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We revisit the hybrid inflation model focusing on the dynamics of the waterfall field in an
analytical way. It is shown that inflation may last long enough during the waterfall regime
for some parameter regions, confirming the claim of Clesse. In this case the scalar spectral
index becomes red, and can fall into the best fit range of the WMAP observation.
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§1. Introduction

Inflation1) has become a standard scenario in the early Universe cosmology. It
not only solves the horizon problem and flatness problem, but also explains the
primordial density fluctuation of the Universe through the quantum fluctuation of
the inflaton, which is a scalar field driving the inflationary expansion.

There are many models of inflation so far: new inflation,2) chaotic inflation,3)

hybrid inflation,4),5) and so on. But it is still a challenging task to pin down the
model observationally. This is partly because observational information is limited.
What we extract from cosmological observations are the spectral index of the power
spectrum of the density perturbation, nS , and tensor-to-scalar ratio, r. Currently,
the WMAP satellite combined with measurements of baryon acoustic oscillation and
the present Hubble parameter constrains nS as nS = 0.968±0.012 with 68% C.L., and
only an upper bound on r is given as r < 0.24 with 95% C.L.6) If future observations
improve the accuracy of these parameters and find the evidence of primordial tensor
perturbation, it will help us determine the correct inflation model. But even at the
current level, some inflation models begin to be excluded. Generally, inflation models
which predict blue spectral index, nS > 1, are not favored from observational point
of view.

The hybrid inflation is one of the models that predict blue spectral index, and
hence people often consider that hybrid inflation models are on the verge of exclusion.
In the hybrid inflation model, two scalar fields are introduced: one is the inflaton
field φ and the other is the waterfall field ψ. The mass of the ψ is arranged so that
it becomes tachyonic at some critical value of φ = φc, and inflation suddenly ends at
this point. Recently, Ref. 7) argued that this picture might change for some cases,
since inflation with large amount of e-foldings may still occur during the waterfall
regime. In this case it is ψ, not φ, that actually takes a role of the inflaton relevant
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for observational scales.
In this paper we revisit the hybrid inflation model, focusing on the detailed

dynamics of the waterfall field. While Ref. 7) numerically investigated this topic,
we analytically study the model in detail. We confirmed the claim of Ref. 7) and
reproduced their results. For some parameter spaces, the waterfall field ψ causes
the final 60 e-foldings of the inflationary expansion, which resembles new inflation
or type I hilltop inflation scenario,8),9) and in this case the spectral index becomes
red, on the contrary to the lore that the hybrid inflation predicts the blue spectral
index.

The effects of the fluctuation of the waterfall field are also discussed recently.10)–15)

In these studies, most of the 60 e-foldings are assumed to be spent before the water-
fall regime. On the other hand, we are interested in the case that 60 e-foldings occurs
during the waterfall regime. Thus our analysis is based on the classical dynamics of
the φ and ψ, with some initial displacement ψ0 at φ = φc. This is justified as long
as one of the small patch with ψ = ψ0 expands later and fills observable scales of
the Universe due to subsequent inflationary expansion.

In the next section, we study the hybrid inflation model in detail in an analytical
way, and calculate the scalar spectral index and tensor-to-scalar ratio.

§2. Dynamics of waterfall field

We introduce real scalar fields φ and ψ having the scalar potential of the following
form:

V = Λ4

[(
1 − ψ2

v2

)2

+
φ2

μ2
+
φ2ψ2

w4

]
. (2.1)

This kind of potential is often realized in supersymmetric (SUSY) theories.16),17) In
SUSY case, φ and ψ should be regarded as complex scalars and w = v holds.∗) It is
seen that the mass of the waterfall field ψ depends on the value of φ, and it becomes
tachyonic at φ = φc, where

φc =
√

2w2

v
. (2.2)

Therefore, for φ > φc, ψ is stabilized at ψ = 0 and the potential for φ is flat and
inflation occurs, and ψ begins to roll down the potential at φ = φc towards the
potential minimum φ = 0 and ψ = v. In order for inflation to occur, μ � MP

is required, since otherwise φ rolls down too fast. Also we assume v < MP and
φc < MP in the following analysis. Otherwise, chaotic inflation takes place, as
briefly discussed in the Appendix.

It is often assumed that this waterfall phase transition is sudden and inflation
soon ends at φ = φc. In the following we will study the dynamics around the
waterfall point in detail. Hereafter we define the “waterfall regime” as the region
where φ < φc.

