952, here- 
after referred as BF). The data obtained at the East station have relatively smaller variances 
compared to those at the West station and consequently are used for the basis of numerical 
calculation. To minimize observational errors four groups of the harmonics are averaged and 
listed in Table 3 along with the depth-averaged harmonics, where U and are amplitude and 
phase-lag of semidiurnal constituent of u, Vand q are those of u. 

s-l 
and 1 .I 70 x s-', respectively. The quadratic resistance coefficient R is estimated from 
the measurements by BF as 

In the calculation the values of 1-1, h, u and f are taken as 1.2, 15.4m, 1.405 x 

31r 

8 3 

2.01 + 2.04 + 1.42 
R = - x  x 1 0 - ~  = 2.15 x (7.1) 

The factor 3n/8 is added since the three numerical values are obtained by assuming 
T{ = Fb sin u t ,  say, for a constituent of frequency o, whereas the bottom stress given by 
(6.9) should be T; =(31r/8) Fb sin ot 1 sin ut  I. 
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Table 3. Comparison of calculated harmonic constants to  observed values. 

Observed harmonics Calculated harmonics 
Fraction of (I t r' 17 U g V 17 
depth ( e m s - ' )  ( " )  (ems-') ( " )  (cm s - l )  ( " )  (crns-l) ( " )  

0.25 62.8 2.5 23.3 12.1 62.9 1.4 21.5 12.5 
0.50 59.3 0.1 21.7 12.0 59.6 0.5 20.9 12.4 
0.75 53.5 -0.9 16.8 12.6 54.2 -0.4 19.6 12.0 
0.95 44.7 -1.2 13.6 13.3 43.0 -1.7 16.0 11.6 
Depth-averaged 57.4 0.6 20.2 12.3 57.4 0.5 20.2 12.3 

The first approximation of G is given by equations (6.8) and (6.9) with 

W = 57.4 cos (or -0") + i 20.2 cos(ct -12:3), (7.2) 

where the harmonic constants are taken from Table 3. For a steady flow in a non-rotating 
channel with a depth 15.4m, the roughness length zo corresponding to R = 2.15 x is 
0.12cm from Table 2. By using the first approximation of G and taking z o = O . l l ,  
0.12,. . . ,0.15cm, five calculated results are obtained. It is found that for zo = 0.14cm, the 
calculated depth-averaged harmonics 

u= 56.9, $ = lP1,  v = 20.3, ij = lop9 (7.3) 
are the closest to the observed values. Therefore the value of 0.14cm is considered the best 
for the station. 

Comparison of the calculated values in (7.3) with the observed values in Table 3 shows 
small deviation, which can be attributed to the inaccuracy of G mainly due to inadequate 
expression (6.9). This means a small adjustment of G is required. Since there is no simple 
and definite way to improve expression (6.9) or R ,  the harmonics in (7.2) are revised by 
adding the difference of those of (7.2) and (7.3) to the original values. Thus in place of (7.2), 
W is given by 

w =s7.9cos(ot-0")++2o.2COS(ut-l3P7) (7.4) 

and is inserted to (6.8) and (6.9) to obtain a further approximation of G.  With this G and 
zo = 0.14cm, the numerical calculation gives 

U =  57.4, = 0?5, = 20.2, i j  = 12?3, (7.5 1 
which is very close to the observed harmonics. This suggests that further adjustment o f  G 
may be unnecessary. The calculated harmonics at different depths are also listed in Table 3 .  
The mean deviation o f  the amplitudes and the phases of calculated harmonics from observed 
ones is I .3 cm s-' and OP7, respectively. The agreement seems to be satisfactory considering 
the accuracy of the measurements. For the x-component, which is the major component, 
the comparison is also shown in Fig. 4. The logarithmic profile calculated from the following 
formula is also shown in a broken line: 

where Fb represents the amplitude of the constituent of 7LX as T& =Fb sin a t  and 
(3n/8) Fb is thus the maximum Of TLx expressed by (6.9) approximately. The value of Fb is 
6.381 cm2 s-' from the numerical solution. The figure suggests that the velocity profile is 
almost logarithmic around the time of the maximum speed. When the water is sufficiently 
deep, the velocity may show the logarithmic profile only near the bottom. 
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U ( c m  s-1) 

79 

0- Observed, __ Colculoted, ---- Logorithmic profile 

Figure 4.  Vertical profiles of the amplitude and phase-lag o fu .  

