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A BSTRACT 

A modification to Kirchhoff's free streamline introduces the 

parameter k = V 1 - CP•' which allows arbitra ry base pressure 

and which must depend on the dynamics of the wake. F or a 

cylinder of given cross-sectional shape, t he drag, CD, and the wake 

width, d', are functions of k only. These functions a re used to 

relate Cv and the dimensionless shedding frequency , S = nd/ U "" 

to another number, S* = nd' / U., which is based on wake param

eters. It is found that S* = 0. 16 for all cylinders . In another 

approach, k is evaluated by using Karman's solution for the 

vortex street. 
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distance from back of cylinder to trailing edge of inter-

ference element 

dr ag coefficient 

base pressure coefficient 

cylinder d iameter or breadth 

distance between free streamlines 

width of vortex street 
; --

base pressure parameter ( u.1 u X> or v 1 - cP') 

longitud inal vortex spacing 

vortex shedding frequency 

R eynolds :'.'Jumber based on cylinder dia m eter ( U rod / v) 

Reynolds K umber based on wake parameter s ( U,d ' / v ) 

cylinderStrouhal l\umber (nd/ U ,,,) 

wake Strouhal :\umber (nd' / U, ) 

velocity of vortices relative to free-stream veloci ty 

free-stream velocity 

velocity on free streamline a t separation 

circulation per vor tex 

fraction of shear layer vorticity which goes into ind i

v idual vortices 

wake width factor, h/ d' 

(I) I NTRODUCTION 

T HE PROBLEM OF THE FLOW about a bluff body is 

returned to, in the literature, again and again. 

The reason for this is clear enough -not only is the 

problem always of great practical importance, but it has 

so far not given way to theoretical t reatment. In 

fact, there has been litt le new advance in the t heory dur

ing the past 40 years, t he contribu tions of Kirchhoff 

and Karman still remaining the cornerstones from 

which almost a ll writers start. A large part of the 

theoretical work since then has been little more than 
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elaboration and extension of those theories. But, as 

already point ed out by the early investigators, there 

seems little hope of arriving at a complete theory be

fore something is underst ood of the essentially non

steady processes in the wak e immediately downstream 

of the cylinder-i.e., the dynamics of the vortex forma

tion. It is unfortunate that more of the energy has 

not been applied in this direction. However, this part 

of the problem does indeed appear formidable, and one 

would like to progress a little further without having t o 

ta.ckle it directly . 

Possibly not enough attention h as been paid to the 

experimental information that h as been accumulat ed 

and which is indispensable for the realistic formulation 

of theoretical models. The work of Fage and his asso

ciates t· 2 can be singled out as a particularly fruitful 

source of experimental results that have not been fully 

exploited. 

It is the purpose of the present paper to give an over

all view of the aspects of the problem which must be 

considered, and combined, in any complete t heory. 

These are, principally, the potential outer flow and t he 

wake. It is shown t ha t a realistic representa t ion of 

the potential flow, in the v icinity of the cylinder, may 

be obtained by a modification of Kirchhoff's method. 

This depends, however , on a parameter that can be 

determined only from a consideration of the wake. The 

crucial region in the " joining" of t he potential part of 

the solution to t he wake is the region of vortex formation 

just behind the body. Some experimental results are 

presented t o demonstrate how critically the whole prob

lem depends on that region. Nevertheless, even with

out understanding the vortex formation, the modified 

Kirchhoff theory may be combined with some con

siderations about the wake t o obtain a solut ion. This 

is still semiemp irical, but the empiricism is a mm1-

mum, and a useful unification of different bluff body 

shapes is obtained. 

(II) MODIFIED KIRCHHOFF :METHOD 

The main fea ture of flow past a bluff body is its 

separation from the body surface, well ahead of the 

rear stagnation point, and the formation of a large 

wake. T he presence of the wake alters the fl.ow and the 

pressure distribution on the body, as compared to the 

potential solution, r esulting in a deficit of pressure on 

the downstream side and an excess in front. This gives 

a net pressure drag quite distinct from that due t o fric

t ion. 
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In the approach taken by Kirchhoff, the problem is 

to find the drag by calculating the pressure dist ribution. 

, For this, one has the experimental observation that the 

separated boundary layer continues downstream as a 

free shear layer, which is well defined at first and forms 

a boundary of demarcation between the wake and the 

(distorted) potential outer flow. The · problem con

sists then of finding the shape of this boundary (which 

is idealized as a surface of velocity discontinuity, or 

so-called free streamline) so that the potential outer 

flow, and thus the pressure distribution, may be calcu

lated. The basic assumption in the Kirchhoff theory is 

that the pressure everywhere in the wake is the free

stream pressure, p '° . This then is also the pressure on 

the "base" of the body, downstream of the separation 

point, as well as all a long the free streamline. The 

magnitude of the velocity at the separation and on the 

free streamiine must then be the free-stream value, 

U"' . Thus, in the hodograph plane, the free stream

line is simply a circle and permits an elegant solution. 

