ON THE WEDDERBURN PRINCIPAL THEOREM(${ }^{1}$)

BY
D. J. RODABAUGH

Introduction. Let A be a strictly power-associative algebra with radical N and such that the difference algebra $A-N$ is separable. Then we say that A has a Wedderburn decomposition if A has a subalgebra $S \cong A-N$ with $A=S+N$ (vector space direct sum).

It is known that associative [1], alternative [15] and Jordan [3], [13] algebras have Wedderburn decompositions. In addition, if A is commutative and $A-N$ separable with no nodal subalgebras such that either the simple summands of $A-N$ have degree $\geqq 3$ or A is stable, then A has a Wedderburn decomposition [5].

For our purposes, an algebra is a finite dimensional vector space on which a multiplication is defined which satisfies both distributive laws. We define $x^{1}=x$ and $x^{k+1}=x^{k} x$. An algebra A is called power-associative if $x^{\alpha} x^{\beta}=x^{\alpha+\beta}$ for all positive integers α and β and every x in A. An algebra is called strictly power-associative if A_{K} is power-associative for every scalar extension K of the base field. As a consequence of [11], if char $\neq 2,3,5$ then a power-associative algebra is strictly power-associative.

In this paper, the radical N of A is the maximal nil ideal and a nonnil algebra with zero radical is said to be semisimple. An algebra is separable if it is semisimple over every scalar extension of the base field. We will call an algebra simple if it is semisimple and contains no proper ideals. The associator $(x, y ; z)=(x y) z-x(y z)$ and the commutator $(x, y)=x y-y x$. An algebra is nodal if each element can be written as $\alpha \cdot 1+z$ with z nilpotent where the set of nilpotent elements is not a subalgebra. The center of A is the set of all elements that commute and associate with all of A. It is known [16, p. 16] that the center of a simple algebra is a field and is a finite extension of the base field.

For char $\neq 2$, define $x \cdot y=(x y+y x) / 2$ and define A^{+}as the vector space A with multiplication defined by $x \cdot y$. When char $\neq 2$, it has been proved [2] that if A is power-associative and if e is an idempotent $\left(e^{2}=e \neq 0\right)$ then
(1) $A=A_{e}(1)+A_{e}(1 / 2)+A_{e}(0)$ where $A_{e}(t)=\{x: x \cdot e=t x\}$. In addition, we have [2]:
(2) $A_{e}(1) A_{e}(0)=A_{e}(0) A_{e}(1)=0$,
(3) $x e=e x=0$ for x in $A_{e}(0)$,

Presented in part to the Society, January 14, 1965, April 9, 1965 and April 16, 1965; received by the editors July 13, 1967 and, in revised form, May 28, 1968.
${ }^{(1)}$ This research was supported in part by Grant GP-7115 of the National Science Foundation.
(4) $x e=e x=x$ for x in $A_{e}(1)$,
(5) $A_{e}(1 / 2) \cdot A_{e}(1 / 2) \subseteq A_{e}(1)+A_{e}(0)$,
(6) $A_{e}(1) \cdot A_{e}(1 / 2) \subseteq A_{e}(1 / 2)+A_{e}(0)$,
(7) $A_{e}(0) \cdot A_{e}(1 / 2) \subseteq A_{e}(1 / 2)+A_{e}(1)$.

An idempotent e is principal if $A_{e}(0)$ contains only nilpotent elements. An idempotent e is primitive if e is the only idempotent in $A_{e}(1)$ and e is absolutely primitive if e is primitive in A_{K} for K any extension of the base field. At times it will simplify notation to write $A(e, t)$ for $A_{e}(t)$.

We will define K to be a splitting field of a nonnil strictly power-associative algebra A if every primitive idempotent e of $A_{K}-N_{K}$ is absolutely primitive and if every element in $\left(A_{K}-N_{K}\right)_{e}(1)$ for e primitive can be written as $k e+y$ with y nilpotent and k in K. If K is the algebraic closure of the base field F of A, it clearly is a splitting field of A but may not be a finite extension of F.

We will give two fairly general approaches to proving the Wedderburn Principal Theorem. Our first approach will be to reduce the question to the case where $A-N$ is simple and A has a unity element. This approach will apply to any decomposable class of algebras (a term defined in the next section). When A has a unity element and $A-N$ is simple, we will give conditions on A that force A to have a Wedderburn decomposition.

In our second approach, we give a set of conditions on an algebra A that force A to have a Wedderburn decomposition.

Finally, we apply the material in $\S \S 2$ and 3 to derive the Wedderburn Principal Theorem for certain classes of algebras [2], [4], [6], [7], [8], [9], [10], [12], [14].
2. First approach. We will first prove the following lemma. Our proof is, for the most part, an adaptation to the noncommutative case of the proof given by Hemminger in the commutative case [5].

Lemma 2.1. Let $\left[u_{1}\right], \ldots,\left[u_{t}\right]$ be pairwise orthogonal idempotents in $A-M(M a$ nil ideal of A and $[x]$ the image of x in $A \rightarrow A-M$) for A a strictly power-associative algebra over a field of char $\neq 2,3$ and let $u=u_{1}+\cdots+u_{t}$. Then, there exists an idempotent e in A and pairwise orthogonal idempotents e_{1}, \ldots, e_{t} in $A_{e}(1)$ such that
(8) $[e]=[u]$ and
(9) $\left[e_{i}\right]=\left[u_{i}\right](i=1, \ldots, t)$. Furthermore, if A has a unity element 1 and $[1]=[u]$, then $e=1$.

Proof. We will prove the first part by induction on t. When $t=1, u=u_{1}$. In addition, $\left[u^{k}\right]=[u]^{k}=[u]$ so u is not nilpotent. Hence, the associative algebra of all polynomials in u, denoted by $F[u$, is not nilpotent and thus contains an idempotent $e=f(u)$ for $f(x)$ a polynomial. Then $[e]=[f(u)]=a[u]$ where $a=f(1)$ is in F. Thus $a[u]=[e]=[e]^{2}=a^{2}[u]^{2}=a^{2}[u]$. Since e is not in $M, a[u] \neq 0$ and $a=1$.

Let $w=u_{1}+u_{2}$ for $t \geqq 2$. Then $u=w+u_{3}+\cdots+u_{t}$ for pairwise orthogonal idempotents $[w],\left[u_{3}\right], \ldots,\left[u_{t}\right]$. By the inductive hypothesis, there exists an idempotent e and pairwise orthogonal idempotents f, e_{3}, \ldots, e_{t} in $A_{e}(1)$ such that
$e=f+e_{3}+\cdots+e_{t},[e]=[u],[f]=[w]$, and $\left[e_{i}\right]=\left[u_{i}\right]$ for $i=3, \ldots, t$. Now $[f]\left[u_{1}\right]=$ $[w]\left[w-u_{2}\right]=[w]-\left[u_{2}\right]=\left[u_{1}\right]$ and $\left[u_{1}\right][f]=\left[u_{1}\right]$. If $[f][x]=[x]=[x][f]$ for x in A we can write $x=x_{1}+x_{1 / 2}+x_{0}$ for x_{a} in $A_{f}(a)$ and have $\left[x_{1}\right]+\left[x_{1 / 2}\right]+\left[x_{0}\right]=[x]=$ $(1 / 2)([f][x]+[x][f])=\left[x_{1}\right]+(1 / 2)\left[x_{1 / 2}\right]$ so $[x]=\left[x_{1}\right]$. Therefore, there is an element x_{1} in $A_{f}(1)$ with $\left[x_{1}\right]=\left[u_{1}\right]$. Also, x_{1} is not nilpotent for $\left[x_{1}^{k}\right]=\left[u_{1}^{k}\right]=\left[u_{1}\right]^{k}=\left[u_{1}\right]$ so, as in the case $t=1$, we have an idempotent e_{1} in $F\left[x_{1}\right] \subseteq A_{f}(1)$ (powers of x_{1} are in $A_{f}(1)$ for $\left.A_{f}(1) \cdot A_{f}(1) \subseteq A_{f}(1)\right)$ such that $\left[e_{1}\right]=\left[x_{1}\right]=\left[u_{1}\right]$. Now $e_{2}=f-e_{1}$ is an idempotent in $A_{f}(1), e_{1} e_{2}=e_{1}\left(f-e_{1}\right)=0=e_{2} e_{1}$ and $\left[e_{2}\right]=\left[f-e_{1}\right]=[f]-\left[e_{1}\right]=[w]-$ $\left[u_{1}\right]=\left[u_{2}\right]$. Also $A_{f}(1) A_{f}(0)=A_{f}(0) A_{f}(1)=0$ so $e_{i} e_{j}=e_{j} e_{i}=0$ for $i=1,2 ; j=3, \ldots, t$. If x were in $A_{f}(1) \cap A_{e-f}(a)$ for $a=1 / 2,1$, then $x \cdot e=x+a x=(1+a) x$. Let $x=x_{1}+x_{1 / 2}+x_{0}$ for x_{b} in $A_{e}(b)$. We obtain $x \cdot e=x_{1}+(1 / 2) x_{1 / 2}$. Therefore $(1+a) x_{1}=x_{1}, 2(1+a) x_{1 / 2}=x_{1 / 2}$, and $(1+a) x_{0}=0$. Since char $\neq 2,3$ and $a=1 / 2$ or 1 , $x=0$. Hence, $A_{f}(1) \subseteq A_{e}(1)$ and e_{1}, \ldots, e_{t} are in $A_{e}(1)$. We have proved the first part of the lemma. If [1]=[e], then $1-e$ is in M and is nilpotent. Hence it is zero and $e=1$.

In reducing the theorem to the case where $A-N$ is simple, we will need the following definitions.

Definition 2.1. A class of algebras will be called a Wedderburn class if each algebra A in the class has a Wedderburn decomposition.

