
J. Fluid Mech. (2001), vol. 434, pp. 273–300. Printed in the United Kingdom

c© 2001 Cambridge University Press

273

On the vortical structure in a plane impinging jet

By J. SAKAKIBARA1, K. HISHIDA2

AND W. R. C. PHILLIPS3

1Institute of Engineering Mechanics and Systems, University of Tsukuba, Tsukuba 305-8573, Japan
2Department of System Design Engineering, Keio University, Yokohama 223-8522, Japan

3Department of Theoretical and Applied Mechanics
University of Illinois at Urbana-Champaign, Urbana, IL 61801-2935, USA

(Received 17 December 1997 and in revised form 20 November 2000)

The vortical structure of a plane impinging jet is considered. The jet was locked both
in phase and laterally in space, and time series digital particle image velocimetry
measurements were made both of the jet exiting the nozzle and as it impinged on a
perpendicular wall. Iso-vorticity and iso-λ2 surfaces coupled with critical point theory
were used to identify and clarify structure. The flow near the nozzle was much as
observed in mixing layers, where the shear layer evolves into spanwise rollers, only
here the rollers occurred symmetrically about the jet midplane. Accordingly the rollers
were seen to depict spanwise perturbations with the wavelength of flutes at the nozzle
edge and were connected, on the same side of the jet, with streamwise ‘successive ribs’
of the same wavelength. This wavelength was 0.71 of the distance between rollers
and, contrary to some experiments in mixing layers, did not double when the rollers
paired. Structures not reported previously but evident here with iso-vorticity, λ2 and
critical point theory are ‘cross ribs’, which extend from the downstream side of each
roller to its counterpart across the symmetry plane; their spanwise periodic spacing
exceeds that of successive ribs by a factor of three. Cross ribs stretch because of the
diverging flow as the rollers approach the wall and move apart, causing the vorticity
within them to intensify. This process continues until the cross ribs reach the wall
and merge with ‘wall ribs’. Wall ribs remain near the wall throughout the cycle and
are composed of vorticity of the same sign as the cross ribs, but the intensity level
of the vorticity within them is cyclic. Details of the expansion of fluid elements,
evaluated from the rate of strain tensor, revealed that both cross and successive ribs
align with the principal axis and that the vorticity comprising them is continuously
amplified by stretching. It is further shown, by appeal to the production terms of
the phase-averaged vorticity equation, that wall ribs are sustained by merging and
stretching rather than reorientation of vorticity. Moreover production of vorticity is
a maximum when cross and wall ribs merge and is greatest near the symmetry plane
of the jet. The demise of successive ribs on the other hand occurs away from the
symmetry plane and would appear to be less important dynamically than cross ribs
merging with wall ribs.

1. Introduction

This paper is concerned with a plane jet that impinges on a flat rigid plate set
perpendicular to the flow; and of particular interest is the large-scale vorticity field
that arises near the plate in the vicinity of the jet’s axis of symmetry. It is in this
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region, often referred to as the stagnation region but more appropriately denoted
the impingement region, that mean stream-surfaces diverge about a stagnating mean
stream-surface. It is also in this region that turbulent kinetic energy is produced by
both the mean strain normal to the plate and the normal component of the Reynolds
stress tensor. The augmentation of turbulence in the impingement region gives rise
to a substantial increase in the stagnation-line heat or mass transfer rate and is
consequently used as a high-performance technique for cooling, heating or drying a
surface (Gardon & Akfirat 1965).

Looney & Walsh (1984) give a review of experimental studies of impinging jets
and note that the first complete study, in the sense of providing both mean-flow
and turbulence characteristics, was by Gutmark, Wolfshtein & Wygnanski (1978).
Accordingly the first indications of flow structure were by Yokobori, Kasagi &
Hirata (1977), who observed columnar vortices close to the plate and aligned with
the flow over the plate. Using hydrogen-bubble flow visualization techniques, they
revealed that the vortices extended across the symmetry plane and that the spanwise
spacing of the vortices not only scaled with nozzle width but could be controlled
by events upstream, specifically by the lateral placement of a thin wire at the nozzle
exit.

The importance of vortices perpendicular to the symmetry plane had earlier been
foreseen and analyzed in the presence of stagnations point or Hiemenz flow (see
Batchelor 1967, § 5.5) by Sutera, Maeder & Kestin (1963). They found that the
vorticity of vortex filaments with a spanwise spacing greater than 2.6 times the
Hiemenz stagnation-point boundary layer thickness, is amplified by the mean strain
as the filaments advect towards the wall. Indeed, filaments with small intensity present
in the oncoming flow, can reach the boundary layer with a greatly enhanced intensity
and induce substantial three-dimensional effects therein. These findings led Sadeh &
Brauer (1980) to construct an experiment in which a cylinder was placed in a uniform
flow in which columnar vortices had been embedded at right angles to the cylinder.
Their study confirmed that the vortices were stretched and selectively amplified as
they traversed the impingement region.

Further details of events in the symmetry plane of the impingement region were
determined by Sakakibara, Hishida & Maeda (1995, 1997), who used digital particle
image velocimetry (DPIV) to measure the instantaneous velocity field and its time
variation. They observed not only wall vortices as seen by Yokobori et al., but a
recurring presence of concentrations of streamwise (in the sense of flow over the
plate) vorticity that advected towards and merged with the wall vortices.

But while the presence and importance of streamwise vortices in the impingement
region is well established, what is not known is the mechanism by which they are
sustained. Of course upstream events doubtless play a role: indeed Didden & Ho
(1985) show that the ring vortices periodically generated in the shear layer of an
axisymmetric impinging jet induce unsteady separation in the impingment region, a
feature further explored by Fox et al. (1993). But the evolution of coherent structures
in a plane jet (Antonia et al. 1986), not to mention plane impinging jet, are not nearly
so well documented as say those in an axisymmetric impinging jet or in a plane
mixing layer. The object of the present work therefore was to determine not only the
phase evolution of the three-dimensional vorticity field in the impingment region, but
also the structure of the plane jet.

Of course plane and axisymmetric jets have long been known to be susceptible
to phase locking (Perry & Lim 1978) and so in order to obtain such information,
the jet was phase-locked by temporal flow perturbations and, in the vein of plane
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Figure 1. Schematic of the experimental apparatus. All dimensions are in mm.

mixing layers (Lasheras & Choi 1988), spatially locked by a fluted nozzle. Such
locking enabled three-dimensional, three-component phase-averaged velocity fields to
be determined from a montage of instantaneous two-dimensional DPIV slices of the
displacement field. Structural features in the flow were, for the most part, identified
with the aid of iso-vorticity surfaces. However since such surfaces lack clarity in
strong shear, they were supplemented by instantaneous streamlines and critical point
theory in two planes of symmetry, coupled with Galilean invariant iso-λ2 surfaces
(Jeong & Hussain 1995).