However, the calculated drag is considerably lower 

than what is observed, the discrepancy being directly 

due to the assumption about the base pressure, which 

is observed to be actually much lower than p"'. On 

t he other hand, the measured pressure is remarkably 

uniform over the base. This, and the fact that free 

streamlines appear to be good representations of the 

free shear layers, indicates that the Kirchhoff method 

should be sound, provided more realistic (lower) values 

are chosen for the base pressure. But then t he pressure 

in the wake can no longer be uniform, for it must even

tually become p ,,,, far downstream. On the other 

hand, there need not be too much concern about the 

details of the solution far downstream, for in any case 

the free streamline representation will be valid for only 

a few d iameters downstream of the body. The main 

aim should be to find a model that will give an accurate 

representati<;m in the vicinity of the body and permit 

the pressure distribution on the body to be calculated. 

Such a solution was first obtained by Riabouchinsky, 3 

who avoids the problem of the pressure distribution 

in the wake by constructing a closed wake, or cavity, 

instead of letting it extend to infinity downstream. 

The pressure in the cavity is uniform but may h ave 

arbitrary values. Thus a family of cavity flows is 

obtained in which the dimensions of the cav ity, as well 

as the pressure distribution and drag of the body, de

pend on the cavity pressure as parameter. However, 

Riabouchinsky's solution was not exploited by him 

or anyone else for other than cavitation flows. 

In a somewhat different approach taken by the pres

ent writer, 4 the Kirchhoff method is simply modified 

to allow arbitrary base pressures. To demonstrate 

how this is accomplished, Kirchhoff's example of a fiat 

pla te set broadside to t he (two-dimensional) flow is 

sketched in Fig. 1. The essential step, following 

Helmholtz and Kirchhoff, is the mapping of the flow 

onto the hodograph plane, from where it may be 

mapped onto the plane of the complex potential, and 

the potential flow completely determined. The vector 

from o, in the h odograph plane, to any other point rep

resents the velocity at the corresponding point in the 

physical plane. Thus the velocity which at "a" has 

the free stream value [j "'' decreases along ao until it is 

zero at the stagnation point. Then it increases again, 

along the front of the plate, until it reaches the value 

U, at the separation point on the edge of the plate. 

Whereas in the Kirchhoff theory this is fixed at the free

stream value, here we allow it to have an arbitrary 

value Us, greater than U ro · Correspondingly, the pres

sure there, and on the base, will have the value 

Ps = p"' + (1/ 2) [p( U"' 2 
- U,2

) J 

which is lower than pro. \\Tritten as a pressure coeffi

cient, the base pressure is 

where 

Ps - P '° 

(1/ 2)pU"' 2 
1- -( 

U, )2 
u'° 

k = (U./ UJ ~ 1 

1 - k2 (1) 

From s, in the hodograph plane, the free streamline 

must return to a, the point at infinity . Now one feels 

that, since the pressure is uniform over the base, it 

should be uniform for some distance downstream in the 

wake-that is, that the pressure and the magnitude of 

the velocity along the free streamline are constant at 

first. The corresponding trace in the hodograph plane 

is a circular arc, and we simply assume that the arc 

extends through a full 90° as shown", until the direction 

is parallel to the free stream. From this point, b, it 

proceeds to a without further change of direction. In 

this way we obtain, in the hodograph plane, a "notched" 

circular hodograph that can easily be mapped into the 

complex potential plane, and, in the physical plane, a 

wake that has a definite width, d'. T he solution de

pends on the single parameter k- i.e., on the base 

pressure. The Kirchhoff solution is the limiting case, 

k = 1, shown in the hodograph by the dotted circle. 

A typical pressure distribution for arbitrary k is sketched 

in Fig. l. 
It is shown in Fig. 4 that if the value of k (i.e., of 

Cps) is chosen to correspond with the measured base 

pressure, then th e calculated pressure distributions along 

the free st reamline and on t he front of the body agree 

well with the measured distributions, so that the meas

ured and calcula t ed values of drag are also in excellent 

agreement. On the other h and, such good agreement is 

not obtained when the pressure on the free streamline 

is assumed to start increasing immediately after sepa

ration. Therefore the assumption of a circular, notched 

hodograph appear s t o be a good one and m ay be ap

plied with confidence to other cylinder shapes. In addi

tion, it defines a definite wake width, d' , which will 

presently prove to be most useful. The Riabouchinsky 

model giv es equally good agreement between measured 
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and calculated drag, for it also assumes constant pres

sure along the free streamline. It also gives a definite 

wake dimension for each value of k. Thus, for repre

senting the early part of the flow, the two solutions are 

entirely equivalent, although they differ slightly in 

numerical detail. 