Definition 2.2. A class P of algebras will be called a decomposable class if for each A in P :
(a) A is strictly power-associative over a field of char $\neq 2,3$.
(b) $A-N$ is in P.
(c) If B is a subalgebra of A whose image in $A \rightarrow A-N$ is a nonnil ideal in $A-N$, then B is in P.
(d) A semisimple implies $A=A_{1} \oplus \cdots \oplus A_{t}$ where each A_{i} is simple with a unity element.
(e) $A_{e}(t) A_{e}(t) \subseteq A_{e}(t),(t=0,1)$ if e is an idempotent in A.

Definition 2.3. A member A of a class P is in the center $C(P)$ if A has a unity element and $A-N$ is simple.

We remark that each specific class of algebras shown to be a Wedderburn class [1], [3], [5], [13], [15] has been a decomposable class.

Theorem 2.1. A decomposable class P is a Wedderburn class if and only if $C(P)$ is a Wedderburn class.

Proof. In one direction, the implication is obvious. Suppose that $C(P)$ is a Wedderburn class. For A in $P, A-N=B_{1} \oplus \cdots \oplus B_{t}$ where each B_{i} is simple. From Lemma 2.1 and the fact that each B_{i} has a unity element [u_{i}], there exists pairwise orthogonal idempotents e_{i}, \ldots, e_{t} in A such that $\left[e_{i}\right]$ is the unity element of $B_{i}(i=1, \ldots, t)$. Denote $A\left(e_{i}, 1\right)$ by A_{i}. Clearly, $A_{i} \subseteq A\left(e_{j}, 0\right)(j \neq i)$ for if $x \cdot e_{i}=x$ and $x \cdot e_{j}=t x, t=1 / 2$ or 1 ; then $x \cdot\left(e_{i}+e_{j}\right)=(3 / 2) x$ or $2 x$ contrary to fact. Hence, from (2) and condition (e), $A_{i} A_{j} \subseteq \delta_{i}, A_{i}$ (Kronecker delta) for $i, j=1, \ldots, t$. Also,
$e=e_{i}+\cdots+e_{t}$ is principal and $A_{e}(1 / 2)+A_{e}(0) \subseteq N$. It is clear that the radical N_{i} of A_{i} contains $A_{i} \cap N$. In addition, $A\left(e_{i}, 1 / 2\right) \subseteq N$ for $A=A_{1}+\cdots+A_{t}+M$ where $M \subseteq N$. Now, $\left(N_{i}+N\right) A_{i} \subseteq N_{i}+N$ and $A .\left(N_{i}+N\right) \subseteq N_{i}+N$. Since $A\left(e_{i}, 1 / 2\right)$ $\subseteq N, A\left(e_{i}, 1 / 2\right) N_{\mathrm{i}} \cup N_{i} A\left(e_{i}, 1 / 2\right) \subseteq N$. Also, $\left(N_{i}+N\right)\left(A\left(e_{i}, 0\right)\right)=N A\left(e_{i}, 0\right) \subseteq N$ and $\left(A\left(e_{i}, 0\right)\right)\left(N_{i}+N\right) \subseteq N$. Therefore $N_{i}+N$ is an ideal in A. For x in N_{i} and y in N, $(x+y)^{k}=x^{k}+y_{1}$ where y_{1} is in N. If $x^{n}=0,(x+y)^{n}=y_{1}$ in N and therefore $x+y$ is nilpotent. Hence, $N_{i}+N \subseteq N$ and $N_{i} \subseteq A_{i} \cap N$. Therefore $A_{i}-N_{i} \cong B_{i}$. But, then, A_{i} is in $C(P)$ so there is a subalgebra S_{i} of A_{i} with $A_{i}=S_{i}+N_{i}$ and $S \cong B_{i}$. If $S=$ $S_{1} \oplus \cdots \oplus S_{t}, A=S+N$ and $S \cong A-N$.

In the following discussion, $H(e)$ is the ideal generated by $A_{e}(1 / 2)$.
Theorem 2.2. Let A be an algebra in the center of a decomposable class over a splitting field F of char $\neq 2,3$. If we further assume that $A-N$ is not nodal then the following are equivalent:
(10) A has a Wedderburn decomposition.
(11) There exists a primitive idempotent e for which either $H(e)$ has a Wedderburn decomposition or $H(e) \subseteq N$.
(12) Either $A-N \cong F$ or there exists a nonnil ideal $H(e)$ which has a Wedderburn decomposition.
(13) There exists a nonnil ideal of A which has a Wedderburn decomposition.
(14) There exists a nonnil subalgebra B with a Wedderburn decomposition such that, in the mapping $T: A \rightarrow A-N$, the image $T(B)$ is an ideal.

Proof. Suppose (10) and let $A=S+N$ with $S \cong A-N$. Let e be a primitive idempotent of S and assume that $H(e) \nsubseteq N$. Now $H([e])$, the ideal of $A-N$ generate by $(A-N)([e], 1 / 2)$ is the image of $H(e)$ in the mapping $A \rightarrow A-N$. Consequently $H([e]) \neq 0$ so, since $A-N$ is simple, $H([e])=A-N$. In the mapping $A \rightarrow A-N$, S is mapped onto $A-N$. Clearly then $S_{e}(t)$ is mapped onto $(A-N)([e], t)$ for $t=1,1 / 2,0$. (Since e is in $S, S=S_{e}(1)+S_{e}(1 / 2)+S_{e}(0)$.) Hence, $S_{e}(1 / 2) \neq 0$ and $H(e) \cap S \neq 0$. Now, $H(e) \cap S$ is an ideal in the simple algebra S so $S \subseteq H(e)$. If M is the radical of $H(e)$ then $H(e)=S+M$ is a Wedderburn decomposition for $H(e)$ and (11) is established.

To prove that $(11) \Rightarrow(12)$, let us suppose that no $H(e)$ has a Wedderburn decomposition. Then by (11) there exists a primitive idempotent e with $H(e) \subseteq N$. In the mapping $A \rightarrow A-N, A_{e}(t)$ is mapped onto $(A-N)([e], t)$ for $t=1,1 / 2,0$. Hence $(A-N)([e], 1 / 2)=0$ and by (2) and (e) of Definition 2.2,

$$
A-N=(A-N)([e], 1) \oplus(A-N)([e], 0)
$$

But, $A-N$ is simple and $[e]$ is in $(A-N)([e], 1)$ so $(A-N)([e], 0)=0$. If $[e]=$ $[u] \oplus[v]$ for idempotents u and v then Lemma 2.1 guarantees the existence of idempotents f and g in $A_{e}(1)$ with $e=f \oplus g$ contrary to the primitiveness of e. Thus, $[e]$ is primitive. Now, F is a splitting field, so any element in $A-N=$ $(A-N)([e], 1)$ has the form $\alpha[e]+z$ with α in F and z nil. Since $A-N$ is not nodal
then M, the set of all nilpotent elements of $A-N$, is a subalgebra of $A-N$. Clearly, M is an ideal of $A-N$ so $M=0$. We then have $A-N=\{\alpha \cdot[e]: \alpha$ in $F\} \cong F$ and (12) is proved. If $A-N \cong F$ then $A-N=\{\alpha \cdot[e]: \alpha$ in $F\}$ and by Lemma 2.1, e can be chosen as an idempotent of A. Under this condition, $A=F \cdot e+N$ is a Wedderburn decomposition for A which may be regarded as an ideal of A.
The implication $(12) \Rightarrow(13)$ is now easy to see.
To prove (13) $\Rightarrow(14)$, we merely observe that the ideal whose existence is guaranteed by (13) satisfies the conditions of (14).

Finally, let B be a nonnil subalgebra satisfying (14). Since $A-N$ is simple and $T(B)$ is an ideal then $T(B)=0$ or $T(B)=A-N$. But B is not nil so $T(B) \neq 0$. Therefore, $T(B)=A-N$. If $B=S+M$ with $S \cong A-N$ is a Wedderburn decomposition for B, then we claim that $A=S+N$ is a Wedderburn decomposition for A. For $S \cong A-N, S \cap N=0$ and $\operatorname{dim} A=\operatorname{dim} S+\operatorname{dim} N(\operatorname{dim} A=\operatorname{dimension}$ of A as a vector space). Thus, (14) $\Rightarrow(10)$ and the theorem is proved.
We remark here that the condition that $A-N$ be not nodal cannot be removed. Let E_{1} be the algebra spanned by $1, x, x^{2}$ and y with $x y=-y x=1$ and $x^{2} x=x x^{2}=$ $y^{2}=x^{2} y=y x^{2}=x^{2} x^{2}=0$. Let $u=\alpha \cdot 1+v$ where $v=\beta x+\gamma y+\delta x^{2}$. Then $v^{2}=\beta^{2} x^{2}+$ $\beta \gamma-\gamma \beta=\beta^{2} x^{2}$ and $v^{2} v=v v^{2}=0$. By induction, we see that $u^{n}=\alpha^{n} \cdot 1+n \alpha^{n-1} v+$ $\left(\left(n^{2}-n\right) / 2\right) \alpha^{n-2} v^{2}$. From this, it is easy to show that E_{1} is power-associative. In addition, $N=\left\{\alpha x^{2}\right\}$ is the radical of E_{1} and $E_{1}-N$ is simple and nodal. (Also, E_{1} is nearly antiflexible (see [14]).) If S is a proper subalgebra of E_{1} then $S=\{\alpha \cdot 1\}$ which is not isomorphic to $E_{1}-N$ or S has a nonzero radical. Let $u=\alpha \cdot 1+v$ with $v=\beta x+\gamma y+\delta x^{2}$ be in S. Suppose we have $\alpha=0$ for some $u \neq 0$ in S. Then $u^{2}=v^{2}=$ $\beta^{2} x^{2}$ so $N \subseteq S$ or $\beta=0$. But, if $\beta=0$, then $\{\varepsilon u\}=\left\{\varepsilon \gamma y+\varepsilon \delta x^{2}\right\}$ is a nil ideal in S. Now suppose we have $\alpha \neq 0$ for every $u \neq 0$ in S. Since $u^{2}-\alpha u=\alpha v+v^{2}=\alpha \beta x+\alpha \gamma y+$ $\left(\alpha \delta+\beta^{2}\right) x^{2}$ is in S then $u^{2}=\alpha u$ for the coefficient of 1 in $u^{2}-\alpha u$ is 0 . But this implies (u / α) is an idempotent. However, 1 is primitive so we have $u / \alpha=1$ or $u=\alpha \cdot 1$. Since this holds for every $u \neq 0$ in $S, S=\{\alpha \cdot 1\}$. Hence, E_{1} does not possess a Wedderburn decomposition. However, E_{1} trivially satisfies (11) for 1 is its only idempotent and $H(1)=0 \subseteq N$.