∗) In SUSY, the potential is actually much more complicated due to the Coleman-Weinberg

correction, supergravity correction, SUSY breaking effects. Correspondingly, the red spectral index

is predicted for some parameter ranges.17)–21)
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The equations of motion under the slow-roll approximation are given by

3Hφ̇ = −2φΛ4

μ2

(
1 +

2μ2ψ2

v2φ2
c

)
, (2.3)

3Hψ̇ = −4ψΛ4

v2

(
φ2 − φ2

c

φ2
c

+
ψ2

v2

)
. (2.4)

Slow-roll parameters are directly calculated as

εφ =
1
2
M2
P

(
Vφ
V

)2

=
2φ2M2

P

μ4

(
1 +

2μ2ψ2

φ2
cv

2

)2

, (2.5)

εψ =
1
2
M2
P

(
Vψ
V

)2

=
8ψ2M2

P

v4

(
φ2 − φ2

c

φ2
c

+
ψ2

v2

)2

, (2.6)

ηφφ = M2
P

Vφφ
V

=
2M2

P

μ2

(
1 +

2μ2ψ2

φ2
cv

2

)
, (2.7)

ηφψ = M2
P

Vφψ
V

=
8φψM2

P

v2φ2
c

, (2.8)

ηψψ = M2
P

Vψψ
V

=
4M2

P

v2

(
φ2 − φ2

c

φ2
c

+
3ψ2

v2

)
. (2.9)

Here Vφ ≡ ∂V/∂φ and so on, and MP = 2.4 × 1018GeV is the reduced Planck scale.
The true ends of inflation are at the point where the slow-roll conditions are violated,
and what we are concerned is the dynamics between the critical point φ = φc and
this inflation end point.

2.1. Classical solution

For convenience, we parameterize φ and ψ as

φ = φce
ξ, ψ = ψ0e

χ. (2.10)

Thus, ξ = χ = 0 at the critical point and ξ < 0 in the waterfall regime. We
can set |ξ| � 1 in all the following analyses. A typical initial displacement ψ0 is
of the order of the Hubble scale during inflation, Hinf ∼ Λ2/MP , because the ψ
field is nearly massless around the critical point and obtains a quantum fluctuation.
Hereafter, we follow the scalar dynamics classically with initial condition of ψ = ψ0.
In the case that sufficiently long inflation occurs during the waterfall regime, this
treatment is justified because initially spatially small patch with ψ = ψ0 covers the
whole observable Universe. Actually results do not depend much on the value of ψ0.
Otherwise, effects of ψ on the curvature perturbation are more complicated. But
still our analytical results are applied for small region of the Universe.

The scalar field dynamics at the waterfall regime is divided into three stages,
which we call phase 0, phase 1 and phase 2 in the chronological order. The definitions
of each stage are as follows.

• Phase 0 : The second term in Eq. (2.4) is dominant.
• Phase 1 : The first term in Eq. (2.4) is dominant.
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• Phase 2 : The second term in Eq. (2.3) is dominant.
At the phase 0, the second term in Eq. (2.4) dominates the dynamics of ψ direction
since φ � φc at the very beginning of the waterfall regime and the first term in
Eq. (2.4) is neglected. Then ψ gradually decreases during this phase. For simplicity,
we assume √

2μψ0

φcv
� 1, (2.11)

as an initial condition, and the φ motion is determined by the first term in Eq. (2.3)
at this stage. Thus φ also gradually decreases and begins to deviate from φc. At the
phase 1, the first term in Eq. (2.4) becomes dominant and ψ increases, but still the
second term in Eq. (2.3) is small enough to be neglected. Finally at the phase 2, the
second term in Eq. (2.3) comes to dominate the dynamics of φ.

To be more precise, after the dynamics enters the phase 1, the second term in
Eq. (2.4) again grows and scalar fields may reach the temporal minimum where the
r.h.s. of Eq. (2.4) is zero. Then the scalar fields track the temporal minimum. This
may happen at the phase 1 or phase 2 during the slow-roll regime, depending on
parameters.

Slow-roll conditions are violated somewhere during these processes at φ = φend,
and it is not evident whether a large amount of e-folding number is spent for φend <
φ < φc. In the following, we closely look into the dynamics of scalar fields at each of
these stages and find the condition for which a sufficient amount of inflation takes
place during the waterfall regime.

2.1.1. Phase 0
At this stage of the waterfall regime, slow-roll parameters are simplified as

εφ =
2φ2M2

P

μ4
, (2.12)

εψ =
8ψ6M2

P

v8
, (2.13)

ηφφ =
2M2

P

μ2
, (2.14)

ηψψ =
12ψ2M2

P

v4
. (2.15)

Thus we assume ψ0 � v4/3M
−1/3
P and ψ0 � v2M−1

P so that slow-roll conditions
are satisfied initially. The trajectory is determined from the slow-roll equation of
motion, which can be rewritten as

dξ

dχ
=

v4

2μ2ψ2
0

e−2χ. (2.16)

Solving this equation, we obtain

ξ =
v4

4μ2ψ2
0

(1 − e−2χ). (2.17)
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From the slow-roll equation of motion

3Hξ̇ = − 1
φc

∂V

∂φ
, (2.18)

we find

ξ(N) = −2NM2
P

μ2
. (2.19)

Here N counts the e-folding number after the critical point: N = 0 at the critical
point and takes a positive value after that.