The dependence of the drag ( C n) and the wake 

width (d' / d) on the parameter k, which fixes the base 

pressure, is shown in Figs. 2 and 3, which have been 

adapted from reference 4. 

The Kirchhoff method is by no means restricted to 

this case of the "bluff plate." In fact, there is ex

tensive literature on free streamline theory in which 

applications to many different body shapes may be 

found. Almost always, however, the Kirchhoff as

sumption is retained-that the base pressure is p,, -
and correspondingly the resulting values of drag are 

always too low. For instance, when applied t o the 

circular cylinder, 5• 
6 the theory gives a drag coefficient 

0.5, as compared to the experimental value of about 1.0. 

In the application: of the theory to a circular cylinder, 

or any smooth cylinder without edges, some additional 

difficulties are encountered, for in such cases the sep

aration point is not fixed once and for all. It is as

sumed then that at separation the free streamline has 

the same curvature as the body surface. This gives a 

unique additional condition that makes the problem 

determinate. Although this does not give the "pres

sure bump" that is actually required to separate the 

boundary layer, it does give a solution that is reason

able in the large, and which may be expected to give 

reasonable values of the drag, provided the base pres

sure is chosen realistically and is not restricted to the 

Kirchhoff value. In reference 4 the notched hodo

graph h as been adapted to this purpose. Just as for 

t he bluff pla te, a solution is obtained in which the drag 

and the wake width depend on the parameter k. They 

have been plotted in F igs. 2 and 3, along with the re

sults for the bluff plate. These figures contain, in 

addition, t he results for a wedge of vertex angle 90° . 

\Vhile in each case the calculated flow and the drag 

correspond well with experimental results, provided 

k is chosen appropriately, the theory now is not closed, 

for it does not tell how to determine the parameter k . 

This, in fact, is the position we should expect to be in, 

for we cannot expect to obtain a complete solution with

out considering the mechanics of the wake. As will 

be shown in the next section , t he wake plays an essen

tial part in setting the base pressure, especially that 

part of the wake in the first few diameters downstream 

of the cylinder. 

(III) THE COUPLING REGION 

Although the free shear layers conform well at first 

with the calculated free streamlines, this agreement 

does not hold far downstream. Instead, the well-

known periodic formation and shedding of vortices 

occurs, r ~s ulting, further downstream, in the periodic 

wake structure known as the Karman vortex street. 

It is this transition from the potential free streamline 

flow to the wake regime that is at present so little under

stood, but which must eventually hold the key to a 

complete theory. The crucial nature of this region, 

which might appropriately be called t he "coupling 

region" between wake and potential outer flO"w, may 

be demonstrated strikingly by some simple experi

ments. 

In the first of these a thin partition, or splitter plate, 

placed along the centerline of the wake downstream of 

a cylinder, is found to stop the vortex shedding. The 

partition need not extend all the way downstream, but 

only for the first four or five diameters. It appears that 

if the two shear layers on either side of the wake cannot 

"see" each other in the region \Yhere they tend to roll 

up, then there is no stabilizing mechanism to fix a 

definite, periodically alternating, vor tex formation, and 

the shear layers then break down in some other manner; 

independently of each other. \Vhat is more remark

able, the splitter plate h as an extremely strong influence 

on the drag of the cylinder. In some measurements on 

a circular cylinder, reported in reference 7, the drag co

efficient was changed from 1.1 to 0.7 by introducing 

a splitter plate that extended for five diameters down

stream of the cylinder. The corresponding change of 

base pressure coefficient, Cps, was from - 1.0 to - 0.5. 

In short, the prevention of vortex formation reduces 

the base suction. 

Some indication of what is happening may be ob

tained from Fig. 4, which gives the corresponding pres

sure distributions along the wake centerline, with and 

without splitter plate. This not only demonstrates 

the change effected in the base pressure, but also shows 

a pressure "valley" downstream of the base, especially 

pronounced when the splitter pla te is absent. The 

minimum pressure occurs about one diameter down

stream of the base, just in the region where the YOrtices 

form. Actu ally, the pressure there fluctuates at the 

shedding frequency, and it is the mean value that is 

given in F ig. 4 . But it seems clear from this that the 

dynamics in the region of vortex formation are such as 

to create a low pressure there and that the suction on 

the cylinder base is intimately associated with it. 