The following lemma generalizes Lemmas 2.1 and 2.2 of [5].
Lemma 2.2. Let Q be a class of algebras such that:
(15) If A is in Q, then $A-N$ is simple.
(16) If A is in Q, and if $M \subseteq N$ is an ideal of A then $A-M$ is in Q.
(17) If B is a subalgebra of Q whose image in $A \rightarrow A-N$ is a nonnil ideal of $A-N$ then B is in Q.

If every algebra B in Q for which $\operatorname{dim} B<\operatorname{dim} C$ has a Wedderburn decomposition and if C contains an ideal M other than $0, N$ and C then C has a Wedderburn decomposition.

Proof. The result is obvious if $\operatorname{dim} C=1$. We will assume then that $\operatorname{dim} C>1$ and will first prove the assertion for the case when M is nil. By the homomorphism
theorems, $C-N \cong(C-M)-(N-M)$ and $N-M$ is the radical of $C-M$. Now $C-M$ is in Q by (16) and $\operatorname{dim}(C-M)<\operatorname{dim} C$ so there exists $C_{0} \subseteq C-M$ with $C_{0} \cong(C-M)-(N-M) \cong C-N$. Also, by the homomorphism theorems, there exists a C_{1} in C with $C_{1} \neq 0, C$ such that $M \subseteq C_{1}$ and $C_{0} \cong C_{1}-M$. Now C_{1} is nonnil and $C_{1}-M$ is simple so $\left(C_{1}-M\right) \cap(N-M)=0$. Therefore, if $T\left(C_{1}\right)$ is the image of C_{1} in the mapping $C \rightarrow C-N$, then

$$
T\left(C_{1}\right) \cong C_{1}-M \cong C_{0} \cong C-N
$$

Thus $T\left(C_{1}\right)=C-N$ and by (17), C_{1} is in Q. Since also $\operatorname{dim} C_{1}<\operatorname{dim} C$, there is a subalgebra S in $C_{1} \subseteq C$ with $C_{1}=S+M$ and $S \cong C_{1}-M$. Now, S is simple so $S \cap N=0$. Also, $S \cong C-N$. We then have $\operatorname{dim} C=\operatorname{dim} S+\operatorname{dim} N$ so $C=S+N$ is a Wedderburn decomposition.

Now suppose M is not nil so that $M \nsubseteq N$. If $N \subset M$ with $N \neq M$, then $N-M$ is an ideal in $C-N$ which implies $M-N=C-N$. By (17), M is in Q and there is a subalgebra S of $M \subseteq C$ with $S \cong M-N=C-N$. Since S is simple, $S \cap N=0$ and, by a dimension argument, $C=S+N$. If $M \cap N \neq 0$ and $N \nsubseteq M$ then $M \cap N$ is a nil ideal unequal to $0, N$ and C and C has a Wedderburn decomposition by the first part of this proof.

We now assume that $M \cap N=0$. From this we see that M is not nil. Consequently, the image $T(M)$ of M in $C \rightarrow C-N$ is a nonnil ideal of $C-N$ so M is in Q. Hence, there exists a subalgebra S of $M \subseteq C$ with $S \cong T(M)$. From the simplicity of $C-N$, we have $T(M)=C-N$ which implies S is simple. Thus, $S \cap N=0$ and a dimension argument implies $C=S+N$ is a Wedderburn decomposition for C.
3. Second approach. The main theorem of this section is

Theorem 3.1. Let A be a nonnil strictly power-associative algebra over a splitting field with char $\neq 2,3$ and assume the following:
(18) $A-N$ contains no simple nodal subalgebras for N the radical of A.
(19) For every idempotent e, the following are equivalent:
(a) $H(e)$ is nil.
(b) $H(e) \cap A_{e}(1)$ is nil.
(c) $\mathrm{H}(e) \cap A_{e}(0)$ is nil.
(20) For every idempotent e and for $t \neq 1 / 2, A_{e}(t) A_{e}(t) \subseteq A_{e}(t)$.
(21) There exists a set e_{1}, \ldots, e_{n} of pairwise orthogonal primitive idempotents with $e=\sum_{i=1}^{n} e_{i}$ principal such that $L=\sum_{i=1}^{n} H\left(e_{i}\right)$ has a Wedderburn decomposition if L is not nil.

With these assumptions, A has a Wedderburn decomposition.
We will prove this theorem in a series of lemmas. First let us note that the algebra E_{1} constructed in the last section satisfies (19), (20) and (21) so (18) cannot be eliminated in the hypotheses. It is not known if (19) or (21) can be removed. To see that (18), (19) and (21) are not sufficient, let E_{2} be the algebra spanned by e,
x, x^{2}, y with $x y=-y x=e, e^{2}=e$ and all other products zero. It is easily seen that E_{2} satisfies (18), (19) and (21) but does not have a Wedderburn decomposition.

Lemma 3.1. If A is a semisimple power-associative algebra over a field of char $\neq 2$ satisfying (19) and (20), then A is a direct sum of simple algebras each of which has an identity element.

Proof. The result is obvious if $\operatorname{dim} A=1$. Suppose $\operatorname{dim} A=n$ and the lemma is true for all algebras with dimension less than n satisfying the hypotheses.

Let J be an ideal of A of smallest nonzero dimension. Since A is semisimple, J is not nil so it must have an idempotent. Let e be any idempotent in J. If x is in $A_{e}(1)$, then $x=x e \in A J \subseteq J$ so $A_{e}(1) \subseteq J$. If x is in $A_{e}(1 / 2)$ then $x=x e+e x \in A J+$ $J A \subseteq J$ so $A_{e}(1 / 2) \subseteq J$. Therefore $H(e) \subseteq J$. But J is an ideal of A of smallest nonzero dimension so $H(e)=J$ or $H(e)=0$. Now if e is an idempotent principal in J then $J_{e}(0)$ is nil. However, $H(e) \subseteq J$ so $H(e) \cap A_{e}(0) \subseteq J_{e}(0)$. Therefore, by (19), $H(e)$ is nil. But A is semisimple so $H(e)=0$. Therefore, by (20) and (2), $A=A_{e}(1) \oplus A_{e}(0)$. Since $A_{e}(1) \subseteq J, e \in A_{e}(1)$ and J is an ideal of smallest nonzero dimension, $J=A_{e}(1)$.

Let K be an ideal of J. Since $K \subseteq A_{e}(1), K A_{e}(0)=A_{e}(0) K=0$ so $K A \subseteq K J \subseteq K$ and $A K \subseteq J K \subseteq K$. Therefore, $K=0$ or J and we have shown that J is simple and possesses an identity element. If $A_{e}(0) \neq 0$, then $A_{e}(0)$ is a semisimple power-associative algebra over a field of char $\neq 2$ and satisfies (20). If K is an ideal of $A_{e}(0), K A_{e}(1)=A_{e}(1) K=$ 0 so $K A+A K \subseteq K$ and K is an ideal of A. From this it is easy to verify that (19) holds in $A_{e}(0)$. Hence, by the inductive hypothesis, $A_{e}(0)$ is a direct sum of simple algebras each of which has an identity element. Consequently, A is a direct sum of simple algebras each of which has an identity element.

In the light of Lemma 3.1, one would expect to find that the class of all algebras satisfying the hypotheses of Theorem 3.1 is a decomposable class. The answer is not fully known but the following two lemmas will show how close we are to the answer.

Lemma 3.2. The class C_{1} of all nonnil strictly power-associative algebras over splitting fields with char $\neq 2,3$ that satisfy (18), (19) and (20) is a decomposable class.

Proof. Conditions (a) and (e) are directly assumed and condition (d) was proved in Lemma 3.1. To verify (b), we need only show that if A is in C_{1} then $A-N$ satisfies (19) and (20). Let [u] be any idempotent of $A-N$ with u in A. Lemma 2.1 implies the existence of an idempotent e in A with $[e]=[u]$. Since (19) and (20) hold for e in A, it is ceasily shown that they hold for $[e]$ in $A-N$.

Condition (c) is all that we now need to verify. Let B be a subalgebra of A whose image in $T: A \rightarrow A-N$ is a nonnil ideal in $A-N$ where A is in C_{1}. Write $A^{\prime}=A-$ N and $B^{\prime}=T(B)$. Since B^{\prime} is not nil, there exists an idempotent e principal in B^{\prime}. If x is in $A_{e}^{\prime}(1)$, then $x=x e \in A^{\prime} B^{\prime} \subseteq B^{\prime}$ so $A_{e}^{\prime}(1) \subseteq B^{\prime}$. Also, if x is in $A_{e}^{\prime}(1 / 2)$, then $x=x e+e x \in A^{\prime} B^{\prime}+B^{\prime} A^{\prime} \subseteq B^{\prime}$ so $A_{e}^{\prime}(1 / 2) \subseteq B^{\prime}$. Consequently, $H(e) \subseteq B^{\prime}$. Now,
$B_{e}^{\prime}(0)$ is nil for e is principal. Also, $H(e) \cap A_{e}^{\prime}(0) \subseteq B^{\prime} \cap A_{e}^{\prime}(0) \subseteq B_{e}^{\prime}(0)$ so $H(e) \cap A_{e}^{\prime}(0)$ is nil. Since $A^{\prime}=A-N$ is in C_{1}, (19) holds in A^{\prime} so $H(e)$ is nil. But, A^{\prime} is semisimple so $H(e)=0$. Now, by (2) and (20),

$$
\begin{aligned}
B_{e}^{\prime}(0)\left(A^{\prime}\right) & =B_{e}^{\prime}(0)\left(A_{e}^{\prime}(1)+A_{e}^{\prime}(0)\right) \\
& =B_{e}^{\prime}(0) A_{e}^{\prime}(0) \\
& \subseteq B^{\prime} \cap A_{e}^{\prime}(0)=B_{e}^{\prime}(0)
\end{aligned}
$$