The phase 0 ends and enters the phase 1 at

ξ = − ψ2
0

2v2
e2χ. (2.20)

From Eqs. (2.17) and (2.20), we find that the phase 0 connects to phase 1 at

ξ1 =
v4

8μ2ψ2
0

[
1 −

√
1 +

8μ2ψ4
0

v6

]
, (2.21)

χ1 =
1
2

ln
(
−2v2ξ1

ψ2
0

)
. (2.22)

Approximately we have

ξ1 �

⎧⎪⎨
⎪⎩

− v

2
√

2μ
for 8μ2ψ4

0
v6

� 1

− ψ2
0

2v2
+
μ2ψ6

0

v8
for 8μ2ψ4

0
v6

� 1,
(2.23)

χ1 �

⎧⎪⎪⎨
⎪⎪⎩

−1
2

ln

(
v3

√
2μψ2

0

)
for 8μ2ψ4

0
v6

� 1

−μ
2ψ4

0

v6
for 8μ2ψ4

0
v6

� 1.

(2.24)

Therefore, the e-folding number spent for the phase 0 is estimated as

N0 = − μ2

2M2
P

ξ1 �

⎧⎪⎪⎨
⎪⎪⎩

μv

4
√

2M2
P

for 8μ2ψ4
0

v6
� 1

μ2ψ2
0

4M2
P v

2
for 8μ2ψ4

0
v6

� 1.
(2.25)

Therefore the duration of phase 0 is sufficiently small for μv �M2
P .

2.1.2. Phase 1
The phase 1 is defined as the region where the r.h.s. of Eq. (2.4) is dominated

by the first term and √
2μψ
φcv

� 1. (2.26)
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Fig. 1. Schematic picture for the trajectory of the ξ and χ.

At this stage of the waterfall regime, slow-roll parameters are simplified as

εφ =
2φ2M2

P

μ4
, (2.27)

εψ =
8ψ2M2

P

v4

(
φ2 − φ2

c

φ2
c

)2

∼ 32ψ2M2
P ξ

2

v4
, (2.28)

ηφφ =
2M2

P

μ2
, (2.29)

ηψψ =
4M2

P

v2

(
φ2 − φ2

c

φ2
c

)
∼ 8M2

P ξ

v2
. (2.30)

We find the trajectory of the scalar fields from the relation

dξ

dχ
=

v2

4μ2ξ
, (2.31)

which is derived from the equation of motion. Matching to the phase 0 solution at
ξ = ξ1, we find that χ is given by

ξ2 = ξ21 +
v2

2μ2
(χ− χ1). (2.32)

The phase 1 connects to phase 2 at χ = χ2 defined by
√

2μψ0e
χ2

φcv
= 1 ↔ χ2 = ln

(
φcv√
2μψ0

)
. (2.33)

From the assumption (2.11), we have χ2 > 0.
Here we must check whether the assumption that the second term in Eq. (2.4) is

negligible during the phase 1 (|ξ1| < |ξ| < |ξ2|). If the second term in Eq. (2.4) again
becomes efficient, the ψ field is trapped at the temporal minimum of the potential,
and then tracks the temporal minimum after that. The trajectory of the temporal
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minimum, ∂V/∂ψ = 0, is given by

ξ = − ψ2
0

2v2
e2χ. (2.34)

Let us denote the point where the trajectory (2.32) crosses the temporal minimum
(2.34) by ξ∗1. If |ξ∗1| > |ξ2|, the fields do not reach the temporal minimum before
they enter in the phase 2. This condition is rewritten as

χ2 >
φ4
c

8μ2v2
. (2.35)

If this is satisfied, the trajectory (2.32) is valid during the phase 1. In this case
we have ξ2 = −cv/μ with c =

√
χ2/2: we call this case phase 1-(a). Otherwise,

the fields are trapped at the temporal minimum of the potential at ξ = ξ∗1 which
satisfies |ξ1| < |ξ∗1| < |ξ2|: we call this case phase 1-(b). In this case the trajectory
is given by Eq. (2.34) for |ξ| > |ξ∗1|, and we have ξ2 = −φ2

c/(4μ
2).

