QUEEN'’S

UNIVERSITY
BELFAST

E5TR1845

On the Virtualization of CUDA Based GPU Remoting on ARM and
X86 Machines in the GVirtuS Framework

Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro, C., Pelliccia, V., Hong, C-H., Spence,
., & Nikolopoulos, D. (2017). On the Virtualization of CUDA Based GPU Remoting on ARM and X86 Machines
in the GVirtuS Framework. International Journal of Parallel Programming, 45(5), 1142-1163.
https://doi.org/10.1007/s10766-016-0462-1

Published in:
International Journal of Parallel Programming

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights

© 2016 Springer Verlag.

The final publication is available at Springer via http://dx.doi.org/
10.1007/s10766-016-0462-1

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:26. Aug. 2022

https://doi.org/10.1007/s10766-016-0462-1
https://pure.qub.ac.uk/en/publications/4c301bee-bbe4-4c63-9ce8-9151f71947d6

Noname manuscript No.
(will be inserted by the editor)

On the virtualization of CUDA based GPU remoting
on ARM and X86 machines in the GVirtuS
framework

Raffaele Montella - Giulio Giunta -
Giuliano Laccetti - Marco Lapegna -
Carlo Palmieri - Carmine Ferraro -
Valentina Pelliccia - Cheol-Ho Hong -
Ivor Spence - Dimitrios S. Nikolopoulos

Received: date / Accepted: date

Raffaele Montella
University of Napoli Parthenope
E-mail: raffaele.montella@uniparthenope.it

Giulio Giunta
University of Napoli Parthenope
E-mail: giulio.giunta@uniparthenope.it

Giuliano Laccetti
University of Napoli Federico 1T
E-mail: giuliano.laccettiQunina.it

Marco Lapegna
University of Napoli Federico II
E-mail: marco.lapegna@unina.it

Carlo Palmieri
University of Napoli Parthenope
E-mail: carlo.palmieri@uniparthenope.it

Carmine Ferraro
University of Napoli Parthenope
E-mail: carmine.ferraro@uniparthenope.it

Valentina Pelliccia
University of Napoli Parthenope
E-mail: valentina.pelliccia@uniparthenope.it

Cheol-Ho Hong
Queen’s University of Belfast
E-mail: c.hong@qub.ac.uk

Ivor Spence
Queen’s University of Belfast
E-mail: i.spense@Qqub.ac.uk

Dimitrios S. Nikolopoulos
Queen’s University of Belfast
E-mail: d.nikolopoulos@qub.ac.uk

2 Montella et Al

Abstract The astonishing development of diverse and different hardware
platforms is twofold: on one side, the challenge for the exascale performance
for big data processing and management; on the other side, the mobile and
embedded devices for data collection and human machine interaction. This
drove to a highly hierarchical evolution of programming models. GVirtusS is
the general virtualization system developed in 2009 and firstly introduced in
2010 enabling a completely transparent layer among GPUs and VMs. This
paper shows the latest achievements and developments of GVirtuS, now sup-
porting CUDA 6.5, memory management and scheduling. Thanks to the new
and improved remoting capabilities, GVirtus now enables GPU sharing among
physical and virtual machines based on x86 and ARM CPUs on local work-
stations, computing clusters and distributed cloud appliances.

Keywords GPGPU - HPC - ARM - Cloud - Virtualization

1 Introduction

In the challenge for the enormous benefits of exascale applications, the Top500
ranking and its greener counterpart, the Green500 list, an impressive improve-
ment is shown in the performance-power ratio of large-scale high performance
computing (HPC) facilities over the last five years. Furthermore, a trend clearly
visible in these two lists is the adoption of hardware accelerators to obtain un-
precedented levels of raw performance with reasonable energy costs, which
hints that future Exaflop systems will most likely leverage some sort of spe-
cialized hardware [40].

The virtualization currently provided by popular open source hypervisors
(XEN, KVM, Virtual Box) does not allow software based transparent use of
accelerators as CUDA based GPUs. VMWare and XEN support GPU on the
basis of hardware virtualization provided natively by NVIDIA GRID devices
instead [16].

High Performance Internet of Things (HPIoT) and High Performance Cloud
Computing (HPCC) are typical examples of highly heterogeneous computing
systems, where different devices and computing units coexist in the same soft-
ware environment[8]. They can be described as highly parallel internet-based
models providing virtualized and standard resources as a service over the In-
ternet.

In this paper the evolution of our GVirtuS (Generic Virtualization Ser-
vice) enabling transparent GPGPU virtualization[12] and remoting[13] for
low-power processors for, but not limited to, the acceleration of scientific ap-
plications is presented [28]. In the latest GVirtuS incarnation the architecture
independence was enforced, in order to make it work with both CUDA and
OpenCL on Intel and ARM architecture, as well as with a clear roadmap head-
ing to Power architectures compatibility. The rest of the paper is organized in
the following way: section 2 is a brief technical introduction about GVirtuS,
its design, architecture and implementation; section 3 is a detailed description
of the GVirtuS new features and how the heterogeneous architectures support

On the virtualization of CUDA ARM clusters with GVirtuS 3

has been enabled; section 4 is about the experiment setup for different sce-
narios; section 5 shows the evaluation results; in section 6 the current version
of GVirtuS with other notable related works are compared and contrasted;
finally, section 7 is about conclusions and future directions of this promising
research.

2 GVirtuS: a tool to virtualize heterogeneous architectures

GVirtuS is a generic virtualization framework for virtualization solutions based
on a split-driver model [1]. GVirtuS offers virtualization support for generic
libraries such as accelerator libraries (CUDA, OpenCL), with the advantage
of independence from all involved technologies: hypervisor, communicator and
target of virtualization. This feature is possible thanks to the plug-in design
of the framework, enabling the choice of different communicator or different
stub-libraries mocking the virtualization target. GVirtuS is transparent for
developers: no changes are required in the software source code to virtualize
and execute and there is no need to recompile an already compiled executable.

Low-power processors as ARM or Intel technologies are employed in diverse
and different environments for the resolution of highly complex scientific prob-
lems, because their low cost and reduced cooling needs. On the other hand, the
use of ARM CPUs in HPC infrastructures is a cutting edge technology, but,
apparently, not ready for the prime time. At present, most scientific applica-
tions are too demanding of high performance to run on the current generation
of ARM CPUs, even when integrated with GPUs. To accelerate the use of
ARM in science production, remoting capabilities in GVirtuS have been im-
proved in order to share high-end GPU devices hosted on x86 machines with
low power/low cost ARM based computing clusters. This implies important
challenging issues from the architectural point of view, partially mitigated by
the GVirtuS modular design. Some requirements had to be set firmly in order
to make it possible, as the use of an ARM CPUs with endianness and word
length coherent to the x86 ones.