We find that the jet shear layer evolves in much the same manner as a plane mixing
layer by developing into spanwise rollers, although here by design the rollers occur
symmetrically about the midplane of the jet. Accordingly, rollers on the same side of
the jet are connected with rib vortices, or ‘successive ribs’. New, however, are cross rib
vorticies which connect rollers across the symmetry plane. Both structures are evident
with iso-vorticity surfaces, but λ2 together with instantaneous streamlines and critical
point theory render a less biased picture. The (spanwise periodic) spacing of cross ribs
exceeds that of successive ribs by a factor of three. But it is cross rib vorticity that
intensifies through stretching as the rollers progress through the impingment region
and cross rib vorticity that periodically merges with the ever present rib vortices at
the wall.

The paper is organized as follows. We begin (in § 2) with a description of the
experimental apparatus and techniques used to acquire the data. Basic features of the
time-mean and phase-averaged flow are given in § 3, while details of the evolution
of successive, cross and wall ribs are given in §§ 4, 5. The work is discussed and
summarized in § 6.
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2. Experimental procedure

2.1. Flow facility

The experiment consisted of a vertical planar jet which impinged on a finite plate set
normal to the flow direction. The jet was in the presence of a weak coflowing stream
and water was used as the working fluid. The water jet facility, shown schematically
in figure 1, consisted of a settling chamber and contraction nozzle for both the jet and
coflowing stream, each of which fed into a rectangular channel (380 × 315 × 150 mm,
in height, width and span). The settling chambers for both the jet and surrounding
flow were composed of layers of glass beads, honeycomb and fine mesh screens. Both
flows then passed into smooth contraction nozzles and issued vertically upward. The
nozzle exit had a width b∗ = 14.5 mm and an aspect ratio of 10.3.

The coflowing stream acted to eliminate recirculating flow and ensure a supply
of fluid for jet entrainment; it was supplied with a uniform velocity of 0.05V ∗

0 ,
where V ∗

0 = 122 mm s−1 was the peak mean velocity at the nozzle exit. At a spacing
h∗ from the jet exit, the jet impinged on a horizontal plate. The plate was made
from transparent Plexiglas and measured 145 × 130 mm. Moreover, it was aligned
with its longer side in the direction of the longer side of the nozzle and arranged
so that the normal to its centre of gravity intersected the centre of gravity of
the nozzle. The jet Reynolds number Re = b∗V ∗

0 /ν
∗ was held constant at 2000.

Lastly, the nozzle-to-plate spacing was set to h∗/b∗ = 8. This value was chosen
because it ensures the maximum heat transfer rate at the stagnation point (Gardon
& Akfirat 1965) and would therefore appear to be the most interesting case to
study.

2.2. Nomenclature and coordinate system

We use ∗ to denote dimensional quantities and employ a rectangular Cartesian coor-
dinate system (x, y, z) with unit vectors (i, j , k), and respective instantaneous velocity
(u, v, w) and vorticity (ωx, ωy , ωz) components. Accordingly, time-mean averages (§ 2.5)
are written (U,V ,W ) ≡ (ū, v̄, w̄), and phase averages (〈u〉, 〈v〉, 〈w〉). Here, the coor-
dinates have been referred to b∗, velocity to V ∗

0 = V ∗(0, h∗, 0) and the vorticity to
V ∗

0 /b
∗. Note, however, that while it is customary in studies of jets and boundary

layers to set the x-coordinate streamwise, the jet and plate boundary layer are here
orthogonal. Since the bulk of the paper is concerned with flow near the plate, we
view events from the reference frame of the plate. We thus place the origin at the
geometrical centre of the plate, align x with the direction of mean flow over the
plate and set y normal to the plate (i.e. vertical, positive downwards), as shown in
figure 1. Finally, for convenience when discussing events near the nozzle, we shall use
the shifted coordinate Y = h∗/b∗ − y = h− y.

2.3. Phase-locking

In order to phase-lock large-scale structures in the jet, the streamwise velocity was
perturbed by oscillating the spanwise walls of the jet nozzle by two loudspeakers.
Specifically, the perturbations introduced small oscillations in the volume flux of
the inner settling chamber. Since the settling chamber was constructed from 1 mm
thickness aluminium, this was achieved by connecting each sidewall of the inner
settling chamber to the cone of a loudspeaker by metal rods; the speakers were of
course mounted outside the outer settling chamber. The wave form F∗(t∗) used to
drive the speakers was generated by an IBM AT compatible computer with a D/A
converter board and was supplied to the speakers after being low-pass filtered and
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amplified; it was constructed from two sine waves as

F∗(t∗) = A∗
1 sin 2πf∗

1t
∗ + A∗

2 sin(2πf∗
2t

∗ + φP ).

Here t∗ is time and the fundamental frequency was set to f∗
1 = 3.02 Hz, which was

the natural roll-up frequency of the jet, yielding a Strouhal number f1 = b∗f∗
1/V

∗
0 =

0.36; the subharmonic frequency was set to f∗
2 = f∗

1/2 (see below).
The rate at which the mixing layer grows is affected by the phase lag φP between

the two waves, being a minimum when φP = nπ (n = 0, 1, 2, . . .) and a maximum
when φP = (2n + 1)π/2 (Inoue 1992). Here we sought an intermediate growth rate
and thus set φP = 3π/4; see also § 3.1. The amplitudes of each of the waves, A∗

1 and
A∗

2, were set at the minimum possible for locking both the phase and the amplitude
of the structures identically. It transpired that the initial roll-up of the shear layer
was locked when the r.m.s. turbulence intensity (which includes both coherent and
non-coherent turbulence) at the nozzle exit due to forcing reached 0.009V ∗

0 .
Signals fed to facing speakers were in phase so that wall perturbations were

symmetrical. Moreover, rather than basing the phase angle φ on the fundamental, it
was instead based on the cycle of the subharmonic period 1/f∗

2 , as φ = 2πf2t + φP ,
where t = t∗V ∗

0 /b
∗. This was done because we need to know the phase angle after the

rollers (in the shear layer) have paired and such knowledge is not forthcoming if the
excitation frequency is solely f∗

1 . By adding f∗
2 to f∗

1 , however, we can determine the
phase angle of f∗

2 . Accordingly, the phase average was taken with period 1/f∗
2 .

In addition to the temporal perturbation to the jet, a spatially periodic pertur-
bation was introduced at the exit of the nozzle to fix the spanwise location of any
three-dimensional structure that subsequently formed downstream. Specifically, the
(spanwise) walls of the nozzle were fluted with sinusoidal indentations of wavelength
Λ∗ and amplitude a∗, thereby perturbing the streamwise extent of the nozzle. The
indentations were similar to those used by Lasheras & Choi (1988, henceforth referred
to as LC), who studied a plane mixing layer. They suggest that the effect of each flute
is to cause a sinusoidal spanwise displacement of the geometrical origin of the mixing
layer, thus producing a periodic axial disturbance in the shedding vortex sheet. Prior
experiments in the present apparatus indicated that the naturally occurring spanwise
wavelength of the shear layer was Λ∗ = b∗Λ = 15 mm, and we chose to excite that
wavelength, although LC note that virtually any spanwise wavelength can be excited.
The amplitude of the flutes was chosen to be 2 mm, a value similar to that used
by LC. This amplitude was approximately five times the momentum thickness of the
boundary layer at the nozzle exit.

