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On the Volume of Nodal Sets for Eigenfunctions
of the Laplacian on the Torus

Zeév Rudnick and Igor Wigman

Abstract. We study the volume of nodal sets for eigenfunctions of the Lapla-
cian on the standard torus in two or more dimensions. We consider a sequence
of eigenvalues 4π2E with growing multiplicity N → ∞, and compute the
expectation and variance of the volume of the nodal set with respect to a
Gaussian probability measure on the eigenspaces. We show that the expected
volume of the nodal set is const

√
E. Our main result is that the variance of

the volume normalized by
√

E is bounded by O(1/
√N ), so that the normal-

ized volume has vanishing fluctuations as we increase the dimension of the
eigenspace.

1. Introduction

The nodal set of a function on a manifold is the set of points where it vanishes.
Nodal sets for eigenfunctions of the Laplacian on a smooth, compact Riemann-
ian manifold have been studied intensively for some time now. For instance, it is
known [6] that except for a subset of lower dimension, the nodal sets of eigen-
functions are smooth manifolds of codimension one in the ambient manifold. In
particular one can define their hypersurface volume (in two dimensions this is the
length). A conjecture of Yau is that the volume of the nodal set is bounded above
and below by constant multiples of square root of the Laplace eigenvalue. Yau’s
conjecture was proven for real-analytic metrics by Donnelly and Fefferman [7]. The
lower bound in the case of smooth surfaces is due to Brüning [4], see also [5] for
planar domains.

In this paper we study the volume of nodal sets for eigenfunctions of the
Laplacian on the standard flat torus T

d = R
d/Zd, d ≥ 2. We write the eigenvalue

equation as Δf = −4π2Ef , where E ≥ 0 is an integer. The eigenvalues on the
torus always have multiplicities, with the dimension N = N (E) of an eigenspace
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corresponding to eigenvalue 4π2E being the number of integer vectors λ ∈ Z
d so

that |λ|2 = E. In dimension d ≥ 5 this number grows as E → ∞ roughly as E
d
2−1,

but for small values of d, particularly for d = 2, the behaviour is more erratic, and
depends on the prime decomposition of E.

We will consider random eigenfunctions on the torus, that is random linear
combinations

f(x) =
1√
2N

∑

λ∈Zd:|λ|2=E

bλ cos 2π〈λ, x〉 − cλ sin 2π〈λ, x〉 (1.1)

with bλ, cλ ∼ N(0, 1) real Gaussians of zero mean and variance 1 which are inde-
pendent save for the relations b−λ = bλ, c−λ = −cλ. Let E = EE be the eigenspace
associated to the eigenvalue 4π2E (i.e., the space of functions of form (1.1)). We
denote by E(•) the expected value of the quantity • in this ensemble. For instance,
the expected amplitude of f is E(|f(x)|2) = 1.

Denote by Z(f) the volume of the nodal set of an eigenfunction (1.1). Our
first result, Proposition 4.1, is that the expected value of Z is

E(Z) = const ·
√
E

for a certain constant depending only on the dimension d. This is of course con-
sistent with the bounds of Donnelly and Fefferman [7].

Our main result, Theorem 6.1, is that the variance of the normalized volume
Z/

√
E is bounded by

Var
(
Z√
E

)

 1√N , as N → ∞ .

(We believe that the correct upper bound for the variance is O(1/N )). Thus the
fluctuations of Z(f)/

√
E around its mean value die out as the multiplicity N

tends to ∞. Note however that Z(f)/
√
E is not asymptotically constant; for in-

stance, if E = dm2 then for the eigenfunction f(x) =
∏d

j=1 sin 2πmxj we have
Z(f)/

√
E = 2

√
d while if E = m2 then for the eigenfunction f(x) = sin 2πmx1 we

have Z(f)/
√
E = 2.

Theorem 6.1 can be viewed as lending support to the expectation1 that for
eigenfunctions on negatively curved manifolds, which are believed to behave simi-
larly to random waves [2], the volumes of nodal sets, normalized by the square-root
of the eigenvalue, do tend to a limiting value. See [12] for some work on the com-
plexified nodal set of eigenfunctions in this context.

Previous work in this vein is due to Bérard [1], who computed the expected
surface measure of the nodal set for eigenfunctions of the Laplacian on spheres.
Neuheisel [10] also worked on the sphere and gave an upper bound for the variance.
Berry [3] computed the expected length of nodal lines for isotropic, monochromatic

1We thank Steve Zelditch for a discussion of this.
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random waves in the plane, which are eigenfunctions of the Laplacian with eigen-
value E. He found that the expected length (per unit area) is again of size about√
E and argued that the variance should be of order logE.

More recently, F. Oravecz and ourselves have investigated a different char-
acteristic of the nodal set of eigenfunctions on the torus, namely the Leray nodal
measure [11], and have succeeded in obtaining the precise asymptotics of the vari-
ance of the Leray measure as N → ∞.

1.1. Plan of the paper

We employ a version of the Kac–Rice formula for the volume of the nodal set,
which using the Dirac delta function can be written as

Z(f) =
∫

Td

δ
(
f(x)

)|∇f(x)|dx ,

see Section 3 for the rigorous version. To compute the expected value of Z is then
a simple matter once we find that f(x) and ∂f/∂xj are independent Gaussians.
This is done in Section 4. In Section 5 we derive a formula for the second moment
of Z, which requires knowing the covariance structure of the 2d + 2-dimensional
Gaussian vector v(x, y) = (f(x), f(y),∇f(x),∇f(y)). That v(x, y) is indeed a non-
degenerate 2d + 2 dimensional Gaussian is verified in the appendix. As a result,
we find that E(Z2) =

∫
Td K(z)dz, with

K(z) =
1√

1 − u(z)2

∫

R2d

‖v1‖‖v2‖
exp

(− 1
2vΩ(z)−1vT

)
√

det Ω(z)
dv

(2π)d+1
,

where u(z) = E(f(x)f(x+z)) is the two-point function of the ensemble, and where
Ω(z) is a certain positive definite 2d× 2d matrix which enters into the covariance
structure of the Gaussian vector v(x, y). In Section 6, which is the heart of the
paper, we bound the variance of Z.