2.1 Architecture, design and implementation

GVirtuS strictly depends on CUDA APIs version because the nature of the
transparent virtualization and remoting. In this paper we show our results
in GVirtuS development relying on the the CUDA 6.5 APIs. The use of this
version is motivated by the following issues:

— After the release of the CUDA 3.0 APIs, the library design no longer fits the
same split-driver approach used by GVirtuS and other similar products;

— The CUDA 6.5 APIs unchain the CUDA power on tiny low power ARM
architecture: CUDA applications can be compiled directly on the ARM
board if ad hoc libraries available from NVIDIA are installed;

4 Montella et Al

— CUDA is strictly proprietary and not open source, making the use of a vir-
tualization /remoting layer non trivial. The GVirtuS development is framed
in a wider big picture where the target application requirements are CUDA
6.5 compliant.

Since the first public release, the GVirtuS development has been character-
ized by two main goals: providing a fully transparent virtualization/remoting
solution; reducing the overhead of virtualization and remoting to make the
performance of the virtualized solution as close as possible to the bare metal
execution.

The front-end/back-end communication is abstracted by the Communica-
tion interface concretely implemented by each communicator component. This
issue is critical, especially when the virtualized resources need to be thread-
safe, as in case of GPUs providing CUDA support. The methods implemented
in this class support request preparation, input parameters management, re-
quest execution, error checking and output data recovery. The Handler class
provides the base functionalities for each stub function management. The back-
end is executed on the host machine behaving as a server component running
as a user with enough privileges to interact with the CUDA driver. The back-
end accepts a new connection spawning a new process to serve the front-end
requests. The CUDA enabled application running on the virtual or remote
machine requests GPGPU resources to the virtualized device using the stub-
library. Each function in the stub-library follows these steps:

— Obtains a reference to the single Frontend instance;

Uses Frontend class methods for setting the parameters;

— Invokes the Frontend handler method specifying the remote procedure
name;

— Checks the remote procedure call results and handles output data.

In order to implement the NVIDIA CUDA stack split-driver using GVir-
tuS, a developer has to subclass from Frontend, Backend and Handler classes.
For CUDA runtime virtualization the handler is implemented as a collection
of functions and a jump table for a specified service. As in GVirtuS prede-
cessor gVirtuS, in the case of CUDA runtime virtualization, the front-end
has been implemented as a dynamic library based on the interface of the
original libcudart.so library. Beginning with the second generation of GVir-
tuS component, the virtualization is focused on CUDA, but not limited to
it. Thanks to the GVirtuS modularity and technology /architecture indepen-
dence, the plug-ins for openCL and, partially, openGL have been developed.
The CUDA driver implementation is similar to the CUDA runtime, except for
the low-level ELF binary management for CUDA kernels. A slightly different
strategy has been used for openCL and openGL support: the openCL library
provided by NVIDIA is a custom implementation of a public specification.

On the virtualization of CUDA ARM clusters with GVirtuS 5

GVirtuS architecture

Guest machine Host machine

Stub library

Frontend

Backend

Communicator " Communicator

Fig. 1 The GVirtuS approach to the split-driver model.

2.2 The front-end

The front-end leverages on the driver’s APIs supported by the platform run-
ning on a virtual machine instance or on a remote physical machine and is
implemented as a stub-library. A stub-library is a virtualization of the real
APIs library on the client operating system where the application is launched
(typically a virtual machine or a physical one without GPU support). The
stub-library implements the functionality of the host machine (GPU capable)
on the guest machine. The role of the front-end is to intercept calls to the
functions of APIs supported, transfer to the back-end the parameters passed
to functions through the use of the selected communicator and wait for the
execution result from the back-end. This result is made possible by the stub-
library that provides the driver APIs abstraction to the guest application.
When a client application calls a function, the stub-library intercepts the call
and packs the serialized parameters in a buffer data structure. The front-end
sends to the back-end the serialized buffer and the name of the function called
through the communicator waiting for the response. For each method of the
APIs there is a corresponding method for the management and the execution
in the front-end.

2.3 The back-end

The back-end is the main component of the GVirtuS framework and runs
on the host machine (GPU capable). The back-end daemon runs on the host
operating system in the user or superuser space, depending on the specifics of
applications and security policies waiting for an incoming connection from the
front-end. The daemon implements the back-end functionality dealing with
the physical device driver and performing the host-side virtualization. When
it receives a request, the back-end creates a new process and loads the plug-in
needed for the requested function execution. After this operation, the back-end

6 Montella et Al

is ready for a new request from another guest machine. The new process reads
the name of the API called, calls the associated method for managing the API
required, allocates the space for the parameters of the method required and
inserts the value from the parameters passed in the buffer from the front-end.
The back-end calls the real API on the host machine through direct access to
the driver of the physical device and saves the result in another buffer. Finally,
the buffer result is passed to the front-end of the guest machine through the
Communicator. To each method of the APIs corresponds a method for the
management and the execution in the back-end.

2.4 The communicator

The communicator is an important component of the GVirtuS framework
connecting the front-end guest machine to the back-end host machine. The
communicator is independent of hypervisor and virtualized technology. The
communicators have strict high-performance requirements because they are
used in system-critical components split-driver model compliant. The commu-
nicator provides a secure, high-performance, direct communication mechanism
between the two sides of virtualization or remoting. The choice of the com-
municator depends on the physical machine connectivity, in both host and
guest machines, because it influences the virtualization performance. GVir-
tuS provides several communicator implementations, including the TCP/IP
communicator. The TCP /TP communicator is used for supporting virtualized
and distributed resources. In this way, a virtual machine running on a local
host can access a virtual resource physically connected to a remote host in a
transparent way. In practice, the Communicator serializes the buffer structure
and implements the transmission between host and guest.

3 Remoting and novelty introduced features

In order to fit the GPGPU/x86/ARM application into our generic virtualiza-
tion system, the back-end on the x86 machine directly connected to the GPU
based accelerator device and the front-end on the ARM board(s) using the
GVirtuS tep/ip based communicator have been mapped. GVirtuS as NVIDIA
CUDA remoting and virtualization tool achieves good results in terms of per-
formances and system transparency.

CUDA applications are executed on the ARM board through the GVir-
tuS front-end. Thanks to the GVirtuS architecture, the front-end is the only
component needed on the guest side. This component acts as a transparent
virtualization tool giving to a simple and inexpensive ARM board the illusion
to be directly connected to one or more high-end CUDA enabled GPGPU
devices.

