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Abstract. We prove that if some balls in the Euclidean space move continuously in such
a way that the distances between their centers decrease, then the volume of their union
cannot increase. The proof is based on a formula expressing the derivative of the volume
of the union as a linear combination of the derivatives of the distances between the centers
with nonnegative coefficients.

1. Introduction

We denote byRn then-dimensional Euclidean space with the standard scalar product,
norm, and distance〈x, y〉 =∑n

i=1 xi yi , |x| =
√〈x, x〉, andd(x, y) = |x− y|.

Forx ∈ Rn andr ∈ R+, whereR+ denotes the set of positive real numbers, letB(x, r )
denote the closed ball of radiusr centered atx, and letS(x, r ) denote its boundary sphere.
A system ofN balls inRn can be given by the system of centersX = (x1, . . . , xN) ∈ RnN

and that of radiir = (r1, . . . , r N) ∈ RN
+ . GivenX andr , we denote byB(X, r) the union

of the ballsB(xi, ri ) for 1 ≤ i ≤ N, by S(X, r) the boundary of the domainB(X, r),
and byV(X, r) then-dimensional volume ofB(X, r).

In 1954–56 Poulsen [9], Kneser [8], and Hadwiger [7] formulated the conjecture that
if X,Y ∈ R2N are such thatd(xi , xj ) ≤ d(yi , yj ) for each choice ofi and j , then we
haveV(X, r) ≤ V(Y, r).

Though the conjecture was formulated originally for congruent disks in the plane, it
seems to be true also for higher-dimensional balls having different radii.

The conjecture is still open even forn = 2. Partial results have been obtained by
Bollobás [3], Alexander [1], Sudakov [11], Capoyleas and Pach [5], Bern and Sahai [2],
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and Csikós [6]. The present work is a continuation of the investigation started in [3], [2],
and [6].

Bollobás [3] proved that the planar Kneser conjecture for congruent disks is true if
we can continuously move the centersxi to the centersyi in such a way that the distances
between the centers do not increase during the motion. In [2] and [6] Bern, Sahai, and
the author generalized Bollob´as’ theorem for disks with different radii. The approaches
of [2] and [6] are completely different. Reference [6] gives a suitable modification of
the ideas of Bollob´as, while [2] introduces the Dirichlet–Voronoi decomposition into the
study of the question. Though the proof in [6] seems to be simpler, methods of [2] turn
out to be more powerful. For example, Bern and Sahai could prove that the area of holes
enclosed by the moving disks does not increase during the motion.

Our goal is to generalize these results ton-dimensional balls (Theorems 4.2 and 5.4).
First we consider the volume of the union of some balls moving smoothly inRn. The
main result of the paper is formula (3) expressing the derivative of this volume (with
respect to time) as a linear combination of the derivatives of the distances between the
centers. This formula is an effective generalization of Lemma 3 of [2], easily implying
Theorem 4.2. In Section 5 we drop the differentiability assumption on the motion of the
centers and generalize Theorem 4.2 for continuous motions.

We note that some special cases of Theorem 5.4 have also been obtained in [5] and [2].

2. A Formula for the Derivative of V(X, r)

Suppose that we are givenr ∈ RN
+ and a smooth (i.e., infinitely many times differentiable)

curveX: (a,b)→ RnN. X(t) describes the motion of the centers ofN balls inRn. Our
aim now is to prove a formula for the derivative of the functionV(t) = V(X(t), r). We
start with some technical lemmas.

Lemma 2.1. We define onRnN the norm||X|| = maxi |xi |. Then, for any fixedr ∈ RN
+ ,

we have

|V(X, r)− V(Y, r)| = O(||X − Y||)
as||X − Y|| tends to zero.

Proof. Denoting byε the distance||X−Y||, we have the following simple estimation:

|V(X, r)− V(Y, r)|

≤ max

{
V

(
N⋃

i=1

B(xi , ri + ε)\B(xi , ri )

)
,V

(
N⋃

i=1

B(yi , ri + ε)\B(yi , ri )

)}

≤ V(B(0,1))
N∑

i=1

((ri + ε)n − r n
i ) = O(ε).

