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On the Vibrational Spectrum of a Three-
Dimensional Lattice

By M. BrackmaN, Trinity College, Cambridge
(Communicated by R. H. Fowler, F.R.S.—Received 7 December 1936)

1—All those properties of a crystal which depend on the heat motion of
the constituent particles, require for their detailed explanation a knowledge
of the actual form of the vibrational spectrum; about this very little is
known, even qualitative features being difficult to obtain. It was supposed
at first (Born and v. Kérmén 1913) that the »? law proposed by Debye formed
a good approximation to the truth, but the experimental evidence, which
gradually accumulated, tended to show that the specific heat did not vary
exactly as 7'® at temperatures where this law was expected to hold.
Theoretical investigations (Blackman 1935) of the properties of a two-
dimensional lattice showed that the spectrum could have markedly different
features from those of a continuum distribution. It was furthermore found
that large variations of #,, with temperature could occur and that spurious
T* regions were possible. On account of the similarity of the two- and three-
dimensional cases as regards the frequency equation and in certain particular
features, it was assumed that the spectrum would not be very different in
the three-dimensional case: with this assumption it was possible to explain
the rise in the ¢, value of substances like KCl at low temperatures, and the
discrepancies between elastic and thermal data.

The theoretical predictions have been confirmed to some extent by the
recent experimental work of Keesom and Clark (1935). They find that the rise
of the @, curve stops at helium temperatures, as had been expected, but
that the values decrease at still lower temperatures. Whether this last effect
is real or not does not appear to be definitely settled. A possible theoretical
explanation will be considered below.

The main object of this paper is to discuss the spectrum of a three-
dimensional Born-v. Karmén lattice. This has been calculated numerically,
and the results are completely analogous to those of the two-dimensional
case.

2—We consider a simple cubic lattice containing one type of particle

of mass m. Forces between neighbours along the axes and along the face

diagonals only, are taken into account; these are of the quasi-elastic kind

and are labelled & and y respectively. Any normal vibration of the lattice is
Y 416 ]
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of a periodic nature and is described, inter alia, by three quantities (¢, , @, ¢3)
which are the phase differences of neighbouring particles along the three axes.
The frequency equation is given by:

A($1) + B(r: Pas Pg) —mw* Oy, ) O(h1,¢s) =0,
Cla, $4) A(Po) + B(o: p3, $y) — mw? Oy, 9s3)
Clebs, $1) Cls, Pg)  Alps) + B(ds: by, o) —mw?
where A(x) = 20(1 — cos ), L

B(x;y,z) = 4y(2 — cos x cos y — cos x cos z),
C(x,y) = 4ysinasiny.

For every (¢,,¢,,¢;) we have three solutions, corresponding to the three
modes of vibration obtained by interchanging the phases. In general we
have three frequency hypersurfaces. Any value of the frequency v = const.
gives three surfaces in ¢ space. It will be sufficient for our purpose to
consider the range 0 <¢,,¢,, 3 <7 only, because

V(¢1,¢2,¢3) = V(—¢1,—¢2,—¢3), ete.

It is clear that the spectrum of the lattice can be obtained only by some sort
of numerical calculation. The study of the cross-sections in ¢ space as in
the two-dimensional case is, however, not practicable, but a somewhat
similar method can be used. The ¢ space was divided evenly into a three-
dimensional array of points; the frequency was calculated for each of these
points and the number between two values of the frequency was determined.
It is obvious that a good approximation can be obtained by taking a very
large number of points. It was found that about 30,000 points were needed
to give a smooth curve for the density of the normal vibrations. Of course
even this will give no more than a qualitative representation, but that is
all we desire for the present.