The diagram (Figure 2) shows the computing architecture (ARM, x86_64)
and the acceleration model (CUDA, OpenCL) independence. GVirtuS cur-
rently supports a growing subset of NVIDIA CUDA features. Thanks to the

On the virtualization of CUDA ARM clusters with GVirtuS 7

GPGPU GPGPU GPGPU
Application ~ Application Application
ante_nd\ Frontend - ’Frontend

ARM ARM ARM
Unix Board |\ Unix Board _ Unix Board

CUDA/OpenCL Runtime

Driver |

—

Fig. 2 The GVirtuS architecture.

GVirtuS modular design, some new features have been developed, such as the
GPU scheduling.

3.1 Unified Virtual Addressing (UVA) management

The Unified Memory, introduced with CUDA version 6.x. simplifies the pro-
gramming model by enabling applications to access CPU and GPU memory
without the need to manually copy data from one to the other, and makes it
easier to add support for GPU acceleration in a wide range of programming
languages. When there is no distinction between a host and device pointer,
CUDA runtime can identify where the data are stored and the correct value
of the pointer. Essentially, in a Unified Virtual Address any space allocated
through the cudaMalloc, cudaMallocManaged, cudaHostAlloc or cudaMallo-
cHost functions is mapped in a single unified space. As a consequence, for
example, the direction of the copy in a cudaMemcpy function becomes ob-
solete so it is replaced by cudaMemcpyDefault. To support these features in
GVirtuS, maps and lists have been used (Figure 3).

Anytime a call to a function is made from the cudaMalloc family, the result
pointer is stored in a list, so the nature of the pointer can be easily identified.
When a call to cudaMemcpy is performed, the front-end can correctly identify

8 Montella et Al

Allocation
[cudaMalloc((void **) devPtr, size); // Allocate array on device |
Frontend list <void*s
2 Manager

Malloc(({void **) devPtr, size);

1 alocate on Backend

Running
cudaMempcpy(dstPtr, srcPtr,count, cudaMemcpyDefaulf); //Defoult
based unified virtual oddress space
{sDevi list <void*s B
isDevice(dstPtr) search dstPir Memory
l Manager
isDevice(srcPtr) search srcPtr

switch{correct_kind)

2 cop Malloc((void **) devPtr, size);

Fig. 3 Automatic memory management.

the direction even when the cudaMemcpyDefault flag is selected. Direction
mismatch is also avoidable, but this feature is not provided by CUDA, so it
has not been used for this project. The nature of the pointers is determined
by querying the list where the device pointers are stored. To support the UVA
any time a managed pointer is allocated, this is stored in a map along with its
size and a host pointer allocated through malloc function from glibc. When a
managed pointer is involved in the execution, GVirtuS runtime takes care that
data are passed to the back-end and stored on the device. Moreover, GVirtuS
runtime takes care that the processed data are available on the front-end after
the execution. When a managed pointer has to be used, the GVirtuS runtime
searches for a match on the pointer map ensuring the coherence between the
two virtualization/remoting address spaces. The memory pinned by the man-
aged pointer is copied from the front-end to the back-end bounded with the
valid device pointer. Finally, the GVirtuS runtime pushes in a stack the value
of the host pointer.

All the pointers present in the stack after the computation are transferred
from the back-end to the front-end, so that the processed data are available on
the front-end side. At this stage, no significative overhead is introduced by the
identification process. Nevertheless, in the UVA case a significant overhead is
introduced, because any pointer involved in the calculation must be enforced
by coherence in both directions (Figure 4).

On the virtualization of CUDA ARM clusters with GVirtuS 9

FRONTEND BACKEND
System GPU O GPU1
Memory Maps Backend Memory Memory

wptriicst, azrbavics sizen
P I P ““‘x.| @xFFFF | BxFFFF |

4 Nt
E Ba

Fig. 4 Unified Virtual Address with back-end maps.

3.2 GPU Scheduling

The GPU scheduler of GVirtuS enables fair and efficient use of virtualized
GPUs among multiple cloud users. The GPU scheduler multiplexes back-end
processes spawned by the GVirtuS Backend driver; GVirtuS creates a back-
end process whenever a connection between the split-drivers is established,
and terminates it after the connection between them is closed. The scheduler
maintains a run queue to accommodate runnable back-end processes and se-
lects one of them to execute according to its fairness policy. It then gives a
token to the chosen process in order to allow the process to exclusively access
GPU devices during its time slice.

As a fairness policy, the GPU scheduler adopts the Credit scheduling policy,
which is a proportional fair-share algorithm employed in the Xen hypervisor as
a CPU scheduler. In this scheduling policy, the global credit accounting func-
tion periodically (30 ms) assigns a certain amount of credits to each back-end
process in proportion to the GPU weight. The accounting function then decides
the priority of each process based on the remaining credit amount. Similarly
to the Xen hypervisor, the GPU scheduler maintains two priorities: UNDER
and OVER. If the credit value of a back-end process is positive, its priority
is set to UNDER. Otherwise, the priority becomes OVER. The accounting
function then sorts the back-end processes into priority order (UNDER and
OVER) in the run queue; for simplicity and fast sorting speed, the scheduler
does not sort them based on the credit amount.

The scheduler selects the next back-end process to run in the head of the
run queue at every scheduling instance; it implements the O(1) scheduling
concept that can select the next process within a fixed amount of time. While
the chosen process is using GPU devices, the credit value of the process is
decreased at a fixed rate. After the time slice, the back-end process is put
at the tail of its priority list. Before the global credit accounting function
executes, its priority is maintained regardless of its current credit amount in
order to reduce the frequency of sorting. This whole procedure reflects the

10 Montella et Al

GVirtuS

Backend driver

Baﬂwnd | GPU scheduler

2) Swilich 4
from Backend 1
to Backend 2

User space

Backend Backand
process 1 process 2

4} Glva a token

Shared memory

3) Revoke a token

1} Timer alarm

Fig. 5 Procedure of GPU back-end process switching from back-end process 1 to 2.

motivation of Credit scheduling, which focuses on efficient scheduling decision
and simple implementation.

As depicted in Figure 5, the GPU scheduler is placed in the user space
of the host OS rather than in the kernel space in order to communicate with
back-end processes more efficiently. It utilizes POSIX shared memory and real
time signal mechanisms for synchronous and asynchronous communication re-
spectively. When a back-end process is created, it notifies the GPU scheduler
of its process ID by a signal. The GPU scheduler then inserts the process in
the GPU run queue. When a timer alarm event is sent to the GPU sched-
uler, the scheduler decides the next back-end process to execute based on the
Credit scheduling policy. The scheduler then revokes a token from the previ-
ous process and delivers it to the next process via the shared memory. In our
implementation, the time slice of a running back-end process is configured to
6 ms, which can be adjusted by the administrator.

