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We study the calculation of the volume of the polytope Bn of
n�n doubly stochastic matrices (real nonnegative matrices with
row and column sums equal to one). We describe two methods.
The first involves a decomposition of the polytope into simplices.
The second involves the enumeration of “magic squares”, that is,
n� n nonnegative integer matrices whose rows and columns all
sum to the same integer.

We have used the first method to confirm the previously known
values through n = 7. This method can also be used to compute
the volumes of faces of Bn. For example, we have observed that
the volume of a particular face of Bn appears to be a product of
Catalan numbers. We have used the second method to find the
volume for n = 8, which we believe was not previously known.

1. INTRODUCTION

We study the calculation of the volume of the poly�
tope Bn of n � n doubly stochastic matrices� that
is� the set of real nonnegative matrices with all row
and column sums equal to one� This polytope is
sometimes known as the Birkho� polytope or the
assignment polytope� We will describe and evaluate
two methods for computing the volume of Bn�
In the �rst method we decompose Bn into a dis�

joint union of simplices all of the same volume and
count the simplices� The fact that this can be done
appears in �Stanley 	
��� This method applies to
any face of Bn as well�
In the second method we count the number of

n�n nonnegative integer matrices with all row and
column sums equal to t �sometimes called magic
squares� for suitable values of t� These numbers
allow us to compute the Ehrhart polynomial of Bn�
which �essentially� has the volume of Bn as its lead�
ing coe�cient� It appears that this has been the
most common method of computing the volume of
Bn� Sturmfels �	

� reports on other work in which
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the volume of Bn has been computed for n up to ��
We have also used this method to compute the vol�
ume when n � ��
This article is largely expository� since the two

methods are not new� However� the details about
how we carry out these methods may be of interest�
We are not aware of any reports of others who have
carried out the simplicial decomposition method�
As a byproduct of our program for carrying out

the simplicial decomposition method� we are easily
able to compute the volume of any face �of any di�
mension� of Bn provided that n is not too large�
This allowed us to discover that a certain special
face of Bn has a volume which appears to be given
by a simple product formula� This formula is given
in Conjecture 	�
Our study resulted from a question posed by Vic�

tor Miller �private communication�� asking how one
could generate a doubly stochastic matrix uniformly
at random� It is not hard to see that it would be
easy to generate a random doubly stochastic matrix
if one could easily calculate the volume of any face
of Bn� However the method described here for cal�
culating face volumes is practical only for small n�
In what follows we will make use of some well

known properties of the face structure of Bn� the
vertices of Bn are precisely the n� n � n permuta�
tion matrices� on the other hand� for each pair �i� j�
with 	 � i� j � n� the doubly stochastic matrices
with �i� j� entry equal to � form a facet �maximal
proper face� of Bn and all facets arise in this way�
See �Billera and Sarangarajan 	

� for further prop�
erties and references�
In general� it is convenient to identify the faces

of Bn with certain n� n matrices of ��s and 	�s� as
follows�
First we identify a ��	 matrix with the set of en�

tries in the matrix that are 	�s� Thus� for two ��	
matrices A and B of the same size� we can de�ne
their union A � B as the ��	 matrix whose set of
	�s is the union of the sets of 	�s of A and B� For
example��
� 	 � �
� 	 �
� � 	

�
A �

�
� � 	 �
	 � �
� � 	

�
A �

�
� 	 	 �
	 	 �
� � 	

�
A �

Similarly we can speak of one ��	 matrix containing
another and so forth�

Now to each face F of Bn� we associate the matrix
M which is the union of the vertices �permutation
matrices� in F � The facets of Bn containing F are
precisely those associated with the zero entries of
M � Since any face is the intersection of the facets
containing it� any permutation matrix contained in
M must be a vertex of F � Thus the vertices of F are
precisely the permutation matrices contained in M �
so we can recover F fromM � In this way we identify
the faces of Bn with the set of ��	 matrices which
are unions of permutation matrices� Not every ��
	 matrix corresponds to a face of Bn� for example�
�
�
�
�

�
is not a union of permutation matrices� hence

not a face of B��

2. VOLUME

It is easy to see that the dimension of Bn is �n�	���
Strictly speaking� the volume we wish to compute
is the �n� 	���volume of Bn regarded as a subset of
n��dimensional Euclidean space� Thus� for example�
the polytope B� consists of the line segment joining
the matrices

�
�
�
�
�

�
and

�
�
�
�
�

�
� hence its volume is ��

An n� n doubly stochastic matrix is determined
by its upper left �n�	���n�	� submatrix� The set
of �n�	�� �n�	� matrices obtained this way is the
set An of all nonnegative �n� 	�� �n� 	� matrices
with row and column sums � 	 such that the sum
of all the entries is at least n � �� This is a�nely
isomorphic to Bn� In the Appendix we show that
the ratio of the volume of Bn to the volume of An�
regarded as a subset of Euclidean �n � 	�� space�
is nn��� In some ways the volume of An is easier
to understand since its dimension is equal to the
dimension of its ambient space�
James Maiorana �private communication� and per�

haps others have noted a Monte Carlo method for
approximating the volume of An� Consider the set
Cn of �n � 	� � �n � 	� nonnegative matrices with
row sums at most 	 �no restriction on column sums��
This is the Cartesian product of n � 	 unit sim�
plices in Euclidean �n�	��space� so its volume is
	��n � 	��n��� It is easy to choose points in Cn

uniformly at random� The probability �n that such
a point is in An is the ratio of the volume of An to
that of Cn� Thus we can run Monte Carlo trials to
estimate �n and hence the volume of An�
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For large n� this Monte Carlo method is imprac�
tical since �n is too small� However� it is useful for
checking computations for small n� A lower bound
for �n is given by Bona �	

��
There is a more natural unit for the volume of

Bn and its faces� This is based on the fact that the
vertices of Bn are integer matrices� Suppose that F
is a d�dimensional face of Bn� Since its vertices have
integer coordinates� the integer points in the a�ne
span of F comprise a d�dimensional a�ne lattice
L� Given such a lattice there is a minimum volume
of any d�simplex with vertices in L� Lattice points
w�� � � � � wd are the vertices of one of these minimum
volume simplices if and only if every point of L is
uniquely expressible in the form

dX
i��

kiwi�

where the ki�s are integers whose sum is 	� The
relative volume of a face F is the volume of F ex�
pressed in units equal to the volume of a minimal
simplex in L� The relative volume of a face is the
same whether regarded as a face of Bn or as a face
of An� since the mapping from Bn to An �by taking
the upper left �n � 	� � �n � 	� minor� preserves
integrality of points�
Here are the currently known relative volumes�

B� � B� � 	� B� � �� B� � ����

B� � ��	����� B� � 	������	���	���

B	 � 	���������������	
������

B
 � 	��	����
����
��������

��	���
��	��

To convert relative volumes to true volumes� we
must know the volume of a minimal simplex of An�
But the a�ne span of An is all of �n�	���dimen�

sional space� Hence the volume of a minimal simplex
in An is 	���n�	����� and the volume of a minimal
simplex in Bn is nn�����n�	�����

3. TRIANGULATIONS

We call the �rst method for computing the volume of
Bn the triangulation method� The method applies
to the calculation of the volume of any polytope�
The essence is that we decompose the polytope into
simplices and sum the volumes of the simplices�

For Bn we have used a standard method of de�
composing a polytope P into simplices� See �Stan�
ley 	
��� for example� To decompose P into sim�
plices� we choose an arbitrary vertex v and form
the collection of facets of P opposite v �facets of P
not containing v�� We then recursively triangulate
each facet� The triangulation of P is then formed
by adding our chosen vertex to each simplex in the
triangulation of each of the facets�
The standard triangulations of Bn and its faces

have an unusual property� given in �Stanley 	
���
for which we provide a self�contained proof below�

Proposition 1. In any standard triangulation of a face
F of Bn� every simplex has minimal volume in the
a�ne lattice determined by F �

Proof. Let F be a d�dimensional face of Bn� v� any
vertex in F � and G a facet of F opposite v�� Suppose
that a simplex in a standard triangulation of G has
vertices v�� v�� � � � � vd� We need to prove that the set
of integer points of the a�ne space determined by