This relation between vortex formation and base 

pressure is further illustrated in the measurements of 

F ig . 5, which were obtained by using a much shorter 

length for the splitter plate- namely, about one diam

eter. This is too short to completely shield the shear 

layers from each other, but it does in terfere with the 

vortex formation. For instance, the shedding fre

quency, at fixed free-stream velocity, is changed when 

the posit ion of the plate is altered along the cent erline. 

In Fig. 5, the shedding frequency, n, is given in the di

mensionless form, S = nd/ [] "" which is called the 

Strouhal ~umbe r. Since U 
0 

is fixed in this experi-
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ment, S is directly proportional to the frequency. As 

the plate is moved downstream, the shedding frequency 

decreases appreciably, reaching a minimum value 

when t he trailing edge of the plate is at four d iameters 

downstream. Then, when the plate is moved just 

beyond this critical position, the shedding frequency 

abruptly increases, almost to its undisturbed value, 

corresponding to flow without interference. 

The effect of the short plate in altering the shedding 

frequency seems to be as follows. \\Then it is not too 

far from the base, the vortices form on its downstream 

side· this downstream shift of the formation position is 

acc;mpanied by a decrease of the frequency. On the 

other hand, when the plate is far downstream it can have 

no effect, and the vortices form in their normal way. 

At some intermediate, critical position of the plate, the 

vortices have a choice of forming on either its upstream 

or its downstream side. Since there is no possibility for 

a !!radual transition from one regime to the other, there 
b 

must be an abrupt jump at that position. 

This phenomenon is in itself interesting, but the ex

periment demonstrates two other important points. 

First, the interference is effective only in the region 

where the vortices form ; farther downstream it has no 

important effect on the vortex shedding. Second, the 

interrelation between the vortex forma tion and the 

base pressure is clearly demonstrated by the measure

ments of base pressure, Cps, which are also given in Fig. 

5 and which were made simultaneously with the meas

urement of the shedding frequency . As the plate is 

moved downstream, the decrease in shedding fre

quency is accompanied by an increase in base pressure, 

which abruptly decreases again at the critical position. 

The increase in base pressure-i. e., decrease in suction 

-is no doubt partly due to t he removal of the mini

mum pressure point from the base as the region of vor

tex formation is forced to move downstream. In addi

tion, the minimum pressure itself may increase, but 

this point was not investigated. 

The measurements given here were for the circular 

cylinder, but the same effects are observed for other 

bluff cylinders. \Vhat is clear from these experiments 

is that in every case the flow in the coupling region, in 

the first few , diameters downstream of the base, is 

critical for the determination of the base pressure and 

of the overall flow. The important effect of inter

ference elements on the vortex formation, and thus on 

the base pressure, indicates that there will have to be 

some understanding of the dynamics of these vortices. 

That problem is made difficult not only by its nonsta

t ionary nature, but also by the fact that, for the Rey

nolds Kumbers of interest, the vortex formation takes 

place in turbulent fiuid.8 

This introduces the difficulties that are encountered 

in any turbulent fl.ow and makes a theoretical deter

mination of the base pressure parameter, k, seem rather 

remote at present. However, there are other possi-

TABLE 1 

Circula r cylinder 
90° wedge 
Bluff plate 

Cn 
1. 0 
1.3 
1.7 

s 
0 .21 
0. 18 
0. 14 

bilities for exploiting the results of the free streamline 

theory. Two of these are explored in the following two 

sections. 

(IV) BLUFFNESS 

One of t he features of bluff body problems which 

has not received sufficient attention is the idea of 

''bluffness" itself, though the usage of the term im

plies something about the associated flow character

istics. However, this usage has been mainly qualita

tive or intuitive. With the results of the free stream

line theory it becomes possible to place these intuitive 

ideas on a somewhat firmer basis and to correlate them 

with some other experimental observations that are 

not so int uitive. The main features associated with 

bluffness may be enumerated as follows. 

(I) Of two bodies having the same frontal area, the 

bluffer one tends to diverge the flow more, to create a 

larger wake, and to experience a higher drag. The re

sults of the free streamline, theory are quite in accord 

with this definition, as is evident from Figs. 2 and 3. 

In Fig. 2 the three cylinders are arranged in terms of 

increasing drag, in the order : circular cylinder, 90° 

wedge, and fiat plate (normal to the fio-w) . Their 

bluffness is, by definition, increasing in that order. 