4 Scenarios and prototypal applications

Designing a test plan for the application scenario described in this paper is
a complex issue because, while many legacy CUDA enabled applications and
widely accepted performance test cases are available for the x86_64 architec-
ture, the same is not true for ARM. So we had to face the lack of standard
testing guidelines for CUDA and ARMs due to the weak available support for
this technology, relatively new for CUDA environment. From the hardware
point of view, our test setup involves a Maxwell based development worksta-
tion and a cluster built of 3 ARM based high-end single board computers
(SBCs).

In order to test performance for x86_64/x86_64/GPU two different evalua-
tion software have been used: CUDASW++ [23] and SRAD [35]. The first is a
bioinformatics software for Smith-Waterman protein database searches, while
the latter is a diffusion method for ultrasonic and radar imaging applications

On the virtualization of CUDA ARM clusters with GVirtuS 11

based on partial differential equations. Both applications take advantage of
the massively parallel CUDA architecture of NVIDIA.

ARM/x86/GPU performance tests have been produced developing an ad
hoc MPI Matrix Multiplication software [39] enabling the GVirtuS behaviour
investigation setting up a scenario where a x86 machine is used as an accelera-
tor node of a high-end ARM based cluster. The Matrix Multiplication software
used is a matrix-matrix multiply routine (GEMM, GEneral Matrix to Matrix
Multiplication) achieving better performance if compared with other usual
implementations. This routine uses a LU, QR, and Cholesky factorizations
gaining up to 80-90% of the peak GEEM rate thanks to the strict adherence
to modern GPUs programming guidelines.

4.1 The development workstation

The performance test system has been built on top of the Ubuntu 14.04 Linux
operating system, the NVIDIA CUDA Driver, and the SDK/Toolkit version
6.5 hosted on a workstation equipped by an i7-940@2.93 GHz 12Gb RAM.
The GPU subsystem is enforced by two NVIDIA GeForce Titan X 12Gb RAM
powered by the Maxwell chipset and summing up 3072 CUDA cores.

4.2 The cluster based on high-end ARM Single Board Computer

In order to face with a real next generation high performance computing sce-
nario, an experimental cluster made by 3 NVIDIA Jetson TK1 computing
nodes has been set up, connected by a dedicated Gigabit Ethernet network
to the developing workstation mimicking an accelerator server. Each comput-
ing node relies on 4-PLUS-1 Cortex A15 r3 CPU architecture, that delivers
higher performance and is more power efficient than the previous generation,
and a Kepler GPU architecture that utilizes 192 CUDA cores to deliver ad-
vanced graphics capabilities, GPU computing with NVIDIA CUDA 6.x sup-
port, breakthrough power efficiency and performance for the next generation
of gaming and GPU-accelerated computing applications.

4.3 Smith-Waterman sequence alignment

The Smith-Waterman algorithm has been available for more than 25 years.
It is based on a dynamic programming approach that explores all the pos-
sible alignments between two sequences; as a result it returns the optimal
local alignment. Unfortunately, the computational cost is very high, requiring
a number of operations proportional to the product of two-sequence length.
Furthermore, the exponential growth of protein and DNA databases makes the
Smith-Waterman algorithm unrealistic for searching similarities in large sets
of sequences [21]. The alignment of two sequences is based on the computation
of an alignment matrix. The number of its columns and rows is given by the

12 Montella et Al

number of the residues in the query and database sequences respectively. The
computation is based on a substitution matrix and on a gap-penalty function.
The CUDASW++ [22] has been used as evaluation software. It is a publically
available open source software for Smith-Waterman protein database searches
on Graphics Processing Units with CUDA. This software has been added to
the NVIDIA Tesla Bio Workbench.

4.4 Rodinia performance study application

The Rodinia software suite is widely accepted by the GPGPU scholars as a test
of CUDA performances and capabilities. It uses the Berkeleys dwarf taxonomy
to choose the applications developed using CUDA and OpenMP. Each dwarf
represents a set of algorithms with similar computation and data movement.
Even though programs representing a particular dwarf may have varying char-
acteristics, they share strong underlying patterns. The dwarves are defined at a
high level of abstraction to allow reasoning about the program behaviors [36].
The Rodinia software suite focuses on Structured Grid, Unstructured Grid,
Combinational Logic, Dynamic Programming, Fast Fourier Transform (FFT),
N-Body, Monte Carlo and Dense Linear Algebra dwarves. It targets on GPUs
and multicore CPUs as a starting point in developing a broader treatment
of heterogeneous computing. Rodinia benchmark suite enables users to eval-
uate heterogeneous systems including both accelerators, such as GPUs, and
multicore CPUs. The parallel computing on GPGPU application chosen to
test GVirtuS is Speckle Reducing Anisotropic Diffusion (SRAD) [38]. SRAD
is a diffusion method for ultrasonic and radar imaging applications based on
partial differential equations (PDEs). It is used to remove locally correlated
noise, known as speckles, without destroying important image features. SRAD
consists of several pieces of work: image extraction, continuous iterations over
the image (preparation, reduction, statistics, computation 1 and computation
2) and image compression.

4.5 Matrix multiplication

Our implementation of matrix multiplication takes advantage of shared mem-
ory already used to evaluate the performances ARM CUDA enabled software
offloaded on remoted GPUs [24].

In this implementation each task (MPI process or thread) is responsible
for computing number_of_rows/number_of_task rows of the matrix C (Algo-
rithm 1). Every block of CUDA thread is responsible for the computing of one
square sub-matrix Csub of C and each thread within the block is responsi-
ble for computing one element of Csub. Csub is equal to the product of two
rectangular matrices: the sub-matrix of A of dimension (A.width, block_size)
that has the same row indices as Csub, and the sub-matrix of B of dimension
(block_size, A.width) that has the same column indices as Csub. In order to

On the virtualization of CUDA ARM clusters with GVirtuS 13

fit into the device resources, these two rectangular matrices are divided into
as many square matrices of dimension block_size as necessary and Csub is
computed as the sum of the products of these square matrices [3]. In order to
easily verify the correct execution of the code the software performs:

RAND(nzn) x EY E(nzn) = RAN D(nan) (1)

The choice of this strategy comes from the easy scalability and evaluation, and
because it does not need synchronization mechanism to avoid race condition,
this comes from the spawn of the data amongst the tasks. We propose two
implementations of this test: one for MPI process and one for POSIX thread.
The main process (Rank 0 in MPI) takes care of distributing the data amongst
the workers and collecting them after the computing process is ended.