Corollary 2.2. Let X: (a,b) → RnN be a smooth curve, let t0 ∈ (a,b), and let
Y(t) = X(t0) + (t − t0)X′(t0) be the linear part of the Taylor expansion ofX at t0.
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Then, for any fixedr ∈ RN
+ , the function V(t) = V(X(t), r) is differentiable at t0 if and

only if the function t 7→ V(Y(t), r) is differentiable at t0 and if the two functions are
differentiable at t0, then their derivatives at t0 are equal.

Proof. Since||X(t)− Y(t)|| = O((t − t0)2), we have

|V(X(t), r)− V(Y(t), r)| = O((t − t0)
2),

and this implies the statement.

Theorem 2.3. Suppose n≥ 2 and letX: (a,b) → RnN be a smooth curve, r ∈ RN
+ .

Assume that t0 ∈ (a,b) is such that the balls B(xi (t0), ri ) are distinct. Denote by Fi the
intersection S(xi (t0), ri ) ∩ S(X(t0), r), by ni the outer unit normal vector field on the
sphere S(xi (t0), ri ) and byµi the(n− 1)-dimensional volume measure on S(xi (t0), ri )

induced by the Riemannian metric. Then the function V(t) = V(X(t), r) is differentiable
at t0 and

V ′(t0) =
N∑

i=1

∫
Fi

〈ni , x′i (t0)〉dµi . (1)

Proof. By Corollary 2.2, we may replaceX with its linear approximationY(t) =
X(t0)+ (t − t0)X′(t0). Think of Rn+1 as the productRn×R and write a typical element
of it in the form (x, t), wherex ∈ Rn, t ∈ R. We fix t ∈ (a,b) and apply the Gauss–
Ostrogradskii formula (also known as “the divergence theorem”) for the union of the
solid cylinders

Bi (t) = {(x, τ ) ∈ Rn+1 | a ≤ τ ≤ t, x ∈ B(yi (τ ), ri )}

and the constant vector field

ξ ≡ (0,1).
Recall that, according to the Gauss–Ostrogradskii formula, ifÄ is a compact domain in
Rm with piecewise smooth boundary∂Ä, ξ is a smooth vector field on a neighborhood
of Ä, then ∫

Ä

div ξ dλm =
∫
∂Ä

〈n, ξ〉dµ,

where divξ denotes the divergence ofξ , λm is them-dimensional Lebesgue measure,n
is the outer unit normal vector field on∂Ä (defined almost everywhere, on all smooth
components of∂Ä), andµ is the(m− 1)-dimensional volume measure on∂Ä.

The boundary ofÄ(t) = ⋃N
i=1Bi (t) is piecewise smooth. (We replaced the motion

X(t)with the linear motionY(t) for the sake of this statement. In general, the “life-tubes”
of two smoothly moving spheres can intersect one another in a way difficult to handle.)
∂Ä(t) has two flat components: a bottom one and a top one. The outer unit normal

vector field on the topB(Y(t), r)×{t} coincides withξ , while on the bottomB(Y(a), r)×
{a} it is −ξ .
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The lateral part of the boundary ofÄ(t) is the closure of

S(t) = {(x, τ ) ∈ Rn+1 | a ≤ τ ≤ t, x ∈ S(Y(τ ), r)}

and is covered by the boundaries of the tubesBi (t). LetFi (t) be the intersection ofS(t)
with the tube

Si (t) = {(x, τ ) ∈ Rn+1 | a ≤ τ ≤ t, x ∈ S(yi (τ ), ri )},

and, fora ≤ τ ≤ t , setFi (τ ) = Fi (t) ∩ (Rn × {τ }). The outer unit normal vector field
of the hypersurfaceFi at (x, τ ) ∈ Fi is

(ni (x, τ ),−〈ni (x, τ ), x′i (t0)〉)√
1+ 〈ni (x, τ ), x′i (t0)〉2

,

whereni (x, τ ) is the outer unit normal of the sphereS(yi (τ ), ri ) atx.
The tubeS(xi (t0), ri )× [a,b] is diffeomorphic toSi (t). If we identify the two spaces

by the diffeomorphism

(x, τ )↔ (x+ (τ − t0)x′(t0), τ ) ∈ Si (t),

for all x ∈ S(xi (t0), ri ), τ ∈ [a,b], then then-dimensional volume measure can be
expressed withµi and the one-dimensional Lebesgue measureλ on [a,b] as follows:√

1+ 〈ni (x, τ ), x′i (t0)〉2µi × λ.