To summarize, the phase 1-(a) trajectory is given by

ξ2 = ξ21 +
v2

2μ2
(χ− χ1) for |ξ1| < |ξ| < |ξ2|, (2.36)

where ξ2 = −cv/μ if χ2 > φ4
c/(8μ2v2), and the phase 1-(b) trajectory is given by

ξ2 = ξ21 +
v2

2μ2
(χ− χ1) for |ξ1| < |ξ| < |ξ∗1|, (2.37)

ξ = − ψ2
0

2v2
e2χ for |ξ∗1| < |ξ| < |ξ2|, (2.38)

where ξ2 = −φ2
c/(4μ

2) if χ2 < φ4
c/(8μ

2v2).
The e-folding number during the phase 1 is also estimated from the same equa-

tion of motion (2.18). In the phase 1, we obtain

ξ(N) = ξ1 − 2M2
P

μ2
(N −N0). (2.39)

Therefore the e-folding number during the phase 1 is given by

ΔN1 = N1 −N0 =
μ2

2M2
P

(ξ1 − ξ2). (2.40)

Here N1 is given by

N1 �

⎧⎪⎪⎨
⎪⎪⎩

√
χ

2

2
√

2
μv

M2
P

for χ2 >
φ4

c
8μ2v2

,

1
8
φ2
c

M2
P

for χ2 <
φ4

c
8μ2v2

.
(2.41)

Thus we need at least μv �M2
P for long enough inflation to occur at this stage.
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Fig. 2. Schematic presentation of the classification of phase 0-2 for φ2
c/(μv) � 1. The horizontal

axis is c =
p
χ2/2 where χ2 is defined by Eq. (2.33). The vertical axis is ξ, which starts from

0 and moves down on the figure perpendicularly. The dotted line represents ξ∗1 and ξ∗2, below

which scalars are trapped by the temporal minimum.

One can easily find that at N ∼ μv/M2
P , χ becomes close to unity if χ2 ∼

O(1) > φ4
c/(8μ

2v2). Then, ψ exponentially grows up, and the approximation (2.26)
soon breaks down, hence it goes into the second stage. At this transition point
N ∼ μv/M2

P , ηψψ ∼ −8M2
P /(μv). Thus inflation does not end at the first stage

of the waterfall regime as long as μv � 8M2
P . In the opposite case μv � 8M2

P ,
inflation terminates at ξ = −M2/8M2

P during this stage. But in this case, the e-
folding number during the waterfall regime is estimated as N = μ2v2/(16M4

P ) � 1.
Thus, in order for sufficient inflation to occur during the waterfall regime, we need at
least μv � 8M2

P . In the opposite case χ2 < φ4
c/(8μ

2v2), the duration is sufficiently
short as long as φc �MP .

2.1.3. Phase 2
The phase 2 is defined as the region where

√
2μψ
φcv

� 1. (2.42)

At this stage, slow-roll parameters are given by

εφ � 8M2
pψ

4

φ2
cv

4
, (2.43)

εψ � 32ψ2M2
P ξ

2

v4
, (2.44)

ηφφ � 4M2
Pψ

2

φ2
cv

2
, (2.45)

ηψψ � 8M2
P ξ

v2
. (2.46)
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On the Waterfall Behavior in Hybrid Inflation 339

Fig. 3. Same as Fig. 2, but for φ2
c/(μv) � 1.

We can also solve the slow-roll equation of motion at this stage. In this limit, the
scalar field trajectory is found from the relation

dξ

dχ
=

ψ2
0

2φ2
c

e2χ

ξ
. (2.47)

Matching to the phase 1 at (ξ, χ) = (ξ2, χ2), we obtain

ξ2 = ξ22 +
v2

4μ2

[
e2(χ−χ2) − 1

]
. (2.48)

As already described, if χ2 < φ4
c/(8μ

2v2), the fields are trapped at the temporal
minimum before entering the phase 2, and the trajectory (2.20) connects to the phase
2 : we call this case phase 2-(b). For χ2 > φ4

c/(8μ
2v2), the phase 1-(a) trajectory

(2.32) connects to the phase 2 : we call this case phase 2-(a). Even for the phase
2-(a), there is a possibility that the fields are trapped by the temporal minimum
before inflation ends. From the trajectory (2.48) and the temporal minimum (2.20),
we find that the phase 2 trajectory crosses the temporal minimum at ξ = ξ∗2, where

ξ∗2 = − v2

2φ2
c

[
1 +

√
1 + (2χ2 − 1)

φ4
c

μ2v2

]
. (2.49)

Therefore, approximately we have

ξ∗2 �

⎧⎪⎪⎨
⎪⎪⎩

− v
2

φ2
c

for φ4
c

μ2v2
< χ2 <

μ2v2

φ4
c
,

−
√
χ2

2
v

μ
− v2

2φ2
c

(� ξ2) otherwise.
(2.50)

To summarize, the phase 2-(a) trajectory is given by

ξ2 = ξ22 +
v2

4μ2

[
e2(χ−χ2) − 1

]
for |ξ2| < |ξ| < |ξ2∗|, (2.51)
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ξ = − ψ2
0