Then, in Fig. 3, the same ordering of bluffness is ob

tained in terms of the wake width. 

(2) It is a matt er of observation that bluffer cylinders 

have lower Strouhal N umbers. For instance, for the 

three cylinders that we have singled out for discussion, 

the typical values of St rauhal Number are given in 

Table 1, t ogether with ty pical values of drag coefficient, 

for comparison. Fage and J ohansen 2 made the per

tinent observation that the shedding frequency is re

lated not to the cylinder dimension but to the width of 

the wake, being inversely proportional to it. This ex

plains why the bluffer cylinders, which have wider 

wakes, h ave lower shedding frequencies and corre

spondingly lower Strauhal Numbers. 

(3) In the comparisons of bluffness made in Figs. 

2 and 3 and it has been implied that the value of k is 

is the same, or nearly so, for the different cylinders. 

This is fairly well supported by the experimental re

sults. For different cylinders the base pressures are 

approximately equal, within about 10 per cent, pro

vided there is no interference in the wake. \Vhat

ever variat ions of base pressure do exist do not show 

any svstematic variation with bluffness but appear, 

rathe;, to be rela t ed to R eynolds Number effects. Thus 

the variation between different cylinders is no more than 

what may be obtained for the same cylinder at differ-
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ent Reynolds Numbers. The remarks here apply to 

a range of Reynolds Numbers of about 500 to 105 for 

the circular cylinder and to even higher values for the 

other two. This is the range in which C n is ordinarily 

described as being constant, but actually this also varies 

somewhat with R, and, in fact, the variations are asso

ciated with those in Cps· Likewise, the Strauhal :Num

ber mav be described as constant only to the same 

degree, its variations also being associated ·with the vari

a tions in Cvs· Over this Reynolds Number range the 

values of Cn and Sare within 10 per cent of those given 

in Table 1 and, for our present purposes, may be · as

sumed to be constant. 

(-±) The above remarks apply t o cylinders with un

disturbed wakes. If interference elements are placed 

in the wake, as described in the above experiments, 

t hen significant changes are produced in C11, , and, cor

respondingly in Cn and S. The important result is 

t hat, for a given cylinder, a decrease in drag is accom

panied by a decrease in shedding frequency. This is at 

odds with the behavior indicated in Table 1 for dif

ferent cylinders, but it will be seen to be en tirely in 

agreement with the observation that shedding fre

quency decreases when wake width increases. For, 

as seen from Figs. 2 and 3, a decrease in drag of.a given 

cylinder corresponds to an increase of wake width. 

This seems contrary to intuition, but it may be pointed 

out that the increase in wake width is accompanied by 

a decrease in wake velocities sufficient to give a net de

crease in wake energy. 

(It should be noted here that the results of Figs. 2 

a nd 3 for the circular cylinder are not applicable when 

t he separation point is on the back side of the cylinder, 

as happens at Reynolds· Kumbers above the critical 

Yalue of about 105
. In such cases the wake width will 

be smaller than the cylinder dimension, and increasing 

wake width will correspond to increasing drag. In 

t hose cases where the separation point is on the back, 

t he free streamline theory encounters some difficulties, 

which are connected with the fa~t that the hodograph 

plane becomes double sheeted.) 

(5) The wake structure of different bluff bodies is 

similar. That is, the shape, or bluffness, of the body 

has no characteristic effect on the wake other than t o 

determine its geometrical and velocity scales. 

These several observations on the characteristics of 

bluffness may be incorporated into a simple dimen

sional analysis. Consider the two parallel vortex 

sheets sketched in Fig. 6, which are intended t o be 

idealizations of the two free shear layers created by 

some bluff body. If these vortex layers roll up to form 

vortices, then the frequency with which this occurs 

should depend only on the characteristic velocity, U., 

a nd the dimension, d', associated with the configuration. 

It should not depend on the body that created it. In 

other words, there should be a Strauhal K umber for the 

wake, defined as 

S* = nd'/ lJ, (2) 

which should be universal for the vortex shedding from 

different bluff bodies. Of course it may be expected 

that there will be some variation with Reynolds -um

ber, just as for the ordinary Strauhal Number. For 

the present, we propose to take this into account only 

roughly, by defining a wake Reynolds Kumber 

R* = U,d'/ 1.1 (3) 

To take the Reynolds Kumber effects into account more 

precisely will complicate matters considerably. For 

instance, the shear layers set up by different bluff bodies 

will not be the same, even at the same R*, for they 

may have had different histories up to the point where 

they start to roll up. Thus they may be thicker or 

thinner , may have become turbulent earlier or later, 

etc., and these features will have an important in

fluence on the vortex dynamics. They will therefore 

be extremely important for the vortex dynamics and 

the base pressure. H owever, our considerations are 

only kinematic, and, for that, the secondary Reynolds 

~umber effects, the details of the free streamline shape, 

etc., may be less important. 