Since the vector fieldξ = (0,1) is divergence free, the Gauss–Ostrogradskii formula
gives that

0 =
∫
Ä(t)

div ξ dλn+1 =
∫
∂Ä(t)
〈n, ξ〉dµ

= V(Y(t), r)− V(Y(t0), r)−
N∑

i=1

∫
Fi (t)

〈ni , x′i (t0)〉√
1+ 〈ni , x′i (t0)〉2

dµ

= V(Y(t), r)− V(Y(t0), r)−
N∑

i=1

∫ t

a

(∫
Fi (τ )

〈ni, x′i (t0)〉dµi

)
dτ. (2)

Whenn ≥ 2, the integrals ∫
Fi (τ )

〈ni, x′i (t0)〉dµi

depend continuously onτ in the neighborhood of anyτ0 where the ballsB(xi (τ0), ri )

are different, in particular, the dependence is continuous in a neighborhood oft0. Differ-
entiating (2) with respect tot at t0, we obtain(1).
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3. The Dirichlet–Voronoi Decomposition

The integrals in formula (1) can be computed with the help of the Gauss–Ostrogradskii
formula applied to the cells of the Dirichlet–Voronoi decomposition ofB(X, r). We
recall how this decomposition is defined.

We define the power of a pointp with respect to a ballB(x, r ) to be the real number
|x− p|2− r 2. Now considerN spheres given by the centersX and radiir as above and
denote byKi (p) = |xi − p|2 − r 2

i the power ofp with respect to thei th ball. For any
pair 1≤ i < j ≤ N, if xi 6= xj , then the inequalityKi (p) ≤ Kj (p) defines a half-space
bounded by the hyperplane

2〈(xi − xj ),p〉 = x2
i − x2

j + r 2
j − r 2

i .

If two spheres have the same centerxi = xj , thenKi (p)−Kj (p) = r 2
j −r 2

i is constant,
consequently, its sign does not depend onp.

If the balls are distinct, then the balls determine a decomposition of the space intoN
possibly unbounded or empty polyhedral domains. Thei th cell of the decomposition is
given as the closure of the open domain

Ci = {p ∈ Rn | Ki (p) < Kj (p) for all 1≤ j ≤ N, j 6= i }.
This decomposition is generally called the Dirichlet–Voronoi decomposition. The Dir-
ichlet–Voronoi decomposition induces a decomposition ofB(X, r). Thei th cell of this
induced decomposition is

C̃i = C̄i ∩ B(X, r) = C̄i ∩ B(xi , ri ),

whereC̄ denotes the closure of the setC.
We define thewall Wi j between the cells̃Ci andC̃j as the intersectionWi j = C̃i ∩ C̃j .

WhenWi j is not empty it is the intersection of a polyhedral domain lying in the hyperplane
Ki (p) = Kj (p) with the ballB(xi , ri ).

When we want to express dependence ofC̃i andWi j on(X, r), we writeC̃i (X, r) and
Wi j (X, r).

4. Main Formula for the Derivative of V(X, r)

Theorem 4.1. Let n ≥ 2 and let X: (a,b) → RnN be a smooth curve, r ∈ RN
+ .

Suppose that t0 ∈ (a,b) is such that the centersxi (t0) are different. Then the function
V(t) = V(X(t), r) is differentiable at t0 and its derivative is equal to

V ′(t0) =
∑

1≤i< j≤N

d′i j (t0)Vn−1(Wi j (X(t0), r)), (3)

where di j (t) = d(xi (t), xj (t)), and Vn−1 denotes the(n− 1)-dimensional volume.

Proof. By Theorem 2.3,V is differentiable att0 andV ′(t0) can be given by formula
(1). We compute the integral ∫

Fi

〈ni , x′i (t0)〉dµi



454 B. Csikós

applying the Gauss–Ostrogradskii formula to the domainC̃i and the constant vector field
ξi ≡ x′i (t0).

The cellC̃i is bounded by the spherical domainFi and the wallsWi j . The outer unit
normal of a nonempty wallWi j is

xj (t0)− xi (t0)

di j (t0)
.