2v2
e2χ for |ξ2∗| < |ξ|, (2.52)

where ξ2 = −cv/μ if χ2 > φ4
c/(8μ

2v2), and the phase 2-(b) trajectory is given by

ξ = − ψ2
0

2v2
e2χ for |ξ2| < |ξ|, (2.53)

where ξ2 = −φ2
c/(4μ

2) if χ2 < φ4
c/(8μ

2v2), until the slow-roll conditions are violated.
Figures 2 and 3 schematically represent these classifications. The horizontal axis is
c =

√
χ2/2 and the vertical axis is ξ, which starts from 0 and moves down on

the figure perpendicularly. The dotted line represents ξ∗, under which scalars are
trapped by the temporal minimum. For example, in Fig. 2, we can see that the
fields are trapped by the temporal minimum when it traverses the dotted line before
reaching the phase 2 regime for c� φ2

c/(μv). This corresponds to the phase 1-(b).
Using the trajectory (2.48), the slow-roll equation of motion becomes

3Hξ̇ = −8Λ4

v2

(
ξ2 − ξ22 +

v2

4μ2

)
. (2.54)

If χ2 > 1/2, it can be solved analytically as

ξ(N) =
−(c′ − c)f(N) + c′ + c

(c′ − c)f(N) + c′ + c
ξ′2, (2.55)

where c =
√
χ2/2, ξ′2 = −c′v/μ with c′ =

√
c2 − 1/4 and

f(N) = exp
(

16c′M2
P

μv
(N −N1)

)
. (2.56)

Note that this expression for ξ(N) diverges (ξ → −∞) at N = Ndiv, where

Ndiv = N1 +
μv

16M2
P c

′ ln
(
c+ c′

c− c′

)
. (2.57)

Before reaching this point, the slow-roll conditions are violated at N = Nend, where
Nend is defined at the point where ηψψ = −1 and ξ = ξend with

ξend = − v2

8M2
P

. (2.58)

Explicitly, it is expressed as

Nend = N1 +
μv

16M2
P c

′ ln
(
ξend − ξ′2
ξend + ξ′2

c+ c′

c− c′

)
. (2.59)

If the trajectory reaches temporal minimum before inflation ends, the inflation
end point is given by

ξend =

⎧⎪⎪⎨
⎪⎪⎩

− φ2
c

8M2
P

for v >
√

2φc,

− v2

16M2
P

for v <
√

2φc.
(2.60)
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On the Waterfall Behavior in Hybrid Inflation 341

Fig. 4. Trajectory of the φ and ψ fields. We have taken v = 0.1MP , φc = 0.01MP , μ = 103MP

and ψ0 = 10−10MP . This case corresponds to the Phase 1-(a) - Phase 2-(a) solution in Fig. 3.

Our analytic solution fits very well with the numerical result. For comparison, the track of the

temporal minimum is also shown.

To summarize, the ξ evolves as a function of N as

ξ(N) = −2M2
PN

μ2
for |ξ| < |ξ2|,

ξ(N) =
−(c′ − c)f(N) + c′ + c

(c′ − c)f(N) + c′ + c
ξ′2 for |ξ2| < |ξ| < |ξend|. (2.61)

A trajectory is shown in Fig. 4. We have taken v = 0.1MP , φc = 0.01MP , μ =
103MP and ψ0 = 10−10MP . This case corresponds to the Phase 1-(a) - Phase 2-
(a) solution in Fig. 3. It is seen that our analytic solution fits very well with the
numerical result. Figures 5 and 6 show trajectories of the φ and ψ, respectively, as
a function of N .

A trajectory for another set of parameters is shown in Fig. 7. We have taken
v = 10−5MP , φc = 0.1MP , μ = 100MP and ψ0 = 10−10MP . This case corresponds
to the Phase 1-(b) - Phase 2-(b) solution in Fig. 2. It is seen that the trajectory
tracks the temporal minimum.

From Eq. (2.59), we can see that in order to have enough amount of inflation
after waterfall, the following condition must be satisfied:

Nend ∼ N1 > Ne(∼ 60) ↔ μM > 2NeM
2
P . (2.62)

This agrees with the result of Clesse.7) Thus in this limit, the last Ne e-folds is
obtained during the waterfall regime and actually the waterfall field ψ should be
regarded as the inflaton. It resembles new inflation or type I hilltop model.8) In
the opposite limit, the waterfall phase transition occurs suddenly and the model
approaches the standard hybrid inflation model.

2.2. Spectral index

Now, we evaluate the spectral index in this model. First, we must identify the
position of the inflaton, ξ = ξ(Nend − Ne), when observable scales left the horizon.
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Fig. 5. The φ as a function of N . Parameters are the same as those in Fig. 4.