Also, $A^{\prime} B_{e}^{\prime}(0) \subseteq B_{e}^{\prime}(0)$ so $B_{e}^{\prime}(0)$ is a nil ideal of A^{\prime}. Thus, $B_{e}^{\prime}(0)=0$ and $A^{\prime}=B^{\prime} \oplus A_{e}^{\prime}(0)$. As a result of this, any ideal of B^{\prime} is also an ideal of A^{\prime}. Hence, B^{\prime} is semisimple and satisfies (18), (19) and (20). Since B satisfies (18), (20) and is strictly power-associative, we need only verify that B satisfies (19). Let e be any idempotent of B. Clearly, in (19), (a) implies both (b) and (c). To avoid confusion denote by $K(e)$ the ideal in B generated by $B_{e}(1 / 2)$. Suppose $K(e) \cap B_{e}(1)$ is nil. It is easily seen that $T(K(e) \cap$ $\left.B_{e}(1)\right)=H([e]) \cap B^{\prime}([e], 1)$ since B^{\prime} is a direct summand of A^{\prime}. Therefore $H([e]) \cap$ $B^{\prime}([e], 1)$ is nil and, since (19) holds in $B^{\prime}, H([e])$ is nil. By the semisimplicity of $B_{1}, H([e])=0$ so $K(e)$ is nil. Similarly in (19), (c) implies (a) so B is in C_{1} and C_{1} is a decomposable class.

Lemma 3.3. The class C of all algebras that satisfy the hypotheses of Theorem 3.1 satisfies conditions (a), (b), (d) and (e) of Definition 2.2.

Proof. As a consequence of Lemma 3.2, conditions (a), (d) and (e) are satisfied. Since $A-N$ trivially is in C, condition (b) is satisfied.

We now assume that A satisfies the hypotheses of Theorem 3.1 and let e, e_{1}, \ldots, e_{n} be the idempotents guaranteed by (21). Throughout the argument T is the natural mapping $A \rightarrow A-N$ and $[x]=T(x)$. We begin by renumbering the e_{i} so that e_{i} is in $L+N$ (not necessarily a vector space direct sum) if and only if $i>m$. If $H\left(e_{i}\right)$ is not nil then $H\left(e_{i}\right) \cap A\left(e_{i}, 1\right)$ contains an element x with x not nil. The subalgebra generated by x contains an idempotent e^{\prime}. Since $H\left(e_{i}\right) \cap A\left(e_{i}, 1\right)$ is a subalgebra, $e^{\prime} \in H\left(e_{i}\right) \cap A\left(e_{i}, 1\right) \subseteq A\left(e_{i}, 1\right)$. But e_{i} is primitive so $e_{i}=e^{\prime} \in H\left(e_{i}\right) \subseteq L$ and $i>m$. Consequently, $H\left(e_{i}\right) \subseteq N$ whenever $i \leqq m$. It is possible that $m=0$ or $m=n$. We will dispense with these cases first.

Lemma 3.4. If $m=0$ or $m=n$ then A has a Wedderburn decomposition.

Proof. Assume $m=0$. Now e is principal in A so $[e]$ is principal in $A-N$. By Lemma 3.1, $[e]$ is the identity element of $A-N$. Also, $T(L)$ is an ideal of $A-N$ with [e] in $T(L)$. Therefore $T(L)=A-N$. By (21), $L=S+M$ where M is the radical of L and $S \cong L-M$. We know that $N \cap L \subseteq M$. Since M is a nil ideal of $L, T(M)$ is a nil ideal of $T(L)$ so $T(M)=0$. Therefore $M \subseteq N$ so $N \cap L=M$ and $S \cong T(L)=A-N$. By a dimension argument, $A=S+N$ is a Wedderburn decomposition for A.

Now suppose $m=n$ so $H\left(e_{i}\right) \subseteq N$ for $i=1, \ldots, n$. Then (2) and (20) imply that, for each e_{i},

$$
\begin{equation*}
A-N=(A-N)\left(\left[e_{i}\right], 1\right) \oplus(A-N)\left(\left[e_{i}\right], 0\right) \tag{22}
\end{equation*}
$$

Since F is a splitting field and $(A-N)\left(\left[e_{i}\right], 1\right)$ is not nodal, we have $(A-N)\left(\left[e_{i}\right], 1\right)$ $=\left\{\alpha \cdot\left[e_{i}\right]\right\}$ for $i=1, \ldots, n$. Write $S_{i}=\left\{\alpha e_{i}\right\}, i=1, \ldots, n$. By induction, for each $p \leqq n$,

$$
\begin{equation*}
A-N=T\left(S_{1}\right) \oplus \cdots \oplus T\left(S_{p}\right) \oplus(A-N)\left(\left[e_{1}\right]+\cdots+\left[e_{p}\right], 0\right) . \tag{23}
\end{equation*}
$$

For, (23) is true when $p=1$ by (22). Now, assume (23) when $p=k$. It is easily seen that $S_{k+1} \subseteq A\left(e_{1}+\cdots+e_{k}, 0\right)$ so $T\left(S_{k+1}\right) \subseteq(A-N)\left(\left[e_{1}\right]+\cdots+\left[e_{k}\right], 0\right)$. This together with (22) for $i=k+1$ yields (23) with $p=k+1$. Also, since [e] is an identity for $A-N,(A-N)([e], 0)=0$ so

$$
A-N=T\left(S_{1}\right) \oplus \cdots \oplus T\left(S_{n}\right)
$$

From the fact that $e_{i} e_{j}=\delta_{i j} e_{i}$ (Kronecker delta), we have $S_{i} S_{j}=\delta_{i j} S_{i}$. We then write $S=S_{1} \oplus \cdots \oplus S_{n}$ and note that $S \subseteq A$. Also, $S \cong A-N$ so $A=S+N$ is a Wedderburn decomposition of A.

From now on, assume $0<m<n$. Let $g=\sum_{i=1}^{m} e_{i}$ and $h=\sum_{i=m+1}^{n} e_{i}$.
Lemma 3.5. The algebra

$$
A-N=(A-N)([h], 1) \oplus(A-N)\left(\left[e_{1}\right], 1\right) \oplus \cdots \oplus(A-N)\left(\left[e_{m}\right], 1\right)
$$

Proof. Since $e=g+h$ and $[e]$ is an identity for $A-N$ then $[g]+[h]$ is an identity for $A-N$. If $[x]$ is in $(A-N)([g], 1 / 2)$ then $[x][h]+[h][x]=[x][e]+[e][x]-[x][g]-$ $[g][x]=[x]$ so $[x]$ is in $(A-N)([h], 1 / 2)$. Also, $(A-N)([h], 1 / 2) \subseteq(A-N)([g], 1 / 2)$ so $(A-N)([g], 1 / 2)=(A-N)([h], 1 / 2)$. However, $(A-N)\left(\left[e_{i}\right], 1 / 2\right)=0$ for $i=1, \ldots$, m so $(A-N)([g], 1 / 2)=0$.

If we consider the decomposition of an algebra B relative to two orthogonal idempotents a and b we have B the vector space direct sum of nine possible subspaces of the form $B_{a}(s) \cap B_{b}(t)$ where $s, t=0,1 / 2,1$. Since $a b=b a=0, a+b$ is an idempotent and B has the decomposition

$$
B=B_{a+b}(1)+B_{a+b}(1 / 2)+B_{a+b}(0) .
$$

In addition if, for an idempotent $e^{\prime}, x \cdot e^{\prime}=\alpha x$ with α in F then $\alpha=1,1 / 2$ or 0 . Now $B_{a}(s) \cap B_{b}(t) \subseteq B_{a+b}(s+t)$ so this intersection is zero unless $s+t=0,1 / 2$ or 1 . Consequently, the following relations hold:

$$
\begin{align*}
B_{a+b}(1) & =B_{a}(1) \cap B_{b}(0)+B_{a}(1 / 2) \cap B_{b}(1 / 2)+B_{a}(0) \cap B_{b}(1) . \tag{24}\\
B_{a+b}(1 / 2) & =B_{a}(1 / 2) \cap B_{b}(0)+B_{a}(0) \cap B_{b}(1 / 2) . \tag{25}\\
B_{a+b}(0) & =B_{a}(0) \cap B_{b}(0) . \tag{26}
\end{align*}
$$

Since $H\left(\left[e_{i}\right]\right)=0$ for $i=1, \ldots, m$, (22) holds when $i \leqq m$. From (24), (2) and (20), if $B_{a}(1 / 2)=0$ or $B_{b}(1 / 2)=0$, then

$$
\begin{equation*}
B_{a+b}(1)=B_{a}(1) \cap B_{b}(0) \oplus B_{a}(0) \cap B_{b}(1) . \tag{27}
\end{equation*}
$$

Also, $B_{a}(1) \cap B_{b}(t) \subseteq B_{a+b}(1+t)$ so $B_{a}(1) \cap B_{b}(t)=0$ unless $t=0$. Therefore $B_{a}(1) \subseteq B_{b}(0)$ and $B_{b}(1) \subseteq B_{a}(0)$ so (27) becomes

$$
\begin{equation*}
B_{a+b}(1)=B_{a}(1) \oplus B_{b}(1) \tag{28}
\end{equation*}
$$

Inductively, we have

$$
\begin{equation*}
(A-N)([g], 1)=(A-N)\left(\left[e_{1}\right], 1\right) \oplus \cdots \oplus(A-N)\left(\left[e_{m}\right], 1\right) \tag{29}
\end{equation*}
$$

Also,

$$
\begin{equation*}
A-N=(A-N)([g]+[h], 1)=(A-N)([h], 1) \oplus(A-N)([g], 1) \tag{30}
\end{equation*}
$$

These last two results give the conclusion of the lemma.
Lemma 3.6. If $L=S+M$ is a Wedderburn decomposition for L with M the radical of L then $\operatorname{dim} S=\operatorname{dim}(A-N)-m$ and $S \cong(A-N)([h], 1)$.