In order to shorten the work as much as possible it was decided to avoid
the laborious solution of the third order equations. This can be done when
the y/o ratio is sufficiently small. Treating this as a perturbation it will be
seen that the diagonal terms give the first order approximation. The square
of the frequency is now linear in cos¢. This approximation amounts to
crossing over the frequency surfaces in ¢ space in a certain way; in the region
of small frequencies it is equivalent to replacing the frequency surfaces by
ellipsoids as discussed in a previous paper (Blackman 1935). This was
shown to be perfectly justified. The correctness of the assumption over the
whole frequency range can be tested in the two-dimensional case where the
spectrum has been worked out using the correct expression for frequency
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(Blackman 1935). It is found that the spectrum is qualitatively correct,
the only difference being in the intensity at certain points, e.g. the maxima
will tend to be less sharp. Since we are interested here in qualitative results
only, not in an absolutely correct representation of the density, this is no
essential disadvantage. It should be emphasized that the position of the
maxima will be given with fair accuracy and that there will be no very
great relative errors in intensity.

Fro. 1—Cross-sections of the frequency surfaces of a two-dimensional
lattice (y/oc=0-05).
The solutions of the frequency equation in this case becomes
(@) mw® = 20(1 —cosg,) + 4y(2 — cos @, cos , — cos P, cos Py),
(b) mw? = 2a(1 — cos,) + 4y(2 — cos ¢, oS P, — COS Py COS Py), (2)
(¢) me? = 20(1 — cosy) + 4y(2 — cos ¢, cos P, — cO8 (5 COS Ps).
It will be noted that each equation can be obtained from the other by
interchanging ¢,, ¢,, ¢, suitably, and that hence each of these solutions
will give the same frequency distribution, i.e. the same spectrum. The
problem now arises as to whether we can calculate the spectrum for each
of the frequency branches separately. This can be done. The method will
be discussed first in the two-dimensional case, as this is very much simpler.

We consider the cross-sections in the two-dimensional ¢ space; these
yield two curves @ and b (fig. 1) for a definite value of the frequency »



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

Spectrum of a Three-Dimensional Lattice 419

which we are taking to be very small for the present. The curves enclose
all points corresponding to a frequency smaller than v. Our approximation
consists in replacing the two curves by parts of an ellipse indicated by the
dotted lines. These new curves are now identical. It will be noticed that the
area enclosed by the curve « is very nearly that which is covered by both
the ellipses. Hence, if we cover the ¢ space evenly with a number of points
and if we know which points are enclosed by each ellipse, then the number
of points which are common to both ellipses is a measure for the area
enclosed by the lower curve. Knowing the points enclosed by one ellipse
we can immediately write down those enclosed by the other. Having found
the number in the overlapping region, we can obtain the number enclosed
by the upper curve by subtracting it from the total number of points.
Where the frequency is not small the curves are no longer ellipses but the
same principle holds.

The three-dimensional treatment is very much the same. Here the three
frequency surfaces in ¢ space are replaced by three others which for small
values of the frequency are three intersecting ellipsoids. For a definite value
of the frequency » we can work out all points having frequency values from 0
to v belonging to each of these ellipsoids. The number of triple  coincidences ™
will give a measure for the volume enclosed by the lowest surface. The
number of “pairs” and of “singles” then give, when suitably combined
with the number of “triples”, the corresponding volumes enclosed by the
other two surfaces.

In this way the curve a* (fig. 2) was found for the density of the normal
vibrations, and from the detailed results the curves b, ¢, d, the contributions
of the individual branches, were obtained. The value y/x = 0-05 was chosen;
each axis in ¢ space was divided into 30 parts, so that the total number of
points was 313 = 29,791; the frequency scale had 16 divisions, so that on
the average about 2000 points fell into each region considered.

The main feature of the spectrum as a whole is the large heaping up of
frequencies in the middle. For small values of the frequency the »* law
holds, but then there is an immediate rise to a maximum after which the
density remains more or less constant until the optical frequency is reached,
when a sudden increase occurs. The general form is very much the same as
in the two-dimensional case, the resemblance being much closer than had
been expected. It will be noted that the density curve tends to approach
that of the one-dimensional case, the flattening out of the curve being one