F is the same as the set of points
Pd

i�� kivi� where
the ki are integers whose sum is 	�
Of course all the integer combinations are in the

a�ne span� The question is whether there are any
other points�
Any integral point of the a�ne span can be ex�

pressed uniquely in the form
Pd

i�� rivi� where the
ri�s are real numbers with sum 	�
Since v� is not in the face G� there is a facet of

Bn containing G but not v�� Thus v� must have at
least one entry equal to 	 in the same position where
all vi� i � 	� have zeroes� Thus� in the hypothetical
combination above� r� must be an integer� If we
add r��v��v�� to the combination above� we obtain
another integral point in the a�ne span of G� It
follows� using induction� that r� � r�� and r�� � � � � rd
are integers and therefore all the r�s are integers� as
desired� �

As a corollary� in any standard triangulation of a
face of the Bn� the number of simplices in the trian�
gulation is equal to the relative volume�
We also obtain an important computational prin�

ciple� Given a face F of Bn and a vertex v of F �
the relative volume of F is the sum of the relative
volumes of facets of F opposite v�
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4. THE TRIANGULATION METHOD FOR Bn

We now describe the triangulation method for com�
puting the volume of Bn� This is simply an elabo�
ration of the principle that the relative volume of a
face is the sum of the relative volumes of the facets
opposite any vertex�
We apply this principle recursively� To get started

we use the fact that the relative volume of any zero�
dimensional face of Bn is 	�
In the most naive plan we calculate the relative

volumes of all faces� We �rst produce a list of all
faces of each dimension� For dimension �� we know
all the relative volumes are 	� Then� for each face
F of dimension d we select a vertex and �nd the
opposite facets �of dimension d � 	�� Assuming re�
cursively that their relative volumes have already
been computed� we now �nd the relative volume of
F by summing the relative volumes of the facets�
There are two serious drawbacks to the naive plan�
Perhaps the most pressing problem is that we

need to compute the volumes of an extremely large
number of faces� since quite a few of the �n

�

possible
��	 matrices are actually faces of Bn� Here we have
recourse to a single important trick� If we permute
the rows and columns of the matrix representing a
face� we obtain the matrix of another face with the
same volume� Also if we transpose a matrix repre�
senting a face� we obtain another face of the same
volume� We regard matrices which can be obtained
from each other by these operations as equivalent�
We can cut down on the cost of our algorithm if we
compute the volume only for a single �canonical�
face in each equivalence class�
The next most di�cult problem is to produce the

lists of faces� The most practical method that we
found for producing faces is to start with the sin�
gle �n� 	���dimensional face� Bn itself� and succes�
sively produce faces of lower dimension by intersect�
ing with a facet of Bn� While producing the faces we
save the subface information so that we can look up
the volumes when we are done� Unfortunately we
need to construct a very large partially ordered set
of faces before we can calculate any volumes since
the only volumes we know are those of the zero�
dimensional faces� While the cost in memory is not
so bad for n less than �� when we reach n � �� we
seem to need about ��� gigabytes of intermediate

storage� If the memory were available� the compu�
tation of the volumes would be relatively easy� In
fact we are able to carry out a substantial fraction
of the work before running out of memory�
There are two phases to our algorithm� In the

�rst we construct a collection of faces together with
information about which ones are facets of which
others� In particular� we successively compute� for
d � �n � 	��� �n � 	�� � 	� � � � � �� a collection Fd

of d�dimensional faces of Bn� We begin by setting
F�n���� � fBng� the set consisting of just the all 	�s
matrix representing Bn itself�
Given Fd we produce Fd�� as follows� Start with