Proof. Since $h=\sum_{i=m+1}^{n} e_{i}$, then h is in L. If x is in $A_{h}(1)$ then $x=x h \in A l \subseteq L$ so $A_{h}(1) \subseteq L$. Therefore $(A-N)([h], 1) \subseteq T(L)$. If $L_{h}(0)$ is not nil, there is an idempotent e^{\prime} in $L_{h}(0)$. Now $\left[e^{\prime}\right]$ is in $(A-N)([h], 0)$ so $\left[e^{\prime}\right]=\sum_{i=1}^{m} \alpha_{i}\left[e_{i}\right]$ with α_{i} in F, $i=1, \ldots, m$. From $\left[e^{\prime}\right]^{2}=\left[e^{\prime}\right] \neq 0$ we find that for some $j \leqq m, \alpha_{j} \neq 0$ and $\alpha_{j}^{2}=\alpha_{j}$. Hence $\alpha_{j}=1$. But $\left[e^{\prime}\right]\left[e_{j}\right]=\left[e_{j}\right]$. Since $T(L)$ is an ideal of $A-N$ and $\left[e^{\prime}\right]$ is in $T(L)$, then $\left[e_{j}\right]$ is in $T(L)$ which contradicts the fact that e_{j} is not in $L+N$ (not necessarily supplementary). Therefore h is principal in L so $[h]$ is principal in $T(L)$. Consequently, $(T(L))([h], 0)$ is nil. Lemma 3.5 then implies that $(T(L))([h], 0)=0$ so $T(L)=(A-N)([h], 1)$. But then $T(M)$ is an ideal of a direct summand of $A-N$ so $T(M)$ is an ideal of $A-N$. Since M is nil, $T(M)$ is nil so $T(M)=0$. Therefore, $S \cong(A-N)([h], 1)$. Now, F is a splitting field and $(A-N)\left(\left[e_{t}\right], 1\right)$ is not nodal so $(A-N)\left(\left[e_{t}\right], 1\right)=\left\{\alpha\left[e_{i}\right]\right\}$ and has dimension 1. Thus, from Lemma 3.5, $\operatorname{dim} S$ $=\operatorname{dim}(A-N)-m$.

Lemma 3.7. There exists a set $\left\{f_{i}\right\}_{=0}^{m}$ of pairwise orthogonal idempotents such that f_{0} is the identity of $S,\left[f_{0}\right]=[h]$, and $\left[f_{i}\right]=\left[e_{i}\right]$ for $i=1, \ldots, m$.

Proof. Since $S \cong(A-N)([h], 1)$, it contains an identity element f_{0}. Clearly, $\left[f_{0}\right]=[h]$. Now, each $\left[e_{i}\right]$ is in $T\left(A\left(f_{0}, 0\right)\right), i=1, \ldots, m$. The kernel of the homomorphism $A\left(f_{0}, 0\right) \rightarrow T\left(A\left(f_{0}, 0\right)\right)$ is a subset of N so, by the homomorphism theorems, there is a nil ideal M of $A\left(f_{0}, 0\right)$ with $A\left(f_{0}, 0\right)-M \cong T\left(A\left(f_{0}, 0\right)\right)$. Thus, by Lemma 2.1, there exist pairwise orthogonal idempotents f_{1}, \ldots, f_{m} in $A\left(f_{0}, 0\right)$ with $\left[f_{i}\right]=\left[e_{i}\right], i=1, \ldots, m$.

We are now able to prove the theorem. Let $B=S+F \cdot f_{1}+\cdots+F \cdot f_{m}$. Since f_{0} is the identity of S and the set $\left\{f_{i}\right\}_{i=0}^{m}$ is a set of pairwise orthogonal idempotents then $B=S \oplus F \cdot f_{1} \oplus \cdots \oplus F \cdot f_{m}$. Also, $B \cong A-N$ so a dimension argument guarantees the fact that $A=B+N$ and we are done.
4. Applications. For a general application, we derive the following theorem. The set $A_{i j}(e)=\{x: e x=i x$ and $x e=j x\}$.

Theorem 4.1. Let B be a nonnil strictly power-associative algebra over a splitting field F with char $\neq 2,3$ and assume the following:
(31) $B-N$ contains no simple nodal subalgebras where N is the radical of B.
(32) For any idempotent e in $B, B=B_{11}(e)+B_{10}(e)+B_{01}(e)+B_{00}(e)$.
(33) The product $B_{i j}(e) B_{k m}(e) \subseteq \delta_{j k} B_{i m}(e)$ with the exception that, for $i \neq j$, $\left(B_{i j}(e)\right)^{2} \subseteq B_{j i}(e)$ with $x_{i j} 2=0$.
(34) The set $B_{10}(e) B_{01}(e)+B_{10}(e)+B_{01}(e)+B_{01}(e) B_{10}(e)$ is an alternative ideal.

With these assumptions, B has a Wedderburn decomposition.
Proof. Clearly $B_{11}(e)=B_{e}(1), B_{00}(e)=B_{e}(0)$ and $B_{10}(e)+B_{01}(e)=B_{e}(1 / 2)$. Hence $H(e)=B_{10}(e) B_{01}(e)+B_{10}(e)+B_{01}(e)+B_{01}(e) B_{10}(e)$ where $H(e)$ is the ideal of B generated by $B_{e}(1 / 2)$. From the fact that the Wedderburn Principal Theorem holds for alternative algebras [15], we have condition (21) holding in B of Theorem 3.1. Also, (18) and (20) both hold in B.
In (19), the implications (a) \Rightarrow (b) and (a) \Rightarrow (c) always hold. Let $H(e) \cap B_{e}(1)=$ $B_{10}(e) B_{01}(e)$ be nil. If $H(e)$ is not nil it has a radical N_{1} and $D=H(e)-N_{1}$ is semisimple. Now, $H(e)$ is alternative so D is alternative and possesses an identity element v. Define $D_{i j}=H_{i j}(e)-\left(N_{1} \cap H_{i j}(e)\right)$ and write $v=v_{11}+v_{10}+v_{01}+v_{00}$ with $v_{i j}$ in $D_{i j}$. By the definition of $H(e), H(e)$ is nil if and only if $A_{10}(e)+A_{01}(e) \subseteq N_{1}$. Hence, $H(e)$ is nil if and only if $D_{10}+D_{01}=0$. The $D_{i j}$ multiply as the $B_{i j}(e)$ do so, from $v^{2}=v$, we obtain $v_{11}=v_{11}^{2}+v_{10} v_{01}, v_{10}=v_{11} v_{10}+v_{10} v_{00}, v_{01}=v_{01} v_{11}+v_{00} v_{01}$ and $v_{00}=v_{00}^{2}+v_{01} v_{10}$. But v is the identity element of D so $v_{10}=v_{10} v=v_{10} v_{00}+$ $v_{10} v_{01}$. Therefore $v_{10}=v_{10} v_{00}$ and $v_{10} v_{01}=0$. Inductively, $v_{11}=v_{11}^{2}=\cdots=v_{11}^{k}$. Since $H_{11}(e)$ is nil, $v_{11}=v_{11}^{n}=0$. Also, $v_{10}=v v_{10}=v_{11} v_{10}+v_{01} v_{10}$ so $v_{10}=v_{11} v_{10}$ and $v_{01} v_{10}=0$. This implies $v_{10}=v_{11} v_{10}=0$. Now $v_{01}=v_{01} v=v_{01} v_{11}+v_{01} v_{10}=v_{01} v_{11}=0$. Consequently, $v=v_{00}$. Let $x_{10}+x_{01}$ be an element of $D_{10}+D_{01}$. Because $v=v_{00}$ is an identity, $x_{10}=v_{00} x_{10}=0$ and $x_{01}=x_{01} v_{00}=0$ so $D_{10}+D_{01}=0$. Therefore, $H(e)$ is nil. Similarly, if $H(e) \cap A_{e}(0)$ is nil then $H(e)$ is nil so (19) holds in B. Hence, B has a Wedderburn decomposition.

Theorem 4.2. Let A satisfy (20). Then the algebra A contains a nodal subalgebra if and only if $A-N$ contains a nodal subalgebra.

Proof. If B is a nodal subalgebra of A then $T(B)$ is a nodal subalgebra of $A-N$. Suppose now that B is a nodal subalgebra of $A-N$. By the homomorphism theorems, there is a subalgebra C of A with $N \subseteq C$ and $T(C)=B$. We know that B has a primitive idempotent $[e]$ and, by Lemma $2.1, e$ can be chosen as an idempotent in C. We claim that $C_{e}(1)$ is a nodal subalgebra of A. For $C_{e}(1)=C \cap A_{e}(1)$ and the intersection of two subalgebras of A is a subalgebra of A so $C_{e}(1)$ is a subalgebra of A. If $e=f+g$ with $f g=g f=0$, then $[e]=[f]+[g]$ with $[f][g]=[g][f]=$ 0 . Hence, e is primitive. If x is in $C_{e}(1)$ then $[x]=\alpha[e]+[z]=[\alpha e+z]$ where α is in F (the base field) and $[z]$ is nil. Also, $[x-\alpha e]=[z]$ so $x-\alpha e=z+n$ with n in N. Now, for some $k,\left[(z+n)^{k}\right]=[z+n]^{k}=[z]^{k}=0$ so $(z+n)^{k}$ is in N. This implies $z+n$ is nilpotent. In addition $z+n=x-\alpha e$ is in $C_{e}(1)$. We need only show that M, the set of nilpotent elements of $C_{e}(1)$ is not a subalgebra. First, recall that $C=C_{e}(1)+$ $C_{e}(1 / 2)+C_{e}(0)$. If x is in $C_{e}(t)$, then $[x][e]+[e][x]=[x e+e x]=[2 t x]=2 t[x]$ so $[x]$ is in $B([e], t)$. Since $B=B([e], 1)+B([e], 1 / 2)+B([e], 0)$, we have $T\left(C_{e}(t)\right)=$
$B([e], t)$. But $B=B([e], 1)=T\left(C_{e}(1)\right)$. As a consequence, $T(M)$ is the set of nilpotent elements of B. Since B is nodal, $T(M)$ is not a subalgebra. Hence, M is not a subalgebra of $C_{e}(1)$.