2. The model: Random eigenfunctions on the torus

2.1. Random eigenfunctions

We consider non-constant eigenfunctions of the Laplacian on the standard flat
torus T

d = R
d/Zd. The solutions of the eigenvalue equation

Δψ + 4π2Eψ = 0 , E = 0 ,

form a finite dimensional vector space E = EE , having as a basis the exponentials
e2πi〈λ,x〉, for λ in the frequency set

Λ = ΛE = {λ ∈ Z
d, |λ|2 = E} .

We define an ensemble of Gaussian random functions f ∈ E by

f(x) =
1√
2N

∑

λ∈Λ

bλ cos 2π〈λ, x〉 − cλ sin 2π〈λ, x〉
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with bλ, cλ ∼ N(0, 1) real Gaussians of zero mean and variance 1 which are inde-
pendent save for the relations b−λ = bλ, c−λ = −cλ. Thus we can rewrite

f(x) =

√
2
N

∑

λ∈Λ/±
bλ cos 2π〈λ, x〉 − cλ sin 2π〈λ, x〉 (2.1)

where now only independent random variables appear. With our normalization,
we have E(|f(x)|2) = 1 for all x ∈ T

d.

Definition 2.1. An eigenfunction f ∈ E is singular if ∃x ∈ T
d with f(x) = 0 and

∇f(x) = �0. An eigenfunction f ∈ E is nonsingular if ∇f = �0 on the nodal set.

Lemma 2.2 ([11], Lemma 2.3). The set of singular eigenfunctions has codimension
at least 1 in E, and so has measure zero in E.

2.2. Properties of the frequency set

The dimension N = dim E is the number of the frequencies in Λ, which is the
number of ways of expressing E as a sum of d integer squares. For d ≥ 5 this
grows roughly as Ed/2−1 as E → ∞. For d ≤ 4 the dimension of the eigenspace
need not grow with E. For instance, for d = 2, N is given in terms of the prime
decomposition of E as follows: If E = 2α

∏
j p

βj

j

∏
k q

2γk

k where pj ≡ 1 mod 4 and
qk ≡ 3 mod 4 are odd primes, α, βj , γk ≥ are integers, then N = 4

∏
j(βj + 1),

and otherwise E is not a sum of two squares and N = 0. On average (over integers
which are sums of two squares) the dimension is const · √logE.

The frequency set Λ is invariant under the group Wd of signed permutations,
consisting of coordinate permutations and sign-change of any coordinate, e.g.,
(λ1, λ2) �→ (−λ1, λ2) (for d = 2). In particular Λ is symmetric under λ �→ −λ and
since 0 /∈ Λ, we find N is even. We write Λ/± to denote representatives of the
equivalence class of Λ under λ �→ −λ.

We will need some simple properties of Λ:

Lemma 2.3. For any subset O ⊂ Λ which is invariant under the group Wd, we
have

1
|O|

∑

λ∈O
λjλk =

E

d
· δj,k . (2.2)

Moreover for any C ∈ R
d,

1
|O|

∑

λ∈O
〈C, λ〉2 =

E

d
|C|2 . (2.3)

Proof. For i = j use the symmetry of O under the sign change of the i-th coor-
dinate to change variables and deduce that the LHS of (2.2) vanishes. For i = j
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note that the sum
∑

λ∈O λ
2
i is independent of i since O is symmetric under per-

mutations; hence we may average the RHS over i to find that

∑

λ∈O
λ2

i =
1
d

d∑

i=1

∑

λ∈O
λ2

i =
1
d

∑

λ∈O
||λ||2 =

|O|E
d

,

proving (2.2). To prove (2.3) we expand 〈C, λ〉2 =
∑d

j,k=1 cjckλjλk and use (2.2).
�

Note that (2.3) implies that the frequency set Λ spans R
d.

2.3. The two point function

The two-point function of the ensemble is

u(z) := E
(
f(x+ z)f(x)

)
=

2
N

∑

λ∈Λ/±
cos 2π〈λ, z〉 . (2.4)

The two-point function clearly satisfies |u(z)| ≤ 1. We will need to know some of
its basic properties, proved in [11], which we summarize as:

Proposition 2.4. The two point function satisfies
1. There are only finitely many points x ∈ T

d where u(x) = ±1.
2. The mean square of u is

∫
Td u

2 = 1/N .

3. The mean fourth power of u is bounded by2
∫

Td u
4 
 1/N .

4. The kernel 1/
√

1 − u2 is integrable on T
d.

Part 1 follows from [11, Lemma 2.2], part 3 is [11, Proposition 7.1], and part 4
is [11, Lemma 5.3].

3. A formula for the volume of the nodal set

Let χ be the indicator function of the interval [−1, 1]. We define for ε > 0

Zε(f) :=
1
2ε

∫

Td

χ

(
f(x)
ε

)
|∇f(x)|dx .

Lemma 3.1. Suppose that f ∈ E is non-singular. Then

vol
(
f−1(0)

)
= lim

ε→0
Zε(f) .

Proof. By the co-area formula [8], for f smooth and φ integrable, we have
∫

Td

φ(x)|∇f(x)|dx =
∫ ∞

−∞

(∫

f−1(s)

φ(x)dx

)
ds .

2Except possibly in dimensions d = 3, 4 we have a better bound in [11] of o(1/N ), though we
have no use for this finer information in this paper.
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Taking φ(x) := 1
2εχ(f(x)

ε ), which is constant on the level sets f−1(s) gives

Zε(f) =
1
2ε

∫ ε

−ε

vol
(
f−1(s)

)
ds .

Now if f is non-singular then s �→ vol(f−1(s)) is continuous at s = 0 and so by
the fundamental theorem of calculus,

lim
ε→0

1
2ε

∫ ε

−ε

vol
(
f−1(s)

)
ds = vol

(
f−1(0)

)
.