Algorithm 1 MatrixMul MPI/CUDA

1: procedure MAINTASK
2: for i<+ 1,num_of_tasks do
: alocal <aloffset * num_rows_a]

3

4 clocal <—c[offset * num_rows_b]
5: SEND_TO-WORKER(alocal)
6: SEND_TO-WORKER(b)

7 SEND_TO-WORKER(clocal)
8 end for

9: for ¢ < 1,num _of_tasks do
10: COLLECT_FROM_WORKER(i)
11: end for

12: end procedure

13: procedure WORKERTASK

14: for a < 1,num_of el_a do

15: for k <+ 1,num_of_block do

16: C'sub < CALCULATE_C_SUBMATRIX (k)
17: end for

18: C < coLLOCATE_CsuB(Csub)

19: end for
20: end procedure

Writing a basic dense matrix-matrix multiplication kernel is a fairly simple
exercise (see the CUDA Programming Guide for details). Achieving this high
level of performance, on the other hand, requires more careful optimization.
Volkov and Demmel used a block algorithm similar to those used for vector
computers, using GPU registers and per-block shared memory to store the
data blocks [39]. As the GPU has an unusually large register file, registers
can be used as the primary scratch space for the computation. Furthermore,
assigning small blocks of elements to each thread, rather than a single element
to each thread, boosts efficiency much as strip-mining boosts efficiency on
vector machines. Finally, the non-blocking nature of loads on the GPU makes
it possible to do software prefetching, which is useful for hiding memory latency
[11].

14 Montella et Al

Matrix A - rand(nxn) Identity Motrix B - eye(nxn)

HumROW
NumTASKS

ALl tasks

tosk 2

task 1

tosk 1 tosk 2 task n

Matrizx C = AxB = A

Fig. 6 Implementation of Matrix Multiplication multitask.

WRF 1 I
{u10m, vioem, rain,) ROMS Particle Sources
- T w3kt) (position, particles per hour,..)

‘WaComM
‘ | ARM/%85_64) x6_64 ML.m:(ARM/¥E6_64]

&
GPGPU

Kol

prran_time

ocean_timel
Sequential Parallel: Parallel:
Shared Memory (CUDA) Distributed Memory Shared Memory

Fig. 7 The WaComM hybrid parallel implementation.

4.6 Experiment design for a real world problem

WaComM (Water quality Community Model) is a coastal area decisionmak-
ing tool for mussel farms food quality assessment and prediction. It is based
on eulerian/lagrangian methods. WaComM is numerically coupled with ma-
rine dynamics models[10] in an offline fashion. WaComM has been developed
and tested in X86_64 multicore environments. Due to the intensive demand-
ing computations, the porting to a hierarchically parallel architecture has
been designed and partially already implemented. In this scenario we refac-
tored the model code in order to implement distributed memory /shared mem-
ory/GPGPU hierarchical parallelisation (Figure 7).

The use of GVirtuS in order to take advantage of a massive ARM based
HPC system with few high-end CUDA equipped accelerator nodes could be the
killing application targeting the reduction of total cost of ownership (procure-
ment, powering, cooling) in an application field, the continuous operational
real-time environmental modelling, where the on-premises and on-cloud solu-

On the virtualization of CUDA ARM clusters with GVirtuS 15

tions are economically borderline options. A forthcoming paper will discuss
about the WaComM architecture, its implementation and the performance
assessment in a GVirtuS based, mixed ARM/X86_64/GPGPU environment.

5 Results

From the wall clock time point of view, the execution of an application in-
teracting with a remoted GPU will sustain lower performance than the same
in the full availability of a dedicated, local, not virtualized accelerator de-
vice. This is due to the need of the split-driver interleaved layers and (in the
case of GPU remoting) the network infrastructure. In the best case the vir-
tualization/remoting overhead is partially balanced by the improvements in
computation performance. This happens for some application classes charac-
terized by the need for high GPU calculations feeded by a relative poor amount
of input and output parameters. But, if we change the point of view from a
strict performance oriented to a total costs of ownership perspective, the GPU
remoting permits to build a cluster with a reduced number of GPUs. The use
of GVirtuS middleware could be definitely effective if the applications are de-
signed explicitly to take advantage from an hybrid architecture computation
environment with a consistent costs reduction. The proposed evaluation tests
have the target to demonstrate the effectiveness of the designed infrastructure
rather than the mere performance that, as previously stated, is affected by
many ineluctable components that could be mitigated with future technology
improvements. It is possible to evaluate the overhead introduced by GVir-
tuS faced with the chance to run CUDA code or no CUDA enabled devices.
Mainly, the bottleneck is the communication overhead due to the use of the
TCP communicator. This results in poor performance, especially stressed out
when the GPU remoting is done outside the local dedicated network where
the overhead is acceptable.

5.1 GPGPU virtualization and remoting

In this section the results of CUDASW++ (test 1) and SRAD (test 2) to test
performance for x86_64/x86_.64/GPU in three different approaches have been
showed.

Three test scenarios are presented:

— No virtualization: the CUDA code is executed using regular CUDA li-
braries. This is a measurement of the blank.

— Localhost remoting: the CUDA code is executed using a remoted CUDA
device hosted on the same machine. This test verifies the effectiveness of
GVirtuS libraries.

— Virtualization: the CUDA code is executed on a virtual machine hosted
on the same physical host where the CUDA devices are connected to the
PClIe bus.

16 Montella et Al

Table 1 SRAD parameters

R C yl y2 x1 x2 L I
2048 2048 O 31 0 31 .5 10
2048 2048 O 31 0 31 .5 100
4096 4096 O 31 0 31 .5 10
4096 4096 O 31 0 31 .5 100

Table 2 SRAD performances

Size Iterations No Virtualization Localhost Remoting Virtualization
2048x2048 10 0.451s 0.626s 2.969s
2048x2048 100 1.119s 3.458s 27.872s
4096x4096 10 0.948s 2.005s 2.997s
4096x4096 100 3.781s 12.283s 27.946s

The Test 1 leverages on CUDASW++ version 2.0.11 executed with param-
eters -query P01008.fasta -db uniprot_sprot.fasta -use_single 0. The database
used for the test is uniprot_sprot.fasta. This is the last release of the Swiss-Prot
database released by UniProt, a scientific community with a comprehensive,
high-quality and freely accessible resource of protein sequence and functional
information. The database contains 550552 sequence entries [2]. The query
used for the test is P01008.fasta. This is an example query sequence suggested
by the CUDASW—++ documentation.

The Test 2 leverages on benchmark provided by Rodinia SRAD casted
with the parameters shown in Table 1: the first parameter, R, is the number
of rows in the domain; the second parameter, C, is the number of columns
in the domain. Currently, the GPU implementation of SRAD only supports a
dimension of kernel that can be divided by 16. The kernel has square shape.
The parameters from third to sixth represent respectively the y1,y2,x1,x2 po-
sitions of the speckle. The seventh parameter is the lambda value (L). The
last parameter is I, the number of iterations.