* A detailed account of the data used in constructing the curves has been given in
an appendix at the end of the paper, in order not to disturb the argument at this

stage.
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of its main features; for small frequencies the three-dimensional character
will of course predominate.
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F16. 2—The density of normal vibrations as a function of the frequency for a simple
cubic lattice (y/o=0:05, v =132, vmax. = 1-55 in arbitrary units; the unit of the
density is such that the total number of points is 89,373). The upper curve a represents
the total spectrum, the lower curves b, ¢, d the spectrum for each of the three
frequency branches. The “step” curve through which curve @ is drawn is given to
illustrate the method used in constructing the curves. The ‘“‘steps™ are obtained by
calculation (Appendix 1), and represent the total number of vibrations (i.e. total
area) for a frequency range of 0:-1; the curves are drawn through these “steps’ in
such a way as to keep the area under the curve equal to the area of the “step’ for
any particular frequency range.
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The various frequency branches contain some rather interesting features.
The branches b, d are very similar to those of the two-dimensional case in
that they have only one maximum, in the middle and at the end of the
spectrum respectively (for small values of y/a). The branch ¢ is rather like
a mixture of the other two; it possesses a rather small maximum at the end
of the spectrum, and a very slight though broad one in the middle. It should
be noted that, although there certainly seems to be a “hump ™ of some kind,
the existence of this slight maximum is difficult to guarantee, as its height
is probably of the same order as the error of the calculation. It was thought
important to have some check on the small but distinct maximum at the
end, and this can fortunately be obtained without difficulty. The case
v = 0 was used, as explicit formulae for the density curves can be obtained.
All cross-sections are planes in this limiting case.

The frequency equations become

(@) mw? = 2a(1—cosg,),
(b) mw? = 2a(1 —cosg,), (3)
(e) mw?* = 2a(1 — cos gs).
Putting @ = arc cos(1 —mw?/2a) the volumes included by the three surfaces
corresponding to a frequency v are respectively

(i) h=da

(i) V; = 3a*m—2a3,

(iii) V; = 3n%a— 3a’m +a®.
The density of the normal vibrations can be obtained by differentiating the
volumes with respect to the frequency. The formulae for the three curves are

oa
R
pl(v) = 3(1 ava
oa
palv) = ba(m—a) ., (4)
oa
s YR
po(v) = 3m—a) 5,

where on putting v = 27y

oa  4mmy

ov o

[1—(1—2m2mp?/a)?] 4.

The sum of the three curves gives the density for the one-dimensional case
(fig. 3, curve a) as is to be expected.

It will be noted that curve d changes hardly at all as y — 0. The vibrations
concerned are essentially longitudinal and these are little affected by the
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value of y as long as y/o remains small (the #;, value for this curve is pro-
portional to /(z+4y)). Such a curve is probably the nearest approach to a
Debye curve that can be obtained from considerations of lattice theory.*

4 a
<
b ¢
d
e
F1G. 3—The vibrational spectrum of a simple cubic lattice in the particular case

where y=0, 0. The total spectrum is given by curve a; b, ¢ and d are the con-
tributions of the three frequency branches.

The second curve ¢ rises to a constant value at the end of the spectrum.
This is of course rounded off when y#0 (as then the spectrum extends to

* This does not mean that it is a better representation with which to work.
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a higher frequency than the optical frequency), and hence the small maximum
of fig. 2, curve ¢ is certainly real. It may also be noted that the height of
maxima is nearly the same when the curves are adjusted to the same scale;
this is an additional confirmation of the correctness of the numerical
calculation. At the lower end of the spectrum the linear rise in density
changes into a »? law and a certain number of vibrations will be transferred
to a higher part of the spectrum. Hence some kind of irregularity is to be
expected here though the reason for a maximum is not quite clear.

The curve b will drop from a constant value to zero at ¥ = 0 when Y #0,
and since the main part of the curve at comparatively high frequencies will
be little affected by the change iny, we shall expect the additional vibrations,
which originate around » = 0, to be accommodated in'a maximum not very
far from this point (it being clear that the total number of vibrations in a
branch is constant for all values of the forces).

3—It will be noted that there are very few maxima (one of importance per
branch), and that the whole character of the density curves is rather smooth
(fig. 2). It might be argued that the method of calculation would show
only an averaged curve, but there is good reason to believe that these curves
are really smooth. Even the theoretical density is in itself an average over
an enormous number of vibrations. Taking, for instance, a crystal of ordinary
dimensions, one can easily estimate that a range of J; 9, of the frequency
(taken anywhere except at the extreme lower end of the spectrum) will
contain something of the order of 10 vibrations travelling in all directions
through the crystal. Hence violent fluctuations of the density over an
appreciable frequency range would be extremely puzzling. Furthermore,
one can see from a careful examination of the two-dimensional case that
there are no such fluctuations, and the similarity of the two- and three-
dimensional cases suggests that this is also true for the latter.