Thus limε→0Zε(f) = vol(f−1(0)) as claimed. �

Lemma 3.2. For all f ∈ E we have

Zε(f) ≤ 6d
√
E .

We begin with the one variable case which we state as a separate lemma
(cf. [9, Lemma 2]):

Lemma 3.3. Let g(t) be a trigonometric polynomial of degree at most M . Then for
all ε > 0 we have

1
2ε

∫

{t:|g(t)|≤ε}
|g′(t)|dt ≤ 6M .

Proof. We partition the set {t : |g(t)| ≤ ε} ⊆ [0, 1] into a union of maximal closed
intervals [ak, bk] (with ak < bk), disjoint except perhaps for common edges, such
that on each such interval g′ has constant sign, that is either g′ ≥ 0 or g′ ≤ 0. If
g′ ≥ 0 on [ak, bk] then either g(ak) = −ε or g′(ak) = 0 and ak is a local minimum
for g, and g(bk) ≤ +ε. If g′ ≤ 0 on [ak, bk] then either g(ak) = +ε or g′(ak) = 0
and ak is a local maximum for g, and g(bk) ≥ −ε.

If g′ ≥ 0 on [ak, bk] then
∫ bk

ak

|g′(t)|dt =
∫ bk

ak

g′(t)dt = g(bk) − g(ak) ≤ 2ε ,

while if g′ ≤ 0 on [ak, bk] then
∫ bk

ak

|g′(t)|dt =
∫ bk

ak

−g′(t)dt = g(ak) − g(bk) ≤ 2ε .

Thus the total integral is bounded by the number ν of intervals [ak, bk]:

1
2ε

∫

{t:|g(t)|≤ε}
|g′(t)|dt ≤ ν .

Now the number of intervals is bounded by the number of a’s for which g(a) = ±ε
plus the number of a’s for which g′(a) = 0. Since both g and g′ are trigonometric
polynomials of degree ≤M , the number of such intervals is therefore 3 ·2M = 6M .
This gives the required bound. �

We now prove Lemma 3.2 by reduction to the one-dimensional case.
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Proof. Since |∇f | ≤∑d
j=1 | ∂f

∂xj
| we have

Zε(f) ≤
d∑

j=1

1
2ε

∫

Td

χ

(
f(x)
ε

) ∣∣∣∣
∂f

∂xj

∣∣∣∣dx

and we will bound each term. Taking j = 1, we have

1
2ε

∫

Td

χ

(
f(x)
ε

) ∣∣∣∣
∂f

∂x1

∣∣∣∣dx =
∫

	y∈Td−1

(
1
2ε

∫

{t∈T1:|f(t,	y)|≤ε}

∣∣∣∣
∂f(t, �y)
∂t

∣∣∣∣dt
)
d�y .

In the inner integral we have for each �y ∈ T
d−1 a one variable polynomial g(t) =

f(t, �y) of degree at most
√
E and hence by Lemma 3.3, the inner integral is at

most 6
√
E. Summing over j introduces another factor of d. �

As a consequence of the fact that for nonsingular functions we can compute
the volume Z(f) of the nodal set of f ∈ E via Lemma 3.1 and the fact that almost
all f ∈ E are nonsingular (Lemma 2.2), we find:

Corollary 3.4. The first and second moments of the volume Z(f) of the nodal set
of f are given by

E(Z) = E

(
lim
ε→0

Zε

)
, E(Z2) = E

(
lim

ε1,ε2→0
Zε1Zε2

)
.

4. The expected volume of the nodal set

In this section we show

Proposition 4.1. For d ≥ 1,
E(Z) = Id

√
E

where

Id =

√
4π
d

Γ
(

d+1
2

)

Γ
(

d
2

) .

Proof. Since Zε is uniformly bounded by Lemma 3.2, we can use the Dominated
Convergence Theorem to write

E(Z) = E

(
lim
ε→0

Zε

)
= lim

ε→0
E(Zε) .

By Fubini’s theorem,

E(Zε) = E

(
1
2ε

∫

Td

χ

(
f(x)
ε

)
|∇f(x)|dx

)

=
∫

Td

E

(
1
2ε
χ

(
f(x)
ε

)
|∇f(x)|

)
dx =:

∫

Td

Kε(x)dx .
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Now for each x ∈ T
d, the function f �→ 1

2εχ(f(x)
ε )|∇f(x)| is bounded and hence

we may evaluate the integral by using the joint probability density of the variable
(f(x),∇f(x)), whose components are Gaussian of zero mean with covariance

E
(
f(x)2

)
= 1 , E

(
f(x)

∂f

∂xj
(x)

)
= 0

and

E

(
∂f(x)
∂xj

∂f(x)
∂xk

)
=

2
N · 4π2

∑

	λ∈Λ/±
λjλk = 4π2E

d
· δj,k (4.1)

by (2.2). Thus

Kε(x) =
1
2ε

∫

R

χ
(a
ε

)
e−a2/2 da√

2π

∫

Rd

|�b| exp

(
− d|�b|2

8π2E

)
d�b

(2π)d/2(4π2E/d)d/2

=

√
4π2E√

d · (2π)(d+1)/2

∫

Rd

|�v| exp
(
−1

2
|�v|2

)
d�v

1
2ε

∫

R

χ
(a
ε

)
e−a2/2da .

Integrating over T
d and taking the limit ε→ 0 gives

E(Z) = Id

√
E

where

Id =
1√

d(2π)(d−1)/2

∫

Rd

|�v| exp
(
−1

2
|�v|2

)
d�v .

In the one-dimensional case, I1 =
∫

R
|v|e−v2/2dv = 2. For d ≥ 2 ,

∫

Rd

|�v| exp
(
−1

2
|�v|2

)
d�v = vol(Sd−1)

∫ ∞

0

re−r2/2rd−1dr .