Fig. 6. The ψ as a function of N . Parameters are the same as those in Fig. 4.

Fig. 7. Trajectory of the φ and ψ fields. We have taken v = 10−5MP , φc = 0.1MP , μ = 100MP

and ψ0 = 10−10MP . This case corresponds to the Phase 1-(b) - Phase 2-(b) solution in Fig. 2.

It is seen that the solution tracks the temporal minimum.
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It is given by

ξ(Nend −Ne) =
−(c′ − c)f(Nend −Ne) + c′ + c

(c′ − c)f(Nend −Ne) + c′ + c
ξ′2, (2.63)

if inflation lasts long enough at |ξ| > |ξ2|, or Nend > N1 +Ne. Otherwise, if Nend <
N1 +Ne, we obtain

ξ(Nend −Ne) = −2M2
P (Nend −Ne)

μ2
. (2.64)

In this model, both φ and ψ slowly roll down the scalar potential and hence
the adiabatic field σ, which is responsible for the curvature perturbation, should be
a combination of these fields. The scalar spectral index in this case is calculated
from22),23)

nS = 1 − 6εσ(Ne) + 2ησσ(Ne), (2.65)

where we have defined slow-roll parameters for the adiabatic field σ as

εσ = εφ + εψ, (2.66)

and

ησσ = ηφφ cos2 θ + 2ηφψ sin θ cos θ + ηψψ sin2 θ. (2.67)

Here, the adiabatic field σ is given by

σ̇ = φ̇ cos θ + ψ̇ sin θ, (2.68)

where

cos θ =
φ̇√

φ̇2 + ψ̇2

, sin θ =
ψ̇√

φ̇2 + ψ̇2

. (2.69)

Since we already know the analytic solution of the inflaton trajectory, it is a straight-
forward task to calculate the scalar spectral index.

Contours of nS are shown in Fig. 8. It is seen that in the limit (2.62), the
spectral index becomes red, because the final 60 e-foldings is in the hilltop inflation
regime, where the ψ field has a negative curvature. In the opposite limit, it becomes
slightly blue since the φ field causes inflation before the critical point and it has a
positive curvature.

A scalar degree of freedom perpendicular to σ also has quantum fluctuations and
it is an isocurvature mode.24) Whether such an isocurvature mode contributes to the
final density perturbation or not depends on the physics of reheating after inflation.
We do not go into detail of this aspect since it is strongly model dependent. In the
simplest case where both φ and ψ decay into radiation quickly after inflation, the
isocurvature mode has no physical importance.
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Fig. 8. Contours of the scalar spectral index nS on (μ, v)-plane. We have taken φc = 10−3MP and

ψ0 = 10−15MP . The whole region corresponds to the case of Phase 1-(a) - Phase 2-(a) solution

in Fig. 3.

2.2.1. Hilltop inflation limit
Here we derive the spectral index analytically for the hilltop inflation limit,

μv � M2
PNe. First consider the case where inflation ends at the phase 2-(a) (c �

φ2
c/(μv)). From Eq. (2.63) and using |ξend| � |ξ′2|, we find

ξ(Nend −Ne) � − v2

8M2
PNe

, (2.70)

and

χ(Nend −Ne) � χ2 + ln
(

μv

4M2
PNe

)
. (2.71)

By substituting them into Eqs. (2.5)–(2.9), we obtain

εψ(Ne) � 2εφ(Ne) � φ2
cv

4

64M6
PN

4
e

. (2.72)

This means that both φ and ψ significantly contribute to the adiabatic field. Other
slow-roll parameters are calculated as

ηφφ(Ne) � v2

8M2
PN

2
e

, (2.73)

ηφψ(Ne) �
√

2
Ne

, (2.74)

ηψψ(Ne) � − 1
Ne

. (2.75)

Therefore, in this limit, the spectral index (2.65) is calculated as

nS � 1 − 4
Ne

. (2.76)
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This gives nS � 0.92 for Ne = 50 and nS � 0.933 for Ne = 60. From this expression
it is clear that the spectral index becomes red in this regime. This is seen in Fig. 8.