Fd�� � �� For each face F � Fd we select a ver�
tex v � F � We then �nd the facets of F opposite
v� canonicalize these faces� and add them to Fd���
Having done this for all F � Fd� we sort Fd�� and re�
move the duplicates� Then� for each face f � Fd���
we save a list of pointers to the faces in Fd from
which f arose� �Equivalent faces can appear sev�
eral times as opposite faces of the same face� When
this happens� we include the pointer in the list of
pointers multiple times��
This completes the �rst phase� In the second

phase we start with F� and work up to higher di�
mensions� calculating the relative volume of every
saved face until we obtain the volume of Bn itself�
This is quite fast� requiring just one addition for
each saved pointer�
Once the pointers are constructed we do not need

the faces themselves� unless we want to know which
face has each of the intermediate volumes we are
computing�
For larger values of n� the accumulators used for

calculating the volumes will over�ow� But we can
get around this problem by using multiple precision
arithmetic or by performing the volume calculation
several times modulo various primes and combining
the results with the Chinese Remainder Theorem�
The main computational work of our algorithm

takes place in three steps�

1. for each face F � Fd� �nd a vertex v � F �
2. determine the facets of F opposite v�
3. put these opposite facets into canonical form�

We now describe how each of these steps is done�
One important decision is the data structure for

storing faces� We identify each face with the ��	
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matrix which is the union of its vertices �regarded as
permutation matrices�� For n � � it is convenient to
represent each face as n� bits of a single word� where
the words of a ����bit� computer are regarded as ���
long arrays of bits�
In Step 	 we are given a face f represented by

a ��	 matrix and we are looking for a permutation
matrix � contained in f � This could be done with
the assignment algorithm or one of the methods for
�nding maximum matchings� but for the small val�
ues of n that we were using� it was quicker to use a
backtracking search method� as follows� The matrix
f has at least one 	 in its �rst row� We guess one
of these as the location of the 	 in the �rst row of
�� We then guess the location of the 	 in the second
row of �� bearing in mind that it cannot be in the
same column as the 	 in the �rst row� We continue
this way searching for the location of the 	 in sub�
sequent rows� We backtrack if we reach a row in
which there are no feasible choices�
Now we consider Step �� Given a face f and a

vertex � we need to �nd the facets of f opposite ��
For a moment let us ignore � and consider the

general problem of constructing the facets of f � The
main principle is that each facet of f can be obtained
by intersecting f with a facet of Bn that does not
contain f � Consider the facet corresponding to the
pair �i� j�� The facet does not contain f if fij � 	�
To intersect f with this facet we start by replacing
fij with �� obtaining a ��	 matrix g� The face which
is the intersection of f with the facet �i� j� is then the
largest face h contained in g� The matrix h� which
is the union of the permutation matrices contained
in g� can be strictly contained in g� Given one of
the 	�s in g� to test whether it is in h� we search
for a permutation matrix in g which uses the 	 in
question� This can be done with our backtracking
search algorithm� The 	 in question is in h precisely
when this search succeeds� When the position of a
	 in g is zero in h we say it is forced to zero�
For example� if n � � and f is the three�dimen�

sional face with matrix�
� � 	 	
	 	 	
	 	 	

�
A �

the intersection of f with the facet corresponding to
the middle entry of the top row is one�dimensional�

with matrix �
� � � 	
	 	 �
	 	 �

�
A �

In this example two zeroes in the last column are
forced� This example also shows that although every
facet of f is the intersection of f with a facet of Bn�
the converse is not true and the dimension of the
intersection can be too small to be a facet of f �
There are some additional simpli�cations when

we search for the facets of f opposite a given vertex
� of f � If g is a facet of f not containing �� then
g must contain a � in place of one of the 	�s of ��
Thus there are at most n facets of f opposite ��
Observe that if g is a facet of f not containing ��
then g � � is a union of permutation matrices and
therefore a face of Bn containing g and �� Thus
g � � � f � This implies an important and helpful
principle� When we introduce a � at a 	 of � and this
results in a facet of f � then the only other positions
that might be forced to zero are those of the other
	�s of �� Thus we can loop through the n 	�s of �
one at a time and� for each of these� introduce a
� and determine what other 	�s of � are forced to
be � and produce accordingly a matrix� which we
call a candidate� We obtain a set of n candidates
among which all the facets opposite � must occur�
�This list can have duplicates which we remove��
Of these candidates the facets are those which are
maximal under inclusion� Indeed� it is clear that
every candidate contains a face that has the same
intersection with �� But this face is contained in
a facet which has an intersection with � that is at
least as large� Thus every candidate is contained in
at least one facet� and the facets are precisely the
maximal candidates�
Finally we describe Step �� which we call �canon�

icalization��
The most straightforward way to choose a canon�

ical form for a face f is to apply every element of
our group of symmetries to f and choose the image
of f with the least value �where the bit pattern f
is regarded as an integer�� But this is prohibitively
slow�
Instead we make use of certain special functions�

which we call scores� which assign integers to every
row and column of a ��	 matrix� The scores have the
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special property that when rows are permuted� the
row scores are permuted the same way leaving the
column scores unchanged� whereas� when columns
are permuted� the column scores are permuted the
same way leaving the row scores unchanged� An
example of an allowable score is to assign to each
row its row sum and to each column its column sum�
Given such scores we say that a matrix is in stan�

dard form if it satis�es three properties�

1. The column scores are weakly increasing�
2. The row scores are weakly increasing�
3. In the case of tied row scores the rows are ordered

lexicographically as bit strings�

For a given ��	 matrix� once its row and column
scores have been computed it is easy to put a matrix
and its transpose into standard form by forcing each
of the three conditions above in the listed order�
For each face constructed� we put both the face

and its transpose into standard form and �nally
choose the smaller of these two� regarded as inte�
gers� as the �canonical� form that is saved�
We are abusing terminology a little here since�

although the method always replaces a face by an
equivalent face� it is conceivable that equivalent faces
will canonicalize to distinct faces� When this hap�
pens� we still obtain correct volumes� but we end up
doing work that could be avoided if the equivalence
were recognized� However� if this event is rare� we
obtain almost all the savings of true canonicalization
as described above� without the excessive cost�
It turns out that just using row and column sums

as the score functions fails to recognize a substantial
number of equivalences� What we need are scores
that tend to assign di�erent values to di�erent rows
and columns� Slightly more complicated scores do
better� Given a column score� we can produce a
more complicated row score by assigning to each row
the sum �or any symmetric function� of the values
of the column scores of those columns for which 	�s
occur in the given row� Similarly a row score can be
used to produce a more complicated column score�
We can also add two row scores to obtain another
row score or two column scores to obtain another
column score� By combining steps like this we pro�
duced scores that were better at distinguishing rows
�and columns� without being much more expensive
to compute�

This concludes our description of the triangula�
tion method� As mentioned earlier it is reasonably
practical for n � �� The times required on a ���Mhz
DEC alpha were ����	 seconds for n � �� ���� sec�
onds for n � �� and less than ��	 seconds for n � ��
Although the volumes of Bn do not seem to fol�

low a recognizable pattern� it seemed conceivable
that there would be faces of Bn for which the rela�
tive volumes had interesting properties� One fairly
natural class is the set of matrices for which the set
of zeroes of the matrix form a Young tableau in the
upper left corner of the matrix�
Since our triangulation method applies to any face

of Bn� we were able to check some natural classes of
faces� It turned out that for the simplest nontrivial
Young tableau faces the volumes apparently obey
a simple rule� although we have not been able to
supply a proof� More precisely� suppose that n � �
and that Fn is the n�n matrix whose �i� j� entry is 	
when j � i�	 and � otherwise� Then Fn is a union
of permutation matrices corresponding to a face of
Bn of dimension

�
n

�

�
with �n�� vertices and we have

the following conjecture� which we have veri�ed for
n � 	��

Conjecture 1. The relative volume of Fn is the prod�
uct

n��Y
i��

	

i� 	

��i
i

�

of the �rst n� 	 Catalan numbers�

We conclude this section by making some miscella�
neous observations that may be useful but do not
actually enter our algorithm�

4.1. In our method� we never needed to calculate
the dimension of a face since the way they were
produced guaranteed their dimension� However one
may wonder how one can e�ciently calculate the
dimension of a face� One of the most e�cient meth�
ods makes use of the fact� discussed in �Billera and
Sarangarajan 	

�� that the dimension is equal to
e�k��n� where e is the number of 	�s in the matrix
of F and k the number of components in the graph
corresponding to F �that is� the bipartite graph on
�n letters in which i is joined to j when the �i� j�
entry of the matrix of F is 	��

4.2. The relative volume of any d�face F can be
computed in several di�erent ways since it is the
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sum of the relative volumes of the facets opposite
any vertex of F � This yields linear relations on the
volumes of �d� 	��faces of Bn� It seems conceivable
that these linear relations could be strong enough to
yield useful information about the volumes� How�
ever from our limited investigation this does not ap�
pear to save anything in our computations�

4.3. Since our standard triangulations all involve
minimum volume simplices� one might wonder if all
minimum volume simplices with vertices from the
vertex set of Bn belong to one of these triangula�
tions� For n � �� we found that there are ������
minimum volume simplices whose vertices are ver�
tices of B�� Of these� only ��			� belong to some
standard triangulation�

5. THE MAGIC SQUARES METHOD

In this section and the next we describe the magic
squares method for calculating the volume of Bn�
We have no reason to believe that our implemen�
tation is substantially di�erent from those used by
others� �See �Diaconis and Gangolli 	

�� Mount
	

�� Stein and Stein 	
��� Sturmfels 	

��� The
only apparent novelty is that we have carried out
the computation when n � ��
We brie�y explain here the connection between

magic squares and the volume of Bn�
It is known that for a d�dimensional polytope P

with integer vertices� for any nonnegative integer t�
the number e�P� t� of lattice points contained in t �P
is a polynomial of degree d in t� This polynomial is
called the Ehrhart polynomial of P � Its leading co�
e�cient is the volume of P in units equal to the vol�
ume of the fundamental domain of the a�ne lattice
spanned by P � Thus if we know the values of e�P� t�
for values of t from � to d� we can �nd the Ehrhart
polynomial by interpolation and in that way deter�
mine the volume of P �
For P � Bn� this method is particularly attrac�

tive since the polynomial is known to have certain
symmetries� which make it necessary to calculate
the values of e�Bn� t� for t only up to and including�
n��
�

�
rather than �n� 	���

Note that e�Bn� t� is exactly the number of n �
n matrices with nonnegative integer entries and all
row and column sums equal to t� i�e�� the number
of n � n magic squares with sum t� In the next

section we will describe how to count magic squares
relatively e�ciently�
To see that we need only �nd e�Bn� t� for values of

t up to and including
�
n��
�

�
we refer to the following

identities�

1. e�Bn� t� � � for �n� 	 � t � �	�
2. e�Bn��n� t� � ��	�n��e�Bn� t� for all t�

These identities �conjectured in �Anand et al� 	
���
are easy consequences of Ehrhart�s Law of Reci�
procity� which states that� for a d�dimensional poly�
tope P with integer vertices� and t � ��

e��P� t� � ��	�de�P��t�

where e��P� t� denotes the number of integer points
in the interior of P � See �Hibi 	

�� Chapter 
�
Ehrhart 	
�� for proof and references�

Proof of 1. e��Bn� t� is the number of n� n matrices
with positive integer entries and all row and column
sums equal to t� Since all the entries are � 	� each
row and column sum must be � n� so e��Bn� t� � �
for 	 � t � n� 	� By Ehrhart�s Law of Reciprocity
this implies e�Bn� t� � � for �n� 	 � t � �	� �

Proof of 2. There is a one�to�one correspondence be�
tween n � n matrices with nonnegative integer en�
tries and row and column sums t and n�n matrices
with positive integer entries and row and column
sums n� t� �Simply add 	 to each entry in matrices
of the �rst type�� Thus e�Bn� t� � e��Bn� n�t�� Ap�
plying Ehrhart�s Law of Reciprocity� the right�hand�
side equals ��	��n���

�

e�Bn��n� t�� which simpli�es
to ��	�n��e�Bn��n� t�� �

The e�ect of the �rst identity is that we know
n� 	 zeroes of e�Bn� t�� We also have e�Bn� �� � 	�
For each t � �� if we calculate the value of e�Bn� t��
by the second identity we obtain also the value of
e�Bn��n � t�� Thus if we calculate e�Bn� t� for t
up to

�
n

�

�
� we have a total of n � 	 � 	 � �

�
n

�

�
�

�n�	���	 values of the e�Bn� t� so we have enough
data to �nd the polynomial e�Bn� t� by interpola�
tion�

6. COUNTING MAGIC SQUARES

We now describe the method we used for counting
the number of n�nmagic squares of row and column
sum t for t �

�
n��
�

�
�
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Given an m�tuple r � �r�� � � � � rm� and an n�tuple
c � �c�� � � � � cn� of nonnegative integers� we denote
by N�r� c� the number of nonnegative integer ma�
trices with row sums r�� � � � � rm and column sums
c�� � � � � cn�
There are a few computational principles� The

�rst is that N�r� c� � � unless jrj �
P

i
ri �

P
j
cj �

jcj� Next� N�r� c� is invariant under permutation of
either the r�s or the c�s� Finally the principle that
leads to substantial computational savings is that�
for any integer k �usually near m���

N�r� c� �
X

x

N��r�� � � � � rk�� x�N��rk�� � � � � rn�� c�x��

where the sum is over all nonnegative n�tuples x
such that jxj � r��� � ��rk and xi � ci� i � 	� � � � � n�
This formula results from classifying the matrices
counted by N�r� c� according to the column sums
of the submatrix formed from the �rst k rows� For
�xed column sums x�� � � � � xn� the column sums of
the submatrix formed by the remaining rows must
be ci�xi� The total number of matrices in the class
corresponding to x is the number of ways of choosing
the top submatrix multiplied by the number of ways
of choosing the bottom�
The counting of magic squares amounts to the

calculation of N�r� c� with the �constant� n�tuples
r � c � �t� � � � � t�� For this special case there are a
few simpli�cations� We discuss the case when n is
even� The same ideas apply with slight modi�cation
when n is odd�
Suppose that n � �m and we wish to calculate

e�Bn� t�� From our general principle we have

e�Bn� t� �
X
y

N�R� y�N�R� T�y�

where R is the m�tuple of all t�s� T is the n�tuple
of all t�s� and y runs over all nonnegative n�tuples
satisfying jyj � mt� and yi � t for all i� For a k�
tuple y � �y�� � � � � yk�� let us denote by M�y� the
number of distinct k�tuples which arise by permut�
ing the yi�s� So� if z�� � � � � zl are distinct� and y is
a k�tuple consisting of k� z��s� k� z��s� etc�� then
M�y� � k���k�� � � � kl��� In terms of this notation
a more computationally e�cient version of the pre�
ceding equation is

e�Bn� t� �
X
y

M�y�N�R� y�N�R� T�y� (6–1)

where now we further restrict y to weakly increasing
n�tuples�
We can apply this principle again to the calcula�

tion of N�R� y� and N�R� T�y� that appear in the
last formula� We �nd that

N�R� y� �
X
x

M�x�N�x� �y�� � � � � ym��

N�R� x� �ym�� � � � � yn��� (6–2)

where now x runs over all weakly increasing nonneg�
ative m�tuples with jxj � y� � � � � � ym and xi � t
for all i�
We save an additional factor of � by noting that

the quantities N�R� y� are the same as N�R� T�y�
except in a di�erent order� Thus if we save the for�
mer in a suitable array� we can look up the latter
ones in the array rather than computing them�
The ingredients for calculating the sums N�R� y�

and N�R� T�y� are the quantities N�x� y� where
x and y vary over weakly increasing nonnegative
m�tuples with xi� yi �

�
n��
�

�
� Thus it is sensible

to precompute these quantities and save the results
before forming the sums for N�R� y� or the sum for
e�Bn� t��
For example� for n � � we need to precompute

the quantities N�x� y� where x and y have length ��
Again it is easier to calculate

