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Introduction. Let A be a strictly power-associative algebra with radical N and
such that the difference algebra A — N is separable. Then we say that A has a
Wedderburn decomposition if A has a subalgebra S^A — N with A = S+N (vector
space direct sum).

It is known that associative [1], alternative [15] and Jordan [3], [13] algebras
have Wedderburn decompositions. In addition, if A is commutative and A — N
separable with no nodal subalgebras such that either the simple summands of
A —N have degree =3 or A is stable, then A has a Wedderburn decomposition [5].

For our purposes, an algebra is a finite dimensional vector space on which a
multiplication is defined which satisfies both distributive laws. We define x1=x and
xk+1=xkx. An algebra A is called power-associative if x"xß=xtt + e for all positive
integers a and ß and every x in A. An algebra is called strictly power-associative if
AK is power-associative for every scalar extension K of the base field. As a con-
sequence of [11], if char ^2,3,5 then a power-associative algebra is strictly
power-associative.

In this paper, the radical N of A is the maximal nil ideal and a nonnil algebra
with zero radical is said to be semisimple. An algebra is separable if it is semisimple
over every scalar extension of the base field. We will call an algebra simple if it is
semisimple and contains no proper ideals. The associator (x,y,z) = (xy)z—x(yz)
and the commutator (x, y)=xy-yx. An algebra is nodal if each element can be
written as a-l+z with z nilpotent where the set of nilpotent elements is not a
subalgebra. The center of A is the set of all elements that commute and associate
with all of A. It is known [16, p. 16] that the center of a simple algebra is a field and
is a finite extension of the base field.

For char /2, define x-y = (xy+yx)/2 and define A+ as the vector space A with
multiplication defined by x-y. When char ^2, it has been proved [2] that if A is
power-associative and if e is an idempotent (e2 = e^0) then

(1) A = Ae(l) + Ae(l/2) + Ae(0) where Ae(t) = {x : x-e = tx}. In addition, we
have [2]:

(2) Ae(l)Ae(0) = ,4e(0K(l)=0,
(3) xe=ex=0 for x in Ae(0),
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(4) xe=ex=x for x in Ae(l),
(5) Ae(l/2)-Ae(l/2)ç=Ae(l) + Ae(0),
(6) Ae(l)-Ae(l/2)^Ae(l/2) + Ae(0),
(1) Ae(0)-Ae(l/2)^Ae(l/2) + Ae(l).
An idempotent e is principal if Ae(Q) contains only nilpotent elements. An

idempotent e is primitive if e is the only idempotent in Ae(l) and e is absolutely
primitive if e is primitive in AK for AT any extension of the base field. At times it will
simplify notation to write A(e, t) for Ae(t).

We will define K to be a splitting field of a nonnil strictly power-associative
algebra A if every primitive idempotent e of AK — NK is absolutely primitive and if
every element in (AK — NK)e(l) for e primitive can be written as ke+y with y
nilpotent and k in K. If K is the algebraic closure of the base field F of A, it clearly
is a splitting field of A but may not be a finite extension of F.

We will give two fairly general approaches to proving the Wedderburn Principal
Theorem. Our first approach will be to reduce the question to the case where A—N
is simple and A has a unity element. This approach will apply to any decomposable
class of algebras (a term defined in the next section). When A has a unity element
and A — N is simple, we will give conditions on A that force A to have a Wedderburn
decomposition.

In our second approach, we give a set of conditions on an algebra A that force A
to have a Wedderburn decomposition.

Finally, we apply the material in §§2 and 3 to derive the Wedderburn Principal
Theorem for certain classes of algebras [2], [4], [6], [7], [8], [9], [10], [12], [14].

2. First approach. We will first prove the following lemma. Our proof is, for
the most part, an adaptation to the noncommutative case of the proof given by
Hemminger in the commutative case [5].

Lemma 2.1. Let [uy],..., [ut] be pairwise orthogonal idempotents in A —M (M a
nil ideal of A and [x] the image of x in A -> A — M)for A a strictly power-associative
algebra over a field of char ^2, 3 and let u = Uy+ ■ ■ ■ +ut. Then, there exists an
idempotent e in A and pairwise orthogonal idempotents ex,..., et in Ae(l) such that

(8) [e] = [u]and
(9) fo] = ["i] 0=1 > • • -, t). Furthermore, if A has a unity element 1 and [1 ]=[«],

then e=\.

Proof. We will prove the first part by induction on t. When r=l, u=Uy. In
addition, [uk] = [u]k = [u] so u is not nilpotent. Hence, the associative algebra of all
polynomials in u, denoted by F[u], is not nilpotent and thus contains an idem-
potent e=f(u) for fix) a polynomial. Then [e] = [/(«)] = a[u] where a=f(l) is in F.
Thus a[w] = [e] = [e]2 = c72[w]2 = c72[w]. Since e is not in M, a[u]^0 and a=l.

Let w = Uy + u2 for r^2. Then u=w+u3+ ■ ■ ■ +ut for pairwise orthogonal
idempotents [w], [u3],..., [ut]. By the inductive hypothesis, there exists an idem-
potent e and pairwise orthogonal idempotents/ e3,...,et in Ae(l) such that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] ON THE WEDDERBURN PRINCIPAL THEOREM 345

e=f+e3+ ■■■+et, [e] = [u], [f] = [w], and [e,] = [i/,] for i=3,...,t. Now [f][ux] =
[w][w-u2] = [w]-[u2] = [mi] and [mJ[/] = [mJ. If [f][x] = [x] = [x][f] for x in A we
can write x=xx+xXi2-\-x0 for xa in A ¡(a) and have [xi] + [*i/2] + [*o] = M =
(lß)([f][x] + [x][f]) = [xy] + (l/2)[xyi2] so [x] = [xi]. Therefore, there is an element
xx in Af(\) with [Xi]=[Mi]. Also, xx is not nilpotent for [*ï] = [MÏ] = [Mi]fc = [Mi] so,
as in the case t=\, we have an idempotent ey in F[xy]sAf(\) (powers of Xy are in
A,(I) for Af(l)-Af(l)zAf(l)) such that [ei] = [xi] = ["i]- Now e2=f-ex is an
idempotent in A,(\), exe2 = ex(f-ex)=0 = e2ex and [e2] = [f-ex] = [f]-[ex] = [w]-
t«i]=[«al- Also A,(\)A!(0)=Al(0)Af(\)=0 so eie/=e/et=0 for i"=l, 2;;=3, ...,t.
If x were in Af(l) n Ae_f(a) for a=\/2, 1, then jt-e=.x-l-öJc=(l-|-ö);c. Let
^=Xi + Xi/2+jc0 for X(, in ^¡.(6). We obtain x-e=Xy + (\/2)xy,2. Therefore
(H-a)xi=Xi,2(l+a)^1/2=x1/2, and(l+£7)x0 = 0. Since char =¡¿2, 3 and a= 1/2 or 1,
x=0. Hence, Af(l)^Ae(l) and ex,...,et are in Ae(\). We have proved the first
part of the lemma. If [1] = [e], then 1 —e is in M and is nilpotent. Hence it is zero
and e=l.

