‘().n the Wave Lquation of Meson.

Mitsuo Taxrraxt and Shoichi SagaTa.
(Read April 4,and July 13, 1940).

Introduction.

Up to the present much work on meson theory has been done by
considering it as a field theory, and the equation of meson as a field
cquation. This situation has its origin in the fact that the meson was
found originally as a field of the heavy particles. However, if we re-
strict ourselves to the problems of the interaction between the meson
and the electromagnetic field, it seems more adequate to treat the
meson equation in the form of a wave cquation just like the cases of
other charged particles, i.e. clectron, positron and proton. Using the
usual field cquation for the meson as a wave cquation, Laporte® has
developed this stand point and calculated the elastic scattering of
meson by a static electric field as a onc body problem.

The authors themselves, when they were engaging in the establish-
ment of the vector meson thcory, tried to write the meson equation in
the form analogous to Dirac’s electron cquation. But before they could
finish this task, certain circumstances prevented one of the authors
(M. T.) from working in this problem and in the meantime Duffin’s®
paper appeared.

Recently an important development of Duffin’s theory was carried
out by Kemmer®

The authors have investigated in this paper in I some properties
of Duffin’s equation and in II developed the perturbation theory ana-
logous to the case of Dirac electron, and finally in III with some
restriction they were able to reduce the representation of Duffin’s 8
matrix ring from 10-rowed matrices to 6-rowed, and removed some

(1) Kemmer’s reasoning® for a particle theory of the meson, however, seems to
be inadequate from the epistemological point of view, because it is to be noted that,
contrary to Kemnmer's statement, the meson was found originaly as a field and. later
as a particle, just. as, in the case of electromagnetic field, the Coulomb field was found
first and then the photon.

(2) O. Laporte, Phys. Rev. 54 (1938), 905.

(3) R.J. Duffin, Phys. Rev. 54 (1938), 1114.

{4) N. Kemmer, Proc. Roy. Soc. A 173 (1939), 91.
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difficulties which were inevitable in the case of original Duffin-Kem-
mer’s theory.

I. Some properties of Duffin’s wave equation.

The meson is described by the Duffin’s wave equation

3.8 N +ey=0 (1
together with the following commutation rules for the operator A,.
(greek suffix runs from 1 to 4 and latin suffix from 1 to 8

BnB'Bp+BpB!B#=BMBIp+BpSrM (2)
In (1)
me d .
=, dp=-—, Zy=1ct
(4 P M ax” Ty=1C

are used, where m 1s the mass of the meson and the other symbols
denote the usual quantitics.
Kemmer introduccd matrices 7,:
UMZQB;;.f“l
obeying the following algcbraic relations: —
77;,,:1 y M — N = 0,
77#61-+ﬁv"/'y =0 (;1,::2:1;),

Bu=1uBn=Bun.. (no summation)
The adjoint of (1) is defined as follows:—
‘I’+:i\l"*7]4)

H}L‘\P‘*B” —'K\Pf: 0,
The interaction with the clectromagnetic field is introduced by
the substitution

" " " T [z
when the differentiation applies to ¥, and
Op—0u =0, +2 "
fic
when it applies to ¥'. Algebraic properties of B, matrices are inves-
tigated in Kemmer’s paper.
(a) Spatial reflection:—Multiplying equation (1) on the left by

7ns, we have
0B — 0:Bun Y + kns ¥ = 0.
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Therefore apart from a numerical factor, the transformation matrix
for a spatial reflection”"through the origin must be equal to 7.
'\!’J(——x; Y, =5 t):j"h‘l" (&',.y, 2, t)
As by a double reflection ¥ should return to itself, j* must be unity
j==1
j=-+1 is pscudo case and j=~1 is ordinary vector and scalar casc.
(b) Space-time reflection :—We put
N5 =m"27M3M4
and if we multiply cquation (1) on the left by s we have
B — knsy = 0.
Therefore ¥ goes over
‘1,‘— :_7‘715\1("7 j‘.’,: 1
by a -space time reflection. The charge density of ¥~ is
1, - 1
_:l:- (¥ rB-ﬂ‘!" ): -—’l:— (‘I’+184"I’)
and Kemme:s 0,. becomes

