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On the Weight of Computations 

 
One of the Grand Challenges to computer science is to understand what is and is not feasibly 

computable. Recursive function theory clarified what is and is not effectively computable and in 
the process extended our understanding of Goedel incompleteness results about the limits of the 
power of formal mathematical methods. Since computing is universal and encompasses the power 
of mathematics, the understanding of the limits of the feasibly computable could give a deeper 
understanding of the limits of rational intellectual processes and insights into the power and limits 
of scientific theories. 

The search for what is and is not feasibly computable has two distinct aspects. The first is to 
determine (estimate) how much and what kind of computing power will be available in the 
foreseeable future. The other problem is to determine what kind of problems can be solved with 
these available computing resources. The first problem is a technological assessment of the 
existing and potential computing technologies to estimate what kind and how much computing 
work our machines will be able to render. The other problem leads us to the central questions of 
complexity theory: what is the intrinsic complexity of important classes of problems we wish to 
solve. Clearly, the P=NP=PSPACE? problems are among the best known in this area. 

In all these considerations, the exponential function seems to give a crude upper limit for the 
feasibly computable. May it be time, memory or weight requirements, if they grow exponentially, 
then the computations are not feasible. We do not know what computations require exponential 
amounts of resources, nor do all instances of problems in exponential complexity classes require 
exponential resources. Even if the exact solutions require exponential resources, good 
approximations to the solution may not. But if indeed the problem requires exponential resources, 
then it is clearly not feasibly solvable already for moderate size instances of the problem. 

 
New Computing Technologies 

 
Recently there have been some very interesting results about new modes of -computing with 

hints that for some computations there may be an escape from the exponential curse. The two 
most interesting technologies are quantum computing and molecular (DNA) computing. 

We will leave quantum computing for a later time and reflect on Adleman's exciting paper, 
"Molecular Computation of Solutions to Combinatorial Problems" [1]. Adleman's paper appeared 
on November 11, 1994, and has received a lot of national publicity since then, including a New 
York Times article on December 13, 1995, about Adleman's scientific career by Gina Kolata. 

The paper describes how the Hamiltonian path problem for a seven node graph was encoded 
in DNA sequences and the Hamiltonian path was extracted as a single DNA string using standard 
lab techniques after seven days of lab work. This is indeed a very impressive achievement and 



may stimulate through exploration of the potential of molecular computing. As pointed out in this 
article, the numbers of "operations" performed in biological computing can be very high and the 
energy requirements are surprisingly small. At the same time, as we will observe later, even these 
computations can not escape the exponential curse; if the computations are indeed exponential, 
then their weight is prohibitive. 

 
The following nondeterministic algorithm was used to solve the directed Hamiltonian path 

problem: 
 

Step 1: Generate random paths through the graph. 
 
Step 2: Keep only paths that begin with in-node and end with out-node. 
 
Step 3: If the graph has n vertices, then keep only those paths that enter exactly n 

vertices. 
 
Step 4: Keep only those paths that enter all of the vertices of the graph at least once. 
 
Step 5: If any paths remain, say "Yes'; otherwise, say "No". 

 
If this algorithm is used then in step 1 one has to expect to generate almost all possible paths 

through the graph to find a path satisfying the remaining conditions. Though the paths are 
encoded molecularly (with DNA strands) they have weight and the question arises: How heavy 
will these computations get? In short, we have to consider a new computational complexity 
measure: the weight of the computation to assess its feasibility. 

 
Consider a graph with 200 nodes and assume that to extract a Hamiltonian path we need to 

generate an exponential number of paths of length n. A lower bound for the encoding of the edges 
and the paths in the graph in DNA sequences is log4200 bases per edge and a low estimate of the 
weight per base is 10-25kg. Thus the biologically encoded set of paths will weigh more than 

2200 • log4200 • 10-25 kg ≥ (24)50 • 3 • 10-25 kg ≥ 3 • 1025 kg 

which is more than the weight of the Earth. 
 
Adleman's molecular solution of the Hamiltonian path problem is indeed a magnificent 

achievement and may initiate a more intensive exploration of molecular computing and 
computing in biological systems. At the same time, the exponential function grows too fast and 
the atoms are a bit too heavy to hope that molecular computing can break the exponential barrier, 
this time the weight barrier. 

This leaves us with the difficult task of understanding what computations can be performed 
below the exponential computational resource bounds imposed by nature. 
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