Theorem 4.3. Let B be a (γ, δ) algebra with $\delta \neq 0,1$ over a splitting field F of char $\neq 2,3$, 5. If B contains no nodal subalgebras, then B has a Wedderburn decomposition.

Proof. A (γ, δ) algebra is an algebra which satisfies the following identities:

$$
\begin{align*}
(z, x, y)+\gamma(x, z, y)+\delta(y, z, x) & =0 . \tag{35}\\
(x, y, z)-\gamma(x, z, y)+(1-\delta)(y, z, x) & =0 . \tag{36}
\end{align*}
$$

It is also assumed that $\gamma^{2}-\delta^{2}+\delta=1$. We will show that B satisfies the hypotheses of Theorem 4.1. From Theorem 4.2, condition (31) is satisfied. Now, the results of $[9, \mathrm{pp} .250,251]$ state that B satisfies (32) and (33). In addition, B is shown to be power-associative [9, Theorem 2]. Furthermore $B_{11}(e)+B_{10}(e)+B_{01}(e)+B_{01}(e) B_{10} e$ and $B_{00}(e)+B_{10}(e)+B_{01}(e)+B_{10}(e) B_{01}(e)$ are ideals of $B[9, p$ 254]. Thus, $H(e)=B_{10}(e) B_{01}(e)+B_{10}(e)+B_{01}(e)+B_{01}(e) B_{10}(e)$ is an ideal of B. From Lemma 2 in [9], $H(e)$ is associative so (34) is satisfied and we are done.

Theorem 4.4. Let B be a strictly power-associative algebra over a splitting field F of char $\neq 2$, 3. Assume that B satisfies

$$
\begin{equation*}
\alpha(y, x, x)-(\alpha+1)(x, y, x)+(x, x, y)=0 \tag{37}
\end{equation*}
$$

for $\alpha \neq 0,1,-1 / 2,-2$ and that B contains no nodal subalgebras. If $\alpha \neq-1$ or if, for each idempotent e in $B, B_{e}(t) B_{e}(t) \subseteq B_{e}(t)$ for $t \neq 1 / 2$ then B has a Wedderburn decomposition.

Proof. By Theorem 4.2, (31) is satisfied. Clearly, B satisfies (37) with the same value of α. Theorem 2 of [8] implies (32), Theorem 3 of [8] implies (33) and Lemma 4 of [8] implies (34) so B has a Wedderburn decomposition.

We now turn our attention to a class of associator dependent algebras studied in [6] and defined by

$$
\begin{equation*}
(x, y, z)+\alpha(y, z, x)+\alpha^{2}(z, x, y)=0 \tag{38}
\end{equation*}
$$

where $\alpha^{3}=1, \alpha \neq 1$. A special subclass of this is the class of algebras satisfying

$$
\begin{equation*}
(x, y, z)=\alpha(y, z, x) \tag{39}
\end{equation*}
$$

with $\alpha^{3}=1, \alpha \neq 1$. While an algebra satisfying (38) is not necessarily powerassociative, we will show that an algebra satisfying (39) is power-associative.

Lemma 4.1. If char is prime to 30 and $1-\alpha$ then a ring satisfying (39) is powerassociative.

Proof. We first prove that, if any associator involving any three of w, x, y or z is zero then $(w x, y, z)+(z w, x, y)=0$. In any ring we have

$$
\begin{equation*}
(a b, c, d)-(a, b c, d)+(a, b, c d)=a(b, c, d)+(a, b, c) d \tag{40}
\end{equation*}
$$

Hence, we have:

$$
\begin{align*}
& (w x, y, z)-(w, x y, z)+(w, x, y z)=0 . \tag{41}\\
& (x y, z, w)-(x, y z, w)+(x, y, z w)=0 . \tag{42}
\end{align*}
$$

Using (42) and (39) we derive

$$
\begin{equation*}
(w, x y, z)-(w, x, y z)+(z w, x, y)=0 . \tag{43}
\end{equation*}
$$

Now (41) and (43) imply

$$
\begin{equation*}
(w x, y, z)+(z w, x, y)=0 . \tag{44}
\end{equation*}
$$

We will now prove Lemma 4.1 by induction. The identity (39) implies $x x^{2}=x^{3}$. Let $n \geqq 4$ and assume $x^{a} x^{b}=x^{a+b}$ for $a+b<n$. If we let $z=y=x$ and $w=x^{n-3}$ then (44) implies $2\left(x^{n-2}, x, x\right)=0$ so $\left(x^{n-2}, x, x\right)=0$. From (39), we then derive $\left(x, x^{n-2}, x\right)=0$ and $\left(x, x, x^{n-2}\right)=0$. For $n=4$, these three identities imply $x^{4-a} x^{a}=$ x^{4} for any a. Now let $n \geqq 5$. Now, Lemma 2 of [2] gives

$$
x^{n-a} x^{a}=x^{n}+((a-1) / 2)\left(x^{n-1}, x\right)
$$

However, $\left(x^{n-1}, x\right)=x^{n}-x x^{n-1}=\left(x, x^{n-2}, x\right)=0$. Hence, the ring is powerassociative.

Theorem 4.5. Let B be a nonnil power-associative algebra over a splitting field F of char $\neq 2$, 3. If B satisfies (38) and contains no nodal subalgebras, then B has a Wedderburn decomposition.
Proof. Since B also satisfies (38), the results of [6] imply the hypotheses of Theorem 4.1 and we are done.
5. Algebras in [12]. In this section and the next, we will study certain classes of algebras whose Wedderburn decomposition cannot be so easily derived from Theorem 4.1. In [12], Kosier studied algebras satisfying

$$
\begin{align*}
\left(x^{2}, y, z\right) & =2 x \cdot(x, y, z) \tag{45}\\
\left(z, y, x^{2}\right) & =2 x \cdot(z, y, x) \tag{46}\\
(x, x, x) & =0 . \tag{47}
\end{align*}
$$

Such algebras are power-associative [12, Theorem 1]. If e is an idempotent, define

$$
L(e)=\left\{x: x \in A_{e}(1 / 2) \text { and } a x, x a \in A_{e}(1 / 2) \text { for all } a \text { in } A\right\} .
$$

It is known [12, Theorem 4] that $L(e)$ is an ideal of A and for any x in $L(e), x^{2}=0$. Suppose char $\neq 2$, 3. If K is a splitting field of A and $L(e)=0$ for each idempotent e
of $B=A_{K}$ then Theorems 5 and 6 of [12] imply (32) and (33). In addition, Theorem 7 and the proof of Theorem 8 of [12] also implies (34). We thus have this result.

Theorem 5.1. Let A be an algebra satisfying (45), (46) and (47) over a splitting field F of char $\neq 2$, 3. If A contains neither nodal subalgebras nor ideals L with x in L implying $x^{2}=0$ then A has a Wedderburn decomposition.

We would like to remove the condition that A has no ideals L with x in L implying $x^{2}=0$. The condition cannot be removed as the following example will show. Let A be the five dimensional algebra over a field F of char $\neq 2,3$ spanned by e, x, y, f and z whose multiplication relative to this basis is given by

$$
\begin{align*}
& \left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right) \\
& \quad=\left(a_{1} b_{1}+a_{2} b_{3}, a_{1} b_{2}+a_{2} b_{4}, a_{3} b_{1}+a_{4} b_{3}, a_{3} b_{2}+a_{4} b_{4}\right. \tag{48}\\
& \left.\quad a_{1}\left(b_{5}-b_{2}\right)+a_{2}\left(b_{1}-b_{4}\right)+a_{4} b_{2}+a_{5} b_{4}\right)
\end{align*}
$$

Now, if $N=\{\alpha z\}$ with α in F then $A-N \cong M_{2}(2 \times 2$ matrices $)$ with [e]=e e_{11}, $[x]=e_{12},[y]=e_{21}$ and $[f]=e_{22}$. Also, $e^{2}=e, f^{2}=f, A_{e}(1)=\{\alpha e\}$ and $A_{e}(0)=\{\alpha f\}$ with α in F. Now $e x=x-z$ and $x e=z$ so x is in $A_{e}(1 / 2) ; e y=0$ and $y e=y$ so y is in $A_{e}(1 / 2) ; e z=z$ and $z e=0$ so z is in $A_{e}(1 / 2)$. Therefore $A_{e}(1 / 2)$ is the vector space spanned by x, y and z. Now, one finds by checking that $z^{2}=0$ and $A N, N A \subseteq N$ so, since $A-N$ is simple, N is the radical of A. In addition $e+f$ is an identity element for A.

Linearizing (45), (46) and (47) gives

$$
\begin{gather*}
(u \cdot s, v, w)=u \cdot(s, v, w)+s \cdot(u, v, w) \tag{49}\\
(w, v, u \cdot s)=u \cdot(w, v, s)+s \cdot(w, v, u) \tag{50}\\
(u, v, w)+(v, w, u)+(w, u, v)+(w, v, u)+(v, u, w)+(u, w, v)=0 \tag{51}
\end{gather*}
$$

Since F is of char $\neq 2,3,(49) \Rightarrow(45),(50) \Rightarrow(46)$ and $(51) \Rightarrow(47)$. Here is a list of all nonzero associators involving e, x, y, f and z.

$$
\left.\begin{array}{rl}
z=(e, e, x) & =(x, f, e)=(x, e, f)=(y, x, x)=(x, y, z)=(f, f, x) \\
-z & =(x, e, e) \tag{53}
\end{array}\right)(e, f, x)=(f, e, x)=(x, x, y)=(z, y, x)=(x, f, f) . ~ \$
$$

By simply checking, we see that (49), (50) and (51) are all satisfied. If $S \subseteq A$ with $A=S+N$ and $S \cong A-N$ then S must be spanned by $e^{\prime}, x^{\prime}, y^{\prime}$ and f^{\prime} with $\left[e^{\prime}\right]=[e]$, $\left[x^{\prime}\right]=[x],\left[y^{\prime}\right]=[y]$ and $\left[f^{\prime}\right]=[f]$. Hence, in particular, $x^{\prime}=x+\alpha z$ and $e^{\prime}=e+\beta z$. Now, from (48), $x^{\prime} e^{\prime}=z$ which is not in S. Therefore A does not possess a Wedderburn decomposition.