In reducing the theorem to the case where A—N is simple, we will need the
following definitions.

Definition 2.1. A class of algebras will be called a Wedderburn class if each
algebra A in the class has a Wedderburn decomposition.

Definition 2.2. A class F of algebras will be called a decomposable class if
for each A in P:

(a) A is strictly power-associative over a field of char ^2, 3.
(b) A-N is in P.
(c) If B is a subalgebra of A whose image in A -* A — N is a nonnil ideal in

A-N, then B is in F.
(d) A semisimple implies A = AX ©• • • ® At where each Ax is simple with a unity

element.
(e) Ae(t)Ae(t)^Ae(t), (i=0, 1) if e is an idempotent in A.
Definition 2.3. A member A of a class F is in the center C(P) if .4 has a unity

element and A — N is simple.
We remark that each specific class of algebras shown to be a Wedderburn class

[1], [3], [5], [13], [15] has been a decomposable class.

Theorem 2.1. A decomposable class P is a Wedderburn class if and only if
C(P) is a Wedderburn class.

Proof. In one direction, the implication is obvious. Suppose that C(P) is a
Wedderburn class. For A in P, A — N=BX ®---©Bt where each 5¡ is simple.
From Lemma 2.1 and the fact that each B¡ has a unity element [m¡], there exists
pairwise orthogonal idempotents eh ..., et in A such that [e,] is the unity element
of F, (/= 1,..., t). Denote A(e¡, 1) by A¡. Clearly, Ai'^A(ej, 0) (jVO for if xe{=x
and x-e¡ = tx, t=l/2 or 1; then x-(ei+e,) = (3/2)x or 2x contrary to fact. Hence,
from (2) and condition (e), AiA^h^Ai (Kronecker delta) for /,/=!,..., t. Also,
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e=et-\-Vet is principal and Ae(l/2) + Ae(0)^N. It is clear that the radical N¡
of Ai contains At n N. In addition, A(eu 1/2) £ A''for A = Ay+ ■ ■ ■ +At + M where
MzN. Now, (Ni + N)Ai^Ni + N and A.(Nt + N)^Ni + N. Since A(et, 1/2)
SAT, Aieh l/2)/V. u NtAieu l/2)SiV. Also, (JV,+JV)(yl(e„ 0))=JV.¿(e„ 0)sAT and
(/4(e(, 0))(Nt + N)^N. Therefore Nt + N is an ideal in /4. For x in N¡ and j in N,
(x+y)k=xk+yy where ji is in N. If xn=0, (x+j)n=ji in N and therefore x+j is
nilpotent. Hence, Nt+N^N and NtsAi n N. Therefore At-Nt^Bt. But, then, At
is in C(P) so there is a subalgebra 54 of A¡ with /4i = 5,i-l-Ari and S,^Bt. If 5=
Si ©■ • -®St, A = S+Nand S^A-N.

In the following discussion, H(e) is the ideal generated by Ae(l/2).

Theorem 2.2. Let A be an algebra in the center of a decomposable class over a
splitting field F of char #2, 3. If we further assume that A — N is not nodal then the
following are equivalent:

(10) A has a Wedderburn decomposition.
(11) There exists a primitive idempotent efor which either H(e) has a Wedderburn

decomposition or H(e) £ N.
(12) Either A—N=For there exists a nonnil ideal H(e) which has a Wedderburn

decomposition.
(13) There exists a nonnil ideal of A which has a Wedderburn decomposition.
(14) There exists a nonnil subalgebra B with a Wedderburn decomposition such

that, in the mapping T: A-> A — N, the image T(B) is an ideal.

Proof. Suppose (10) and let A = S+N with S^A-N. Let e be a primitive
idempotent of S and assume that H(e) $ N. Now H([e]), the ideal of A — N generate
by (A —N)([e], 1/2) is the image of H(e) in the mapping A-+A — N. Consequently
//([e])#0 so, since A—N is simple, H([e]) = A— N. In the mapping A-> A—N,
S is mapped onto A — N. Clearly then Se(t) is mapped onto (A — N)([e], t) for
r=l, 1/2, 0. (Since e is in S, S=Se(l) + Se(l/2) + Se(0).) Hence, 5e(l/2)^0 and
H(e) n .SVO. Now, H(e) n S is an ideal in the simple algebra S so S^H(e). If
M is the radical of H(e) then H(e) = S+M is a Wedderburn decomposition for
H(e) and (11) is established.

To prove that (11) => (12), let us suppose that no H(e) has a Wedderburn
decomposition. Then by (11) there exists a primitive idempotent e with H(e)^N.
In the mapping A^ A — N, Ae(t) is mapped onto (A—N)([e], t) for t=l, 1/2, 0.
Hence (A-N)([e], l/2)=0 and by (2) and (e) of Definition 2.2,

A-N = (A-N)([e], 1)®(A-N)([e],0).

But, A-N is simple and [e] is in (A-N)([e], 1) so (A-N)([e],0)=0. If [e] =
[u] ® [v] for idempotents u and v then Lemma 2.1 guarantees the existence of
idempotents / and g in Ae(l) with e=f®g contrary to the primitiveness of e.
Thus, [e] is primitive. Now, F is a splitting field, so any element in A — N=
(A—N)([e], 1) has the form a[e]+z with a in Fand z nil. Since A — N is not nodal
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then M, the set of all nilpotent elements of A — N, is a subalgebra of A—N. Clearly,
M is an ideal of A — N so M=0. We then have A—N={a-[e] : ainF}sFand (12)
is proved. If A — N= F then A— N={a[e] : a in F} and by Lemma 2.1, e can be
chosen as an idempotent of A. Under this condition, A—F-e+Nisa Wedderburn
decomposition for A which may be regarded as an ideal of A.

The implication (12) => (13) is now easy to see.
To prove (13) => (14), we merely observe that the ideal whose existence is

guaranteed by (13) satisfies the conditions of (14).
Finally, let F be a nonnil subalgebra satisfying (14). Since A — N is simple and

T(B) is an ideal then T(B) = 0 or T(B) = A-N. But B is not nil so F(F)^0. There-
fore, T(B) = A-N. If B=S+M with S^A-N is a Wedderburn decomposition
for B, then we claim that A = S+N is a Wedderburn decomposition for A. For
S^A — N, S n N=0 and dim A = dim S4-dim N (dim A = dimension of A as a
vector space). Thus, (14) =*■ (10) and the theorem is proved.