- = i (V8,8 ) = — —1— (¥'B.,0,¥) = —b

(A
(¢) Charge conjugate™:—'The compler conjugate of equation (1)
with interaction is
LB + Y =0
After Belinfante we consider an operator € which obeys the following
relations
8= —AL, Bi=RL¢ (k=1 2,3)
Then from the above cquation it follows that
3:6»‘#‘" + ’c‘\!’g = 07 |
with
yr=2y,

and its charge density 18

% (YEBYY) = — 1 (BY)

In the case of Proea’s representation, we have

(5) F.J. Belinfante, Theory of Heavy Quanta (1939) p. 7.
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=1, Y*=+
1.  Perturbation theorv.
The Hamiltonian for the meson ix given by Kemmer as follows:—

4 — 9 , Y o ) . \
1y =B gy PRZBE g oz~ T 1, B88~8800, O
K K
with the initial condition -
Ox BB + (1~ B k=0 )
Then energy and charge defined by Kemmer are
E=L [vsaryar
)
and

n———% f Y BArdl”

respectively. » is normalized to =1 and we put
e=nu==x1
Now we apply the perturbation theory in the uw-ual way. The
Hamiltonian I{ can be written in the form

=1+ 11’

where J{" represents a perturbing term which is small compared with
H,. II' docs not contain the time explicitly. Taking the cigenvalues
and cigenfunctions of the unperturbed system

I ': nf\,’u — Iﬂ)\l’n

we can develop the solution of the actual wave cquation
~it%Y < (H,+ H) ¥
ot
in a series of the eigenfunction of Iy:
‘!’:Z bn(t)‘i"iz Cu:"clﬁ

The codfficients b.(¢) arc functions only of the time and the ¥, of the
coordinates of the unperturbed system including the spin variables.
We insert this ¥ into above equation

_ ih}::bn(t)sbnel Enth =S ()1, ¢t/

and operating by V58, on the left and integrating over the whole
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coordinate space; we obtain, by applying the normalization condition
= [VhBatrdl =8t

a system of differcntial equations for the 1),,(;)

- 'Izﬁann(t) — Z I’I,;,n.,[)»z u) Clklz'm—l’-',l)l‘/*
with ‘

I{nru' Z—L f‘l’;ﬁ;lp‘lf”u
(2

Putting the initial condition
ba(0)=0 cxcept by f0)=1
and using the fact that H' ix small and that ¢ is not too long, we
obtain the solution

. ],[Mol (' Fug=HME 1)
! Ew—E,
and for the transition through the intermediate states 2/
bot) = Sewen it ]“MH"-F"W& 1 _ ot Enr=Et/E __q }
Fo,— . L~ . E,.-F.
Now the total charge can be expressed in terms of b,(¢) as follows:—

[ B AT =S hulo)f.

(2

bu(” =

From this expression it is possible to define the probability finding the
particle in the state #, it is [0.(8)>. In ordinary quantum mechanics
with the non-relativistic Schriodinger equation, the charge density of a
particle is positive definite and we can define it as the probability. In
relativistic quantum mechanics, however, serious difficulty arose when
the Klein-Gordon equation was used®, because in this case the charge
density is not positive definite. This difficulty was removed by Dirac’s
theory, in which the charge density is poxitive definite, and it has
been considered that Dirac’s theory is the only one which has both
properties of being relativistic and of having real meaning. But we
have here u real particle whose charge density is not positive definite,
and the former difficulty has reappeared. Nevertheless it is possible to
define the probability of finding the particle in the certain state by
the above |ba(t)|%

(6) W. Pauli, Handbuch der Physik, XXIV, p. 216.
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For the purposc of applying Kemmer’s Hamiltonian (3) to the

perturbation calculation, we have to insert the initial condition (4) into

it. Then the perturbing matrix element becomes

Hu'=1 f [—— BB BBl — @&Wﬁﬁfﬂ;ﬂr\lfﬂ.