To confirm that such a universal wake Strauhal ~um

ber exists, some measurements were made on the three 

different cylinders, with and without wake interference, 

as follows. The wake Strauhal ~umber is related to 

the ordinary Strauhal Number by 

s d' 

k d 
(4) 

To determine S*, two measurements are needed. Sis 

determined in the usual \Vay from a measurement of 

the shedding frequency. k is determined from a meas

urement of the base pressure, using the relation (cf. 

Eq. 1) 

k = Vl - Cps (5) 

These are the only measurements needed, for the other 

factor, d' / d, then is given by the free streamline results 

in Fig. 3. The relation (5) may be regarded as the 

essential one in the coupling between the potential fl.ow 

and the wake, for it determines, for a given cylinder, 

the wake velocity and dimension in terms of the base 

pressure. The results, plotted in Fig. 7, show that 

there is indeed a universal relation, S* = S* (R*). 

Possibly the scatter is too large t o show any functional 

trend, as has been attempted with the solid line, a nd 

one should simply assume that S* is constant at about 

the value 0.16. The discrepancies a t the lower values 

of R* are probably more than experimental and may be 

related to some of the secondary Reynolds -umbers 

referred to above. At those low values, the free shear 

layers may be laminar for a considerable length, before 

transition occurs, and this transition point may be 

quite different for different cylinders, even at the same 

R*. 
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It will be noted that the parameter S* incorporates 

the observat ion made by Fage and Johansen-namely, 

that t he shedding frequency depends on the wake di

mension rather than the cylinder dimension. S* is 

more general in ·that it includes a lso the wake velocity, 

U,. This \Vas not necessary in F age ·s treatment, since 

all the cylinders considered had essentially the same 

base pressure and thus the same U,. By including 

U,, the parameter S* can be extended to a larger class 

of flows, in particular those for which the base pressure 

changes appreciably, as for instance wit h wake inter

ference. Still another important point of d ifference 

is that the wake width is not measured, as in Fage's 

case, but is calculated from the free streamline theory, 

using the measured base pressure. This is especially 

convenient when the results are used in the reverse 

direction. For instance, it is possible to infer the drag 

of a given cylinder simply from a measurement of its 

sheddiµg frequency, for then the factor 

k(d/ d') = S/ S* = S/ 0.16 (6) 

is readily computed and k is determined v;ith the help 

of Fig. 3. The drag coefficient is then obtained from 

Fig. 2. (In case 5* varies a little with R*, the calcu

la tion may still be made easily by iteration. ) 

(V) ON CLOSING THE K . ,\ R ~r.\:-.1 SOLUTION 

There is another way in which the potential free 

streamline flow may be joined t o the wake. It will be 

recalled that in Karman's treatment of the vortex 

street there are two undet ermined parameters, which 

are usually found from experiment. T hese two param

eters, which are essentially a dimension and a velocity, 

are just the ones that are needed to relate the vortex 

street, or wake, to whatever body produces it , as ex

plained in t he last section. )[ ovv since the free stream

line theory also gives a velocity and dimension ( U, a nd 

d'), which vary with k, it would appear to be straight

forward to determine k uniquely by combining the two 

theories. For instance, the drag must be the same, 

whether calculated from the free str eamline theory or 

from Karman's drag formula for the vortex street. 

The possibility of joining t he free streamline flow to 

the vortex street was first proposed by H eisenberg.9 

He retained the K irchhoff assumption that the base 

pressure is at the free-stream value, and this forced a 

redundancy on his model, for the drag is then fixed at 

the Kirchhoff value. \Vith the free streamline theory, 

in which the base pressure is variable, a more realistic 

formulation is possible. 

Unfortunately, the lack of understanding about t he 

coupling region again precludes a strictly theoretical 

solution. For instance, it becomes necessary to know 

how much of the vorticity in the shear layers appears 

in individual vortices farther downstream. One might 

be inclined to assume t hat all of it does, but Fage and 

Johansen2 showed that such is not the case, and they 

estimated that only about one-half of the vorticity: 

goes into individual vortices, the rest being canceled 

by mixing with opposite vor t icity in the coupling re

gion. This introduces an empirical factor into the 

solution, but it will nevertheless be of interest to carry 

it through. The details are as follows. 