Since the constant vector fieldξi is divergence free, we get

0=
∫

C̃i

div ξi dλn =
∫
∂C̃i

〈n, ξi 〉dµ,

wheren andµ here mean the outer unit normal field and the(n−1)-dimensional volume
measure oñCi . Furthermore, we have∫

∂C̃i

〈n, ξi 〉dµ =
∫

Fi

〈ni , x′i (t0)〉dµi +
N∑

j=1
j 6=i

〈
xj (t0)− xi (t0)

di j (t0)
, x′i (t0)

〉
Vn−1(Wi j ),

therefore ∫
Fi

〈ni , x′i (t0)〉dµi =
N∑

j=1
j 6=i

〈
xi (t0)− xj (t0)

di j (t0)
, x′i (t0)

〉
Vn−1(Wi j ). (4)

Summing (4) for alli , we obtain

V ′(t0) =
N∑

i=1

∫
Fi

〈ni , x′i (t0)〉dµi

=
∑

1≤i< j≤N

〈
xi (t0)− xj (t0)

di j (t0)
, x′i (t0)− x′j (t0)

〉
Vn−1(Wi j )

=
∑

1≤i< j≤N

d′i j (t0)Vn−1(Wi j ),

as was to be proved.

Theorem 4.2. If X: [a,b] → RnN is a piecewise smooth continuous curve such that
the distance functions di j (t) = |xi (t) − xj (t)| are decreasing on[a,b], then, for any
r ∈ RN

+ , we have

V(B(X(a), r)) ≥ V(B(X(b), r)). (5)

Proof. It is enough to deal with the smooth case. If two of the centersxi (b) are equal,
sayxi (b) = xj (b) while ri ≤ r j , then, omitting thei th ball from the consideration, an
obvious induction on the number of spheres gives (5).
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Suppose that the centersxi (a) are different, thenxi (t) 6= xj (t) for any t ∈ [a,b],
i 6= j , therefore, by Theorem 4.1, the functionV(t) = V(X(t), r) is differentiable and
sinced′i j ≤ 0, Vn−1(Wi j ) ≥ 0 for all i, j , we have

V ′ =
∑

1≤i< j≤N

d′i j Vn−1(Wi j ) ≤ 0,

thusV(a) ≥ V(b).

Remark. It is easy to modify Theorem 4.1 and its proof to get a similar formula for
the derivative of the volume of holes enclosed by the balls. This modified formula shows
that if some balls move smoothly in such a way that the distances between the centers
decrease, then the volume of any hole enclosed by the balls (weakly) decreases.

5. Continuous Motions of Balls

The aim of this section is to show that the differentiability condition onX in Theorem 4.2
can be replaced by continuity. The sketch of the proof is the following. First we show
that for short periods of time the increase in volume can be bounded from above by an
expression quadratic in the change in center positions (Lemma 5.2). An application of
this estimation to subintervals of fine subdivisions of the time interval implies inequality
(5) if we assume that the curveX is rectifiable (the reader is recommended to check
this). However, rectifiability ofX does not follow from our assumptions. Indeed, one
can “shake” the centers without changing the distances between them in such a way that
the centers move along nonrectifiable curves. Thus, change in center positions can be
large even if the distances between the centers change little or not at all. We overcome
this difficulty with the help of Lemma 5.3. which claims roughly that if for two systems
of N points the distances between the corresponding points are close to one another,
then a congruent copy of the first system will be sufficiently close to the second system.
This lemma allows us to calm down a nonrectifiable “shivering” motion of the centers
by replacingX(t) with ϕ(t)X(t), whereϕ(t) is a suitable isometry of the space.

Lemma 5.1. Let p,q ∈ Rn be two vectors, such that|p| ≥ |q|. Choose the points O,
P, Q in such a way thatp = −→O P, q = −→O Q, and let T be the orthogonal projection of
O on P Q. Setω = 0 if T is not on the segment(P, Q) andω = (1/OT2)〈q− p,q〉 if
T ∈ (P, Q). Then the function

d(τ ) = |p+ τ(q− p)|e−ωτ

is decreasing in the interval[0,1]. If P Q is the smallest side of the triangle O P Q, that
is P Q< O Q, then

ω ≤ 2 P Q2

3 O Q2
. (6)

Proof. Denoting byv the vectorq− p, we can write

e2ωτd′(τ )d(τ ) = 〈v,p+ τv〉 − ω|p+ τv|2.
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The maximum of〈v,p + τv〉 on [0,1] is always attained atτ = 1. The minimum of
|p + τv|2 on the interval [0,1] is O Q2 if T is not in the interval(P, Q) and it isOT2

otherwise. Therefore, ifT is not in the interval(P, Q), we have

d′(τ )d(τ ) = 〈v,p+ τv〉 ≤ 〈v,q〉 ≤ 0.