Amplitude of ~ . / p  (cm2 s-') 

0 2 4 6 8 

Phose-lag of r x / p  ( O  ) 

Figure 5.  Vertical profiles of the amplitude and phase-lag of r x / p .  

The vertical profile of the shearing stress is shown in Fig. 5 .  The curve of the amplitude of 
T: is almost a straight line. The time lag of the maximum stress increases with increasing 
elevation. Compared with Fig. 4, it can be seen that the phase of the stress always lags that 
of the velocity with increasing degree at a higher point from the bottom. 

The vertical variation of the coefficient of eddy viscosity v can be given by v = Z 2  I aw/az I 
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v (cm* s-1 )  

Figure 6 .  Vertical profile of the coefficient of eddy viscosity u at time of peak flow. Small circles indicate 
the observed values by Bowden & Fairbairn (1952). 

and hence is dependent on the expression of the mixing length, which is in turn dependent on 
p for the upper layer. The calculated vertical distribution of v corresponding to the peak 
current is shown in Fig. 6 .  The maximum value appears a little lower than at the middle 
depth. BF have given the observed eddy viscosity for their three records, nos 2 ,7  and 11. The 
averaged values of these three records for the depth 0.375 h ,  0.625 h and 0.85 h are also 
marked on Fig. 6 and are seen as close to the calculated curve. 

In order t o  show how the eddy viscosity coefficient varies with time, the depth-averaged 
coefficient P is plotted against time in Fig. 7. For comparison the magnitude of the depth- 
averaged current I W I is also plotted. These curves show that the eddy viscosity variation is 
asymmetrical with time and lags the velocity magnitude variation. The minimum value of 
eddy viscosity occurs about half an hour after the slack time. If the difference between the 
phases of the eddy viscosity and the speed is disregarded, the relation 

5 = 2.7 x 10-3h If7 1 (7.7) 

''Or 

f ( h r )  

Figure 7. Time-variation of the depth-averaged coefficient of eddy viscosity V in relation to the magnitude 
of the depth-averaged velocity I W I .  
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is a tolerable approximation. For a steady flow in a non-rotating system the corresponding 
coefficient is 2.6 x for zo  = 0.14cm, h = 15.4m and p = 1.2 according to Table 2. The 
difference is of little significance. 

8 Concluding remarks 

The effect of bottom friction on tidal currents is a classical hydrodynamic problem, though 
the dissipation of tidal energy by the friction on the continental shelf of the world ocean is 
far more important in geophysics. Our understanding of the dissipation mechanism due to 
the friction and turbulence in shallow waters is far from complete. One approach is to 
measure directly Reynolds’ stresses including the frictional stress. However, this needs 
special instrumentation which is to be developed and may also require field experiments 
extensive both in time and space for securing universal validity. The other approach is para- 
meterization of turbulence and friction and then to determine the parameters by fitting 
the observed current data to the computed values. Tidal current data almost routinely 
obtained in the shallow waters may be used for determining those parameters which are 
reasonable such as eddy viscosity, mixing length and friction coefficient. However, this 
approach may have some pitfalls if the parameterization is quite inadequate. 

Profiles of amplitudes and phases of tidal constituents for a constant eddy viscosity 
may be applied to observed data, for instance, those of CUE (Coastal Upwelling Experi- 
ment) in 1972 and 1973 off the Oregon Coast (e.g. Kundu & Allen 1976). We do not 
do this here for two reasons. First, the vertical spacing of the current meters seems to be 
too coarse, particularly near the bottom, to resolve the effect of the bottom friction. 
Secondly, the published data reports do not list harmonic analysis but spectral analysis. 
The latter may be used for determining the eddy viscosity by comparing variations of the 
spectral peaks of different tidal frequencies and their shape at different depths with 
theoretical spectra obtained from a solution of equation (2.4). However, this procedure 
necessitates some assumed spectrum of G and may not justify the troubles involved. The 
mixing length hypothesis and quadratic law of the bottom friction seem to be more 
promising as seen from a good agreement between the observed and numerical results. How- 
ever, it may need more data of current measurements at closely spaced heights above the 
bottom to confirm their universal validity. It is suggested that in the future experiments in 
the shallow waters of the stratified case may be avoided in order to exclude complexities 
from effects of turbulence by stratification and from internal wave motion and also the 
bottom may be flat and free from topographic turbulence. 
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