2.4. Data acquisition and reduction

The data acquisition system was similar to that used and described by Sakakibara
et al. (1997) in which water was marked with tracer particles (10 µm polyethylene,
Sumitomo-seika HE-5023) and illuminated by a 4 W Ar-ion laser light sheet. Velocity
fields were then measured using a custom-made digital particle image velocimetry
(DPIV) system. The pulse width and the interval of the laser sheet were controlled
synchronously with a CCD camera (768 × 494 pixels, Sony XC-75). Synchronized
stroboscopic illuminations were generated by an acousto-optical modulator cell (Hoya
A-160) chopping the laser beam. Video signals from the CCD camera were recorded
on a computer controllable VCR (NTSC S-VHS, Panasonic AG-5700) and a bar-code
field number was superimposed onto each video field to tag each image frame. Lastly,
in order to memorize the phase angle of the forcing signal at the time when each
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Figure 2. Schematic of the laser lighted measuring planes.

image was captured, the field number was recorded together with a value of the phase
angle for every video image by a PC.

Velocity vectors were computed from recorded images by an IBM AT compatible
computer and Texas Instruments TMS320C31 digital signal processor (DSP), which
accelerates the calculation of the cross-correlation function. Fully automated image
processing using thousands of images was done sequentially. Typically, 80 planes of
velocity vectors could be obtained in a one hour period.

In order to obtain the phase-averaged three-dimensional distribution of the three
components of vorticity by DPIV, which in fact can measure only the two-dimensional
distribution of one-component of vorticity, many slices within a flow volume were
measured. This volume contained 33 x, y, 32 y, z and 20 x, z measuring planes in the
impingement region and 16 x, y measuring planes in the near nozzle region, each
obtained by shifting the light plane in 2 mm intervals. The size of each of the
measuring planes was approximately 20 × 30 mm2 and, as shown schematically in
figure 2; the planes were arranged to map out an L-shaped volume.

Prior to running the experiment, the image coordinates for each measuring plane
were calibrated in terms of physical coordinates. This was done with three orthogonal
laser beams positioned (by a traversing mechanism) to intersect at a known physical
point in each measuring plane; a PC then recorded each point in image coordinates.
One thousand instantaneous and time-series two-dimensional velocity distributions
with 1/20 s time interval were obtained in each measuring plane. These were then
used for calculating the statistics and phase-averaged properties.

Errors in data reduction arise from two sources, namely limitations in the resolution
of particle displacements and, since we are phase averaging, downstream variations
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in phase known as jitter. The latter is particularly evident well downstream of the
excitation source and errors arising from it are discussed by Hayakawa & Hussain
(1989). Such errors were not thought to be major in the present work, however, in
part because the plate is relatively close to the excitation source, but also because
instantaneous maps of vorticity reveal the same structural features at the same location
as the phase-averaged plots. Indeed the largest error in data reduction originated
from the evaluation of particle displacements, which were used to determine the
velocity. This in turn was affected by the size of the interrogation area, which was
2 × 1 × 1 mm. An error analysis of the data indicated that the instantaneous velocity
could be determined with a 95% confidence level to within ±5 mm s−1. Of course the
resolution of the CCD camera (about 40 µm per pixel) well exceeds the 10 µm tracer
particles. However the particle size on an image is typically 2 pixels owing to blurring
caused by particles not completely within the 2 mm thick laser sheet. The diffraction
limit, which is about 5 µm, does not play a significant role in the blurring.

2.5. Averaging

Time-mean (·) and root-mean statistical properties of any instantaneous tensor prop-
erty Φ(x, t) were determined by taking a sufficiently long time average T of Φ as

Φ(x) = T−1

∫ T

0

Φ(x, t)dt.

Phase-averaged properties on the other hand were determined in the context of
Hussain’s (1986) double decomposition, where Φ is decomposed into coherent and
incoherent components as Φ(x, t) = 〈Φ(x, t)〉 + Φ′(x, t). Here the phase average 〈·〉 is
the ensemble E{·} of all successive structures at the same age or phase φ in their
evolution and Φ′ are random fluctuations about that coherence. Thus

〈Φ(x, t)〉 = E{Φ(x, t)|φ† }, where φ−
φB

2
6 φ†

6 φ+
φB

2

and φB is the width of the phase bins. Here φB = 2π/16, since the cycle was broken
into sixteen phase bins.

2.6. Structure identification

Impinging jets, like other turbulent flows, are dominated by spatially coherent, tem-
porally evolving vortical motions known as coherent structures. Unfortunately the
precise identification of these structures remains elusive, although an intuitive method
to isolate them is to visualize surfaces of constant vorticity magnitude |ω|. This tech-
nique is widely used, but although reliable in free shear layers its use in bounded
shear layers is questionable, particularly when the shear and structure are composed
of vorticity of similar magnitude.

Techniques that better discriminate between shear and structure are based upon
the three invariants C , Q and R, and eigenvalues σ, of the velocity gradient tensor
∇u. Here σ satisfies the characteristic equation

σ3 − Cσ2 + Qσ − R = 0,

where for incompressible flow C ≡ ui,i = 0, Q ≡ − 1
2
ui,juj,i and R = Det(ui,j).

Hunt, Wray & Moin (1988) defined an eddy as a region of positive second invariant
Q of ∇u, while Chong, Perry & Cantwell (1990) suggested using complex eigenvalues
of ∇u which occur when (Q/3)3 + (R/2)2 > 0. Jeong & Hussain (1995) point out
limitations with both definitions and introduce their own. Specifically, by noting that
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Q can be written as

Q = 1
2
(‖Ω ‖2 − ‖S‖2),

where ‖S‖= [tr(SS
t)]1/2, ‖Ω‖= [tr(ΩΩt)]1/2, and that S and Ω are symmetric and

antisymmetric components of ∇u, as Sij = (ui,j + uj,i)/2 and Ωij = (ui,j − uj,i)/2, they
introduce the notion that a vortex core is a connected region with two negative
eigenvalues of S

2 +Ω2. Specifically, since S
2 +Ω2 is symmetric and thus has three real

eigenvalues λ1 > λ2 > λ3, their definition is equivalent to the requirement that λ2 < 0
within the vortex core. This definition is Galilean-invariant and is consistent with the
presence of a local pressure minimum within the flow. Although not definitive (Lugt
1996, § 12.6), the λ2 definition is a consistent indicator of structure and we use both it
(with u replaced by 〈u〉) and vorticity magnitude in the results to follow. In applying
the technique we note that four of the nine components of the velocity gradient tensor
follow directly in each measuring plane with a fifth component from continuity; the
remainder were calculated using information from adjacent planes.