We remark here that the condition that A — N he not nodal cannot be removed.
Let Ey be the algebra spanned by 1, x, x2 and y with xy= — yx= 1 and x2x=xx2 =
y2 = x2y=yx2 = x2x2 = 0. Let u = a-l+v where v=ßx + yy + 8x2. Then v2 = ß2x2 +
ßy—yß=ß2x2 and v2v = vv2 = 0. By induction, we see that un = an-\+nan~1v +
((n2—n)/2)an~2v2. From this, it is easy to show that Ey is power-associative. In
addition, N={ax2} is the radical of Ex and Ex — N is simple and nodal. (Also, Fi
is nearly antiflexible (see [14]).) If S is a proper subalgebra of Ex then 5={a-l}
which is not isomorphic to Ey — N or S has a nonzero radical. Let u = a • 1 + v with
v=ßx+yy+8x2 be in S. Suppose we have <* = 0 for some m/O in S. Then u2 — v2 =
ß2x2 so TVS S or j3=0. But, if 0=0, then {eu} = {eyy + e8x2} is a nil ideal in S. Now
suppose we have a^O for every w#0 in S. Since u2 — au = av + v2 = aßx + ayy +
(«S+ß2)x2 is in S then m2 = au for the coefficient of 1 in w2 - au is 0. But this implies
(u/a) is an idempotent. However, 1 is primitive so we have u/a=l or u — al. Since
this holds for every m^O in S, S={a-1}. Hence, Fi does not possess a Wedderburn
decomposition. However, Ex trivially satisfies (11) for 1 is its only idempotent and
H(\) = 0<=N.

The following lemma generalizes Lemmas 2.1 and 2.2 of [5].

Lemma 2.2. Let Q be a class of algebras such that :
(15) If A is in Q, then A — N is simple.
(16) If A is in Q, and if M^N is an ideal of A then A—M is in Q.
(17) IfB is a subalgebra of Q whose image in A —»■ A — N is a nonnil ideal of A—N

then B is in Q.
If every algebra B in Qfor which dim B< dim C has a Wedderburn decomposition

and if C contains an ideal M other than 0, N and C then C has a Wedderburn
decomposition.

Proof. The result is obvious if dim C= 1. We will assume then that dim C> 1 and
will first prove the assertion for the case when M is nil. By the homomorphism
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theorems, C-N^(C-M)-(N-M) and N-M is the radical of C-M. Now
C—M is in g by (16) and dim (C—M)<dim C so there exists C0^C—M with
C0=(C—M)-(N—M)^C-N. Also, by the homomorphism theorems, there
exists a Cy in C with Ci/0, C such that Msd and C0~Cy-M. Now Cj. is
nonnil and Cx-M is simple so (Q-M) n (Ar-M)=0. Therefore, if F(Ci) is
the image of Cy in the mapping C -»■ C—N, then

7XA) s Cx-M s C0 S C-JV.

Thus F(C1) = C-Arand by (17), Cy is in g. Since also dim d<dim C, there is a
subalgebra S in QsC with ^ = 5+A/ and S^Cy — M. Now, 5 is simple so
S n Af=0. Also, S^C-N. We then have dim C=dim S+dim Aiso C=S+Nis a
Wedderburn decomposition.

Now suppose M is not nil so that M$ N. If N^M with Nj=M, then N—M is
an ideal in C—N which implies M—N=C—N. By (17), M is in g and there is a
subalgebra S of MsC with S?M-N=C-N Since S is simple, S n Ar=0 and,
by a dimension argument, C=S+N. If M n N^O and N^M then M n A^ is a
nil ideal unequal to 0, N and C and C has a Wedderburn decomposition by the first
part of this proof.

We now assume that M n N=0. From this we see that M is not nil. Consequently,
the image T(M) of Afin C-> C—N is a nonnil ideal of C—A^so Mis in g. Hence,
there exists a subalgebra S of Ms C with 5^ T(M). From the simplicity of C—N,
we have T(M) = C—N which implies S is simple. Thus, S n N=0 and a dimension
argument implies C=S+A^is a Wedderburn decomposition for C.

3. Second approach.   The main theorem of this section is

Theorem 3.1. Let Abe a nonnil strictly power-associative algebra over a splitting
field with char ^2, 3 and assume the following:

(18) A — N contains no simple nodal subalgebras for N the radical of A.
(19) For every idempotent e, the following are equivalent:
(a) H(e) is nil.
(b) Hie) n Aeil) is nil.
(c) Uie) n Aei0) is nil.
(20) For every idempotent e and for t^l/2, /4e(r)/4e(i)£/4e(/).
(21) There exists a set ex,...,en of pairwise orthogonal primitive idempotents

with e — 2P= i ei principal such that L = 2?» i Hie) has a Wedderburn decomposition
ifL is not nil.

With these assumptions, A has a Wedderburn decomposition.

We will prove this theorem in a series of lemmas. First let us note that the
algebra Ex constructed in the last section satisfies (19), (20) and (21) so (18) cannot
be eliminated in the hypotheses. It is not known if (19) or (21) can be removed. To
see that (18), (19) and (21) are not sufficient, let E2 be the algebra spanned by e,
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x, x2, y with xy= —yx = e, e2 = e and all other products zero. It is easily seen that
E2 satisfies (18), (19) and (21) but does not have a Wedderburn decomposition.

Lemma 3.1. If A is a semisimple power-associative algebra over afield ofchar ^2
satisfying (19) and (20), then A is a direct sum of simple algebras each of which has
an identity element.

Proof. The result is obvious if dim A = \. Suppose dim A = n and the lemma is
true for all algebras with dimension less than n satisfying the hypotheses.

Let / be an ideal of A of smallest nonzero dimension. Since A is semisimple, J
is not nil so it must have an idempotent. Let e be any idempotent in /. If x is in
Ae(\), then x=xee AJ^J so Ae(\)<=,J. If x is in Ae(\/2) then x=xe + exe AJ+
JAçJ so Ae(\/2)^J. Therefore H(e)^J. But J is an ideal of A of smallest nonzero
dimension so H(e)=J or //(e) = 0. Now if e is an idempotent principal in J then
Je(0) is nil. However, H(e)<=J so H(e) n Ae(0)^Je(0). Therefore, by (19), H(e) is
nil. But A is semisimple so H(e)=0. Therefore, by (20) and (2), A = Ae(\) © Ae(0).
Since Ae(l)^J, e e Ae(l) and/is an ideal of smallest nonzero dimension, J=Ae(\).

Let K be an ideal of J. Since K^Ae(l), KAe(0) = Ae(0)K=0 so KAçKJçK and
AK^JK^K. Therefore, A"=0orZand we have shown that J is simple and possesses
an identity element. If Ae(0) ̂  0, then Ae(0) is a semisimple power-associative algebra
over afield of char ^2 and satisfies (20). If Kis an ideal of ^e(0), KAe(\) = Ae(\)K=
0 so KA + AK^K and K is an ideal of A. From this it is easy to verify that (19)
holds in Ae(0). Hence, by the inductive hypothesis, Ae(0) is a direct sum of simple
algebras each of which has an identity element. Consequently, A is a direct sum of
simple algebras each of which has an identity element.

In the light of Lemma 3.1, one would expect to find that the class of all algebras
satisfying the hypotheses of Theorem 3.1 is a decomposable class. The answer is
not fully known but the following two lemmas will show how close we are to the
answer.

Lemma 3.2. The class Cy of all nonnil strictly power-associative algebras over
splitting fields with char =£2, 3 that satisfy (18), (19) and (20) is a decomposable
class.