The tests ensure the effectiveness of the GVirtuS framework because the
results of the execution through CUDA and through GVirtuS coincide. As of
the performances in the execution of CUDASW++, no significative overhead is
introduced by the use of GVirtuS in the Localhost remoting scenario, while in
the virtualization scenario the overhead introduced has to be correlated to the
virtual environment. The execution of SRAD is impacted by the involvement
of GVirtuS as shown in Table 2. The reason of this behaviour has to be found
in the data intensive nature of this test so the bottleneck is represented by
the TCP/IP communicator. Furthermore the TCP/IP communicator is not
intended for performance purpose (Figure 8).

On the virtualization of CUDA ARM clusters with GVirtuS 17

I —,—,---rrsn SRR
ES e 4 '._.
(SRR EEEETEEIEEEE RS .
(]S EESESIEEEE EEEEE .

(IR EEEHTEEIEEEE SRR .

Time [sec.]

[D R ThFHF L

[R EUECEEEEEEE ISR I

(] SR IETEEEEEE R IR

[RIERNN EETEEIEEEE EEEEHE .

Ho Virtaslization Localhcst remoting Virtualization
Case study

Fig. 8 Execution time of SWCUDA++ in the three different approach.

5.2 High-end ARM GPU cluster

The results of MPI Matrix multiplication program showing the performance
test results for a ARM/x86/GPU setup are presented in this section. In this
experiment the MPI Matrix multiplication program has been used, in order
to investigate about the behavior of GVirtuS in a scenario where a x86 ma-
chine is used as an accelerator node of a high-end ARM based cluster. In
our setup each computing node is provided by an on-board K20A NVIDIA
CUDA enabled GPU with 192 cores, while the accelerator node is powered by
a couple of NVIDIA Titan X. This benchmark has been performed with two
problem size: 1600x1600x800 and 3200x3200x1600. The experiment compares
the performance of the on-board GPU and GVirtuS remoted on both prob-
lems size (Table 3). The ARM based cluster is built on 3 nodes each provided
by 4 CPU cores. The MPI Matrix multiplication program uses MPI, but it is
not OpenMP enabled, so runs were performed using up to 3 MPI computing
processes.

Results demonstrate the use of GVirtuS remoted CUDA acceleration is
convenient especially when the problem size increases: the weight of the latency
due to the communication decreases, as expected. The overall performances
are improved by the MPI parallel approach when the CUDA is used locally,
but the limited amount of node memory and number of nodes prevented to
investigate more in this direction.

When the number of MPI processes increases over 2, benchmarks are no
more suitable for classic parallel programming efficiency and speedup analysis,
but could be useful for some speculations about GVirtuS and its use in GPU
remoting. When GVirtuS will fully support the multithreading, the use of the
matrix multiplication enabled for both distributed and shared memory could
provide a better performance test for this kind of applications (Figure 9).

18 Montella et Al

Table 3 Matrix multiplication performances using internal and remoted GPU

Size NP1 NP2 NP3 NP1 NP2 NP3
Size GVirtuS GVirtuS GVirtuS
800x800 2.812s 1.948s 1.895s 1.238s 1.383s 2.115s
1600x1600 | 9.813s 9.004s 5.846s 2.201s 2.411s 2.795s
3200x3200 | 46.754s 39.061s 30.388s | 5.341s 5.280s 6.571s

Fig. 9 Implementation of Matrix Multiplication multitask.

6 Related works

GPU virtualization solutions to GPGPU as GVirtuS have been implemented
in research projects as rCUDA (Remote CUDA) [33] e DS-CUDA (Distributed-
Shared CUDA) [17]. They all use an approach similar to GVirtuS, providing
CUDA API wrappers on the front-end application in the guest OS while the
back-end in the host OS accesses to the CUDA devices.

Table 4 shows the main differences on the CUDA toolkit supported, the
implementation of various communicator components to connect the front-end
and back-end, the re-compiling needed, the concurrent remote usage of CUDA
devices in a transparent way, the support for x86 and ARM processors and,
finally, the type of license.

— CUDA Toolkit supported: all GPGPU computing solutions mentioned im-
plement the functions in the CUDA Runtime API, but the graphic relevant
APIs, such as OpenGL and Direct3D interoperability, are not supported. A
common restriction for GVirtuS and DS-CUDA is the asynchronous APIs
implemented as aliases to their synchronous counterparts.

— Communicator: a communicator is a key piece because it connects the guest
and host operating systems. One of the main differences lies in the use of
the communication technique. In GVirtuS communicators are independent
from hypervisor, virtualized technology and from the cooperation proto-
cols between front-end and back-end. GVirtuS already provides several
Communicator subclasses such as TCP/IP, Unix sockets, VMSocket (high
performance communicator for KVM based virtualization), and VMCI
(VMWare efficient and effective communication channel for VMWare based
virtualization). By default, rCUDA and DS-CUDA use InfiniBand Verbs,

On the virtualization of CUDA ARM clusters with GVirtuS 19

Table 4 CUDA virtualization features comparison table

GPU Vir. ‘ RT DRV Comm Rebuild Plug-In License
GVirtuS 6.5 TCP/IP, SHMem, ... Yes LGPL
rCUDA 5.5 Yes 1B, TCP/IP Proprietary
DS-CUDA | 4.5 1B, TCP/IP Needed GPL

and TCP sockets in case the network infrastructure does not support In-
finiBand in the guest and host communication.

— Plug-in architecture: while GVirtuS is a general-purpose virtualization ser-
vice with a plug-in architecture, which can load modules of CUDA and
OpenCL and use different GPU devices, rCUDA and DS-CUDA allow to
manage only NVIDIA GPUs. The main aim of GVirtuS is to provide a
flexible tool capable to adapt itself to any possible scenario, GVirtuS com-
petitors aim is just to provide NVIDIA support.

— Computing architecture: in the last years, the use of remote GPUs and
low-power processors for acceleration of scientific applications has become
an important case study. GVirtuS is a tool to virtualize heterogeneous
architectures. It is based on a split-driver model independent of the com-
puting architecture ARM and x86_64. DS-CUDA is going to use Android
tablets and smartphones to run the executable CUDA file [24]. rCUDA car-
ried experimental study on scientific applications with different hardware
platforms [5].

— Transparency and re-compiling: the main goal of GVirtuS is to provide a
fully transparent virtualization solution, that is CUDA enabled software
has to be executed without any further modification of binaries and the
source code of applications does not need to be modified in order to use
remote GPUs. Transparency is an important common feature of the pre-
sented virtualization GPUs systems. DS-CUDA needed of a re-compiling
in order to build an executable for the application program, this latter has
a DS-CUDA preprocessor dscudacpp to handle CUDA C/C++ extensions.