+ 2 By BB 2 |V
or using the fact that 4, is the unperturbed wave function
2
:3— f [—e“‘ DBt BiBuB Y m — 1ePr WBcVmldV
1 J Lhice

Applying Born’s approximation, we have to add to above expression
the term

+ 2 VaBY YmdV,

aund to study the unperturbed system in some detail, whose Hamil-
tonian is

Hy=—-i(P8) ,34+%f]c:; B(PB)* +Tickps,

we take the planc wave solution
"I": wellpr)/fic-iki/k
where u is the wave amplitude depending upon P and the state .of

polarization e of this particle, then for the orthogonality relation we
have

%— ful (D, €, B P, €, €)} =€ Seerdeer (5)
From this it is possible to deduce the converse orthogonality relations
LS elu'®, ¢, 0) Bl un(®, ¢, &) =du, ©)
or

L Sefut, ¢, ) Biks 1Bau(®, €, €} = Sim,
2 &t
T el ¢, OB Bu(P, ¢, )l n=bum,

':lT'Zeu‘;(p; €, 6)' iB«lu(p; €, e)f mzslm-
1 &° .
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Now it is possible to. apply the spur calculation as in the case of
Dirac’s theory. From the above relations it follows that '

g;e —} (u'B0u)= ge i’b- (u'0Bat) = ZO“,'

> e’—}i—i(uSOu,’)(u” BiKu)=3 L (0B (K )
€ o/ 2

! pl
e

=1 oK)

i
where O and K are any products of 8 matrices. The conjugate com-

plex of the expression—;(uﬁ()u) is given by.

{ % (2630?6)} = — L (i 0ngu) = — (= 1* L (O
1 1

where £ is the sum of the number of Bi in O which lies between
ub and the first B; from left side and botween w and the first B, from
right side if O contains 8,, and the total number of B if it does not
contain B, at all. :

The above spur caleulation is very much restricted compared to
the case of the Dirac matrices, because we can not carry out the above
calculation unless there is a B, adjacent to any one of the wave am-
plitudes in the above expressions. The difficulty is more serious if we
try to carry out the following usual spur calculation.

> eeo l- (ub OB w) r
7 i
= —Sle(=1) ;1. (Wd0Bw) (u'B:0us)

= —Seof— 1>’°—,}; (u}0B.0uo)

and we can not go further unless f;or fiand O commute with each other.

Here we need 8; on both sides of O. Thus the spur calculations do
not have the generality as in the case of Dirac matrices. This comes
from the fact that B8, does not have its inverse matrix. This difficulty
is removed in III.

Elastic scattering of meson:—For an example we shall apply the
calculation to the case of elastic scattering of the meson which was
discussed by Laporte®”. The perturbing matrix element is
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I =2 (u}Pa) f Vo—ipa—pWikic AV
(2

where u, and u ave the wave amplitudes of the initial and final states
respectively, while P and P arc their momentums. To obtain the
scattering cross-scetion, the square of this matrix element is to be
evaluated.

| H ! V= 62.’;_’17 (usBu) (W'Bsuo) | (Do VIP )|

with

(Po| VD)= f Ve—ipo—piicd V

Making use of anihilation operators

—H+E~ and e:!;I;
2K K

with H=—i(PBR)Bs+ %-1* B PB)*-TicxB,, (wo denote the ponperturbed
cK

Hamililtonian in the initial and final state I, and H respectively) we
carry out the swaumation over all polarization states of the meson

after the scattering process.

- Z_ig (1(36‘4 m+r I eu> (uiBute) (Do V| P)]

2 FE
. 1 + H+E H 2 VImY2
-——71':—(?,(/()34 2](] 'ETU’O> l(l 0“ ‘l )‘

Further we average over the polarization states in the initial state.