Proof. Conditions (a) and (e) are directly assumed and condition (d) was
proved in Lemma 3.1. To verify (b), we need only show that if A is in Cy then A—N
satisfies (19) and (20). Let [u] be any idempotent of A—N with u in A. Lemma 2.1
implies the existence of an idempotent e in A with [e]=[tt]. Since (19) and (20) hold
for e in A, it is ceasily shown that they hold for [e] in A—N.

Condition (c) is all that we now need to verify. Let F be a subalgebra of A whose
image in T : A -> A-Nis a nonnil ideal in A-N where A is in Cx. Write A' = A-
N and B' = T(B). Since B' is not nil, there exists an idempotent e principal in B'.
If x is in A'e(\), then x = xeeA'B'çB' so A'e(l)^B'. Also, if x is in A'e(\/2), then
x=xe+exeA'B' + B'A'çB'   so   A'e(l/2)çB'.   Consequently,   H(e)^B'.   Now,
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B'e(0) is nil for e is principal. Also, Hie) n A'e(0)çB' n A'e(0)çB'e(0) so Hie) n A'ei0)
is nil. Since A' = A — Nis in C1; (19) holds in A' so Hie) is nil. But, A' is semisimple
so Hie) = 0. Now, by (2) and (20),

B'eiO)iA') = B'eiO)iA'eil) + A'eiO))
= B'e(0)A'e(0)
£ B' n A'e(0) = P^(0).

Also, A'B'e(0)cB'e(0) so P^(0) is a nil ideal of A'. Thus, B'e(0)=0 and A' = B' ®A'e(0)-
As a result of this, any ideal of B' is also an ideal of A'. Hence, B' is semisimple and
satisfies (18), (19) and (20). Since B satisfies (18), (20) and is strictly power-associa-
tive, we need only verify that B satisfies (19). Let e be any idempotent of P. Clearly,
in (19), (a) implies both (b) and (c). To avoid confusion denote by K(e) the ideal in
B generated by Be(l/2). Suppose K(e) n Be(l) is nil. It is easily seen that T(K(e) n
Be(l)) = H([e]) n B'([e], 1) since B' is a direct summand of A'. Therefore H([e]) n
B'([e], 1) is nil and, since (19) holds in P', H([e\) is nil. By the semisimplicity of
By, H([e]) = 0 so K(e) is nil. Similarly in (19), (c) implies (a) so B is in Cy and Cy
is a decomposable class.

Lemma 3.3. The class C of all algebras that satisfy the hypotheses of Theorem 3.1
satisfies conditions (a), (b), (d) and (e) of Definition 2.2.

Proof. As a consequence of Lemma 3.2, conditions (a), (d) and (e) are satisfied.
Since A — N trivially is in C, condition (b) is satisfied.

We now assume that A satisfies the hypotheses of Theorem 3.1 and let e, elt - - -,
en be the idempotents guaranteed by (21). Throughout the argument Pis the natural
mapping A -+ A — N and [x] = P(x). We begin by renumbering the e¡ so that et is
in L + N (not necessarily a vector space direct sum) if and only if i>m. If H(e)
is not nil then H(e) n A(e{, 1) contains an element x with x not nil. The subalgebra
generated by x contains an idempotent e'. Since H(e) n A(eu 1) is a subalgebra,
é £ H(e) n A(eu l)£/4(e¡, 1). But e¡ is primitive so t?4 = e' e H(e)^L and i>m.
Consequently, H(e)£N whenever i<m. It is possible that m = 0 or m = n. We will
dispense with these cases first.

Lemma 3.4. If m = 0 or m = n then A has a Wedderburn decomposition.

Proof. Assume m = 0. Now e is principal in A so [e] is principal in A—N. By
Lemma 3.1, [e] is the identity element of A-N. Also, T(L) is an ideal of A — N
with [e] in T(L). Therefore T(L) = A - N. By (21), L = S+M where M is the radical
of L and S^L-M. We know that NnL^M. Since M is a nil ideal of L, T(M) is a
nil ideal of T(L) so P(M)=0. Therefore M^N so A^ n P = Mand Ss T(L) = A - N.,
By a dimension argument, A = S+N is a Wedderburn decomposition for A.

Now suppose m = n so H(e)QN for /= 1,..., «. Then (2) and (20) imply that,
for each e¡,

(22) A-N « (A-N)([et], 1) 0 (A - JV)(h], 0).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1969] ON THE WEDDERBURN PRINCIPAL THEOREM 351

Since Fis a splitting field and (A-N)([ei], 1) is not nodal, we have (A-N)([e¡], 1)
= {a-[e¡]} for í'=1, ..., n. Write Si = {aet}, i=\,.. .,n. By induction, for each pfin,

(23) A - N - T(Sy) © • • • © T(SP) ®(A- N)([ex] +■■■ + [ep], 0).

For, (23) is true whenp = l by (22). Now, assume (23) when p = k. It is easily seen
that Sk+1 £ A(ey + • • • + ek, 0) so T(Sk+x) ̂ (A- N)([ex] +■■■+ [ek], 0). This together
with (22) for i=k+l yields (23) with p = k+l. Also, since [e] is an identity for
A-N, (A-N)([e], 0) = 0so

/(-/V=F(51)©---©/(5n).

From the fact that eie) = 8ijei (Kronecker delta), we have SiSj = 8ijSi. We then
write S=Sy@---@Sn and note that S^A. Also, S^A-N so /i = 5-r-/V is a
Wedderburn decomposition of A.

From now on, assume 0<m<n. Let g=2T-i e¿ and A = 2?=m+i e,.

Lemma 3.5. /Ae algebra

A-N= (A-N)([h], 1)®(A-N)([ey], 1) ©• • • © (A-N)([em], 1).

Proof. Since e=g+h and [e] is an identity for A — N then [g] + [h] is an identity
for A-N. If [x] is in (A - N)([g], 1/2) then [x][h] + [Ä][x] = [x][e] + [e][x] - [x][g] -
[g][x] = [x] so [x] is in (A-N)([h], 1/2). Also, 04-JV)([A], 1/2)<=(A-N)([g], 1/2)
so(^-/V)([g], l/2) = (/l-JV)([A]> 1/2). However, (A-N)([ei], 1/2) = 0 for i = l,...,
mso(^-AT)([f],l/2)=0.

If we consider the decomposition of an algebra B relative to two orthogonal
idempotents a and b we have B the vector space direct sum of nine possible sub-
spaces of the form Ba(s) n B„(t) where s, t=0, 1/2, 1. Since ab = ba = 0, a+b is an
idempotent and B has the decomposition

B = Ba+b(l) + Ba+b(l/2) + Ba+b(0)-

In addition if, for an idempotent e', x-e' = ax with a inFthena=l, 1/2 or 0. Now
Ba(s) n Bb(t)^Ba+b(s+t) so this intersection is zero unless s+t=0, 1/2 or 1.
Consequently, the following relations hold :

(24) Ba+b(\) = Ba(\) n B„(0) + Ba(l/2) n F6(l/2) + Fa(0) n Bb(\).