— Licence: GVirtuS and DS-CUDA are open source projects, the former is li-
censed under the LGPL (Lesser General Public License), while the latter is
licensed under the GPLv3 (General Public License version 3). The rCUDA
technology is own by the Parallel Architectures Group from Universitat
Politecnica de Valencia (Spain). The Software is distributed for free under
specified terms and conditions of use.

7 Conclusions and future directions

In this paper were presented our results about the design and the implementa-
tion of an updated CUDA wrapper library for the GVirtuS framework in order
to accelerate sub-clusters of inexpensive low power demanding ARM based
boards. We used high-end GPGPU devices providing an experimental eval-
uation of the possibilities that state-of-the-art technology offers in nowadays

20 Montella et Al

HPC facilities [31], as well as low-power alternatives offer for the acceleration
of scientific applications using remote graphics processors.

The performed experiments demonstrate how convenient is the path we
followed as trailblazer in the hunt for the next big thing in the off-the-shelf
commodity high performance computing clusters. The latest GVirtuS release
tested in a x86_64 virtualization and remoting performs enough to consider
feasible the use of our approach in real world production applications, espe-
cially if enhanced with an Infiniband communicator component. This because
with the availability of the needed hardware testbed, the communication plug-
in component will evolve in order to support the Infiniband network because
it is expected that the higher bandwidth allows remote GPU virtualization
frameworks to experience communication performances similar to the PCle
on the path between the local GPGPU and the remote GPU resource [32],
[30]. Due to the unavailability of real world applications fitting the available
ARM cluster, GVirtuS has been tested using an ad hoc distributed memory
matrix multiplication software [14] and accelerated CUDA kernels working on
local or x86 remoted high-end GPU device [18].

On short and medium term, we are working on the GVirtuS over all
improvement in order to implement a production service for GPGPU com-
putation offloading dedicated to high end server machines and mobile de-
vices. A custom Java/Android friendly front-end implementation will enable
to GPGPU computing the most part of low-power integrated systems and
devices. The final destination of this research is provisioning a full produc-
tion software environment for advanced earth system simulations and analysis
based on science gateways, workflow engines and high performance cloud com-
puting [27], giving a support for the next generation of scientific dissemination
tools [29] and the smart city management in case of extreme weather events.

Acknowledgements This research has been supported mainly by the Grant Agreement
number: 644312 - RAPID - H2020-ICT-2014/H2020-ICT-2014-1 ”Heterogeneous Secure
Multi-level Remote Acceleration Service for Low-Power Integrated Systems and Devices”,
in part by the project 1ZS ME04/12 RC/C78C120017001 ”Mapping Escherichia Coli and
Salmonella pollution in mussel farm areas and model prediction comparisons”, in part by the
University of Naples Parthenope - Department of Science and Technologies ” Weather /marine
extreme event simulation with Galaxy-ES (Earth System) scientific workflow engine and
cloud computing tools” Research Project, and in part by the University of Naples Fed-
erico II - Department of Mathematics ” Approcci Innovativi per la Risoluzione di Modelli di
Interesse nelle Simulazioni Computazionali” Research Project Grant Agreement.

References

1. Armand F.; M. Gien, G. Maign, and G. Mardinian, ”Shared device driver model for
virtualized mobile handsets.”, Proceedings of the First Workshop on Virtualization in
Mobile Computing, ACM, 2008, pp. 12-16.

2. A.M. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro Rojas,
E. Gasteiger et al. ”The universal protein resource (UniProt).” Nucleic acids research 33,
Database issue, 2005, pp. D154-9.

3. Bell N., and M. Garland, Efficient sparse matrix-vector multiplication on CUDA,
NVIDIA Technical Report NVR-2008-004, Nvidia Corporation, 2008.

On the virtualization of CUDA ARM clusters with GVirtuS 21

4. Caruso P. G. Laccetti and M. Lapegna, ”A performance contract system in a grid en-
abling, component based programming environment” in Advances in Grid Computing-
EGC 2005, LNCS vol. 3470, Springer Verlag, 2005, pp. 982-992.

5. Castello A., J. Duato, R. Mayo, A. J. Pena, E. S. Quintana-Ort, V. Roca, and F. Silla,
”On the use of remote GPUs and low-power processors for the acceleration of scientific
applications”, in The Fourth International Conference on Smart Grids, Green Communi-
cations and IT Energy-aware Technologies (ENERGY), 2014, pp. 57-62.

6. Dagum L. and R. Enon. ”OpenMP: an industry standard API for shared-memory pro-
gramming”, IEEE Computational Science and Engineering , 5, 1, 1998, pp. 46-55.

7. Di Lauro R. , F. Giannone, L. Ambrosio and R. Montella, ” Virtualizing general purpose
GPUs for high performance cloud computing: an application to a fluid simulator”, in
IEEE 10th International Symposium on Proc. of Parallel and Distributed Processing with
Applications (ISPA), 2012, pp. 863-864.

8. Di Lauro R., F. Lucarelli, and R. Montella. ”SlaaS-sensing instrument as a service using
cloud computing to turn physical instrument into ubiquitous service.” In 2012 IEEE 10th
International Symposium on Parallel and Distributed Processing with Applications, pp.
861-862. IEEE, 2012.

9. Foster I., Y. Zhao, I. Raicu and S. Lu. ”Cloud computing and grid computing 360-degree
compared”, in IEEE Grid Computing Environments Workshop GCE 08, 2008, pp. 1-10.
10. Giunta G., P. Mariani, R. Montella, and A. Riccio. ”pPOM: A nested, scalable, parallel
and Fortran 90 implementation of the Princeton Ocean Model.” Environmental Modelling

& Software 22, no. 1 (2007): 117-122.

11. Garland M., S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,
Y. Zhang and V. Volkov, ”Parallel computing experiences with CUDA.” IEEE Micro, 28,
4, 2008, pp. 13-27.

12. Giunta G., R. Montella, G. Agrillo and G. Coviello, ”A GPGPU transparent virtu-
alization component for high performance computing clouds”, in EuroPar 2010 Parallel
Processing, LNCS vol. 6271, 2 Springer Verlag, 2010, pp. 379-391.

13. Giunta G., R. Montella, G, Laccetti, F. Isaila, and F. Blas. ”A GPU accelerated high
performance cloud computing infrastructure for grid computing based virtual environmen-
tal laboratory.” Advances in Grid Computing (2011): 35-43.

14. Gropp W. , ’MPICH2: A new start for MPI implementations”, in Recent Advances in
Parallel Virtual Machine and Message Passing Interface 2002, LNCS vol. 2474, Springer,
2002, pp. 7.