Along a shear layer (Fig. 6) the circulation per unit 

length is U,, and the average velocity is (1 / 2) U., so 

that the rat e a t which circulation is transported do>vn

stream is (1/ 2) u.2
. In the vortex street , where the 

vorticity is concentrated into individual vortices, each 

having circulation r, the rate of transport of circula

tion in each row is nr , where n is the shedding fre

quency. But according t o the observation by Fage, this 

is only a fraction, E, of the transport along the shear 

layer-that is 

(7) 

The vortices move past a given point with the velocity 

U "' - u , where u is t heir velocity relative to the free 

stream, while their spacing along a row is l . There

fore, t he frequency with which they pass the point is 

( U ~ - u) / l, which must be equal to the shedding fre

quency, n . Introducing this into Eq. (7) and rearrang

ing it in d imensionless form, gives 

[1 - (u/ U 
00

)] (r/ ( U "' !) ] = E(k 2/ 2) (8) 

T hen, by introducing one of Karman's stability param

eters, r; (ul) = 2 V2, it is possible t o eliminate r from 

Eq. (8), and to obtain 

u 1 ( ~ I Ek
2

) 

u"' = 2 
1 

± 1 1 
- -v2 (9) 

T his may be regarded as the expression t hat establishes 

the relation between velocities in the wake with those 

in the free streamline flow. 

Now Karman 's formula for the drag, which he ob

t ained from a momentum calculation on the vortex 

street, may be written in t he form 

C n = (h/ d) { [5.65 (u/ U "') ] - [2.25 (u/ U 
0
,)2] } (10) 

Taking h/ d to the left-hand side and using Eq. (9) to 

replace u/ U 
00 

results in t he expression 

d ( ~ I Ek
2

) Ek2 
Cn h = 1.70 1 ± "l - V'.2 + 0.563 v12 (11) 
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On the other hand, the drag may also be obtained from 

the free streamline theory (Fig. 2) and, when combined 

with the wake width d'/ d (Fig. 3) , gives the parameter 

CD(d/ d') as a function of k. Vv'e now need an expres

sion that establishes the relation bet\veen the dimension, 

and for this we may simply write 

h = A.d' (12) 

where A is· a factor that is unknown and which again 

expresses the lack of knowledge of the region of vortex 

formation. The solution is then finally determined 

from the equation 

CD(d/ h) = (l / A) Co(d/ d ') (13) 

T he left-hand side is a funct ion of k and e and comes 

from the theory of the vortex street . The right-hand 

side is a function of k and A and may be calculated from 

t he free streamline theory for each cylinder. J'he 

values of k which satisfy both sides and which are the 

solutions are a t the intersections of the two functions. 

In Fig. 8, the left-hand side has been plotted for several 

values of e. The right-hand side has been plotted for 

the three different cylinders, with A. = 1. A most use

ful result is that all three fall on a single curve. (The 

b ranching at the higher values of k may be due to the 

approximat e methods tha t had to be used for calcu

la ting the wedge and the circular cylinder. .:\n 1l1/ 4° 
wedge also falls on this universal curve.) 

To actually find a solution, it is necessary to know e, 

which can at present be found only empirically. But 

the important result is that t his needs to be done for 

only one cylinder, since the others fall on the same 

curve. In other words, it tells that k is the same for 

for a ll the cylinders, and this, it was noted earlier, checks 

well with experiment. Variations in k clue t o .vari

ations in R eynolds N umber or clue t o wake interference 

would then correspond t o varia tions in e. Actually the 

other empirical factor, A, in Eq. (13) should also be 

included in the discussion. But it will not change the 

fact that a ll t he cylinders lie on the same curve; it will 

merely shift the position of the curve. The value 

/.. = l, which is the only one plotted, seems to be as 

good as can be inferred from the experimental inforr 

mation for cylinders without wake interference. The 

YOrtex spacing h itself is not well defined experimentally, . 

tending to increase downstream. 

Once a value of k is determined, the t heory will also 

g ive the shedding frequency. For instance, the uni

Ycrsal Strauhal N umber is 

If it is again assumed that A. = 1, t hen the factor d' / l 

may be replaced by Karm:in's stability ratio, h/ 1 

0.281, so that 

S* = (0.281 .ik) [l - (u/ U.,,)] (1-!) 

11 / C .,, may be replaced from Eq. (9) . 