(25) Fa+b(l/2) = Fa(l/2) n Bb(0)+Ba(0) n Bb(\/2).

(26) Fa+6(0) = Ba(0) n 5,(0).

Since H([ei]) = 0 for /= \,...,m, (22) holds when i£m. From (24), (2) and (20),
if Fa(l/2) = 0 or F„(l/2) = 0, then

(27) ZWl) = Fa(l) n Bb(0) ® Ba(0) n Bb(\).

Also, Ba(\)n Bb(t)<=:Ba+b(l + t) so Ba(\) n Bb(t) = 0 unless i=0. Therefore
Ba(l)^Bb(0) and Bb(l)cBa(0) so (27) becomes

(28) Ba+b(l) = Ba(\) ® Bb(\).
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Inductively, we have

(29) (A-N)([g], 1) = (A-N)([ey], 1) ®- ■ ■ ® (A-N)([em], 1).

Also,

(30) A-N=(A-N)([g] + [h], 1) = (A-N)([h], I) ® (A-N)([g], 1).

These last two results give the conclusion of the lemma.

Lemma 3.6. IfL = S+Mis a Wedderburn decomposition for L with M the radical
ofL then dim S=dim (A-N)-m and S^(A-N)([h], 1).

Proof. Since « = 2?=m+i ti> then « is in L. If x is in Ah(\) then x=x« eAl^L
so Ah(l)çL. Therefore (A-N)([h], 1)£F(F). If Lh(0) is not nil, there is an idem-
potent e' in Lh(0). Now [e'] is in (A-N)([h], 0) so [e'] = 2í"=i Of[e¡] with a¡ in F,
/.'= 1,..., ttj. From [e']2 = [e']^0 we find that for somey'^Tw, cx^O and a2 = ay.
Hence ay=l. But [e'][<?y] = fo]. Since T(L) is an ideal of A-N and [e'] is in T(L),
then [e;] is in T(L) which contradicts the fact that e¡ is not in L+N (not necessarily
supplementary). Therefore t? is principal in L so [/z] is principal in T(L). Con-
sequently, (F(L))([/!], 0) is nil. Lemma 3.5 then implies that (T(L))([h], 0)=0 so
T(L) = (A-N)([h], 1). But then P(M) is an ideal of a direct summand of A-N
so T(M) is an ideal of A — N. Since M is nil, T(M) is nil so F(M)=0. Therefore,
S^(A-N)([h], 1). Now, F is a splitting field and (/f-AOOJ, 1) is not nodal
so (A — N)([et], l) = {a[e¡]} and has dimension 1. Thus, from Lemma 3.5, dim S
= dim (A—N)—m.

Lemma 3.7. There exists a set {/}i"=o of pairwise orthogonal idempotents such that
/o is the identity of S, [f0] = [h], and [/] = [e¡] for i= 1,.. ., m.

Proof. Since S^(A—N)([h], I), it contains an identity element /0. Clearly,
[/)]=[«]• Now, each [e¡] is in T(A(f0, 0)), i=l,.. .,m. The kernel of the homo-
morphism A(f0, 0) -> T(A(f0, 0)) is a subset of A^ so, by the homomorphism
theorems, there is a nil ideal M of Aif0, 0) with Aif0, 0)-M^TiA(f0, 0)). Thus,
by Lemma 2.1, there exist pairwise orthogonal idempotents/!,.. .,/m in A(J0, 0)
with [/]=[e(], i=l,...,m.

We are now able to prove the theorem. Let B=S+F-fy + ■ ■ ■ +F-fm. Since/,
is the identity of S and the set {/}P=0 is a set of pairwise orthogonal idempotents
then B=S ®F-fy ®- ■ -®F-fm. Also, B^A-N so a dimension argument
guarantees the fact that A = B+N and we are done.

4. Applications. For a general application, we derive the following theorem.
The set /4fJ(e) = {x : ex=ix and xe=jx}.

Theorem 4.1. Let B be a nonnil strictly power-associative algebra over a splitting
field F with char ^2, 3 and assume the following:

(31) B — N contains no simple nodal subalgebras where N is the radical of B.
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(32) For any idempotent e in B, B=Byy(e) + By0(e) + B0y(e)+B00(e).
(33) The product Bij(e)Bkm(e) £ 8jkBim(e) with the exception that, for i^j,

(Btiie))2^B}iié) with xi;2 = 0.
(34) The set B10(e)B01(e) + B10(e) + B01(e) + B01(e)B10(e) is an alternative ideal.

With these assumptions, B has a Wedderburn decomposition.
Proof. Clearly Pn(e) = Pe(l), Bo0(e) = Be(0) and P10(e) + P01(e) = Pe(l/2). Hence

H(e)=B10(e)BOy(e)+ByQ(e) + B0y(e) + BOy(e)ByO(e) where H(e) is the ideal of B
generated by Be(l/2). From the fact that the Wedderburn Principal Theorem holds
for alternative algebras [15], we have condition (21) holding in B of Theorem 3.1.
Also, (18) and (20) both hold in P.

In (19), the implications (a) => (b) and (a) => (c) always hold. Let H(e) n Be(l) =
B10(e)B01(e) be nil. If//(e) is not nil it has a radical Ny and D = H(e)—Ny is semi-
simple. Now, H(e) is alternative so D is alternative and possesses an identity
element v. Define Dij = Hij(e)-(N1 n //¡/e)) and write v = Vyy + v10 + v01 + v00 with
vtj in Dti. By the definition of H(e), H(e) is nil if and only if Ay0(e) + A01(e)^Ny.
Hence, H(e) is nil if and only if D10 + D01=0. The Dtj multiply as the Btj(e) do so,
from v2 = v, we obtain i>ii = i>2i + i>i0i>oi, *;io = i>ii''io + i'ioi'oo, ^01 = ^01^11 + i'oofoi
and i>oo = i'oo + t'oiî;io- But v is the identity element of D so Vy0 = Vy0v = v10v00 +
^îo^oi- Therefore v10 = v10v00 and i>10u01 = 0. Inductively, w11=of1= • • • =»*!•
Since //n(e) is nil, i>n = t>ïi = 0. Also, t>io = i'i'io = i,iii>io +^01^10 so yio = fiifio and
^oifio=0- This implies i!10 = ri1f10 = 0. Now t>0i = f0i¿' = yoifii + i'oit;io = í'oifii=0.
Consequently, v = v00. Let x10 + x0i be an element of D10 + DQ1. Because v — v00 is
an identity, x10 = t;oox1o=0 and xol=xOifoo=0 so D10 + D01=0. Therefore, //(e)
is nil. Similarly, if //(e) n Ae(0) is nil then //(e) is nil so (19) holds in B. Hence, B
has a Wedderburn decomposition.

Theorem 4.2. Let A satisfy (20). Then the algebra A contains a nodal subalgebra
if and only if A — N contains a nodal subalgebra.