2.7. Vector plots and critical point theory

Velocity vector fields of two-dimensional slices through the flow also provide evidence
of structure, particularly when coupled with critical point theory (Lighthill 1963). The
same theory, when applied on a plane of symmetry, is also useful in characterizing
topological features of the flow. Critical points are points in a flow field where the
slope of the instantaneous streamlines is indeterminate. Perry & Fairlie (1974) classify
such points, and theorems regarding their numbers and types are given by Hunt et
al. (1978).

To utilize such theory we must compute instantaneous streamlines from the velocity
vector field at some instant (phase) on the assumption that the instant is frozen in
time. Specifically, since

dx

dt
= u(x, y) and

dy

dt
= v(x, y), (2.1)

we integrate in time to obtain first x(t) and y(t), and thence y = f(x). This of
course necessitates u(x, y) and v(x, y) being known as continuous functions and so
approximations to them were obtained by fitting discrete sets of data with the form

u(x, y), v(x, y) ≈
m
∑

k=0

n
∑

l=0

Aklφk(x
′)Φl(y

′). (2.2)

Here φk(x
′) and Φl(y

′) are m+1 and n+1 linearly independent orthogonal functions.
Accordingly Akl are chosen to ensure the best approximation in a least-squares sense,
which necessitates taking an inner product over both φk(x

′) and Φl(y
′) (see e.g. Phillips

& Wu 1994). Since our domain is bounded, appropriate functions for φk(x
′) and Φl(y

′)
are Legendre polynomials, where x′ and y′ are scaled versions of x and y which lie
in the range [−1, 1]. This procedure is robust and enabled the whole field to be fitted
by one surface rather than by the series of overlapping tiles required by Perry &
Tan (1984). Various values of m and n were employed, but in general the error was
negligible when m = n = 9. Equations (2.1) were integrated simultaneously using the
method of Bulirsch and Stoer (Press et al. 1986).

Like λ2, the topology of the flow is Galilean-invariant, but the velocity vector
field is not, which means that the ensuing patterns are sensitive to the velocity of
the observer. Ideally we should be in the reference frame of the structures, which
of course presupposes we know their velocity. In the cases studied by Perry & Tan,
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that velocity was essentially constant and could be deduced from their data, but that
is not the case here. To proceed, therefore, we employ a technique from secondary
instability theory (see Herbert 1988; Phillips, Wu & Lumley 1996) which takes the
view that structures are three-dimensional perturbations about a mean structureless
flow, which in our case is given by (U,V ,W ) averaged in z, i.e. (Uz , V z , 0). Thus u in
(2.1) and (2.2) is replaced by (〈u〉 −Uz , 〈v〉 − V z , 〈w〉).

3. Mean flow characteristics

We begin our discussion with the time-mean flow field, henceforth called the
mean flow field, and in particular by considering the velocity distribution along the
centreline of the jet. Here, because of our spatial locking, and in order to compare
our results with those of others, we take the z-average of V (0, Y , z), i.e. V z

c (Y ), figure
3. As evident in the figure, our flow field is composed of three distinct regions namely
exiting the jet (§§ 3.2, 4.1), realizing an asymptotic state (§ 4.2) and impinging on the
plate (§§ 3.3, 4.3), and we shall consider each separately.

3.1. The time-mean velocity field

Because the centreline velocity of unbounded jets decays, say, as (Y /h + Y0/h)
−m

(m constant), where Y0 is a virtual origin, we refer V z
c to a reference velocity V z

r =
[(Yr + Y0)/(h + Y0)]

mV z
c (Yr) at some value Y = Yr along the jet. Previous works

(Beltaos & Rajaratnam 1973; Gutmark et al. 1978) argue that Y0/h ≪ 1 and thus
ignore Y0. They then set Yr = 1; but since the jet takes time to relax to its asymptotic
state, we prefer Yr = h/2. Other sets of data are also shown in figure 3. These studies
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Figure 4. Mean velocity distribution of the jet at the streamwise location Y = 1.

employed free jets (m ≈ 1/2) with h varying from 10 to 100, while in the present
work the jet was forced, yielding m ≈ 1/8. Observe that in spite of these differences,
and differences in Reynolds number, the data in the impingement region agree well.
Indeed in all instances the impingement region is seen to occupy about a quarter
of the distance between the plate and nozzle exit. Finally Hiemenz flow requires the
velocity to asymptote to a linear increase with distance from the plate (see Batchelor
1967, § 5.5) and the data conform.

3.2. Near the nozzle exit

The mean velocity V at a streamwise location of Y = 1 is shown in figure 4. Observe
that V is essentially uniform except in the shear layer resulting from the nozzle
boundary layer. The momentum thickness of the boundary layer at the nozzle exit
was about 0.028b∗, but slight variations about that thickness owing to the fluted
nozzle edge, and with the same wavelength as the flutes, are evident in the shear layer
downstream. These variations are not evident in the jet core, although it was subject,
in the absence (presence) of artificial excitation, to fluctuations with a streamwise
intensity of 0.007V ∗

0 (0.009V ∗
0 ).

3.3. Near the plate

The mean velocity field in the vicinity of the plate is shown in figures 5(a) and
5(b). Figure 5(a) depicts mean velocity vectors iU + jV in the (x, y)-plane through
z = 0. Observe that jet divergence due to the plate can be traced (in accord with
figure 3) to at least y = 2 and that the boundary layer assumption ∂U/∂x ≪ ∂U/∂y
would appear to be satisfied for |x| > 2. The region bounded (loosely) by these x
and y values is usually termed the stagnation region, owing to the presence of a
stagnation point or line on y = 0. However, except at random points in time, the flow
therein is anything but stagnant and the term therefore misleading; for that reason we
refer to this region as the ‘impingement region’. Overlaid on the mean velocity field
are contours of mean spanwise vorticity ω̄z . Observe that vorticity generated in the
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stagnation-point boundary layer is confined to y < 0.3. This vorticity is of opposite
sign to that from the jet and suggests that the bulk of the impingement region is
infused with vorticity from the jet rather than from the boundary layer. Thus while
the influence of the wall plays a crucial role in the large-scale vorticity dynamics in
the impingement region, the role of wall-generated vorticity ω̄z is probably minor for
those dynamics.

Figure 5(b) shows spanwise perturbations of the mean velocity V at three y locations
in the (y, z)-plane at x = 0; for orientation the y locations are marked with a bullet
in figure 5(a), and the curves in figure 5(b) are aligned with these points. Observe
that the perturbations have the same wavelength as, but are of opposite phase to, the
fluted nozzle. These perturbations set the spanwise scale of structure throughout the
flow and we now turn attention to that structure.

4. Phase-averaged structures

As noted in § 3, the flow field is composed of three distinct regions and we shall
consider each in order. Flow structure is indicated by iso-vorticity surfaces in regions
away from the wall and iso-vorticity surfaces supplemented by other techniques close
to the wall.