Using

vol(Sd−1) =
2π

d
2

Γ
(

d
2

) ,
∫ ∞

0

rde−r2/2dr = 2
d−1
2 Γ

(
d+ 1

2

)

gives
∫

Rd

|�v| exp
(
−1

2
|�v|2

)
d�v =

√
2(2π)d/2 Γ

(
d+1
2

)

Γ
(

d
2

)

(which is consistent with the computation for d = 1). Thus

Id =

√
4π
d

Γ
(

d+1
2

)

Γ
(

d
2

)

as claimed. �
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5. An integral formula for the second moment

5.1. The covariance matrix

The covariance matrix Σ(x, y) of the Gaussian vector (f(x), f(y),∇f(x),∇f(y))
is given by

Σ =
(
A B
BT C

)
(5.1)

where

A =
(

E
(
f(x)2

)
E (f(x)f(y))

E (f(y)f(x)) E
(
f(y)2

)
)
, B =

(
E(f(x)∇f(x)) E(f(x)∇f(y))
E(f(y)∇f(x)) E(f(y)∇f(y))

)

and

C =
(

E(∇f(x)T∇f(x)) E(∇f(x)T∇f(y))
E(∇f(y)T∇f(x)) E(∇f(y)T∇f(y))

)
.

For generic (x, y), the covariance matrix Σ(x, y) is nonsingular (see Appendix A).

Lemma 5.1. The covariance matrix Σ(x, y) depends only on the difference z = x−y
and is given in terms of the two-point function u by

Σ(x, y) =
(
A(z) B(z)
B(z)T C(z)

)

where

A(z) =
(

1 u(z)
u(z) 1

)
, B(z) =

(
�0 −∇u(z)

∇u(z) �0

)

(here �0,∇u are row vectors), and

C(z) =

(
4π2E

d I −H(z)
−H(z) 4π2E

d I

)

where H =
(

∂2u
∂xj∂xk

)
is the Hessian of u.

Proof. By definition of the two point function, we have A =
(

1 u
u 1

)
. To com-

pute B, use

E

(
∂f

∂xj
(x)f(y)

)
=

∂

∂xj
E
(
f(x)f(y)

)
= ∂ju(x− y)

and hence
E
(
f(x)∂jf(y)

)
= ∂ju(y − x) = −∂ju(x− y) .

In particular
E
(
f(x)∇f(x)

)
= �0 .

Therefore

B(z) =
(

�0 −∇u(z)
∇u(z) �0

)

(where �0 denotes the d-dimensional zero row vector).
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To compute C, use (4.1) to find

E
(∇f(x)T∇f(x)

)
=

4π2E

d
Id .

More generally

E
(
∂jf(x)∂kf(y)

)
=

∂2

∂xj∂yk
E
(
f(x)f(y)

)
= − ∂2u

∂xj∂xk
(x− y)

and so

E
(∇f(x)T∇f(y)

)
= −

(
∂2u

∂xj∂xk
(x− y)

)

j,k

= −H(x− y) .

Thus

C =

(
4π2E

d I −H
−H 4π2E

d I

)

as claimed. �

The inverse of Σ (when it exists) is given by

Σ−1 =
(∗ ∗
∗ Ω−1

)

with Ω being the 2d× 2d matrix

Ω = C −BTA−1B .

We will call Ω the reduced covariance matrix. We have

detΣ = detAdetΩ = (1 − u2) detΩ . (5.2)

By Lemma 5.1, we have

Ω =
(

4π2(E/d)I −H
−H 4π2(E/d)I

)
− 1

1 − u2

(
DTD uDTD
uDTD DTD

)
(5.3)

where D(z) = ∇u(z) and H = ( ∂2u
∂xjxk

) is the Hessian of u.

5.2. A formula for the second moment

Proposition 5.2. The second moment of Z(f) is given by

E(Z2) =
∫

Td

K(x)dx (5.4)

where

K(x) =
1√

1 − u2

∫

R2d

‖v1‖‖v2‖
exp

(− 1
2vΩ

−1vT
)

√
detΩ

dv

(2π)d+1
. (5.5)

Denote

Kε1,ε2(x, y) :=
1

4ε1ε2

∫

E
‖∇f(x)‖‖∇f(y)‖χ

(
f(x)
ε1

)
χ

(
f(y)
ε2

)
dμ(f) .

We have the following
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Lemma 5.3. For (x, y) ∈ T
d × T

d with u(x− y)2 = 1

Kε1, ε2(x, y) 
d
E√

1 − u2(x− y)
, (5.6)

where the implied constant depends only on the dimension d.

Proof. Write f(x) = 〈f, U(x)〉, where U(x) is the unit vector

U(x) =
√

2√N
(
cos 2π〈λ, x〉, sin 2π〈λ, x〉)

λ∈Λ/± ∈ SN−1 ,

and where we identify the function f with a vector in R
N via (2.1). Note that

〈U(x), U(y)〉 = u(x− y) is the cosine of the angle between U(x) and U(y).
We have

∇f(x) = DU · f
where the derivative DU is a d×N matrix. Equivalently,

(∇f(x)
)

i
=
〈
f,

(
∂

∂xi
U(x)

)〉
, 1 ≤ i ≤ d .

By the triangle and Cauchy–Schwartz inequalities,

‖∇f(x)‖ ≤
d∑

i=1

‖f‖ ·
∥∥∥∥

(
∂

∂xi
U(x)

)∥∥∥∥ 

√
E‖f‖ ,

by a computation of ∂U
∂xi

. Therefore

Kε1,ε2(x, y) 

E

4ε1ε2

∫

|f(x)|<ε1
|f(y)|<ε2

‖f‖2e−‖f‖2/2df . (5.7)

Consider the plane π ⊂ R
N spanned by U(x) and U(y). The domain of the

integration is all the vectors f ∈ R
N so that the projection of f on π falls into the

parallelogram P of lengths 2ε1 and 2ε2. The cosine of the angle between the sides
of P is 〈U(x), U(y)〉 = u(x− y). Therefore the area of P is

area(P ) = 4ε1ε2
1√

1 − u(x− y)2
.