Proof. If P is a nodal subalgebra of A then T(B) is a nodal subalgebra of A — N.
Suppose now that B is a nodal subalgebra of A — N. By the homomorphism
theorems, there is a subalgebra C of A with A£C and T(C) = B. We know that
B has a primitive idempotent [e] and, by Lemma 2.1, e can be chosen as an idem-
potent in C. We claim that Ce(l) is a nodal subalgebra of A. For Ce(l) = C n Ae(l)
and the intersection of two subalgebras of A is a subalgebra of A so Ce(l) is a
subalgebra of ^f. If e=/+gwith/g=s/=0, then [e] = [f] + [g] with [/][g] = [g][/] =
0. Hence, e is primitive. If x is in Ce(l) then [x] = a[e] + [z] = [ae+z] where a is in F
(the base field) and [z] is nil. Also, [x —ae] = [z] so x — ae = z+n with n in A^. Now,
for some k, [(z+«)'c] = [z-l-«]'c=[z]'c = 0 so (z+n)k is in N. This implies z+n is
nilpotent. In addition z+n = x—ae is in Ce(l). We need only show that M, the set
of nilpotent elements of Ce(l) is not a subalgebra. First, recall that C=Ce(l) +
Ce(l/2) + Ce(0). If x is in Ce(t), then [x][e] + [e][x] = [xe+ex] = [2/x] = 2i[x] so [x]
is  in B([e],t).  Since  B=B([e], I)+ B([e], 1/2)+ B([e],0),  we  have   T(Ce(t)) =
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B([e], t). But B=B([e], 1) = T(Ce(\)). As a consequence, T(M) is the set of nilpotent
elements of B. Since B is nodal, T(M) is not a subalgebra. Hence, M is not a
subalgebra of Ce(l).

Theorem 4.3. Let B be a (y, 8) algebra with S/0, 1 over a splitting field F of
char =/=2, 3, 5. // B contains no nodal subalgebras, then B has a Wedderburn
decomposition.

Proof. A (y, 8) algebra is an algebra which satisfies the following identities :

(35) (z, x, y) + y(x, z, y) + 8(y, z, x) = 0.

(36) (x, y, z) - y(x, z, y) + (1 - 8)(y, z, x) = 0.

It is also assumed that y2 — 82 + 8— 1. We will show that B satisfies the hypotheses
of Theorem 4.1. From Theorem 4.2, condition (31) is satisfied. Now, the results
of [9, pp. 250, 251] state that B satisfies (32) and (33). In addition, B is shown to be
power-associative [9, Theorem 2]. Furthermore Bxl(e) + BX0(e) + B0y(e)+B0y(e)B10e
and B00(e) + By0(e) + B0X(e) + Bx0(e)B01(e) are ideals of B [9, p. 254]. Thus,
H(e)=By0(e)B0y(e) + By0(e) + B01(e) + B0y(e)By0(e) is an ideal of B. From Lemma 2
in [9], H(e) is associative so (34) is satisfied and we are done.

Theorem 4.4. Let B be a strictly power-associative algebra over a splitting field F
of char ^2, 3. Assume that B satisfies

(37) a(y, x, x) - (a + l)(x, y, x) + (x, x,y) = 0

for a/0, 1, —1/2, —2 and that B contains no nodal subalgebras. Ifa^—l or if, for
each idempotent e in B, Be(t)Be(t)^Be(t) for t±\/2 then B has a Wedderburn
decomposition.

Proof. By Theorem 4.2, (31) is satisfied. Clearly, B satisfies (37) with the same
value of a. Theorem 2 of [8] implies (32), Theorem 3 of [8] implies (33) and Lemma
4 of [8] implies (34) so B has a Wedderburn decomposition.

We now turn our attention to a class of associator dependent algebras studied in
[6] and defined by

(38) (x, y, z) + a(y, z, x) + a2(z, x, y) = 0

where a3 = 1, a =¿ 1. A special subclass of this is the class of algebras satisfying

(39) (x, y, z) = a(y, z, x)

with a3 = l, a^l. While an algebra satisfying (38) is not necessarily power-
associative, we will show that an algebra satisfying (39) is power-associative.

Lemma 4.1. // char is prime to 30 and 1 - a then a ring satisfying (39) is power-
associative.
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Proof. We first prove that, if any associator involving any three of w, x, y or z is
zero then (wx, y, z) + (zw, x, y)=0. In any ring we have

(40) (ab, c, d) - (a, be, d) 4- (a, b, cd) = a(b, c, d) + (a, b, c) d.

Hence, we have:

(41) (wx, y, z) - (w, xy, z) + (w, x, yz) = 0.

(42) (xy, z, w) - (x, yz, w) + (x, y, zw) = 0.

Using (42) and (39) we derive

(43) (w, xy, z) - (w, x, yz) + (zw, x, y) = 0.

Now (41) and (43) imply

(44) (wx, y, z) + (zw, x, y) = 0.

We will now prove Lemma 4.1 by induction. The identity (39) implies xx2 = x3.
Let «2:4 and assume xaxb=xa+b for a+b<n. If we let z=y = x and w = xn'3 then
(44) implies 2(xn'2, x, x)=0 so (xn~2, x, x)=0. From (39), we then derive
(x, xn~2, x) = 0 and (x, x, xn_2)=0. For n = 4, these three identities imply x*~axa =
xé for any a. Now let n = 5. Now, Lemma 2 of [2] gives

xn-axa = x*+ ((a-\)/2)(xn-\ x).

However, (xn'1, x)=xn — xx"~1 = (x, x"~2, x)=0. Hence, the ring is power-
associative.

Theorem 4.5. Let B be a nonnil power-associative algebra over a splitting field F
of char ^ 2,3. If B satisfies (38) and contains no nodal subalgebras, then B has a
Wedderburn decomposition.

Proof. Since B also satisfies (38), the results of [6] imply the hypotheses of
Theorem 4.1 and we are done.

5. Algebras in [12]. In this section and the next, we will study certain classes of
algebras whose Wedderburn decomposition cannot be so easily derived from
Theorem 4.1. In [12], Kosier studied algebras satisfying

(45) (x2, y, z) = 2x ■ (x, y, z)

(46) (z, y, x2) = 2x-(z, y, x)

(47) (x, x, x) = 0.

Such algebras are power-associative [12, Theorem 1]. If e is an idempotent, define

L(e) = {x : xe Ae(l/2) and ax, xa e Ae(l/2) for all a in A}.

It is known [12, Theorem 4] that L(e) is an ideal of A and for any x in /(e), x2=0.
Suppose char +2, 3. If K is a splitting field of A and F(e)=0 for each idempotent e

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



356 D. J. RODABAUGH [April

of B=AK then Theorems 5 and 6 of [12] imply (32) and (33). In addition, Theorem
7 and the proof of Theorem 8 of [12] also implies (34). We thus have this result.

Theorem 5.1. Let A be an algebra satisfying (45), (46) and (47) over a splitting
field F of char =£2, 3. If A contains neither nodal subalgebras nor ideals L with x in
L implying x2 = 0 then A has a Wedderburn decomposition.