An algebra A with identity element 1 is of degree t if, for K a splitting field of A, $1=e_{1}+\cdots+e_{t}$ where $\left\{e_{i}\right\}_{i=1}^{t}$ is a collection of pairwise orthogonal primitive idempotents in A_{K}. The algebra of the preceding paragraph is of degree 2 .

Theorem 5.2. Let A be an algebra satisfying (45), (46) and (47) over a splitting field F of char $\neq 2$, 3. If A contains no nodal subalgebras and if $A-N$ contains no simple ideals of degree 2 , then A has a Wedderburn decomposition.

Proof. Let P be the class of all algebras satisfying the hypotheses of Theorem 5.2. We claim that P is a decomposable class. For, P clearly satisfies (a), (b) and (c). Furthermore, Theorem 3 of [12] implies (e) and Theorem 10 of [12] implies (d). By Theorem 2.1, it suffices to show that $C(P)$ is a Wedderburn class. We will prove this by induction on $\operatorname{dim} A . \operatorname{If} \operatorname{dim} A=1$, the result is obvious. Let $\operatorname{dim} A=n$ and assume that B has a Wedderburn decomposition if $\operatorname{dim} B<n$. If A has degree 1 then $A-N \cong F$ so by Theorem 2.2, A has a Wedderburn decomposition. Suppose then that degree $A>1$. If, for some primitive idempotent $e, L(e)=0$, then by the proof of Theorem 8 of [12], $H(e)$ is alternative. Hence, by Theorem 2.2, A has a Wedderburn decomposition. If for some idempotent $L(e) \neq 0, N$, then Lemma 2.2 implies A has a Wedderburn decomposition for $L(e) \subseteq N \neq A$. Therefore, we need only prove that A has a Wedderburn decomposition if $L(e)=N$ for every primitive idempotent. Let $t=$ degree A. Since $t \neq 2, t>1$ we have $t \geqq 3$ so $1=e_{1}+\cdots+e_{t}$, with $\left\{e_{i}\right\}_{i=1}^{t_{i}}$ a set of pairwise orthogonal primitive idempotents. Also, $L_{i}=N$, $i=1, \ldots, t$. However, $L_{i} \subseteq A\left(e_{i}, 1 / 2\right), i=1, \ldots, t$. If x is in $A\left(e_{1}, 1 / 2\right) \cap A\left(e_{2}, 1 / 2\right) \cap$ $A\left(e_{3}, 1 / 2\right)$, then $x e+e x=3 x$ where $e=e_{1}+e_{2}+e_{3}$. But, e is an idempotent so this is impossible unless $x=0$. Therefore, $N=L_{1} \cap L_{2} \cap L_{3}=0$. Hence, A has a Wedderburn decomposition $A=A+0$.
6. Nearly $(1,1)$ algebras. We will call A a nearly $(1,1)$ algebra if it is strictly power-associative and satisfies

$$
\begin{equation*}
(x, y, x)=(x, x, y) \tag{54}
\end{equation*}
$$

These algebras were studied in [8]. The (1,1) algebras are power-associative [10] and satisfy

$$
\begin{equation*}
(x, y, z)=(x, z, y) \tag{55}
\end{equation*}
$$

A (nearly) ($-1,0$) algebra is one which is anti-isomorphic to a (nearly) (1,1) algebra. The $(1,1)$ and $(-1,0)$ are special cases of (γ, δ) algebras and the nearly $(1,1)$ algebras satisfy (37) with $\alpha=0$. We will assume throughout that F, the base field, is of char $\neq 2,3$. For any idempotent e in $A, A=A_{11}(e)+A_{10}(e)+A_{01}(e)+$ $A_{00}(e)$ [8, Theorem 2]. Furthermore the subspaces satisfy the relation

$$
A_{i j}(e) A_{k m}(e) \subseteq \delta_{j k} A_{i m}(e)
$$

with the following exceptions: for $i \neq j, A_{i j}(e) A_{i j}(e) \subseteq A_{j i}(e) ; x_{i j}^{2}=0 ; A_{i i}(e) A_{i j}(e) \subseteq$ $A_{i j}(e)+A_{j j}(e) ; A_{i j}(e) A_{i i}(e) \subseteq A_{j j}(e)$ [8, Theorem 3]. In addition, if $x_{k m}$ is in $A_{k m}(e)$, then for $i \neq j$ [8, Theorem 3],

$$
\begin{equation*}
\left(x_{i} y_{i j}-y_{i j} x_{i j}\right) \in A_{i j}(e) \tag{56}
\end{equation*}
$$

Defining $G_{i}(e)=A_{j i}(e) A_{j j}(e)$ for $j \neq i$, it is proved that $G(e)=G_{1}(e)+G_{0}(e)$ is an ideal of A with $G(e) G(e)=0$ [8, Lemma 3]. We will also need the following relations:

$$
\begin{gather*}
A_{i j}(e) G_{i}(e) \subseteq G_{j}(e) \quad i \neq j \tag{57}\\
G_{i}(e) A_{i j}(e) \subseteq A_{i j}(e)+G_{j}(e) \quad i \neq j \tag{58}\\
A_{j i}(e) G_{i}(e)=0 \quad i \neq j \tag{59}\\
G_{i}(e) A_{j i}(e)=0 \quad i \neq j \tag{60}
\end{gather*}
$$

The first two are a consequence of the definition and the last two follow from [8, Lemma 2].

Lemma 6.1. Let A be a nearly $(1,1)$ algebra with identity element over a field F of char $\neq 2,3$ and $N=G(e)$ for each idempotent $e \neq 1$ in A. If $A-N$ contains a total matric algebra M_{t} whose identity is the identity of $A-N$ then there exists a subalgebra S of A with $S \cong M_{t}$.

Proof. Now, M_{t} is spanned by $\left\{\left[u_{i j}\right]\right\}_{t, j=1}^{t}$ with

$$
\begin{equation*}
\left[u_{i j}\right]\left[u_{k m}\right]=\delta_{j k}\left[u_{i m}\right] \tag{61}
\end{equation*}
$$

By the homomorphism theorems there is a subalgebra B of A with $T(B)=M_{t}$ and $N \subseteq B$. If B has a subalgebra $S \cong M_{t}$, then A has the same subalgebra $S \cong M_{t}$. Hence, it suffices to consider the case $A-N=M_{t}$. In this case each [$u_{i t}$] is primitive. By Lemma 2.1, there exist pairwise orthogonal idempotents e_{1}, \ldots, e_{t} with $1=e_{1}+\cdots+e_{t}$ and $\left[e_{i}\right]=\left[u_{i 1}\right]$. Furthermore, each e_{i} is primitive. If $t=1, S=F \cdot 1 \cong$ M_{1} and we are done.

Assume $t>1$. We make the following definitions:

$$
\begin{aligned}
A_{i i} & =A_{11}\left(e_{i}\right) \quad i=1, \ldots, t \\
A_{i j} & =A_{10}\left(e_{i}\right) \cap A_{01}\left(e_{j}\right) \quad i \neq j ; i, j=1, \ldots, t \\
G_{i} & =G_{1}\left(e_{i}\right)
\end{aligned}
$$

An induction on (24), (25) and (26) will imply (see [14]) $A=\sum_{i, j=1}^{t} A_{i j}$.
Also,

$$
N=G\left(e_{j}\right)=\sum_{i=1}^{t} G_{i} \quad j=1, \ldots, t
$$

For, $G\left(e_{j}\right)=G_{1}\left(e_{j}\right)+G_{0}\left(e_{j}\right)$ and $G_{0}\left(e_{j}\right)=A_{10}\left(e_{j}\right) A_{11}\left(e_{j}\right)=A_{01}\left(1-e_{j}\right) A_{00}\left(1-e_{j}\right)$. If $i \neq j$, then $G_{i}=G_{1}\left(e_{i}\right)=A_{01}\left(e_{i}\right) A_{00}\left(e_{i}\right) \subseteq G_{0}\left(e_{j}\right)$. It is clear that $A_{01}\left(1-e_{j}\right) \subseteq \sum_{i \neq j} A_{01}\left(e_{j}\right)$ and (see (26)) $A_{00}\left(1-e_{j}\right)=\bigcap_{i \neq j} A_{00}\left(e_{j}\right)$. Therefore, $G_{0}\left(e_{j}\right) \subseteq \sum_{i \neq j} G_{i}$. Hence,

$$
G\left(e_{j}\right) \subseteq \sum_{i=1}^{t} G_{i} \subseteq G\left(e_{j}\right)
$$

If $i \neq j$, then $A_{i j} \cap N \subseteq A_{10}\left(e_{i}\right) \cap\left(A_{11}\left(e_{i}\right)+A_{00}\left(e_{i}\right)\right)=0$. Clearly, $T\left(A_{i j}\left(e_{k}\right)\right)=$ $(A-N)_{i j}\left(\left[e_{k}\right]\right)=(A-N)_{i j}\left(\left[u_{k k}\right]\right)$ for $i, j=0,1 ; k=1, \ldots, t$. Thus $T\left(A_{i j}\right)=F \cdot\left[u_{i j}\right]$;
$i, j=1, \ldots, t$. Consequently, when $i \neq j, \operatorname{dim} A_{i j}=1$. Therefore, for each $i \neq j$ there is a unique element $e_{i j}$ in $A_{i j}$ with $\left[e_{i j}\right]=\left[u_{i j}\right]$. We also define $e_{i i}=e_{i}, i=1, \ldots, t$. Using the relations on the subspaces $A_{i j}\left(e_{k}\right)$ for $i, j=0,1 ; k=1, \ldots, t$ we have

$$
\begin{equation*}
A_{i j} A_{k m} \subseteq \delta_{j k} A_{i m} \quad i, j, k, m=1, \ldots, t \tag{62}
\end{equation*}
$$

with these exceptions:

$$
\begin{array}{ll}
A_{i j} A_{i i} \subseteq G_{j} & i \neq j \\
A_{i i} A_{i j} \subseteq A_{i j}+G_{j} & i \neq j \tag{64}
\end{array}
$$