Write the multiple integral in (5.7) as the iterated integral
∫

P

(∫

p+π⊥
‖f‖2e−‖f‖2/2df

)
dp , (5.8)

where the variable p runs over all the points of the parallelepiped P . The inner
integral in (5.8) is O(1) with the constant depending on d only. Indeed, note that
for every f1 ∈ π⊥,

‖p+ f1‖2e−‖p+f1‖2/2 = (‖p‖2 + ‖f1‖2)e−(‖p‖2+‖f1‖2)/2


 (1 + ‖f1‖2) · e−‖f1‖2/2 ,
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since ‖p‖2e−‖p‖2/2 is bounded. Our claim follows from convergence of the integral∫
RN−2(1 + ‖w‖2)e−‖w‖2/2dw. Therefore

∫

|f(x)|<ε1
|f(y)|<ε2

‖f‖2e−‖f‖2/2df 
 area(P ) 
 ε1ε2
1√

1 − u(x− y)2
.

Substituting the last estimate into (5.7) proves (5.6). �

Proof of Proposition 5.2. By Corollary 3.4, we have

E(Z2) =
∫

E

[
lim

ε1,ε2→0

1
2ε1

∫

Td

‖∇f(x)‖χ
(
f(x)
ε1

)
dx

1
2ε2

∫

Td

‖∇f(y)‖χ
(
f(y)
ε2

)
dy

]
dμ(f)

where μ is the Gaussian measure dμ(f) = e−‖f‖2/2 df
(2π)N/2 . We wish to change the

order of the limit and the integration. To do so, we notice that by Lemma 3.2, the
integrand is bounded by O(E). Therefore, the change of order follows from the
dominated convergence theorem. Thus the integral equals

lim
ε1,ε2→0

1
4ε1ε2

∫

E

∫

(Td)2
‖∇f(x)‖‖∇f(y)‖χ

(
f(x)
ε1

)
χ

(
f(y)
ε2

)
dxdydμ(f) .

Using Fubini’s theorem, this equals to

lim
ε1,ε2→0

1
4ε1ε2

∫

(Td)2

∫

E
‖∇f(x)‖‖∇f(y)‖χ

(
f(x)
ε1

)
χ

(
f(y)
ε2

)
dμ(f)dxdy . (5.9)

Now we wish to exchange the order of taking limit and the integration over
(Td)2. To justify it, we use the dominated convergence theorem with Lemma 5.3.
The upper bound for u(x) = ±u(y) is sufficient, since this happens for almost
all (x, y) ∈ (Td)2, and changing the values of a function on a set of measure 0
does not have any impact on the integrability and the value of the integral of a
function. The convergence of the RHS of (5.6) was shown in [11]. Therefore, we
may exchange the order of the limit and the integral in (5.9) to obtain

E(Z2) =
∫

Td×Td

K(x, y)dxdy, (5.10)

where

K(x, y) = lim
ε1,ε2→0

Kε1,ε2(x, y) .

We will replace the vector (f(x), f(y),∇f(x),∇f(y)) with a 2d + 2 dimen-
sional Gaussian vector with covariance matrix Σ(x, y) = Σ(x− y) defined in (5.1).
The proof that for almost all x, y this is indeed a 2d + 2 dimensional process, is
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relegated to Proposition A.1 in the appendix. This gives

Kε1,ε2(x, y)

=
1

4ε1ε2

∫

R2d+2
‖v1‖‖v2‖χ

(
w1

ε1

)
χ

(
w2

ε2

)
e−(v, w)Σ−1(v, w)T /2 dvdw√

detΣ(2π)d+1

=
1

4ε1ε2

∫ ε1

−ε1

∫ ε2

−ε2

∫

R2d

‖v1‖‖v2‖e−(v, w)Σ−1(v, w)T /2 dvdw√
detΣ(2π)d+1

. (5.11)

We therefore have

K(x, y)

= lim
ε1,ε2→0

1
4ε1ε2

∫ ε1

−ε1

∫ ε2

−ε2

∫

R2d

‖v1‖‖v2‖e−(v, w)Σ−1(v, w)T /2 dvdw√
detΣ(2π)d+1

.

Since the last integrand is continuous, we may use the fundamental theorem of
the calculus to replace the averaging over w1, w2 by the value at w1 = w2 = 0, to
obtain

K(x, y) =
∫

R2d

‖v1‖‖v2‖e−(v,	0)Σ−1(v,	0)T /2 dvdw√
detΣ(2π)d+1

.

We have

Σ−1 =
(∗ ∗
∗ Ω−1

)

with Ω = C −BTA−1B being the reduced covariance matrix, which we computed
in (5.3). Together with (5.2) we find

K(x, y) =
1√

1 − u2

∫

R2d

|v1||v2|
exp

(− 1
2vΩ

−1vT
)

√
detΩ

dv

(2π)d+1
.

Finally, we get Proposition 5.2 by noticing that K(x, y) = K(x − y), and
therefore the (double) integral in (5.10) may be expressed as a single integral. �

In the course of the proof we saw that K(x, y) = limε1,ε2→0Kε1,ε2(x) . There-
fore, taking the limit ε1, ε2 → 0 and using Lemma 5.3 we obtain

Corollary 5.4. If u(x)2 = 1 then

K(x) 
 E√
1 − u(x)2

.

6. A bound for the variance

In this section we prove:

Theorem 6.1. For d ≥ 2,

Var(Z) = O

(
E√N

)
.
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6.1. Plan of the proof

We use the integral formula (5.4) for the second moment of Z(f), that is E(Z2) =∫
Td K(z)dz, with

K(z) =
1√

1 − u2

∫

R2d

‖v1‖‖v2‖
exp

(− 1
2vΩ

−1vT
)

√
detΩ

dv

(2π)d+1
.