We would like to remove the condition that A has no ideals / with x in L
implying x2=0. The condition cannot be removed as the following example will
show. Let A be the five dimensional algebra over a field F of char #2, 3 'spanned
by e, x, j,/and z whose multiplication relative to this basis is given by

(ax, a2, a3, ö4, a5)(bx, b2, b3, 64, ¿>5)

(48) = (axby + a2b3, ayb2 + fl2£4, a3by + a±b3, a3b2 + ajy^

ay(b5 - b2) + a2(by — è4) + atb2 + a5b¿).

Now, if N={az} with a in F then A — N^M2 (2x2 matrices) with [e] = en,
[x] = e12, Lv] = e21 and [f] = e22. Also, e2 = e,f2=f Ae(l) = {ae} and Ae(0)={af}
with a in F. Now ex = x—z and xe=z so x is in Ae(\/2); ey = 0 and ye=y so y is
in .4e(l/2); ez = z and ze = 0 so z is in ^e(l/2). Therefore Ae(l/2) is the vector space
spanned by x, y and z. Now, one finds by checking that z2=0 and AN, NA s N so,
since A—N is simple, TV is the radical of A. In addition e+/is an identity element
for ,4.

Linearizing (45), (46) and (47) gives

(49) (u-s, v, w) = u-(s, v, w)+s-(u, v, w),

(50) (w, v, u■ s) = u-(w, v,s)+s-(w, v, u),

(51) (m, v, w) + (v, w, u)+(w, u, v) + (w, v, u) + (v, u, w) + (u, w, v) = 0.

Since F is of char 5*2, 3, (49) => (45), (50) => (46) and (51) => (47). Here is a list
of all nonzero associators involving e, x, y,f and z.

(52) z = (e, e, x) = (x,f e) = (x, e,f) = (y, x, x) = (x, y, z) = (// x)

(53) -z = (x, e, e) = (e,f, x) = (fi e, x) = (x, x, y) = (z, y, x) = (x,ff).

By simply checking, we see that (49), (50) and (51) are all satisfied. If S^A with
A = S+N and S^A — N then S must be spanned by e', x', y' and/' with [e'] = [e],
[x'] = [x], [/] = Lv] and [/'] = [/]. Hence, in particular, x'=x + az and e' = e+ßz.
Now, from (48), x'e'=z which is not in S. Therefore A does not possess a Wedder-
burn decomposition.

An algebra A with identity element 1 is of degree t if, for K a splitting field of A,
l=ey+ ■ ■ ■ +et where {e,}' = 1 is a collection of pairwise orthogonal primitive
idempotents in AK. The algebra of the preceding paragraph is of degree 2.
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Theorem 5.2. Let A be an algebra satisfying (45), (46) and (47) over a splitting
field F of char ^2, 3. If A contains no nodal subalgebras and if A—N contains no
simple ideals of degree 2, then A has a Wedderburn decomposition.

Proof. Let P be the class of all algebras satisfying the hypotheses of Theorem
5.2. We claim that P is a decomposable class. For, P clearly satisfies (a), (b) and (c).
Furthermore, Theorem 3 of [12] implies (e) and Theorem 10 of [12] implies (d). By
Theorem 2.1, it suffices to show that C(P) is a Wedderburn class. We will prove
this by induction on dim A. If dim A = l, the result is obvious. Let dim A =« and
assume that B has a Wedderburn decomposition if dim B<n. If A has degree 1
then A — N^F so by Theorem 2.2, A has a Wedderburn decomposition. Suppose
then that degree A> 1. If, for some primitive idempotent e, F(e) = 0, then by the
proof of Theorem 8 of [12], //"(e) is alternative. Hence, by Theorem 2.2, A has a
Wedderburn decomposition. If for some idempotent L(e)^0, N, then Lemma 2.2
implies A has a Wedderburn decomposition for L(e)^N^A. Therefore, we need
only prove that A has a Wedderburn decomposition if L(e) = N for every primitive
idempotent. Let t = degree A. Since t^=2, t>l we have r2:3 so l=ey+ ■ ■ • +et,
with {e¡}'=1 a set of pairwise orthogonal primitive idempotents. Also, Lt = N,
i= 1,..., t. However, L¡sA(e¡, 1/2), /= 1,..., t. If x is in A(ex, 1/2) n A(e2, 1/2) n
A(e3, 1/2), then xe + ex = 3x where e = e! + e2 + e3. But, e is an idempotent so this
is impossible unless x = 0. Therefore, N=Ly n L2n L3 = 0. Hence, A has a
Wedderburn decomposition A = A+0.

6. Nearly (1, 1) algebras. We will call A a nearly (1, 1) algebra if it is strictly
power-associative and satisfies

(54) (x, y, x) = (x, x, y).

These algebras were studied in [8]. The (1, 1) algebras are power-associative [10]
and satisfy

(55) (x, y, z) = (x, z, y).

A (nearly) (—1,0) algebra is one which is anti-isomorphic to a (nearly) (1, 1)
algebra. The (1,1) and (—1,0) are special cases of (y, S) algebras and the nearly
(1,1) algebras satisfy (37) with <x=0. We will assume throughout that F, the base
field, is of char ^2, 3. For any idempotent e in A, A = Ayy(e) + Ay0(e) + A01(e) +
A0o(e) [8, Theorem 2]. Furthermore the subspaces satisfy the relation

/4j,(e)/4fcm(e) £ 8jkAlm(e)

with the following exceptions: for ij*j, /4i;(e)/4iJ(e)£/4ii(e); x2=0; /4ii(e)/4i3(e)£
z4y(e)-l-/4;;(e); /4i;(e)/lü(e)£z4;7(e) [8, Theorem 3]. In addition, if xkm is in Akm(e),
then for i^j [8, Theorem 3],

(56) (x.iyu-yuxi)£Aii(e).
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Defining Gi(e) = Aji(e)Ajj(e) for /#/, it is proved that G(e) = Gy(e) + G0(e) is an ideal
of A with C7(e)C7(e) = 0 [8, Lemma 3]. We will also need the following relations:

(57) Ai^Gle) £ G,(e)   t+j

(58) G,(eH;(e) S ^0(e) + G,(e)    i+j

(59) An(e)Gi(e) = 0   i#;

(60) G,(i)^(e) = 0   t+j.

The first two are a consequence of the definition and the last two follow from
[8, Lemma 2].

Lemma 6.1. Let A be a nearly (1, 1) algebra with identity element over afield F of
char =¿2, 3 and N=G(e) for each idempotent e^ 1 in A. If A — N contains a total
matric algebra Mt whose identity is the identity of A — N then there exists a subalgebra
S of A with S^Mt.