4.1. Near the nozzle exit

Figure 6 depicts surfaces of iso-|〈ωz〉| at Y = 1. Observe that the rollers occur
symmetrically with respect to the centreplane of the jet and depict sinusoidal-like
distortions with the same wavelength Λ as the flutes, which are drawn for reference
at the bottom of the figure. Such features concur with the findings of LC and Rogers
& Moser (1992a) in plane mixing layers.

Figure 7 shows x, y cross-cuts at z = 0, 0.25 and 0.5 (marked A, B and C) through
the iso-surfaces in figure 6, corresponding to a valley, mean and peak of the nozzle
flutes. Observe that the rollers are ellipsoidal rather than circular and that the major
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Figure 6. Iso-vorticity surfaces of the absolute value of the phase-averaged spanwise vorticity
component |〈ωz〉| = 7, at Y = 1 and phase angle φ = 0. A, B and C refer to cross cuts shown in
figure 7.

x
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1.4

0.6
–0.8 0 0.8

Figure 7. Cross-section of spanwise rollers in the planes through A, B and C shown in figure 6;
A dotted; B solid; C dashed.

(and minor) axis of the ellipse lies in a plane inclined at roughly 45◦ to the vertical.
Moreover, relative to the roller core at z = 0.25, the core at z = 0.5 is shifted inward
from the jet axis and leads in the streamwise Y -direction. This means the undulations
of the roller are in-phase with the flutes, in contrast with those of LC in a plane mixing
layer, whose rollers are phase shifted by π with respect to indentations in the splitter
plate. In short, the present rollers appear much like an isolated pair of vortex filaments
subject to the symmetric long-wave Crow (1970) instability about their minor axis.



Vortical structure in an impinging jet 285

2

0

–2
0 0.6 1.2

f

(a)

f
2

f
1

lo
g
 (

S
x(

f
))

2

0

–2
0 0.6 1.2

f

(b)
f

2 f
1

2

0

–2
0 0.6 1.2

f

(c)f
2

f
1

2

0

–2
0 0.6 1.2

f

(d )

f
2

f
1

lo
g
 (

S
x(

f
))

Figure 8. Enstrophy density spectrum of the ωx component of vorticity measured at
(y, z) = (1.0, 0.3) with (a), (b), (c), (d) at x = 0, 0.5, 1.0, 1.5 respectively.

4.2. Between the nozzle and the impingement region

According to linear stability analysis, plane mixing layers are unstable to virtually
any spanwise wavelength, although the most amplified wavelength is about 2/3
of the spacing between consecutive rollers (Pierrehumbert & Widnall 1982), and
experiments concur (LC; Nygaard & Glezer 1991). Here the roller spacing is V ∗

N/f
∗
1

or approximately 1.45b∗ since the convection velocity of the rollers (as determined by
tracking the peak value of phase-averaged vorticity) is V ∗

N = 0.52V ∗
0 , so that the ratio

Λ∗f∗
1/V

∗
N ≈ 0.71. This ratio has not previously been measured in a plane jet, but it

compares favourably with linear stability theory and falls within the 0.5 to 0.8 range
observed in plane mixing layers (Leboeuf & Mehta 1996).

The rollers undergo their only pairing in the vicinity of y = 4. Huang & Ho (1990)
suggest that pairing in mixing layers is synonymous with a doubling in wavelength
of the roller’s undulations spanwise (see also Leboeuf & Mehta 1995, 1996), but
exceptions are evident in other experiments (Lasheras, Cho & Maxworthy 1986; Bell
& Mehta 1992) and direct numerical simulations provide no evidence for it at all
(Rogers & Moser 1992b). Here there was no change in wavelength, but there was
a change in the dominant frequency of the flow. That change is evident in figure 8,

where we plot the enstrophy density spectrum Sx(f), defined as ω′
x
2 = 1

2

∫ ∞

−∞ Sx(f)df
at several points across the shear layer. Observe that the dominant frequency is f2,
which is half the fundamental frequency, in all cases except at x = 0. In consequence
the appropriate period for phase-averaging in the impingement region is 1/f∗

2 , and
that was used. Sx(f) was measured using PIV data in time series at 20 per second;
the maximum measurable frequency was therefore 10 Hz.
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Figure 9. Iso-vorticity surfaces near the plate at various phase angles. Light grey surfaces represent
|〈ωx〉| = 1.1; dark grey surfaces represent |〈ωy〉| = 1.1; cross-hatched surfaces represent |〈ωz〉| = 1.1.
The plate is depicted by a flat mesh with a finer grid. Tic marks are at 0.5 intervals. Cross ribs are
denoted CR; successive ribs SR; wall ribs WR. (a) φ = 3π/2; (b) φ = 0; (c) φ = π/2; (d) φ = π.

4.3. In the impingement region

An overview of the structure in the impingement region is given in figure 9 using iso-
vorticity, with a schematic of the structure in figure 10; figure 11 on the other hand
gives a side by side comparison of iso-vorticity, λ2 and instantaneous streamlines.
Here we discuss figure 9 where, for orientation, we note that the centreplane of the
jet coincides with the (y, z)-plane at x = 0 and that tic marks have been placed at
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Figure 10. Schematic of the vortical structure in the impingement region.

0.5-intervals to provide a depth of scale. Finally, to clarify events near the wall, a thin
layer of concentrated spanwise 〈ωz〉 boundary layer vorticity has been removed.

The dominant vortical structures entering the impingement region are a pair of
rollers; these are depicted by surfaces of |〈ωz〉|. The rollers first convect towards
the wall (figure 9a, b), and then change direction to follow the diverging mean flow
(figure 9c, d). Finally as a new pair of rollers enter the impingement region (|〈ωz〉|φ=3π/2

in figure 9a) the old set exit it (|〈ωz〉|φ=3π/2+2π in figure 9a).
Spanwise periodic perturbations to the rollers are in accord with those observed

in the near nozzle region. However the amplitude of the perturbation increases as
the roller approaches the wall (figure 9c) and ultimately contorts into two connected
lobes, the frontal one being larger; these are labelled (1) and (2) in figure 9(d). The
spanwise spacing of each lobe remains about Λ.

Successive rollers in mixing layers are connected by rib vortices (and braids)
(Hussain 1983, 1986; Bernal & Roshko 1986; Rogers & Moser 1992a) and that too
is the case here, where they are evident as |〈ωx〉| and |〈ωy〉| iso-surfaces in figure
9(c), labelled SR. For reasons apparent shortly, we refer to such ribs as ‘successive
ribs’. Successive ribs extend from the outside portion of the upstream roller to the
inside portion of the downstream roller. Moreover, as we shall determine in § 5.1,
they retain their orientation as the rollers progress through the impingement region
and are strain-dominated and stretched in the direction parallel to themselves, as
shown schematically in figure 10. Finally, successive ribs are spanwise periodic with
a wavelength of about Λ.