<1 1o 1+ E EH)"FEn Eo ) Vip)®
‘Z’{("'ﬂ ‘"SE T 9B, B @]V )]

A+E H ,lfgjc_@.fﬂ} (@ VIp)P

=1 Spur {
| 3 o E 2B, E, |
where IT is defined as follows (Ho in the same way)

B4H=34E

H= 1 Bu(P B) +fickBs
hex

using
SpBiBiRsi= 0 , SpB.BIBi=1, p=v=p SpP.B,=3
and
Spﬂi =6 .
we get finally
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| H..,..'l”=(1 +E~J£sinzo)|<z»o|V|mn’

3 4u’ K}
where p=mc*

This expression agrees with the expression obtained by Laporte.

III. Reduction of the wave equation.

To remove the difficulties which come from the fact that 8, does

not have its inverse matrix, and to simplify the theory, we shall apply
Peirce’s decomposition” of the ring theory.

We put

Bi=J
then J satisfies
Ji=J
thus J is an idempotent of this matrix-ring. Making use of this

idempotent we can decompose the S matrix-ring B in the following
form:—

B=JBJ+JULECJ+D

where A and © are the left-and the right ideal respectively and D is
defined by

D=, ]
of which element z satisfies

If we restrict ourselves the subring JBJ,J is the unit element,
because for any element b of JBJ we have

Jb=bJ=b

Now in any calculation, the Hamiltonian is always operated by B,
on left, namely

BH= -1 5;0:88,8, + ke 7
K

Here the matrices which we have to do with are only B, and

BiB:B,, and these matrices are all the elements of the subring JBJ,
because

64 = JﬂlJy

(7) H Weyl, The Classical Groups. p. 85.
B.L. van der Waerden, Moderne Algebra. p. 146.
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BBy = JB:B,J.

Therefore if we restrict ourselves to equation (7), J becomes the unit
matrix, and in this case B; has its inverse matrix:—
J=1, Bi'=8
THis restriction however by no means limits the solution of physical
problems.
Now we introduce Duffin’s spin matrices

S1= %— (32183 "Bsﬂz)s Se= -‘]:' (3331 -5 Ba), Ss= %- (ﬁlﬁd —lesl),
and we get the following relations: —

S?=—;1(1-nxnr), (i kr) 8)

and
BB+ BiBi=2-(SiSe+ SuSy). (i==k=+r)

From these we obtain

ﬁzt =MmNn3 (—%- -8 3)4— —%—

Bk8,=_;_nm,u — 28 (8S,+ 5,8+ & % S, (l=k+r)

where thetsign is to be read as follows: + when k,7i81,2; 2,3 or 3,1
and — when k,r is 2,1; 3,2 or 1,3.

Making use of these relations and g{=1, it is possible to write
equation (7) in the following form:—

BH=-1 5 5 {mm(—l- —-S%) +l}
s 2 2

_fe oeor —;- {mmmu—zsf) (S8, + S, 80) = 38, }

P
+fick, (k==l==7r) 9)

Here the matrices which appear in this expression are only B,
mnems and S;. Among these, 8. and mmn: anticommute with each
other, and these two commute with S, while S; satisfy certain relations
among themselves. Therefore according to the theory of Shur and
Frobenius in Algebra®, the former two belong to the system of linesr
transformation different from the system to which S; belong, and these

two systems operate on different suffices of the vector. Hence we can

(8) B.L. van der Waerden, Grappentheoretische Methode in der Quantenmechanik
(1982) §13.

- 93

220z 1snbny g} uo ysenb Aq 8%/6/81/¥8° L SdLd/EY L L "0L/10p/8jo1e/sd}d/woo dno-olwapeoe//:sdpy wody papeojumod



1940} On the Wave Equation of Meson.

deal with and reduce thesc two systems scparately, and the product of
two reduced matrices each belonging to these different systems is a
direct product.

We put N=mnzs
C = ’534"21"72773
then B, n and ¢ satisfy the following relations
Bi=1, ?;2:1, =1

34"7= —nBs=1§
"ICZ “§ﬂ='5134
:Boz’—“ —B4t='57).