Proof. Now, Mt is spanned by {[wi;]}f,, = i with

(61) [Uij][Ukm] =  M"im]-

By the homomorphism theorems there is a subalgebra B of A with T(B) = Mt and
N^B. If B has a subalgebra S^Mh then A has the same subalgebra S^Mt.
Hence, it suffices to consider the case A-N=Mt. In this case each [uü] is primitive.
By Lemma 2.1, there exist pairwise orthogonal idempotents ex,...,et with
1 = ey + ■ ■ ■ + et and [et] = [uu]. Furthermore, each e¡ is primitive. If t = 1, S=F-1 £
My and we are done.

Assume t>\. We make the following definitions:

An = Ayy(eK)    i = 1, ...,<
A„ = A1Q(ei) n A01(ej)   i =£ j; i,j = \,...,t

d = Gx(et).

An induction on (24), (25) and (26) will imply (see [14]) A = J}.]==iAij.
Also,

W=G(e,)= ¿G,   7= 1.....Í.
i = l

For, G(ej) = Gy(ej) + G0(ej) and G0(ej) = Axo(ej)Axx(ej) = Aox(l-ej)A00(l-ej). If
i+j, then Gi = G1(ei) = ^oi(e()^oo(^)£G0(ei). It is clear that^01(l -e,)^2i*iA01(ej)
and (see (26)) Am(\ -e,) = n¡#,- AQ0(e¡). Therefore, G0(ey)ç2i#; G¡- Hence,

G(ey)<= 2 G< £ <*«/)•

If  /,*/,   then   /íünA/c^10(e1)n(^1i(ei) + ^oo(ei))=0.   Clearly,   F(/f,Xe,)) =
(/l-7V)!J([e,]) = (^-A/)ii([Mfcfc]) for jj=0, 1; *-l,..., r. Thus F(/1ü) = F[mí;];
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i,j= 1,..., t. Consequently, when i^j, dim /4j; = 1. Therefore, for each i^j there
is a unique element ei} in At] with [e0] = [wi;]. We also define eu=et, /'= 1,..., t.
Using the relations on the subspaces Aij(ek) for i,j=0, 1; k=l,..., t we have

(62) AijAkm £ 8jkAim   i,j, k,m = l,...,t

with these exceptions :

(63) AiiAa £ G¡ i # j

(64) AHAt, £ Au+Gj      i*j.
In addition, (57), (58), (59) and (60) imply

(65) Aifii^G, i*j
(66) GiAuzAij+Gj i+j
(67) And = GtAji = 0       i # /

We claim that eyefcm = 8yfceim if ¡Vm or j^k. For, since e0- is in /410(e4i) /**/ we
have eitey=ew and eiyeu=0. If /Vm, then this and (62) imply eijekm=a.jkelm. But
[ew][efcm] = [%][Mta] = S;jMlm] = 8;k[eim] so ajk = Sjk;j, k = l, ...,t. If j¥=k then (62)
and e^eu = 0 imply in a similar way that etjekm = 0. Now AU=F- e¡¡ + Gt so /4i;/4;i £ /4fi
implies

(68) ei;eyi = ea+gi(j)

where #,(/) is in G¡. Of course, g((/) = 0 and we wish to prove each g¡(/) = 0. We
first prove

(69) gi(j)eik = eikgi(j) = 0   for i / k.

First, from (56), gi{J)eik-eikgiij) = aeik so [gfO0][«iiJ-K][Si(/)] = «fafcJ- But
gj(j) is in A^ so a = 0 and we have

(70) gi(j)eik = eikgi(j)       i # tc.

Now, substitute ei; for x and en for j> in (54) to obtain (ei}, eH, e(/) = (ey, eif, e¡).
For /V; we have ieti,efl,ef))=ieii+gtij))etj-ei¿eíí+g¿i))'=etí+glij)etj-et/-0=>
gi(j)eu and (ejy, etj, eyi)= -etjgtij). This with (70) implies e¡;g¡(/)=0. If í = 2 we
have established (69). Linearizing (54) yields

(71) (x, y, z) + iz, y, x) = (x, z, v) + (z, x, v).

Hence,

(72) (ei;, e;i, eljc) + (e¡)£, eH, ei;) = (ei;, eifc, en) + (eik, etj, e;i).

If t, j and fc are distinct the relations on the subspaces imply that (ey, e;i, eik) =
gi(j)eik, (eik, eu, en)=-eikgi(j) and the other two associators of (72) are zero.
Thus, from (70) we have (69). Now, (71) gives

(73) (gt(k), etj, e}) + (ejU en, gt(k)) = (g,(fc), en, e„) + (eH, gt(k), elf).
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Recall the fact that G2 = 0. If i^j, (gt(k.), eu, ejl)=-gi(k) with the other three
associators zero so gi(k) = 0. Therefore, if S is the space spanned by {etj}\jml then
S is a subalgebra of A. Hence, S is a total matric algebra and [1], S^Mt.

It is known that A—N is a direct sum of simple algebras, each of which is nodal
or alternative. If A—N is a Cayley-Dickson algebra it is still not clear whether A
has a Wedderburn decomposition or not. We content ourselves with the following
three theorems.

Theorem 6.1. Let A be a nearly (1,1) (nearly (—1,0)) algebra over a splitting
field of char ^2,3 such that A — N is associative. Then A has a Wedderburn
decomposition.

Proof. Clearly the class F of nearly (1, 1) algebras satisfying the hypotheses of
the theorem is a decomposable class so we need only show C(P) is a Wedderburn
class. If A is in C(P) and dim^4 = l, then A has a Wedderburn decomposition.
Suppose dim A = n and every algebra B in C(P) with dim B<n has a Wedderburn
decomposition. If the identity element 1 of A is primitive, then A—F-l+N is a
Wedderburn decomposition for A. If 1 is not primitive and for some e^ 1, G(e)=0,
then the results in [8, pp. 478-481] imply that H(e) is alternative. If//(e) is nil,
then A-N=(A-N)lx([e]) ®(A-N)00([e]) which is impossible for A-N is
simple and [1 -e] is in (A-N)00([e]). Therefore, //(e) is not nil so [15] and Theorem
2.2 imply A has a Wedderburn decomposition. If 1 is not primitive and for some
e^l, G(e)/0, N, then by Lemma 2.2 (with Q = C(P)), A has a Wedderburn
decomposition. The only other case is when 1 is not primitive and G(e) = N for all
e^ 1. Here, Lemma 6.1 yields a Wedderburn decomposition for A. Hence, Px is a
Wedderburn class. If A is nearly (—1, 0) then A is anti-isomorphic to a nearly
(1, 1) algebra B. Hence A has a Wedderburn decomposition.

As a consequence of the results in [7], if A is (1, 1) (or (-1, 0)), then A — N is
associative and we have this result.

Theorem 6.2. IfAisa(\, 1) or (—1,0) algebra over a splitting fieldofchar ^2,3
then A has a Wedderburn decomposition.

Theorem 6.3. Let A be a nearly (1, 1) (nearly (—1,0)) algebra over a splitting
field F of char ^2, 3. If A contains neither nodal subalgebras nor ideals G with
G2=0 then A has a Wedderburn decomposition.

Proof. Since each G(e)=0, the results in [8] imply (32), (33) and (34) so A has a
Wedderburn decomposition.
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