A spanwise array of similarly spaced rib vortices composed of |〈ωx〉| are evident
near the wall. These are quasi-streamwise (in the x-direction) and extend through the
symmetry plane, as was previously reported by Yokobori et al. (1997), who observed
them using the hydrogen-bubble technique. We refer to these as ‘wall ribs’ and label
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Figure 11 (a,b). For caption see page 291.

them WR. Initially it was thought that wall ribs were the end product of successive
ribs, but that in fact is only partly true. Rather, wall ribs are sustained, at least near
the symmetry plane, by what we term ‘cross ribs’.

Cross ribs extend from the downstream side of each roller to its counterpart across
the symmetry plane and are evident as concentrated regions of |〈ωx〉| labelled CR in
figure 9(b). We shall discuss cross ribs further in §§ 5.1, 5.2. Cross ribs are perhaps to
be expected in a plane jet with combined fundamental and subharmonic forcing in
phase because the rollers are symmetrical rather than staggered, but they have not
previously been reported. This may be because their influence in unbounded shear
layers is minor, whereas here their importance is emphasized by stretching as they
approach the wall. Nevertheless, we must prove they exist and ask how they came to
be, and we shall do so by using vector velocity plots, critical point theory and λ2 in § 5.
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Figure 11 (c,d). For caption see page 291.

5. Successive, wall and cross ribs

A schematic of the structure introduced in § 4 is given in figure 10 and we should
now like to provide more detail of that structure. Specifically, we begin with evidence
of cross and successive ribs and show how each culminate as wall ribs, § 5.1. We then
discuss how cross ribs are formed, § 5.2, and go on to determine that successive, cross
and wall ribs are strain dominated, § 5.3. Finally we determine that stretching plays a
key role in the production of wall rib vorticity, § 5.4.

5.1. Structures

Plots of the various identification techniques in two orthogonal planes and at phase
intervals of π/4 beginning with φ = 3π/2, are given in figure 11. The upper level at
each phase shows iso-〈ωx〉 and iso-λ2, while beneath them are velocity vectors relative
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Figure 11 (e,f ). For caption see facing page.

to the mean flow as defined in § 2.7 and their instantaneous streamlines. In each
instance the left-hand figure is of the (y, z)-plane through x = 0, while the right-hand
figure is of the (x, y)-plane at z = 0.3 in the case of 〈ωx〉 and λ2 (which cuts through
successive and wall ribs) and z = 0 otherwise. A vertical line marks the location of
each slice. Furthermore, for orientation the iso-vorticity, henceforth denoted Ω, plots
have further features: a shaded region denotes |〈ωx〉| > 0.8 and thicker contours
denote roller position. Finally, because all components of the velocity gradient tensor
are required to evaluate λ2 (see § 2.6), we note that its x-wise extent is less than that
of the other techniques.

We look first at the x, y plots and the rollers. Observe that each technique con-
sistently depicts their presence and position, at least within their respective fields of
view. Likewise successive ribs (SR) are clearly evident in the Ω and λ2 plots at phases
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Figure 11. Plots of 〈ωx〉, λ2, relative velocity vectors and their instantaneous streamlines in two
orthogonal planes at phase intervals of π/4 beginning at (a) with φ = 3π/2. The left of each figure
pair is of the (y, z)-plane through x = 0 while the right-hand side is of the (x, y)-plane through
z = 0.3 for 〈ωx〉 and λ2 and z = 0 otherwise. A vertical line marks the location of each slice. The
shaded region denotes |〈ωx〉| > 0.8; dotted contours show 〈ωx〉 of opposite sign. Thicker contours
are of |〈ωz〉| at x = 0.6 and z = 0.3: these contours indicate roller position and are overlaid for
reference. Note also that the field of view of λ2 in x is restricted to −0.7 6 x 6 1.03, while the
velocity vectors are relative to the mean flow field as defined in § 2.7.

(e), (f) and (g); and at other phases as well, once we know what to look for. Wall
ribs (WR), on the other hand, are present throughout the cycle but come into view
(in z) only at (e), (f) and (g) according to λ2.

That wall ribs indeed occur throughout the cycle is best seen in the y, z plots, where
they are evident with all techniques. Observe that they are spanwise periodic with
wavelength Λ and that their location is little affected by phase except at (d) where



292 J. Sakakibara, K. Hishida and W. R. C. Phillips

they amalgamate with incoming cross ribs (discussed later), which in turn affects their
strength, e.g. compare the λ2 plots at (a) and (f) (see also § 5.4).

According to Ω, cross ribs (CR) are first evident at (h) and remain as entities until
(c); λ2 and instantaneous streamlines, henceforth denoted ψ, on the other hand do
not report them until (a), although (c) again is the last we see of them as entities.
But there are noticeable differences from technique to technique, both with regard
to the spanwise periodic spacing and y-location of cross ribs. Specifically, Ω implies
their spacing concurs with that of wall ribs, namely Λ, but λ2 and ψ depict a larger
spanwise periodic spacing, indeed 3Λ (see e.g. (a)). For an explanation we turn to
critical point theory. Here cross ribs are depicted by stable foci (see § 5.2) which must,
for topological reasons, be separated by a saddle point. It is this saddle point (or
more precisely saddle-node trio) that gives, in the vorticity maps, the illusion of a
cross rib pair. But ψ and Ω concur on the y-location of cross ribs, placing them closer
to the wall than λ2. Of course λ2 is Galilean invariant, so its location is indisputable,
while the location given by ψ (though not the topology) is affected by the assumed
convection velocity; Ω on the other hand would appear to be influenced by the
imposed strain field.

As the cross ribs move toward the wall, the wall ribs beneath them (of the same
sign) rise to meet them and the two ultimately merge; compare figures 11(c) and (d)
in the ψ and λ2 plots. The merged rib is initially above the wall (λ2 (d)), but quickly
returns to the wall with enhanced strength. Of course since the spanwise spacing of
cross ribs is greater by three than that of the wall ribs, merging occurs with the two
outer wall ribs. In short, cross ribs contribute to the survival of the outer wall ribs
by periodically supplying them with vorticity of the same sign as each pair of rollers
cycle into and through the impingement region. This periodic enhancement of wall
rib vorticity acts to increase the cross-sectional area of the ribs (e), while simultaneous
stretching (in x) by the diverging mean flow acts to decrease the cross-sectional area
(see Ω (f–h). The intensity level of wall ribs is thus cyclic (see § 5.3).

Successive ribs on the other hand do not penetrate the symmetry plane, as is evident
in (e) and (f) and figure 12, which is a ψ-slice parallel to but above the plate. Rather,
they remain within the adjacent region (0.3 < |x| < 1.0) where they appear to retain
their orientation until they encounter wall ribs (Ω and λ2 figure 11a–d). Unlike cross
ribs, however, their spacing is close to Λ, so they probably influence both the inner
and outer wall rib pair.