As in [11], we will define a notion of “singular points” in T
d where the factor

1/
√

1 − u2 is large, and treat separately the singular and nonsingular points. The
singular set is shown to give a contribution of O(E/N ). On the nonsingular set,
the factor 1/

√
1 − u2 may, up to an admissible error, safely be replaced by 1. To

treat the Gaussian integral, we write

Ω(z) =
4π2E

d

(
I − S(z)

)

and recover the square of the expected value E(Z)2 from the contribution of the
identity matrix I; the rest is then the key quantity for bounding the variance.
Setting σ(z) to be the spectral norm of S(z), we show that that variance is bounded
by E(

∫
Td σ(z)dz + O(1/N )). Now σ(z) is at most

√
tr(S(z)2), whose integral we

need to bound. We do this by using Cauchy–Schwartz, which allows us to bound
it by (

∫
Td tr(S(z)2)dz)1/2 
 1/

√N . Hence the variance is Var(Z) 
 E/
√N . It

should be possible to improve this to O(E/N ).

6.2. The singular set

We give the definition of [11] for singular points:

Definition 6.2. A point x ∈ T
d is a positive singular point if there is a set of

frequencies Λx ⊂ Λ with density |Λx|
|Λ| > 1 − 1

4d for which cos 2π〈λ, x〉 > 3/4 for all
λ ∈ Λx. Similarly we define a negative singular point to be a point x where there
is a set Λ̃x ⊂ Λ of density > 1 − 1

4d for which cos 2π〈λ, x〉 < −3/4 for all λ ∈ Λ̃x.

Let M ≈ √
E be a large integer. We decompose the torus T

d = R
d/Zd as a

disjoint union (with boundary overlaps) of Md closed cubes I	k of side length 1/M
centered at �k/M , �k ∈ Z

d.

Definition 6.3. A cube I	k is a positive (resp. negative) singular cube if it contains
a positive (resp. negative) singular point.

Definition 6.4. The singular set B is the union of all singular cubes.

In [11], we showed that the measure of the singular set is bounded by

meas(B) 

∫

Td

u(x)4dx
 1
N (6.1)

(and except in dimensions d = 3, 4 this is o(1/N )).
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In order to bound the contribution of the singular set to the integral in (5.4),
we use Corollary 5.4. It was shown in [11] (see (6.3)) that

∫

B

dx√
1 − u(x)2



∫

Td

u(x)4dx
 1
N . (6.2)

Therefore we obtain:

Corollary 6.5. The contribution of the singular set is bounded by
∫

B

K(x)dx
 E

∫

Td

u(x)4dx
 E

N .

6.3. The nonsingular set

We now want to estimate the contribution of the nonsingular set to the inte-
gral formula of Proposition 5.2 for the second moment of Z. Recall that it reads
E(Z2) =

∫
Td K(z)dz with the kernel K(z) given by (5.5), that is

K(z) =
1√

1 − u(z)2

∫

R2d

‖v1‖‖v2‖
exp

(− 1
2vΩ(z)−1vT

)
√

det Ω(z)
dv

(2π)d+1
.

A consequence of the definition of singular points is that on the nonsingular
set, u is bounded away from ±1. In [11, Lemma 6.5] we showed that if x ∈ T

d is
nonsingular then

|u(x)| < 1 − 1
16d

.

As a consequence, on the nonsingular set, we may expand
1√

1 − u2
= 1 +O(u2) ,

where the implied constant depends only on d.
We now wish to handle the “reduced covariance matrix” Ω of (5.3) on the

nonsingular set. We write Ω = (4π2E/d) · Ω1 and Ω1 = I − S, where

S =
d

4π2E

1
1 − u2

(
DTD (1 − u2)H + uDTD

(1 − u2)H + uDTD DTD

)
(6.3)

Note that since outside a set of measure zero, Ω1 � 0 is positive definite, we have
S 
 I in the sense that all eigenvalues of S are in (−∞, 1). Let σ be the spectral
norm of S, so that denoting the eigenvalues of S by α1, . . . , α2d,

σ = max
1≤j≤2d

|αj | .

We give a bound on the mean and the mean-square of σ on the complement Bc of
the singular set.

Lemma 6.6. ∫

Bc

σ2dx
 1
N (6.4)
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and ∫

Bc

σdx
 1√N . (6.5)

Proof. The bound (6.5) follows from (6.4) by applying Cauchy–Schwartz, so it
suffices to prove (6.4). We have σ2 ≤ ∑

α2
j = tr(S2), and so it suffices to show

∫

Bc

tr(S2)dx
 1
N . (6.6)

On the nonsingular set, the expression 1
1−u2 is bounded, and hence for pur-

poses of upper bounds may be ignored. The entries of S2 on the nonsingular set
are thus bounded by sums of the following expressions :

1
E2

∂2u

∂xi∂xj

∂2u

∂xk∂x

,

1
E2

∂2u

∂xi∂xj

∂u

∂xk

∂u

∂x

,

1
E2

∂u

∂xi

∂u

∂xj

∂u

∂xk

∂u

∂x


and it suffices to show that the integral of each over all of T
d is O(1/N ).

By applying Cauchy–Schwartz, it suffices to show
∫

Td

(
∂2u

∂xi∂xj

)2

dx
 E2

N and
∫

Td

(
∂u

∂xk

)4

dx
 E2

N .