These relations are the same as those which are satisfied by Pauli’s
spin matrices, hence we may put

()
n=p3:<(1)~$) /

As to the spin matrices we obtain the following relations

SaSz - SzSg = ’bS] ’
SIS3 - SsS] == ’I:Sz, (I)
S2S1 - SISL= iSa,

and further they satisfy the previously cited relation

sz_;_u-—m), (i ko=ter) (8)

From (1) and (8) we can deduce the following relation
SuSiS, + SeiSeSe =St 8+ S, dus. (1D
We can not go over from (I) to (IT) nor vice versa, unless we

make use of relation (8). -Accordingly it is to be considered that the
spin matrices S, are defined by the two systems of relations (I) and

(I1).
Now we shall construct the unit matrix of the system of §; ma-

trices. We put
E=8+8i+83—1
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then F ratisfies
1412 :E
hence E, is an idempotent of the ring B. E satisfies moreover™®
S,E=ES;=S5;

i.e,, E is the unit matrix of the subring consisted by the S: matrices.

E=1.
From thi~ we obtain
ST+ 8%-+85=2 (11)
On the other hand if we denote the spin ecigen-value as s, we have
ST+ 83+ 85=s(s+1) (12)
From (1) and (12) it follows that.
s=1

i.e., this particle has the spin eigen-value 1.

Further we shall examine the algebraic properties of the S; ma-
trices. Although the S matrices satisfy both of the set of equations
(I) and (IT) it is interesting to compare this system to the system of
algabra which satisfies only the set of equations (II). The following
table gives the complete list of linearly independent elements of these
two systems.

if (II) only Actual case of (I) and (II)

I 1 1
Sz 3 3
SeSk 6 3
SiSiSy 3
& 3 3
&S, 6
E5:S, 6
&, 3
Elf k-‘S’r 3
E&:E- 1

Total Number 35 10

(9) The deduction of this relation is as follows:—from (I) and (II) we obtain
SeSk+ SeS1=1 (282 —1) & itkEr
Using this relation and () we have
S8 =i SpSi?
This enables us to deduce the relation cited here.
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Here & are defined by
E=287—1= —ny, (v=kk=Fr).
In the case where (I)-alone is used, the following three clemeits
commute with all others, and hence form the centrum.
I (the unit matrix), M=2 &— ‘Z&Ek
I Tk
N=£EE,

The number of the elements of the centrum directly gives the
number of inequivalent irreducible representations, say of degrees 7
and ns respectively, and

ni +nz+ni=385
Their degrees are actually 5, 3, and 1 (5°+ 3 +1°=35).
In the actual case where both (I) and (II) are used, however, only
I and M form the centrum and N becomes I itself.

N=I
Therefore in this case the number of inequivalent irreducible representa-
tions is two, and their degrees are 3 and 1 respectively, namely
$+1°=10
For the representation of the degree three we may take the ma-
trices which were found previously"”:—

0 0 0 0 0—i
S=8={ 0 0 i) &=8=[0 0 0},
0—i O i 00
0 i 0
S=8,=| —i 0 0 (13)
. 0 0 O

More detailed discussion on the algebraic propertics of the S-matrix.
ring will be carried out in the next paper.

Finally we can write down equation (9) as follows, (the products
of p matrices and S; matrices are to be uriderstood as direct product): —

NG PP P ) W
Pl = ,ca‘a‘t”3<2 ’>+2J

T

(10) Yukawa, Sakata and Taketani, Proc. Phys.-Math. Soc. Japan 20 (1938), 319.
Yukawa, Sakata and Kobayasi and Taketani, Proc. Phys.-Math. Soc. Japan 20 (1938),
720, ’
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fic 5- - " .
- —’;ak or {[Os (I—ZS;)(‘Sk‘S.’*"SrSk):':lS,} +iiCIC’
(k==l=r)
or inserting the representation of the spin matrices into th's expression
we have

Dz—;:—(EH) .
A2V e {1—*—» 4D
) 2k mc*

where D denotes the vector o7

The formulation of the vector meson theory using this wave equation
is given by us in another paper®™ which is now in the press.
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