The next point to be decided is whether it is possible to indicate where
the maximain the various branches lie. We consider the cube 0 < ¢, , ¢b,, ¢y <7
in ¢ space and the cross-sections v = const., taking each branch separately.
For the lowest branch (fig. 2, curve ¢) the end-points of the cube have the

following values: (1o bas bs) Frequency

(000) v=0
(007) (07 0) (m 00) v= )—; (8y/m)}

(0 7 ) (w0 m) (w7 0) v= z—l" (16y/m)t

(7 m) v=§i—r (4(1/771.)!
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As we increase v from zero, the surfaces expand outwards, at first uniformly
(continuum region), and reach the end-points of the cube in the order given
above. Itis clear that, on passing the (0 0 7r) points, the surfaces have plenty
of space in which to expand, and it is only after the (0 7 7r) points are passed
that the surfaces will contract inwards towards the point (7 77 7). One can
therefore conclude that a considerable increase in the density will occur
when the frequency passes the value v, ,, and that a maximum will be
reached before the (0 77 77) points are passed; after this there will be a steady
decrease to zero. These conclusions fit in with the curve found, e.g. it will
be noticed that the maximum is at 0-55, whereas v , ,, = 0:65 in the same
units (Voo n = 0-4).

The end-points of the cube have the following values for the second
branch (fig. 3, curve c):

(¢1s bas B3) Frequency
(000) v=0

1
(00m)  (m00)  (Om0)  v= g (Sy/m)
(077 ) (7 0 ) (7 7 0) P 2%_ (4ot + 8y /m)t
1
(7 7 7) V= o (dot/m)t

The (0 0 7r) points correspond to a comparatively small value of the fre-
quency, the (0 7 77) points, on the other hand, to a higher frequency than
(m m ). Hence the surfaces, after expanding across the (0 0 7) points, will
extend towards the centre of the cube and will avoid the (0 77 ) corners.
This continues until (7 7 7) is reached when the surfaces shrink in towards
(0 7 ), ete. One should expect a steady increase in the density at first, and
a maximum just before the (7 77 7r) point is reached because here the surfaces
break through the centre portion; what happens in between is rather difficult
to see because of the peculiar form of the surfaces. We have not considered
the distances between surfaces, assuming tacitly that these will not vary in
such a way as to disturb the general conclusions; one can in general see in
which way the variation will affect the result as long as the surfaces are not
very complicated, e.g. when the surfaces pass a corner of the cube the
distances between surfaces tend to increase, and hence the maxima which
arise near these points are all the more pronounced. In the case we are
considering a closer examination of the cross-sections is necessary. This
shows that after the (0 0 77) points are passed the surfaces are crowded
together especially near the (0 ¢, @,), (¢, 0¢;), (¢, ¢ 0) faces; this suggests
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that there will be little variation in the density over quite a wide frequency
range, though the slight maximum does not follow; a more detailed numerical
calculation of the cross-sections is needed to establish the existence of the
maximum if it is real, and this is not of sufficient importance at present.
In the case of the third branch (fig. 3, curve @) the relation between the
end-points of the cube and the frequency is given in the following scheme:

(1: bas bs) Frequency
(000) v=0

(07 0) (007) (w00) v= ét_r (4ot + 16y/m)}
(07 ) (7 0 ) (7 0) v=2ln_(4cx,+8'y/m)*

(m = ) v=—2%_r (do/m)k

Here both the (0 0 77) and the (0 7 7) points have higher frequency values
than that corresponding to (m 7 7). Hence the frequency surfaces extend
in towards the middle of the cube avoiding all corners; they increase more
or less steadily towards the (7 7 7) point. It would seem likely that the
maximum should lie a little on the high frequency side of this point, but
the calculations can hardly decide this. The density falls off rapidly after
the maximum is reached and even more so after the (07 7) points are
passed, but that again cannot be detected on the curve as the effect is
too small.