5.2. Formation of cross ribs

As the jet shear layers exit the nozzle, they roll up into spanwise rollers (figure 6)
separated by a potential core across the plane of symmetry (figure 4). However the
extent of the core diminishes as Y increases, until at some point there is a continuous
distribution of vorticity (in the mean) across the jet. A continuous distribution of
vorticity does not imply cross ribs, however; indeed for cross ribs to form there must
be a change in topology and that change is evident in the y, z ψ plots of figure 11.
Cartoons of the two classes of topology depicted in these plots are given in figure 13.

Figure 13(a) is typical of phases (d–g) in figure 11. At the top of this figure is
a seperatrix depicting two stable nodes and a saddle point and beneath it another
seperatrix depicting two saddle points and an unstable node. Figure 13(b), on the
other hand, is typical of phases (h–c) and here we find that the stable nodes in the
upper seperatrix of figure 13(a) have become stable foci which depict cross ribs.
The bifurcation from stable nodes to stable foci is first apparent in figure 11(h) and
clearly evident in 11(a). Accordingly the saddle points in the lower seperatrix of
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Figure 12. Instantaneous streamlines deduced from measured phase-averaged velocity vectors in
the (x, z)-plane at y = 1.5. The phase angle corresponds to (h) in figure 11. The foci depict successive
rib vortices that connect spanwise rollers.

figure 13(a) now separate foci depicting wall ribs from those depicting cross ribs.
There would also appear to have been a loss of symmetry about the O–y axis at
z = 0.

But why do cross ribs form? As evident in figure 6 and discussed in § 4.1 the rollers
undergo a spanwise instability which causes them to distort sinusoidally, much like
the Crow (1970) instability. In that instance, which is concerned with an isolated
vortex pair, the perturbations are symmetric about the plane of symmetry and the
amplitude of the perturbations grows until the vortices touch; they then bifurcate into
ring vortices, as seen in figure 116 of Van Dyke’s (1982) album of fluid motion. In our
case the perturbations also grow until the rollers touch, figure 11(h), but rather than
bifurcating to ring vortices, the rollers here stay intact and the bifurcation spawns
cross ribs.

The bifurcation is first evident near y = 2.5 (Y = 5.5), just as the rollers enter
the impingement region. This, and the fact that the rollers are already unstable at
Y = 1, suggest that the plate is not a factor in the formation of cross ribs, from
which we infer that cross ribs may also occur in plane jets. Of course necessary to the
formation of cross ribs is that the rollers first undergo a Crow-like instability, but that
is not sufficient. For example Rogers & Moser (1992a) observe a similar instability in
their calculations of a plane mixing layer, but do not observe cross ribs. One obvious
difference is that their rollers are antisymmetric about the jet centreline while ours are
symmetric, a feature which may well affect the growth rate of the roller perturbation,
as may the aspect ratio of the jet.

5.3. Strain rate tensor

To ascertain that cross and successive ribs are strain dominated, we turn to the
spatial distribution of the principal axes of the phase-averaged symmetric strain-
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Figure 14. Distribution of the direction and magnitude of the expansion of fluid elements as
evaluated from the most significant eigenvalue and its vector of the phase-averaged strain-rate
tensor. Sections correspond to figures 11(b) and 11(f) as do reference contours for the rollers; the
shaded region depicts |〈ωx〉| + |〈ωy〉| > 0.8. (a) φ = 7π/4, (b) φ = 3π/4.

rate tensor 〈Sij〉 = ∂〈ui〉/∂xj . This tensor has three unit eigenvectors ei, which each
denote a principal axis, with corresponding eigenvalues γ, which denote magnitude,
as eiSij = γej (Panton 1996, § 3.10). Physically, the expansion of a fluid element is
dominated by the magnitude and direction of the largest eigenvalue and its vector.
The magnitude and direction of the expansion fields corresponding to figures 11(b)
and 11(f) are shown in figures 14(a) and 14(b). Here, contrary to figure 11, the shaded
region depicts |〈ωx〉| + |〈ωy〉| > 0.8.

It is evident that cross and successive ribs are aligned with the local direction of
expansion, as are wall ribs in the region |x| < 1. However the converse is not true. If it
were we should expect successive ribs to extend to the symmetry plane upstream of the
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rollers, labelled G, where the fluid is expanded in y and compressed in the x-direction.
But no significant concentrations of 〈ωy〉 or 〈ωx〉 were observed in this region.

5.4. Production of wall rib vorticity

Having determined in §§ 5.1, 5.2 that wall ribs are periodically fed with vorticity from
cross and successive ribs, we should now like to determine whether that enhancement
is due to stretching or reorientation of vorticity, or a combination thereof. To do
so we consider the dynamical equation for the phase-averaged vorticity (see Hussain
1986), which can be expressed using index notation as

D〈ωi〉

Dt
= 〈ωj〉

∂〈ui〉

∂xj
+ Re−1 ∂

2〈ωi〉

∂xk∂xk
+

∂

∂xj

(

〈u′
iω

′
j〉 − 〈u′

jω
′
i〉
)

.

Here the production of vorticity is the first term on the right-hand-side, while viscous
diffusion is second and the diffusion by the random fluctuations third. Thus the
production of streamwise vorticity 〈ωx〉, can be written in component form as Pxx +
Pxy + Pxz , where

Pxx = 〈ωx〉
∂〈u〉

∂x
, Pxy = 〈ωy〉

∂〈u〉

∂y
and Pxz = 〈ωz〉

∂〈u〉

∂z
.

Here Pxx is the production of vorticity due to vortex stretching, while Pxy and Pxz are
concerned with reorientation of vorticity due to the local velocity gradient.

Contours of Pxx, Pxy and Pxz in the (x, y)-plane are shown in figure 15 at phase
angles (φ = 7π/4 and φ = 3π/4) which correspond to those of figures 11(b) and
11(f). The z-location of the plane also concurs with that of figure 11, as do the
shaded region and heavier contours.

At φ = 7π/4 (figure 15a–c) the rollers have just entered the impingement region.
Observe that Pxx is significant in both the cross and wall ribs. Conversely, production
due to the reorientation of spanwise vorticity (Pxz), and to a lesser extent (Pxy), is
evident only in the roller cores (figure 15b, c), since the sinusoidal distortion of the
rollers through ∂〈u〉/∂y and ∂〈u〉/∂z redistributes spanwise and normal vorticity into
〈ωx〉. Spanwise rollers in plane mixing layers depict the same phenomena (Rogers &
Moser 1992a).

Half a cycle later (φ = 3π/4), the production of vorticity due to vortex stretching
is even more significant (figure 15d), while the reorientation of vorticity (Pxy and Pxz)
is negligible (figure 15e, f). We conclude therefore that rib vortices are sustained by
merging and stretching of vorticity, in accord with our observations in § 5.2, not the
reorientation of vorticity. In consequence we now turn to the phase evolution of the
stretching process.