We have
∂2u

∂xi∂xj
=

−8π2

N
∑

λ∈Λ/±
λjλk cos 2π〈λ, x〉

and hence
∫

Td

(
∂2u

∂xi∂xj

)2

dx =
(

8π2

N
)2 ∑

λ,μ∈Λ/±
λiλjμiμj

1
2
δ(λ, μ)


 1
N 2

∑

λ∈Λ

λ2
i λ

2
j 
 E2

N
since λ2

j ≤ |λ|2 = E.
To bound

∫
Td( ∂r

∂xk
)4dx, we write

∂u

∂xk
=

−4π
N

∑

λ∈Λ/±
λk sin 2π〈λ, x〉 ,

and as above, we have
∫

Td

(
∂u

∂xk

)4

dx
 1
N 4

∑

λ1,...,λ4∈Λ/±
λ1±λ2±λ3±λ4=0

λ1
k · λ2

k · λ3
k · λ4

k 
 E2

N ,

since λ1, λ2, λ3 determine λ4 once we decree that λ1 ± λ2 ± λ3 ± λ4 = 0, and
|λi

k| 

√
E. �
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6.4. Concluding the proof of Theorem 6.1

Since Ω1 = Ω · d/(4π2E) is symmetric and positive definite (away from a set of
measure zero), it has a positive definite square root P1 = PT

1 � 0, Ω1 = P 2
1 . By

Proposition 5.2

K(x) =
1√

1 − u2

∫

R2d

|�v1||�v2|
exp

(− 1
2�vΩ

−1�vT
)

√
detΩ

d�v

(2π)d+1

=
4π2E

d

1√
1 − u2

∫

R2d

|�(zP1)1||(�zP1)2|e−|	z|2/2 d�z

(2π)d+1

on using the change of variables �v = 2π
√

E√
d

· �z · P1.
We claim that

P1 = I
(
1 +O(σ)

)
.

Indeed, if S = UDUT , U orthogonal and D = diag(α1, . . . , α2d) then P1 = U(I −
D)1/2UT and using the inequality |√1 − α− 1| < |α| for −∞ < α < 1, gives

(I −D)1/2 = I +O

⎛

⎜⎝

⎛

⎜⎝
|α1|

. . .
|α2d|

⎞

⎟⎠

⎞

⎟⎠ = I
(
1 +O(σ)

)
.

Thus we may write zP1 = z (1 +O(σ)).
On the nonsingular set, we may expand

1√
1 − u2

= 1 +O(u2)

and so we find that on the nonsingular set

K(x) =
4π2E

d

∫

R2d

|�z1||�z2|e−|	z|2/2
(
1 +O(u2)

) (
1 +O(σ)

)2 d�z

(2π)d+1

= E(Z)2
(
1 +O(u2) +O(σ) +O(σ2)

)
.

Integrating over the nonsingular set, and using
∫

Bc

1 = 1 +O
(
meas(B)

)

we find ∫
Bc K(x)dx

E(Z2)
= 1 +O

(∫

Bc

(u2 + σ + σ2)dx
)

+O
(
meas(B)

)
.

Now
∫

Td u(x)2dx = 1/N , and by Lemma 6.6
∫

Bc

σ2dx
 1
N ,

∫

Bc

σdx
 1√N .

Furthermore, by (6.1),

meas(B) 

∫

Td

u4dx
 1
N ,
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so that we find ∫

Bc

K(x)dx = E(Z2)
(

1 +O

(
1√N

))
.

By Corollary 6.5, the singular set contributes at most
∫

B

K(x)dx
 E

N .

Therefore we find

E(Z2) = E(Z)2 +O

(
E√N

)
,

that is

Var(Z) 
 E√N .

Thus we have concluded the proof of Theorem 6.1. �

Appendix A. The non-degeneracy of the covariance matrix

In this appendix we show that the covariance matrix defined by (4.1) is nonsingular
for almost all (x, y) ∈ (Td)2, thereby justifying the change of variables (5.11).

Proposition A.1. Assume that N �d 1 and d ≥ 2. Then for almost all (x, y) ∈
T

d × T
d the linear map E → R

2d+2 defined by

f �→ (
f(x), f(y), ∇f(x), ∇f(y)

)
,

is surjective.

We want to show that for almost all pairs (x, y) ∈ T
d × T

d, the only vector
(α, β, �C, �D) ∈ R

2d+2 satisfying

αf(x) + βf(y) +
1
2π

〈
C,∇f(x)

〉
+

1
2π

〈
D,∇f(y)

〉
= 0 , ∀f ∈ E

is the zero vector. Taking f(x) = e2πi〈λ,x〉, λ ∈ Λ gives

αe2πi〈λ,x〉 + βe2πi〈λ,y〉 + ie2πi〈λ,x〉〈C, λ〉 + ie2πi〈λ,y〉〈D,λ〉 = 0 , ∀λ ∈ Λ

or setting z = y − x,

α+ i〈C, λ〉 = −e2πi〈λ,z〉(β + i〈D,λ〉), ∀λ ∈ Λ .

Thus we are reduced to proving the following:

Lemma A.2. Assume that N �d 1 and d ≥ 2. Then for almost all z, the only
solution for the equation

α+ i〈C, λ〉 = −e2πi〈λ,z〉(β + i〈D,λ〉) , ∀λ ∈ Λ , (A.1)

is α = β = 0, C = D = �0.
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Proof. We divide the work into two steps: In the first step, we show that for all
z ∈ T

d, the solutions of (A.1) satisfy β = ±α and D = ±C. In the second step, we
take β = ±α and D = ±C and show that for almost all z ∈ T

d, the only solutions
of (A.1) are α = 0 and C = �0.

Step 1: We first show that for all z ∈ T
d, all solutions of (A.1) satisfy β = ±α and

D = ±C.
Taking squared norms of both sides of (A.1), we get

α2 + 〈C, λ〉2 = β2 + 〈D, λ〉2, ∀λ ∈ Λ

or
〈C, λ〉2 − 〈D, λ〉2 = β2 − α2, ∀λ ∈ Λ .

Setting A = C −D = (a1, a2, . . . ) and B = C +D = (b1, b2, . . . ), we have

〈A, λ〉 · 〈B, λ〉 = β2 − α2, ∀λ ∈ Λ (A.2)

and it suffices to see that A = �0 or B = �0.
If N �d 1, then there is some λ ∈ Λ with two nonzero coordinates, say

λ1λ2 = 0 (by applying a permutation of the coordinates to λ we may replace 1
and 2 by any pair of distinct indices). For each ε ∈ {±1}d, replace λ in (A.2) by

λε := (ε1λ1, ε2λ2, . . . , εdλd) ,

multiply the result by
χ1,2(ε) = ε1ε2

and sum the resulting equalities over all ε ∈ {±1}d, using
∑

ε∈{±1}d

χ1,2(ε) = 0

to get ∑

ε∈{±1}d

χ1,2(ε)〈A, λε〉 · 〈B, λε〉 = 0 .