It should be noted that the end-points of the cube do not play an im-
portant part* in fixing the maxima although they are useful in the discussion
of the qualitative features; they do not in general coincide with the maxima
as had at first been thought likely (cf. Blackman 1935), e.g. the very
important maximum of curve b cannot be linked to any such point.

All the above remarks apply only if the y/« ratio is sufficiently small.
It will, however, be seen that the same results hold as long as the end-points
of the cube retain their relative positions, i.e. y/a <0:25. After that, the
curve ¢ will probably change a little in appearance but the general form
of the total spectrum will not be changed very much; the small maximum
will be replaced by a “hump’ and the spectrum will extend appreciably
above the main maximum. It is only when y/x =051 that the main maxi-

* This is of interest in view of the theory of Seitz, Brittain and Barnes (1935) in
which such points are assumed to be associated with maxima of the density.

t The effect will occur before y/x=0-5 because the maximum of curve ¢ lies
between Voon) 8nd Vg q .



Downloaded from https://royalsocietypublishing.org/ on 09 August 2022

b

426 M. Blackman

-

mum will overlap with the “hump” and over a range of values of /e the
spectrum will consist of a single maximum in the middle.

The #,,-T curves obtained from crystals having the above type of spectrum
will depend to a large extent on what values of y/a we choose. Fory/a = 0:05
(¢f. Appendix II and fig. 4) the initial #;, value (i.e. 7'=0) is lower than the
value for high temperatures. There is first the drop in 6, 'which is a feature
of all these lattices, and then a sharp rise to a constant value. For much
smaller values of y/a there will be a slight drop followed by an appreciable
rise. For y/a values near 0:05 we should also expect to find a maximum
of 0, after the minimum. When the y/o value reaches the neighbourhood
of 0-5, the #;, value will probably fall steadily with increasing temperature
to a constant value, though it is possible that there is a minimum followed
by a slight rise.

4—The above considerations apply, strictly speaking, only to a simple
cubic lattice consisting of particles of the same kind, where the forces are
of the central force type and fall off very rapidly with distance. There are
no crystals fitting this description exactly. From the point of view of the
forces the nearest are probably the rare gases in the solidified form,* but
these have the wrong lattice structure. If, as seems likely, the effect of
symmetry is not such as to alter a general qualitative result, the conclusions
reached above suggest that the 6, value should fall initially. Since in no
case does the true continuum region appear to have been reached, this
cannot be tested by considering the experimental results at present
available.

The Born-v. Kérman model is, however, often used as an approximate
representation of polar crystals of the KCI type. Here of course the forces
between particles extend over comparatively large distances, and we have
to consider what effect this would have on the qualitative results. It seems
reasonable to suppose that good agreement can be obtained by introducing
a number of parameters of the type o, y, where some of these parameters
can be negative as well as positive. Two are sufficient to give the elastic
constants (if the Cauchy relation holds) and fair values for the points
(0 0 7), ete. The (7 7 7) point is usually within a range of 10-20 9, about
the experimental value, though the others may be considerably different
(Blackman 1933). Since the end-points of the cube in ¢ space are represented
sufficiently well for qualitative purposes, one might think that the model
should give a good qualitative representation of the spectrum. There is,
however, one restriction on the application of the above results to KCI,

* Helium must be excluded because of its unusual properties.
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and this concerns the behaviour of the spectrum for small values of the
frequency. An independent investigation (to be published shortly) has
shown that a lattice of the kind discussed here has a density which always
increases faster than »* immediately outside the continuum region; but that
it is possible, by introducing additional negative parameters, to change this
so that the density does not increase as fast as »® over a small region though
this variation soon changes into the usual steep rise. Now the parameters
o, y correspond to second derivatives of the potential, and these are usually
negative when the particles concerned are not neighbours. Since the forces
in polar crystals extend over large ranges, the possibility of such an effect
cannot be excluded at present. This point is of special interest, because
although the qualitative features of the #,, curve of KCI do agree with the
< predictions of the theory (the effective value of y/a being larger than 0:05 as
& shown by the ratio 6,/0, (initial)),* there is a discrepancy at the lowest
g temperatures where the ¢;, value instead of remaining constant appears to
wfal] slightly. This{ fall could be explained by the hypothesis made above;