In the case where the last Ne e-foldings occurs in the phase 2-(b) regime (μv �
M2
PNe and c� φ2

c/(μv)), we find

ξ(Nend −Ne) � − v2

8M2
PNe

, (2.77)

and

χ(Nend −Ne) � 1
2

ln
(

v4

4ψ2
0M

2
PNe

)
. (2.78)

Using them, we obtain the following parameters,

εφ � v4

2φ2
cM

2
PN

2
e

, εψ � 0, (2.79)

and

ηφφ � v2

φ2
cNe

. (2.80)

Therefore, the scalar spectral index in this case is given by

nS � 1 +
2v2

φ2
cNe

. (2.81)

2.2.2. “Standard” hybrid inflation limit
On the other hand, if μv � M2

PNe, the e-folding number during the waterfall
regime is negligibly small and a conventional picture for the hybrid inflation is re-
covered. In this case, we easily find φ(Ne) � φc and hence slow-roll parameters are
given by

εφ(Ne) � 2φ2
cM

2
P

μ4
, (2.82)

ηφφ(Ne) � 2M2
P

μ2
. (2.83)

Therefore, the scalar spectral index is given by

nS � 1 +
4M2

P

μ2
� 1. (2.84)

It tends to make the spectral index slightly blue tilted. These features are clearly
found in Fig. 8.

2.3. WMAP normalization and tensor-to-scalar ratio

So far we have not set the overall inflationary scale, Λ, in Eq. (2.1). It is
determined by the condition that the magnitude of the curvature perturbation agrees
with the observation. The WMAP normalization reads6)

PR =
1

24π2M4
P

V

εσ
� 2.4 × 10−9, (2.85)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/126/2/331/1838300 by U

.S. D
epartm

ent of Justice user on 16 August 2022



346 H. Kodama, K. Kohri and K. Nakayama

Fig. 9. Contours of the tensor-to-scalar ratio r on (μ, v)-plane. We have taken φc = 10−3MP and

ψ0 = 10−15MP .

where PR denotes the dimensionless power spectrum of the curvature perturbation
at the pivot scale k = 0.002 Mpc−1. This determines the energy scale of inflation,
Λ.

In the hilltop inflation limit, this leads to

Λ � 2.1 × 10−4MP

(
v

MP

)(
φc
MP

)1/2( 50
Ne

)
. (2.86)

It can also be translated into the tensor-to-scalar ratio, r, defined as the ratio between
the power spectrum of the tensor perturbation and PR. It is related to the slow-roll
parameter as r = 16εσ. Thus we have

r � 6.0 × 10−8

(
φc
MP

)2( v

MP

)4( 50
Ne

)4

. (2.87)

In the “standard” hybrid inflation limit, we obtain

Λ � 3.3 × 10−2MP

(
φc
MP

)1/2(MP

μ

)
. (2.88)

In terms of the tensor-to-scalar ratio r, this gives

r � 3.2 × 10−3

(
φc
MP

)2(10MP

μ

)4

. (2.89)

Contours of r are shown in Fig. 9. Unfortunately, it is so small that future
observations will not have a chance to detect it for most of the parameter space.

§3. Conclusions

In this paper, we have reanalyzed the hybrid inflation model, in particular pay-
ing attention to the behavior of the waterfall field after the critical point. We have
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derived analytic formulae describing the precise motion of both φ and ψ fields. In
accordance with the result by Clesse,7) we found that sufficiently long inflation takes
place during the waterfall regime for some parameter spaces. Interestingly, in such
a case the scalar spectral index tends to be red, as opposed to the well known lore
that it becomes blue in the hybrid inflation model, and consistency with current
observations becomes better. In this limit, the ψ causes a inflation similar to new
inflation. New inflation models often have a problem of initial condition, since ini-
tially the inflaton must be placed near the top of the potential. In the present model,
it is automatically set around there due to the pre-new inflation dynamics. In this
sense, the potential of the hybrid-inflation type (2.1) may be used for the purpose of
providing an appropriate initial condition of the new inflation. In this respect, the
present model shares a similar property to a model studied e.g. in Ref. 25) in which
a period of “pre-inflation” was introduced in order to have an appropriate initial
condition for new inflation. What we have shown in this paper is that it is naturally
realized in the simple hybrid-type potential (2.1) without introducing any additional
field.

If the period of inflation in the waterfall regime is less than 60 e-foldings, it
resembles the so-called double inflation, in which some characteristic signatures such
as primordial black hole formation and the running of the spectral index are pre-
dicted.26) Although the potential (2.1) can surely cause double inflation, the analysis
presented in this paper cannot be applied to such a case and we need careful treat-
ments.10)–15)

Some comments are in order. In general, in the hybrid inflation model topological
defects such as domain walls are formed at the waterfall phase transition. In order
to avoid the problem of domain walls, we need some additional assumptions. One
obvious option is to introduce an additional Z2-breaking term in the scalar potential,
which makes domain walls unstable. Another option is to extend ψ to be a complex
scalar and replace ψ in Eq. (2.1) with its absolute value. In this case it is U(1)
symmetry that is spontaneously broken after inflation, and correspondingly cosmic
strings are formed, which is less harmful than the domain walls. However, in the case
where the last 60 e-foldings takes place during the waterfall regime, we do not need
such options, since topological defects are inflated away and no such objects exist in
the observable region of the Universe. Thus, it has advantages from the viewpoint
of not only the spectral index but also the domain wall problem.
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Appendix A
Exact Solution