WhenT ∈ (P, Q), we have

e2ωτd′(τ )d(τ ) ≤ 〈v,p+ v〉 − ωOT2 = 0.

Inequality (6) is obviously true whenω = 0. AssumingP Q < O Q andT ∈ (P, Q),
we have fromO P > O Q that T Q < T P, in particular,T Q < P Q/2 < O Q/2.
Furthermore,

ω = P Q · O Q

OT2
cos(P QO) = P Q · T Q

O Q2− T Q2
<

P Q2

2(O Q2− O Q2/4)
= 2 P Q2

3 O Q2
.

Lemma 5.2. Let P = (p1, . . . ,pN) andQ = (q1, . . . ,qN) ∈ RnN be two systems of
N points inRn, such that

1 ≥ d(pi ,pj ) ≥ d(qi ,qj ) ≥ δ > 0

and

||P−Q|| < min

{
1,
δ

2

}
for all i , j , where1 and δ are given constants. Then for any system of radiir ∈ RN

+
there exists a constant c depending only onr ,1, andδ such that

V(Q, r)− V(P, r) ≤ c||P−Q||2.

Proof. We connectPandQ with the linear constant speed motionX(t) = tQ+(1−t)P,
t ∈ [0,1]. By Lemma 5.1, if we set

ω = 2||P−Q||2
3δ2

,

then the scaled distance functions

|xi (t)− xj (t)|e−ωt

will be decreasing on [0,1]. Applying Theorem 4.2 to the curveX(t)e−ωt , we obtain

V(e−ωQ, r) ≤ V(P, r). (7)

Let Q̃ be the translate ofQ with the vector−q1, that is, set̃qi = qi − q1. Clearly, we
haveV(Q, r) = V(Q̃, r), V(e−ωQ, r) = V(e−ωQ̃, r), and

||Q̃− e−ωQ̃|| = (1− e−ω)max
i
|qi − q1| < ω1.
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Combining this inequality with the estimation obtained in the proof of Lemma 2.1
and usingω < 2/3δ2, we get

|V(Q, r)− V(e−ωQ, r)| ≤ V(B(0,1))
N∑

i=1

((ri + ω1)n − r n
i )

< ωV(B(0,1))
N∑

i=1

n∑
j=1

(
n

j

)
r n− j

i

(
2

3δ2

) j−1

1 j .

Setting

c = V(B(0,1))
N∑

i=1

n∑
j=1

(
n

j

)
r n− j

i

(
21

3δ2

) j

(8)

we get

V(Q, r)− V(P, r) ≤ |V(Q, r)− V(e−ωQ, r)| ≤ c||P−Q||2,
and this proves the lemma.

For X ∈ RnN, we define therank rk X of X as the dimension of the affine subspace
spanned byx1, . . . , xN .

Lemma 5.3. For anyX ∈ RnN of rank k we can find two positive constants L andε in
such a way that ifY,Y′ ∈ RnN are arbitrary systems of N points of rank k satisfying

|d(xi , xj )− d(yi , yj )| < ε,

|d(xi , xj )− d(y′i , y
′
j )| < ε

(9)

for all i , j , then we can find an isometryϕ ∈ Iso(Rn) such that

d(yi , ϕ(y′i )) < L
∑

1≤i< j≤N

|d(yi , yj )− d(y′i , y
′
j )|

for all i .

Proof. As the isometry group acts transitively onk-dimensional affine subspaces ofRn

and any isometry of ak-dimensional subspace into itself can be extended to an isometry
of the whole space, it is enough to consider the casek = n.

The isometry group of the Euclidean space is the semidirect product of the group of
translations and the orthogonal group

Iso(Rn) = Rn o On.

The isometry group and the orthogonal group act onRnN, Rn(N−1) × {0} ⊂ RnN is an
invariant subspace of the restricted action of the orthogonal group. Clearly, the intersec-
tion of an Iso(Rn)-orbit in RnN with Rn(N−1) × {0} is an On-orbit, therefore we may
assume thatX, Y, andY′ come fromRn(N−1)× {0} and with this assumption we will be
able to chooseϕ from On.
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We consider theOn-action onRn(N−1) = Rn(N−1) × {0}. We apply some standard
facts on compact Lie group actions to this special action. For reference see [4].