Expanding

〈A, λε〉 · 〈B, λε〉 =
d∑

j,k=1

εjεkajbkλjλk

and using
∑

ε∈{±1}d

χ1,2(ε)εjεk =

{
2d, (j, k) = (1, 2) or (2, 1)
0 otherwise

we get
2dλ1λ2(a1b2 + a2b1) = 0

and since we assume λ1λ2 = 0, we find a1b2 + a1b2 = 0. Repeating the argument
with any pair of distinct indices finally shows that

aibj + ajbi = 0 , ∀i = j . (A.3)
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If A = �0, say a1 = 0, then we find that

bj = − b1
a1
aj , ∀j = 1 . (A.4)

Thus if b1 = 0 then all bj = 0, that is B = �0 and we are done. Therefore we may
assume that b1 = 0 (and we have also assumed a1 = 0). We will show this cannot
happen.

If d > 2, we substitute (A.4) in (A.3) with any i = 1, j = 1 to get

2
b1
a1
aiaj = 0

that is since b1 = 0, that

aiaj = 0 , ∀i = j , i, j = 1 .

Thus there is at most one index k = 1 with ak = 0, say k = 2, so we find that
aj = 0 for j = 1, 2, and by (A.4) we therefore have bj = 0 for j = 1, 2. Thus

A = (a1, a2,�0) , B =
b1
a1

(
a1,−a2,�0

)

(if d = 2 this still holds, we just ignore the extra coordinates).
Plugging this into (A.2) with λ so that λ1 = ±λ2 (which exists if N �d 1)

gives
(a1λ1)2 − (a2λ2)2 =

a1

b1
(β2 − α2) (A.5)

and replacing λ = (λ1, λ2, . . . ) with (λ2, λ1, . . . ) gives

(a1λ2)2 − (a2λ1)2 =
a1

b1
(β2 − α2) . (A.6)

Comparing (A.5) with (A.6) gives

(a1λ1)2 − (a2λ2)2 = (a1λ2)2 − (a2λ1)2

that is
(λ2

1 − λ2
2)(a

2
1 + a2

2) = 0 .
Since we chose λ2 = ±λ1 this gives a1 = a2 = 0, contradicting a1 = 0. Thus we
are done with step 1.

Step 2: We take C = ±D and α = ±β in (A.1) and wish to show that for almost
all z ∈ T

d, the only solutions are α = 0 and C = �0. If either (α = β and C = D)
or (α = −β and C = −D), then (A.1) gives e2πi〈z,λ〉 = −1 which is a measure
zero condition.

Otherwise, assume α = β and C = −D (the other case is treated similarly).
Here we have

α+ i〈C, λ〉 = −e2πi〈λ,z〉(α− i〈C, λ〉) . (A.7)
If α = 0 and C = 0 then there is some λ ∈ Λ so that 〈C, λ〉 = 0 and (A.7) forces
e2πi〈z,λ〉 = 1, that is z lies on one of the hyperplanes

∪λ∈Λ

{
z : 〈λ, z〉 = 0 mod 1

}
,

which is a measure zero condition.
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If α = 0, we replace C by − 1
αC and α by 1 and drop the negative sign.

Taking the real part of (A.7), we have

1 + cos 2π〈λ, z〉 = 〈C, λ〉 sin 2π〈λ, z〉 .
We may assume that the sine on the RHS doesn’t vanish, since sin 2π〈λ, z〉 = 0 is
a measure zero condition. Therefore, we may divide to get

〈C, λ〉 =
1 + cos 2π〈λ, z〉

sin 2π〈λ, z〉 = cotπ〈λ, z〉 .

Now square and average the result over an orbit O ⊂ Λ of the group Wd of
all permutations and sign changes of the coordinates. The LHS gives

1
|O|

∑

λ∈O
〈C, λ〉2 =

E

d
|C|2

by (2.3), which is independent of the orbit chosen. The RHS gives

1
|O|

∑

λ∈O
cot2 π〈λ, z〉 = 1 +

1
O

∑

λ∈O

1
(
sinπ〈λ, z〉)2

that is we find
E

d
|C|2 − 1 =

1
|O|

∑

λ∈O

1
(
sinπ〈λ, z〉)2

.

Since 1/(sinπ〈λ, z〉)2 is even, we get the same term for λ and −λ and so we may
replace the average over O by the average over O/± where we have taken only
one of λ,−λ. Thus

E

d
|C|2 − 1 =

1
|O/± |

∑

λ∈O/±

1
(
sinπ〈λ, z〉)2

. (A.8)

Assuming that N > |Wd| = 2dd!, we can find a different orbit O′ ⊂ Λ and
then comparing with (A.8) gives

1
|O/ ± |

∑

λ∈O/±

1
(
sinπ〈λ, z〉)2

=
1

|O′/± |
∑

λ∈O′/±

1
(
sinπ〈λ, z〉)2

(A.9)

that is we have eliminated the variable C.
We claim that (A.9) forces the point z to lie on a measure zero subset of T

d.
Indeed, the functions involved are meromorphic in C

d/Zd and hence if (A.9) does
not hold for all z, it can only hold on a complex submanifold of codimension (at
least) one and in particular its real points will have codimension at least one in T

d.
But near the origin z = 0, each of the functions 1/(sinπ〈λ, z〉)2 has singularities
on the hyperplane 〈z, λ〉 = 0 and these hyperplanes are distinct for λ’s which are
not collinear (here the condition d ≥ 2 comes in), as is the case for those appearing
in (A.9). Thus these functions are linearly independent and so (A.9) is not valid
for all z. �
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