In addition, (57), (58), (59) and (60) imply

$$
\begin{array}{ll}
A_{i j} G_{i} \subseteq G_{j} & i \neq j \\
G_{i} A_{i j} \subseteq A_{i j}+G_{j} & i \neq j \\
A_{j i} G_{i}=G_{i} A_{j i}=0 & i \neq j \tag{67}
\end{array}
$$

We claim that $e_{i j} e_{k m}=\delta_{j k} e_{i m}$ if $i \neq m$ or $j \neq k$. For, since $e_{i j}$ is in $A_{10}\left(e_{i j}\right) i \neq j$ we have $e_{i i} e_{i j}=e_{i j}$ and $e_{i j} e_{i t}=0$. If $i \neq m$, then this and (62) imply $e_{i j} e_{k m}=\alpha_{j k} e_{i m}$. But $\left[e_{i j}\right]\left[e_{k m}\right]=\left[u_{i j}\right]\left[u_{k m}\right]=\delta_{j k}\left[u_{i m}\right]=\delta_{j k}\left[e_{i m}\right]$ so $\alpha_{j k}=\delta_{j k} ; j, k=1, \ldots, t$. If $j \neq k$ then (62) and $e_{i j} e_{i \mathrm{i}}=0$ imply in a similar way that $e_{i j} e_{k m}=0$. Now $A_{i i}=F \cdot e_{i i}+G_{i}$ so $A_{i j} A_{j i} \subseteq A_{i i}$ implies

$$
\begin{equation*}
e_{i j} e_{j i}=e_{i i}+g_{i}(j) \tag{68}
\end{equation*}
$$

where $g_{i}(j)$ is in G_{i}. Of course, $g_{i}(i)=0$ and we wish to prove each $g_{i}(j)=0$. We first prove

$$
\begin{equation*}
g_{i}(j) e_{i k}=e_{i k} g_{i}(j)=0 \quad \text { for } i \neq k \tag{69}
\end{equation*}
$$

First, from (56), $g_{i}(j) e_{i k}-e_{i k} g_{i}(j)=\alpha e_{i k}$ so $\left[g_{i}(j)\right]\left[e_{i k}\right]-\left[e_{i k}\right]\left[g_{i}(j)\right]=\alpha\left[e_{i k}\right]$. But $g_{i}(j)$ is in N so $\alpha=0$ and we have

$$
\begin{equation*}
g_{i}(j) e_{i k}=e_{i k} g_{i}(j) \quad i \neq k \tag{70}
\end{equation*}
$$

Now, substitute $e_{i j}$ for x and $e_{j i}$ for y in (54) to obtain ($\left.e_{i j}, e_{j i}, e_{i j}\right)=\left(e_{i j}, e_{i j}, e_{j i}\right)$. For $i \neq j$ we have $\left(e_{i j}, e_{j i}, e_{i j}\right)=\left(e_{i j}+g_{i}(j)\right) e_{i j}-e_{i j}\left(e_{j j}+g_{j}(i)\right)=e_{i j}+g_{i}(j) e_{i j}-e_{i j}-0=$ $g_{i}(j) e_{i j}$ and ($\left.e_{i j}, e_{i j}, e_{j i}\right)=-e_{i j} g_{i}(j)$. This with (70) implies $e_{i j} g_{i}(j)=0$. If $t=2$ we have established (69). Linearizing (54) yields

$$
\begin{equation*}
(x, y, z)+(z, y, x)=(x, z, y)+(z, x, y) \tag{71}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\left(e_{i j}, e_{i i}, e_{i k}\right)+\left(e_{i k}, e_{j i}, e_{i j}\right)=\left(e_{i j}, e_{i k}, e_{j i}\right)+\left(e_{i k}, e_{i j}, e_{j i}\right) \tag{72}
\end{equation*}
$$

If i, j and k are distinct the relations on the subspaces imply that $\left(e_{i j}, e_{j i}, e_{i k}\right)=$ $g_{i}(j) e_{i k},\left(e_{i k}, e_{i j}, e_{j i}\right)=-e_{i k} g_{i}(j)$ and the other two associators of (72) are zero. Thus, from (70) we have (69). Now, (71) gives

$$
\begin{equation*}
\left(g_{i}(k), e_{i j}, e_{j i}\right)+\left(e_{j i}, e_{j i}, g_{i}(k)\right)=\left(g_{i}(k), e_{j i}, e_{i j}\right)+\left(e_{j i}, g_{i}(k), e_{i j}\right) . \tag{73}
\end{equation*}
$$

Recall the fact that $G^{2}=0$. If $i \neq j,\left(g_{i}(k), e_{i j}, e_{j i}\right)=-g_{i}(k)$ with the other three associators zero so $g_{i}(k)=0$. Therefore, if S is the space spanned by $\left\{e_{i j}\right\}_{i, j=1}^{t}$ then S is a subalgebra of A. Hence, S is a total matric algebra and [1], $S \cong M_{i}$.

It is known that $A-N$ is a direct sum of simple algebras, each of which is nodal or alternative. If $A-N$ is a Cayley-Dickson algebra it is still not clear whether A has a Wedderburn decomposition or not. We content ourselves with the following three theorems.

Theorem 6.1. Let A be a nearly $(1,1)$ (nearly $(-1,0)$) algebra over a splitting field of char $\neq 2,3$ such that $A-N$ is associative. Then A has a Wedderburn decomposition.

Proof. Clearly the class P of nearly $(1,1)$ algebras satisfying the hypotheses of the theorem is a decomposable class so we need only show $C(P)$ is a Wedderburn class. If A is in $C(P)$ and $\operatorname{dim} A=1$, then A has a Wedderburn decomposition. Suppose $\operatorname{dim} A=n$ and every algebra B in $C(P)$ with $\operatorname{dim} B<n$ has a Wedderburn decomposition. If the identity element 1 of A is primitive, then $A=F \cdot 1+N$ is a Wedderburn decomposition for A. If 1 is not primitive and for some $e \neq 1, G(e)=0$, then the results in [8, pp. 478-481] imply that $H(e)$ is alternative. If $H(e)$ is nil, then $A-N=(A-N)_{11}([e]) \oplus(A-N)_{00}([e])$ which is impossible for $A-N$ is simple and $[1-e]$ is in $(A-N)_{00}([e])$. Therefore, $H(e)$ is not nil so [15] and Theorem 2.2 imply A has a Wedderburn decomposition. If 1 is not primitive and for some $e \neq 1, G(e) \neq 0, N$, then by Lemma 2.2 (with $Q=C(P)$), A has a Wedderburn decomposition. The only other case is when 1 is not primitive and $G(e)=N$ for all $e \neq 1$. Here, Lemma 6.1 yields a Wedderburn decomposition for A. Hence, P_{1} is a Wedderburn class. If A is nearly $(-1,0)$ then A is anti-isomorphic to a nearly $(1,1)$ algebra B. Hence A has a Wedderburn decomposition.

As a consequence of the results in [7], if A is $(1,1)($ or $(-1,0)$), then $A-N$ is associative and we have this result.

Theorem 6.2. If A is $a(1,1)$ or $(-1,0)$ algebra over a splitting field of char $\neq 2,3$ then A has a Wedderburn decomposition.

Theorem 6.3. Let A be a nearly $(1,1)$ (nearly $(-1,0)$) algebra over a splitting field F of char $\neq 2$, 3. If A contains neither nodal subalgebras nor ideals G with $G^{2}=0$ then A has a Wedderburn decomposition.

Proof. Since each $G(e)=0$, the results in [8] imply (32), (33) and (34) so A has a Wedderburn decomposition.

Bibliography

1. A. A. Albert, Structure of algebras, Amer. Math. Soc. Colloq. Publ. Vol. 24, Amer Math. Soc., Providence, R. I. 1939; reprinted 1964.
2. ---, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552-597.
3. --, The Wedderburn principal theorem for Jordan algebras, Ann. of Math. 48 (1947), 1-7.
4. A. A. Albert, Almost alternative algebras, Portugal. Math. 8 (1949), 23-36.
5. R. L. Hemminger, On the Wedderburn principal theorem for commutative power-associative algebras, Trans. Amer. Math. Soc. 121 (1966), 36-51.
6. E. Kleinfeld, Associator-dependent rings, Arch. Math. 13 (1962), 203-212.
7. -_, Simple algebras of type $(1,1)$ are associative, Canad. J. Math. 13 (1961), 129-148.
8. E. Kleinfeld, F. Kosier, J. M. Osborn, and D. J. Rodabaugh, The structure of associator dependent rings, Trans. Amer. Math. Soc. 110 (1964), 473-483.
9. L. A. Kokoris, A class of almost alternative algebras, Canad. J. Math. 8 (1956), 250-255.
10. —, On rings of (γ, δ) type, Proc. Amer. Math. Soc. 9 (1958), 897-904.
11. -_, New results on power-associative algebras, Trans. Amer. Math. Soc. 77 (1954), 363-373.
12. F. Kosier, A generalization of alternative rings, Trans. Amer. Math. Soc. 112 (1964), 32-42.
13. A. J. Penico, The Wedderburn principal theorem for Jordan Algebras, Trans. Amer. Math. Soc. 70 (1951), 404-420.
14. D. J. Rodabaugh, A generalization of the flexible law, Trans. Amer. Math. Soc. 114 (1965), 468-487.
15. R. D. Schafer, The Wedderburn principal theorem for alternative algebras, Bull. Amer. Math. Soc. 55 (1949), 604-614.
16. -_, An introduction to nonassociative algebras, Academic Press, New York, 1966.

University of Missouri, Columbia, Missouri