The stabilizer of a system of pointsX ∈ Rn(N−1) is isomorphic toOn−k if rk X = k.
In particular, the stabilizer is minimal (and trivial) if and only if rkX = n. Orbits of
systems of maximal rank are the principal orbits of the action. The union of principal
orbits is an open dense subset ofRn(N−1). Principal orbits are diffeomorphic toOn.

By the equivariant tubular neighborhood theorem (see Theorem 5.4. in Chapter II
of [4]), every principal orbitÄ has anOn-invariant open neighborhood, equivariantly
diffeomorphic toÄ× ν, whereν is a linear space on whichOn acts trivially.

Since we have assumed rkX = k = n, we can apply this theorem to theOn-orbitÄX

of X and get anOn-equivariant diffeomorphism

i : ÄX × ν → U,

whereU is an open neighborhood ofÄX .
Consider the polynomial mapping

σ = (d2
12,d

2
13, . . . ,d

2
(N−1)N): Rn(N−1)→ R(

N
2),

whose coordinate functions are the squares of the distance functionsdi j = |xi − xj |,
1 ≤ i < j ≤ N. The polynomialsd2

i j , 1 ≤ i < j ≤ N, generate the ring of invariant
polynomials of theOn-action, thereforeσ induces a homeomorphism

σ∗: Rn(N−1)/On→ σ(Rn(N−1)).

In particular, we can find anε0 > 0 such that|σ(X)− σ(Y)| < 4ε0 impliesY ∈ U .
SetV = σ−1(B(σ (X),2ε0)) andW = σ−1(B(σ (X),3ε0)). V andW are compact

tubular neighborhoods ofÄX lying in U . Choose a smooth functiong: Rn(N−1) → R
such thatg|V ≡ 1, andg is constant zero outsideW. Take the averaged function

f (Z) =
∫

On

g(ϕ(Z))dϕ,

where the integral is taken with respect to the Haar measuredϕ normalized by the
condition

∫
On

dϕ = 1. Define the mapF : Rn(N−1)→ ν

F(Z) =
{

f (Z)pr2 ◦ i−1(Z) if Z ∈ U,
0 otherwise.

F is a smooth function, invariant under the action of the orthogonal group, thus, by a
theorem of Schwarz [10], there is a smooth map8: R(

N
2)→ ν such thatF = 8 ◦ σ .

Since8 is smooth, it has the Lipschitz property on any compact subset. In particular,
we can findL0 > 0 such that, for anyσ1, σ2 ∈ B(σ (X), ε0), we have

||8(σ1)−8(σ2)|| < L0||σ1− σ2||1,

where|| · ||1 denotes thel1-norm inR(
N
2).



On the Volume of the Union of Balls 459

Now suppose thatY,Y′ ∈ Rn(N−1) satisfy(9) with ε = ε0/N. Thenσ(Y) andσ(Y′)
are inB(σ (X), ε0) and therefore

||8(σ(Y))−8(σ(Y′))|| < L0||σ(Y)−σ(Y′)||1 = L0

∑
1≤i< j≤N

|d2(yi , yj )−d2(y′i , y
′
j )|.

Using the estimation

|d2(yi , yj )− d2(y′i , y
′
j )| = |d(yi , yj )− d(y′i , y

′
j )| · |d(yi , yj )+ d(y′i , y

′
j )|

< 2(diamX + ε)|d(yi , yj )− d(y′i , y
′
j )|

we obtain

||8(σ(Y))−8(σ(Y′))|| < L
∑

1≤i< j≤N

|d(yi , yj )− d(y′i , y
′
j )|

with L = 2(diamX + ε)L0. Now it remains to observe thatε andL depends only on
X and thatY and8(σ(Y)) as well asY′ and8(σ(Y′)) belong to the sameOn-orbit.
Therefore, we can findϕ1, ϕ2 ∈ On such that8(σ(Y)) = ϕ1Y and8(σ(Y′)) = ϕ2Y′.
Settingϕ = ϕ−1

1 ◦ ϕ2 we obtain

d(yi , ϕ(y′i )) ≤ ||Y − ϕ(Y′)|| = ||8(σ(Y))−8(σ(Y′))||
< L

∑
1≤i< j≤N

|d(yi , yj )− d(y′i , y
′
j )|,

and this proves the lemma.