15. Gupta V., A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar, and P. Ran-
ganathan. ” GViIM: GPU-accelerated virtual machines.” In Proceedings of the 3rd ACM
Workshop on System-level Virtualization for High Performance Computing, ACM, 2009,
pp. 17-24.

16. Herrera A. ’NVIDIA GRID: Graphics Accelerated VDI with the Visual Performance of
a Workstation.” Nvidia Corp, 2014.

17. Kawai A., K. Yasuoka, K. Yoshikawa and T. Narumi. ” Distributed-shared CUDA: Vir-
tualization of large-scale GPU systems for programmability and reliability.”, 2012.

18. Karunadasa, N. P. and D. N. Ranasinghe. ” Accelerating high performance applications
with CUDA and MPL” In Industrial and Information Systems (ICIIS), 2009 International
Conference on, IEEE, 2009, pp. 331-336.

19. Kehne J., J. Metter and F. Bellosa. ”GPUswap: Enabling Oversubscription of GPU
Memory through Transparent Swapping.” In Proceedings of the 11th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, ACM,
2015, pp. 65-77.

20. Laccetti G., R. Montella, C. Palmieri and V. Pelliccia. ” The High Performance Internet
of Things: Using GVirtuS to Share High-End GPUs with ARM Based Cluster Computing
Nodes.” In Parallel processing and Applied Mathematics 2013, LNCS vol. 8384, Springer
Verlag Berlin Heidelberg, 2013, pp. 734-744.

21. Ligowski L. and W. Rudnicki. ” An efficient implementation of Smith Waterman algo-
rithm on GPU using CUDA, for massively parallel scanning of sequence databases.” In
Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on,
IEEE, 2009, pp. 1-8.

22 Montella et Al

22. Liu Y., B. Schmidt and D. L. Maskell. ?’CUDASW++ 2.0: enhanced Smith-Waterman
protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD
abstractions.” BMC research notes 3, no. 1, 2010, p. 93.

23. Manavski S. A., and G. Valle. "CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment.” BMC bioinformatics 9, no. 2, 2008,
p- 1.

24. Martinez-Noriega E.J., E. Josafat, A. Kawai, K. Yoshikawa, K. Yasuoka and T. Narumi.
”?CUDA Enabled for Android Tablets through DS-CUDA.”, 2013.

25. Montella R. and I. Foster. ”Using hybrid grid/cloud computing technologies for en-
vironmental data elastic storage, processing, and provisioning.” In Handbook of Cloud
Computing, Springer US, 2010, pp. 595-618.

26. Montella R., G. Giunta and G. Laccetti. ”Virtualizing high-end GPGPUs on ARM
clusters for the next generation of high performance cloud computing.” Cluster computing
17, no. 1, 2014, pp. 139-152.

27. Montella R., D. Kelly, W. Xiong, A. Brizius, J. Elliott, R. Madduri, K. Maheshwari et al.
"FACEIT: A science gateway for food security research.” Concurrency and Computation:
Practice and Experience 27, no. 16, 2015, pp. 4423-4436.

28. Montella R., G. Giunta, G. Laccetti, M. Lapegna, C. Palmieri, C. Ferraro and V. Pel-
liccia. ” Virtualizing CUDA enabled GPGPUs on ARM clusters.” In Parallel Processing in
and Applied Mathematics 2015, LNCS vol. 9574, Springer Verlag Berlin Heidelberg, 2016.

29. Pham Q., T. Malik, I. Foster, R. Di Lauro and R. Montella. ”SOLE: linking research
papers with science objects.” In Provenance and Annotation of Data and Processes 2012,
LNCS vol. 7525, Springer Verlag Berlin Heidelberg, 2012, pp. 203-208.

30. Prades J., C. Reao and F. Silla. ?CUDA acceleration for Xen virtual machines in infini-
band clusters with rCUDA.” In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ACM, 2016, p. 35.

31. Rajovic N., A. Rico, N. Puzovic, C. Adeniyi-Jones and A. Ramirez. ” Tibidabo: Making
the case for an ARM-based HPC system.” Future Generation Computer Systems 36, 2014,
pp.322-334.

32. Reao C., R. Mayo, E.S. Quintana-Orti, F. Silla, J. Duato, A.J. Pea, Influence of Infini-
Band FDR on the performance of remote GPU virtualization, in proceedings of the 2013
IEEE International Conference on Cluster Computing, Indianapolis, USA, October 2013.

33. Reao C., F. Silla, A. J. Pena, G. Shainer, S. Schultz, A. Castello, E. S. Quintana-Orti
and J. Duato. "POSTER: Boosting the performance of remote GPU virtualization using
InfiniBand connect-IB and PCle 3.0.” In Cluster Computing (CLUSTER), 2014 IEEE
International Conference on, IEEE, 2014, pp. 266-267.

34. Shi L., H. Chen, J. Sun and K. Li. ”vCUDA: GPU-accelerated high-performance com-
puting in virtual machines.” Computers, IEEE Transactions on 61, no. 6, 2012, pp. 804-
816.

35. Shuai C., M. Boyer, J.Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron, ” A performance
study of general-purpose applications on graphics processors using CUDA”, Journal of
Parallel and Distributed Computing, 68, 10, 2008, pp. 1370-1380.

36. Shuai C., M. Boyer, J.Meng, D. Tarjan, J. W. Sheaffer, Sang-Ha Lee, and K. Skadron
”Rodinia: A benchmark suite for heterogeneous computing” , Proc. of the IEEE Interna-
tional Symposium on Workload Characterization - IISWC 2009, 2009, pp. 44-54.

37. Sourouri M., T. Gillberg, S. B. Baden and X. Cai. ”Effective multi-GPU communi-
cation using multiple CUDA streams and threads.” In Parallel and Distributed Systems
(ICPADS), 2014 20th IEEE International Conference on, IEEE, 2014, pp. 981-986.

38. Szafaryn L. G. , K. Skadron and J. J. Saucerman. ” Experiences Accelerating MATLAB
Systems Biology Applications.” In Proceedings of the Workshop on Biomedicine in Com-
puting: Systems, Architectures, and Circuits (BiC) 2009, in conjunction with the 36th
IEEE/ACM International Symposium on Computer Architecture (ISCA), June 2009.

39. Volkov V. and J. W. Demmel. ”Benchmarking GPUs to tune dense linear algebra.” In
High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008. Inter-
national Conference for, IEEE, 2008, pp. 1-11.

40. Yang C., C. Huang and C. Lin. ”Hybrid CUDA, OpenMP, and MPI parallel program-
ming on multicore GPU clusters.” Computer Physics Communications 182, no. 1, 2011,
pp. 266-269.