The stretching term Pxx is composed of 〈ωx〉 and ∂〈u〉/∂x, and we are interested
in the phase evolution of each. Since local readings of these quantities can be
misleading we employ spanwise averages over one wavelength; we then obtain |〈ωx〉|z

and 〈∂u/∂x〉z whose values at y = 0.28 are plotted in figure 16. Looking first at
〈∂u/∂x〉z we observe results much as expected in stagnation point flow: specifically,
since 〈u〉 = 0 on the plane of symmetry and is non-zero for y > 0 elsewhere, we
expect 〈∂u/∂x〉z to be a maximum on x = 0, y > 0, and that is what the data depict,
although details vary throughout the cycle. The cycle for |〈ωx〉|z , however, is more
varied as we see in figure 16(b).

First, in accord with our observation of wall ribs in figure 11, we see that |〈ωx〉|z

is non-zero throughout the whole cycle and has a lower bound (dashed line left) in
the vicinity of 0.6. Second we note that |〈ωx〉|z at x = 0 at all times exceeds the lower
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Figure 15. Spatial distribution of terms Pxx (a, d), Pxy (b, e) and Pxz (c, f) which contribute to the
production of phase-averaged vorticity 〈ωx〉. These are shown in the (x, y)-plane at phase angles
φ = 7π/4 (a–c) and φ = 3π/4 (d–f). The plane location and phase angles correspond to those of
figures 11(b) and 11(f). Shading and the thicker contours are as in figure 11.

bound, whereas |〈ωx〉|z at other x recover it. We next note that there is an envelope
(dashed line right) to which, over varying degrees of φ, all data collapse, suggesting
little change in x (at fixed φ).

Observe that the x = 0 curve collapses only near its peak value and exceeds the
envelope at all other φ. This supports the notion that vorticity from the cross ribs is
for the most part fed to the wall ribs in the vicinity of the symmetry plane, a notion
reinforced by the fact that |〈ωx〉|z peaks at x = 0. This peak occurs at φ ≈ 3π/4
(see also figures 11f, 14b, 15d); that is, when the roller is about midway through
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Figure 16. Phase distribution of spanwise- and phase-averaged quantities at y = 0.28 and various
x-locations: ×, x = 0; �, x = 0.5; +, x = 1; ⋄, x = 1.5; (a) |〈ωx〉|z , (b) 〈∂u/∂x〉z .

the impingement region. Here the roller acts to enhance strain in the x-direction and
directly supply 〈ωx〉 to the wall ribs; both effects give rise to the production of 〈ωx〉.
Indeed, looking at production, we see that both |〈ωx〉|z and 〈∂u/∂x〉z are in phase
at x = 0 but that they shift in phase as x increases. In consequence the level of
production is highest at x = 0 and, since 〈∂u/∂x〉z diminishes to near zero by x = 1.5,
is effectively zero there. However, in spite of the continual production of vorticity at
x = 0 and elsewhere, its absolute level diminishes noticeably with φ. This is most
likely caused by viscous and turbulent diffusion.

6. Summary and discussion

The DPIV technique employed in the phase-locked experiment described allowed
the measurement of entire velocity vector fields of the periodic flow. It also allowed,
by use of iso-vorticity, critical point theory and λ2, a glimpse of the dominant periodic
eddying motions that play a role in such flows, both near the jet nozzle and in the
impingment region of the plate. Away from the plate the flow was seen to behave in
much the same manner as that of a mixing layer, in that the shear layers roll up into
spanwise rollers. However while the rollers in a mixing layer occur alternately about
its midplane, they here occur symmetrically. Furthermore, in accord with mixing
layers (Rogers & Moser 1992a), the rollers develop a spanwise perturbation with the
same wavelength as the fluted jet nozzle and evolve much as do a pair of isolated
vortex filaments subject to the symmetric long-wave Crow (1970) instability.

Also in accord with previous observations (Hussain 1983, 1986; Bernal & Roshko
1986; Rogers & Moser 1992a) the rollers were connected by ribs. These are spanwise
periodic with the spacing of the flutes of the jet nozzle. This spacing was determined
to be about 0.71 of the spacing between successive rollers, a value that compares well
both with linear stability theory (Pierrehumbert & Widnall 1982) and observation in
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mixing layers (Leboeuf & Mehta 1996). The rib spacing did not change when the
rollers paired.

To further clarify the structure, instantaneous streamline patterns on the (two)
planes of symmetry were computed by integrating the velocity vector fields; the
topology of the patterns was then described in terms of critical points. With this
technique, the aforementioned rollers are clearly evident. So too are ‘cross ribs’ which
connect rollers across the symmetry plane with a spanwise spacing thrice that of the
nozzle flutes. But, unlike successive ribs which evolve soon after the rollers form, cross
ribs occur much later. Indeed cross ribs occur only after the rollers have undergone
a spanwise perturbation whose amplitude has grown large enough to allow mirror
image rollers to touch.

As the flow traverses the impingment region, it diverges about a mean stagnation
streamsurface and the rollers follow suite. As they do so, the amplitude of their span-
wise periodic perturbation increases. However, although the form of the perturbation
initially remains unchanged, it ultimately contorts (as the rollers exit the impingment
region), into what appear to be two connected, but still spanwise periodic, lobes.
Meanwhile the distance between the rollers and the jet symmetry plane increases
and the vorticity from which the cross ribs are composed is stretched and enhanced.
Moreover, that same vorticity is seen to align with the mean strain, as does the
vorticity in successive ribs. Of course as the rollers move apart they also approach the
wall and at some point the cross ribs encounter and merge with wall ribs composed of
vorticity of the same sign. At this juncture the production of streamwise (in the sense
of the plate) vorticity due to stretching (not reorientation) is a maximum and that
maximum is highest in the vicinity of, and peaks at, the symmetry plane. The demise
of successive ribs on the other hand occurs away from the symmetry plane and would
appear to be less important dynamically than cross ribs merging with wall ribs.

Wall ribs are evident throughout the cycle. Moreover, because they are evident
both with and without (phase and temporal) locking, they would appear to have
their origins in the boundary layer rather than upstream, although their lateral
spacing can most definitely be determined upstream (Yokobori et al. 1977). Using
other techniques, Lyell & Huerre (1985) also conclude that wall ribs form in the
boundary layer. Specifically, they determine that disturbances added to Hiemenz flow
are attenuated and stabilized by concave streamline curvature, thereby excluding
bifurcations to secondary flow. There are of course other instability mechanisms by
which wall ribs can form in shear layers (see e.g. Benney & Lin 1960; Wu 1993;
Phillips & Shen 1996), but none have been investigated in the context of Hiemenz
flow. However whatever the origin of wall ribs, there is little doubt they are enhanced
if not sustained by vorticity in cross ribs advected from upstream by the jet.

We are grateful to Mr D. Hayashi for help with the experiment, which was
conducted at Keio University, and to Professors M. Maeda and R. D. Moser for
helpful discussions. Support from the Ministry of Education of Japan (grant number
04555050), the Japan Society for the Promotion of Science and the US National
Science Foundation (OCE-9696161, OCE-9818092) is gratefully acknowledged.
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