Theorem 5.4. If X: [a,b] → RnN is a continuous curve such that the distance func-
tions di j (t) = |xi (t)− xj (t)| are decreasing on[a,b], then, for anyr ∈ RN

+ , we have

V(B(X(a), r)) ≥ V(B(X(b), r)).

Proof. We definek = min{rk X(t) | t ∈ [a,b]} and use induction oni = n− k. Since
n− k ≥ 0 automatically, the initial casei = −1 is empty, hence trivial.

Suppose that the theorem is true for continuous motions of balls during which the rank
of the system of centers does not fall belowk+ 1 and consider a continuous contraction
X: [a,b] → RnN with k = min{rk X(t) | t ∈ [a,b]}.

Just as in the smooth case, we may assume thatxi (t) andxj (t) are different for any
i 6= j andt ∈ [a,b]. Thus, we can find1 > 0 andδ > 0 such that

1 ≥ di j (t) ≥ δ > 0 for all t ∈ [a,b].

Fix a system of radiir and definec by formula(8) of Lemma 5.2.
The set

K = {t ∈ [a,b] | rk X(t) = k}
is a compact subset of [a,b]. Using standard compactness arguments and Lemma 5.3,
we can findε > 0 andL > 0 such that for any twoτ1, τ2 ∈ K satisfying|τ1 − τ2| < ε

we can find an isometryϕ such that

||X(τ1)− ϕ(X(τ2))|| < L
∑

1≤i< j≤N

|di j (τ1)− di j (τ2)|. (10)
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Now fix an arbitrary positive numberη. Choose a positive numberζ > 0 with the
following properties:

(i) ε > ζ ;
(ii) for any two τ1, τ2 ∈ [a,b] with |τ1− τ2| < ζ we have

|di j (τ1)− di j (τ2)| < min

{
1,
δ

2
, η

}
.

Let a = t0 < t1 < . . . < tm = b be a subdivision of the interval [a,b] such that
ti − ti−1 < ζ , 1≤ i ≤ m, and estimate the differenceV(X(ti ), r)− V(X(ti−1), r) from
above for each subinterval. If the interval [ti−1, ti ] intersectsK , then set

τ1 = inf(K ∩ [ti−1, ti ]) and τ2 = sup(K ∩ [ti−1, ti ]).

By the induction hypothesis,V(X(t), r) is decreasing on the intervals [ti−1, τ1] and
[τ2, ti ], thus

V(X(ti ), r)− V(X(ti−1), r) ≤ V(X(τ2), r)− V(X(τ1), r).

Since|τ1− τ2| < ε we can find an isometryϕ such that(10) is fulfilled.
Applying the estimation of Lemma 5.2 toX(τ1) andϕ(X(τ2)) and the inequality (10),

we obtain

V(X(τ2), r)− V(X(τ1), r) = V(ϕ(X(τ2)), r)− V(X(τ1), r)

≤ c||X(τ1)− ϕ(X(τ2))||2

< cL2

( ∑
1≤i< j≤N

|di j (τ1)− di j (τ2)|
)2

< cL2

(
N

2

)
η

∑
1≤i< j≤N

(di j (τ1)− di j (τ2)).

We could drop the absolute values in the last inequality since the functionsdi j , 1≤ i <
j ≤ N, are decreasing. Combining these inequalities we get

V(X(ti ), r)− V(X(ti−1), r) ≤ cL2

(
N

2

)
η

∑
1≤i< j≤N

(di j (ti−1)− di j (ti )). (11)

We proved(11)with the assumption that [ti−1, ti ] intersectsK , however, it is obviously
true also for subintervals disjoint fromK , since on such intervalsV(X(t), r) is decreasing
by the induction hypothesis. Summing up inequality(11) for i = 1, . . . ,m, we conclude

V(X(b), r)− V(X(a), r) ≤ cL2

(
N

2

)
η

∑
1≤i< j≤N

(di j (a)− di j (b)). (12)

Sinceη can be arbitrarily small, inequality(12) provides the stronger inequality

V(X(b), r)− V(X(a), r) ≤ 0,

as we wanted to prove.
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