S there remains, however, one further point, that the effect still exists for
g a f,/T value of about 100. According to previous work the continuum
% region for a Born-v. Karmén lattice (and y/a = 0-05) is reached when 6,,/7'
is about 50. Here only nearest neighbours were considered. When the forces

S from particles which are farther away are important, this limit for 6,,/7 is
of course removed to a larger value, and it would not be surprising to find
the continuum region at 100 or even more. At present too little is known
about the variation to make a definite pronouncement; in particular it
would be important to find out when the continuum region does appear.
» There does not seem to be any case where one can be certain that it has
been reached.

In the case where the Cauchy relation does not hold, an additional
parameter is sufficient to describe this new feature. No qualitative changes
need to be made in the description of the spectrum. This is true also for two
or more particles per cell as long as the mass differences are not large.

The model is not directly applicable where one cannot speak of the forces
between particles as such, e.g. in metals. Here one would need either an

ugust 2022
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* By=hvy » m/k and v, ;  is known from the constants of the lattice.

1 The explanation offered does not exclude the possibility of the effect being due
to another cause; it disagrees with the #; values deduced from recent measures of
the elastic constants of KCl at low temperatures (Durand 1936).

1 The splitting of the frequency branches leads to more complicated frequency
surfaces, a phenomenon termed “zone structure’ by Seitz, Brittain and Barnes (1935).
This, however, does not lead to great complications in the spectrum, as these authors
maintain, indeed for small mass differences there will hardly be any fluctuations,

Vol. CLIX A, 2F
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independent investigation of the frequency equation or a careful examination
of the specific heat curves from which it might be possible to deduce a fair
representation of the spectrum.

I should like to express my thanks to Professor R. H. Fowler, F.R.S., and to
Dr R. Peierls for discussions and suggestions. I am indebted to the Depart-
ment of Scientific and Industrial Research for a **Senior Research Award”
which has made the above work possible.

SUMMARY

The vibrational spectrum of a simple cubic lattice of the Born-v. Kérméan
type is calculated in a particular case (y/e=0-05) by a numerical method.
The features of this spectrum are checked by considering an extreme case
(y=0, a#0) in which formulae for the spectrum of each of the frequency
branches are derived. (General considerations on the form of the frequency
surfaces in “phase’ space are used to determine qualitatively the form of
the spectrum for simple cubical lattices characterized by other values of the
parameter y/e. The results obtained are used in a discussion of the type
of specific heat curves to be expected for these lattices. The applicability
of the conclusions to actual crystals is considered.

APPENDIX I

In order to give an indication of the scattering from the smooth density
curve (fig. 2) the data used is given in Table I.

The calculations yield the total spectrum directly, given in the second
column. Actually only a third of these points were counted because the
contributions could be divided into three similar parts. The total density is
hence three times the density found for one of the parts (cf. equation (2)). The
density varies regularly over the spectrum except for the two regions from
10 to 1-2. The reason for the irregularity can be seen from equation (2) (a),
where on putting ¢, = {7 all frequency values become equal to (2 + 8y/m)t,
whatever the value of ¢, or ¢b5. These points are among those calculated, and
hence 312 = 961 points have the same frequency value instead of having
a range of frequency values. This has the effect of forcing up the density
of the region 1-0-1-1, and of depressing the density for the next region. The
irregularity would be smoothed out if one were to take a much larger
number of points, and is of no theoretical significance.

The method of obtaining the density for the individual branches has been



Spectrum of a Three-Dimensional Lattice 429

discussed in § 2. It should be noted that we should expect the fluctuations
here to be much larger than in the original spectrum. The method adopted
leads necessarily to additional errors in counting the number of “triples”,
“doubles” and ““singles”, and the errors are multiplied by factors of three,
two, and one respectively when the density of the branches are determined
from these numbers. Since the total number of points should be the same
for all the three branches, the fluctuations should average out. The totals
are shown in the last line and it will be seen that they are within 260 of the

~correct value 29,791, This is satisfactory because one has no method of
:Qchecking except by repeating the same work.