N�x� y� �
X

N��x�� x��� z�N��x�� x��� y � z�

where the sum is over all ��long vectors z with jzj �
x��x� and zi � yi for all i� However we do not have
available the additional simpli�cation to a sum over
increasing sequences z� Thus on the right side we re�
quire the values N�x� y�� for pairs �x� y� where x has
length � and y has length �� not necessarily weakly
increasing� where the components of x and y vary
up to �	� It would be possible to precompute all
the needed values and save these as well for later
use� This might be advantageous since these results
are used several times each� However� for simplic�
ity� we use a subroutine to compute these� in e�ect
repeating the calculation of any N�x� y� whenever
needed� This subroutine in turn calls a subroutine
for counting �� � matrices with prescribed row and
column sums which calculatesN��x�� x��� �y�� y��� �
min�x�� x�� y�� y�� � 	 whenever jxj � jyj�
The precalculation for n � � requires about ��

minutes on a ���Mhz DEC alpha� The remaining
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TABLE 1. Ehrhart polynomials e�Bn� t�� for n � �� � � � � � expressed as integer combinations of binomial coe�cients

C�t�n���k� n����k� �
�
tn��k
n���k

�
for k � �� � � � �

�
n��
�

�
� �These polynomials form a basis for the space of

polynomials satisfying p��n�t� � ����n��p�t��� For each n� the three columns show i �� n���k� j �� n����k�
and the factor q multiplying C�t�i� j� in the expression of e�Bn� t�� In symbols� e�Bn� t� �

P
rows qC�t�i� j��

calculation also takes about �� minutes� The �rst
part can be calculated in single precision� In the
remaining parts we need some sort of multiple pre�
cision method� We perform the calculation modulo
several primes and combine the results with the Chi�
nese Remainder Theorem� A similar program for
n � � requires �� seconds�
Table 	 shows the Ehrhart polynomials e�Bn� t��

for n � 	� � � � � �� For each n� the coe�cient of the
last binomial coe�cient in the expression for e�Bn� t�
is the relative volume of Bn�

7. COMPARISON

We now compare the two methods described above�
The main advantage of the �rst method seems to

be that it applies just as well to any face of Bn as

it does to Bn itself� To apply the algorithm to a
face F of Bn� we simply start at the top level with
the ��	 matrix associated to F and produce lists of
canonical subfaces as before�
In the second method it is not obvious how well

one could do in computing the volume of an arbi�
trary face F of Bn� This would amount to count�
ing the number of magic squares with prescribed
zeros and row and column sums t for possibly as
many as dim�F � values of t� We would not have
e��F� t� � � for 	 � t � n � 	� nor would we have
e�F� t� � e��F� n � t�� because of the prescribed ze�
ros in F � For certain F �for instance� those with the
same number of prescribed zeros in every row� we
would have an analogous identity� and some auto�
matic roots� but in general we cannot guarantee any
cutdown in the number of values of e�F� t� needed
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to determine the polynomial� Furthermore in the
actual counting of magic squares with certain pre�
scribed zeros� we would not be able to exploit the
symmetries used in our algorithm above�
The second method however has the advantage

that� for computing volumes of Bn itself� it is much
more feasible in terms of memory�
The second method also computes the Ehrhart

polynomial� It seems possible that the �rst method
could be modi�ed to compute Ehrhart polynomials
of the faces as well as just their volumes� We would
need to keep track of the numbers of simplices of
each dimension in a standard triangulation instead
of just the simplices of the largest dimension�

APPENDIX: RATIO OF VOLUMES OF Bn AND An

Consider the linear mapping L from �n�	���n�	�
matrices to n� n matrices which sends matrix Ei�j

which is all zero except for a 	 at �i� j� to the matrix
Fi�j which is all zero except for 	�s at �i� j� and �n� n�
and �	�s at �i� n� and �n� j�� If we follow L by the
addition of the n�n matrix that has the block form

�
� Jn����

J��n�� �� n

	

where Jk�l is the all k � l matrix of all 	�s� then we
obtain the a�ne mapping which sends An to Bn�
Thus if we denote the ratio we seek by R� we �nd
that R� is the determinant of the �n�	��� �n�	��

matrix of dot products of Fi�j � Fk�l � ��ik��jl �
But in general if xik and yjl are two m �m ma�

trices and z is the m� �m� tensor product matrix
indexed by pairs ij and kl given by zij�kl � xikyjl
then det z � �detxdet y�m�
Our case is when x � y � Jn���n�� � In��� Since

the characteristic polynomial of�Jm is 	m���	�m��
the determinant of Jn�� � In�� is n� It follows that
R � nn���
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