A.1. Phase 0 and Phase 1

Here we derive analytic solutions for describing both phase 0 and phase 1. In
these phases, we have √

2μψ
φcv

� 1, (A.1)

but we keep the ψ2 term in Eq. (2.4). Then the slow-roll equation of motion leads
to

dχ

dξ
=

2μ2

v2

(
e2ξ − 1 +

ψ2
0e

2χ

v2

)
. (A.2)

Integrating this yields

e−2χ = e−2f(ξ) − 4ψ2
0μ

2

v4

∫ ξ

0
dxe−2f(ξ)+2f(x), (A.3)

under the condition χ = 0 at ξ = 0, where

f(ξ) =
2μ2

v2

∫ ξ

0
dx(e2x − 1) =

μ2

v2
(2|ξ| − 1 + e−2|ξ|). (A.4)

For |ξ| � v/μ(� 1), it is approximated as

e−2χ � 1 +
4μ2

v2
|ξ|
(
ψ2

0

v2
− |ξ|

)
, (A.5)

and for v/μ� |ξ| � 1, we have

e−2χ � e−(2μξ/v)2 +
ψ2

0

2|ξ|v2

(
1 − e−(2μξ/v)2

)
. (A.6)

It is seen that, starting from χ = 0 and ξ = 0, χ decreases first until |ξ1| � ψ2
0/(2v

2)
if ψ2

0 � v3/μ, or |ξ1| � v/μ if ψ2
0 � v3/μ, and then increases monotonically. Com-

paring them with the results of §2.1.1, we find that these solutions smoothly connect
our phase 0 and phase 1 solutions. The first term in (A.6) corresponds to the phase
1 solution (2.32). Also notice that the second term in (A.6) comes to dominate
during this phase for χ2 < φ4

c/(8μ
2v2) (phase 1-(b)), and after that the solution

coincides with the temporal minimum (2.20). Thus our early claim is confirmed that
scalars are trapped at the temporal minimum if χ2 < φ4

c/(8μ
2v2) by using this exact

solution.

A.2. Phase 2

Let us seek the solution in the opposite limit,
√

2μψ
φcM

� 1, (A.7)
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without neglecting ψ2 term in Eq. (2.4). The slow-roll equation of motion leads to

dχ

dξ
e2χ =

φ2
c

ψ2
0

(
e2ξ − 1 +

ψ2
0e

2χ

v2

)
. (A.8)

The solution to this equation is written as

e2χ =
v2

ψ2
0

1 − e2kξ − k(1 − e2ξ)
1 − k

+ Ce2kξ, (A.9)

where k ≡ φ2
c/v

2 and C is an arbitrary constant determined from the initial condi-
tion. Connecting the phase 1-(a) solution at ξ2 = −cv/μ, we find the phase 2-(a)
solution

ξ2 = ξ22 +
v2

4μ2

(
e2(χ−χ2) − 1

)
for |ξ| � v2

φ2
c

� 1,

ξ = − ψ2
0

2v2
e2χ for

v2

φ2
c

� |ξ| � 1 (A.10)

for φ4
c/(μ

2v2) � χ2 � μ2v2/φ4
c , which coincides with (2.51) and (2.52).

On the other hand, we find a phase 2-(b) solution that connects to phase 1-(b),
when χ2 < φ4

c/(8μ
2v2), as

ξ = − ψ2
0

2v2
e2χ, (A.11)

and hence tracks the temporal minimum, as was already shown in (2.53).

Appendix B
Chaotic Inflation Limit

So far we have focused on the parameter ranges φc �MP and v �MP . In the
opposite case φc � MP and/or v � MP , the scalar potential around the minimum
(φ, ψ) = (0, v) is obviously flat beyond the Planck scale. Thus the final 60 e-folding
during the waterfall regime rather looks like chaotic inflation.

We can expand the scalar potential around the minimum by using δψ ≡ ψ − v,
as

V =
1
2
m2
φφ

2 +
1
2
m2
ψδψ

2, (B.1)

for |δψ| � v and |φ| � φc, where

m2
φ =

2Λ4

μ2
+

4Λ4

φ2
c

, (B.2)

m2
ψ =

8Λ4

v2
. (B.3)

Therefore, if either φc � MP or v � MP are satisfied, the scalar potential is
flat beyond φ ∼ MP or |δψ| ∼ MP , and chaotic inflation along the corresponding
direction can take place. In this case, the scalar spectral index and tensor-to-scalar
ratio are estimated to be nS ∼ 0.96 and r ∼ 0.16, and the WMAP normalization
constrains the mass parameter as mφ(mψ) ∼ 1013GeV.
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