Downloaded from ht
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TasLE 1
Density (number of points per frequency range)
Frequency Total Branch Branch Branch Total
range spectrum d ¢ b d+b+e
0-0-0-1 81 8 26 47 81
0-1-0-2 366 19 109 238 366
0-2-0-3 966 34 247 667 948
0-3-0-4 2136 47 524 1566 2137
0-4-0-5 5217 228 1209 3776 5213
0-5-0-6 6801 176 1570 5285 7031
0-6-0-7 6714 195 1809 4700 6704
0-7-0-8 5727 607 1870 3154 5631
0-8-0-9 5642 413 2527 2779 5719
0-9-1-0 5708 992 2913 1952 5857
1-0-1-1 6645 1303 2986 2341 6630
1-1-1-2 5529 1643 2973 1191 5807
1-2-1-3 7293 2558 2142 1212 5912
1-3-1-4 10161 4380 5829 810 11019
1-4-1:5 17031 14492 3206 164 17864
1:5-1:55 3253 2853 111 0 2964
Total number 89270 20948 30051 20882 89883
of points

The fluctuations in the neighbourhood of v = 1-2 are produced by the
fluctuation in the original spectrum already discussed, and have thus a
different cause. This fluctuation does not affect the tendency of the curves
for the density to any appreciable extent; the maximum of branch b at
v = 1-2 is made uncertain by this factor, but there is no doubt about the
flattening out of the curve in this region.

APPENDIX II

(@) From the calculated curve for the density of the normal vibrations of
a simple cubical lattice, it is possible to find the numerical constants

2F2
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involved in the density function for small values of the frequency. We
express the function in the form*

p(v) = 3avy® + by,

where v, is the Debye maximum frequency defined in the usual way.
The total number of vibrations between v =0 and v = »' is

"
n= f pv)dv = avy®v'®+ bvy %'s.
0

Taking the actual curve (fig. 3) one can draw the corresponding Debye
curve and can estimate the area (av;*v'®) under the Debye curve, and the
area (bvy®v'%) between the Debye curve and the actual curve. For v’ = 0-3,
vy = 1-32, the ratio of the two areas is bv"2/avj, = 0-22 and bja = 4-26. We
can calculate the mean energy of the lattice, making the assumption that
the temperature is sufficiently small as this is the range we are interested in.

Sa (@ M 3 5b [ hy
E = ;?,J\O eh—wk*———j._ 111 dV+l—,§)J‘0 é_—hv!kT_lVidV
3ah (ET\4 . 6 5bh (ET\® 120
-~ zas Gl

& ns
Putting @ = 3N and Nk = R s0 as to obtain the usual formulae, and using
the relations

1 7 1 hvy,
z,,:n‘_OO’ §56‘945’ Op=ci=a
we obtain for the specific heat
12m4 R b T?
C,-':»~—-~~— 3 - D =
= 0§,T(1+470°aﬂ§,)
127* R /i
e RS T D) et
5 (9%7 (l+201 0%).

This shows that for ¢;,/7' = 100 the change in the specific heat is 2 %, , which
means a 0-7 9%, change in the @, value.

(b) One can also calculate the 6,, value as a function of the temperature
numerically throughout the temperature range. The calculated curve is
shown in fig. 4. The #,, value drops from 132 at 7' = 0° to 114 at 7' = 8° and
then rises sharply to its final value 144, It should be noted that the value
is remarkably constant from 40° K. onwards, this remaining so for values

* This form follows from an investigation of the low frequency end of the spectrum

of a lattice of the above type (to be published shortly). It is probable that it holds
generally for a three-dimensional lattice.
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of @, higher than those shown in the figure. The high temperature value is
not far from the low temperature value of 132, but there is a wide variation
between these values, showing that one can draw no conclusions from the
knowledge of the @, values for very low and for high temperatures as to
the probable @, curve; a qualitative knowledge of the spectrum is necessary

before the #,, curve can be predicted.
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Fi1¢. 4—The Debye 6, value as a function of the temperature for a simple
cubic lattice (y/oe=0-05).
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