3 .0t--..::-- _J_ ~~+--~-+~ --=~ -== :-+~~+-~ --+~ ~ ~ 

Co* 
2.5t-- ~-+- ~ -\-t-- ~ -+~~+-~-+ ~~+--"'-+ ~~ ~ 

d 
Cod° 
2 .01-- ~-+-~ -+-t-- ~ -"-~~+-~-t- ~ ~+--J'-.....L~ ~~ 

CIRCU L AR 
CY LINDE R 

90° WEDGE 

0 1 . ~ o '-----: 1 ~ . 1~ --: , ~.2 :----: ,~.3 :--~ ~1.4-=-- ~ ~1.s o-- k~+ , . e=-~ +1. ~ 1 ~-,J 1.s 

FIG, 8. Wake solutions. 

For cylinders withou t wake interference, the base 

pressure coefficient for a wide range of Reynolds N um-

-bers lies between the values -0.8 and - 1.0, tending 

more nearly to the latter value a t high Reynolds ~ um

bers. A suitable average value for k then is 1.4. On 

Fig. 8 this gives an intersection at CD(d/ d' ) = 0.96 

and e = 0.43. Then from Eq. (9) , u/ U"' = 0.18, and, 

from Eq. (1-!) , S* = 0.16-!, remembering that A = 1. 

These are all in fa ir agreement with the experimental 

information. The drag coefficients corresponding to 

this value of k are 1.10, 1.32, and 1.74 for t he circular 

cylinder, 90° wedge, and fl.a t plate, respectively. The 

corresponding Strauhal N umbers calculated from Eq. 

(4) are 0.206, 0.167, and 0.127. Both drag coefficients 

and Strauhal _ umbers compare favorably \Vith the 

values listed in T able 1. 

(VI) C ONCLUDING RE:'.IIARKS 

The experiments with the interference elements dem

onstrat e convincingly that the critical region for the 

determination of the whole fl.ow field of a bluff body is 

the region of vortex formation in the first four or five 

diameters behind the body. Some underst anding of 

this region will be necessary for a really complete theory 

without empiricism. 

The fl.ow in the vicinity of the body, as well as the 

drag, is described adequately by the free streamline 

theory, provided the right value is chosen for the base 

pressure. Thus the theory depends on the paramet er 

k, but it might be pointed out t hat this is the only em

pirical parameter . In addit ion , the experimental evi

dence indicates, and the considerations of Section V 

confirm, that k is the same fo r different bluff bodies 

under similar wake conditions. This allows, in prin-
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ciple the solution of different bluH bodies from only a 

single measurement on one of t hem. 

The free streamline theory, based on the notched 

hodograph or o.n R iabouchinsky's model, defines a 

wake width that varies with base pressure. This is a 

relationship t hat is extremely useful for correlating the 

real wake wit h the flow near t he body, for t he drag of a 

given body is t hen associated with a wake d imension 

and a wake velocity. It makes possible, for instance, 

a simple similarity treatment of the vortex shedding 

and t he definition of a universal Strauhal N umber, 

S*, with which t he drag may be det ermined from a 

measurement of the shedding frequency, or vice versa. 

Other wake phenomena might be correlat ed in the same 

way. 

T he results of t his paper are applicable to any other 

two-dimensional bluH body shape if t he free streamline 

t heory is worked ou t for it. This sometimes presents 

computational difficulties, but often no more than for 

t he cases with Kirchhoff's assumption to which a great 

deal of effort has been devoted . Most of the consider

at ions of t his paper could also be applied to three

dimensional bluH bodies, especially bodies of revolution, 

if the appropriate free streamline flows could be worked 

out. H ere t he methods of . conformal mappings are 

not available to facilitate the calculations, nor is there a 

theory of t he wake corresponding to Karman's theory of 

t he vor tex street. 

In the experiments presented here the maximum cyl

inder Reynolds Numbers were about 20,000, but the 

same t reatment should apply to much higher Rey

nolds Numbers. For bodies like t he fl.at plate and 

wedge, in which t he separation point is fixed, this should 

be straightforward. F or cases like the circular cylinder, 

in which t he separation point moves to the back at 

h igher Reynolds Kumbers, it is necessary to work out 

a suitable free streamline theory. Otherwise, t he 

int eraction between wake and cylinder · should be 

qualitatively the same as at the lower Reynolds Kum

bers. For instance, some recent measurements 10 on 

circular cylinders above the crit ical Reynolds N umber 

show that t he Strauhal Kumber is about 0.4 when the 

drag coefficient is 0..±. T he typical value of base pres

sure at these Reynolds )[umbers is - 0.4, for which 

k = 1.2. Assuming that the universal Strauhal Num

ber , S* = 0.16, applies here, the wake width may be 

calculated from Eq. (4) . It is found to be d'/ d = 
0.5, which is reasonable, and supports the view that 

the processes in the wake are essentially unchanged at 

Reynolds N umbers above cr itical. 
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