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The mean-absolute-deviation cost minimization model, which aims to minimize sum of 

the mean value and the absolute deviation of the total cost multiplied by a given non-negative 

weighting, is one of the typical robust optimization models. This paper first uses a 

straightforward example to show that the solution obtained by this model with some 

weightings is actual not an optimal decision. This example also illustrates that the mean-

absolute-deviation cost minimization model cannot be regarded as the conventional weighted 

transformation of the relevant multiobjective minimization model aiming to simultaneously 

minimize the mean value and absolute deviation. This paper further proves that the optimal 

solution obtained by the mean-absolute-deviation cost minimization model with the 

weighting not exceeding 0.5 will not be absolutely dominated by any other solution. This 

tight upper bound provides a useful guideline for practical applications.  
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1. Introduction 

Robust optimization is a field of optimization theory that deals with optimization 

problems where robustness is sought against uncertainty and/or variability in the value of a 

parameter or a solution of the problem. One line of research on robust optimization seeks to 

optimize the worst-case scenario (e.g., Ben-Tal et al., 2009). The other line of research aims 

to control the variability of the objective function in different scenarios. Mulvey et al. (1995) 

contributed to the second line of research by proposing the following mean-variance cost 

minimization model to cope with the uncertain parameters involved in the robust 

optimization model building:  

 ( )
2

MVmin ( ) ( ) ( )
s s s s s s

x X
s S s S s S

C x p x p x p x′ ′
∈ ′∈ ∈ ∈

 
= ξ + λ ξ − ξ 

 
∑ ∑ ∑  (1) 

This model is a weighted sum of the expected value and variance of the random cost, where 

n
X ⊆ℜ  is the set of feasible solutions; S  is the set of all possible scenarios (or realizations) 

of the uncertain parameters; ( )
s

xξ  is a deterministic cost incurred when the decision variable 

takes a particular value x X∈  for a specific scenario or realization of the uncertain 

parameters, s S∈ ; 
s

p  is the occurrence probability of scenario s S∈  and λ  is a given non-

negative weighting to balance the expected value of the random cost, expressed by the first 

term on the right-hand side of Eq. (1), and its variance with the weighting λ  shown by the 

second term on the right-hand side of Eq. (1). These occurrence probabilities should fulfill 

the fundamental condition: 

 1
s

s S

p
∈

=∑  (2) 
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For the ease of exposition, this paper assumes that any solution x X∈  is feasible to all the 

scenarios of the uncertain parameters. In other words, this paper only focuses on the solution 

robustness issue.    

It should be pointed out that taking the variance as one component of risk measure has its 

origin in Markowitz (1952). The variance term in the above mean-variance cost minimization 

model possesses a quadratic form resulting in more computing burden when solving the 

model. As a consequence, researchers have proposed several approaches to linearize the risk 

measure (see, Mansini et al., 2003). The absolute deviation (AD) is a frequently used 

approach for measuring the variability of the random cost since it is linear programming 

solvable. Absolute deviation is defined as  

 ( ) ( ) ( )
s s s s

s S s S

AD x p x p x′ ′
′∈ ∈

= ξ − ξ∑ ∑  (3) 

As a variation of the mean-variance cost minimization model, the mean-absolute-deviation 

cost minimization model can thus be formulated below: 

 ( )MADmin ( ) ( ) ( )
s s s s s s

x X
s S s S s S

C x p x p x p x′ ′
∈

′∈ ∈ ∈

= ξ +λ ξ − ξ∑ ∑ ∑  (4) 

The mean-absolute-deviation cost minimization model was first proposed by Konno and 

Yamazaki (1991) and later used in logistics analysis by Yu and Li (2000).  

In the mean-absolute-deviation cost minimization model (4), the weighting λ  plays a 

role to control the variability of the resulting cost of the solution. In other words, the 

variability of the optimal solution, measure by ( ) ( )
s s s s

s S s S

p x p x′ ′
′∈ ∈

ξ − ξ∑ ∑ , is non-increasing 

with the increase of λ . Mathematically, we have 
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Theorem 1: Let 1 20 ≤ λ < λ  and suppose that *

1( )x λ  is an optimal solution to the mean-

absolute-deviation cost minimization model (4) when  1λ = λ  and *

2( )x λ  is an optimal 

solution when  2λ = λ , then  

 * * * *

1 1 2 2( ( )) ( ( )) ( ( )) ( ( ))
s s s s s s s s

s S s S s S s S

p x p x p x p x′ ′ ′ ′
′ ′∈ ∈ ∈ ∈

ξ λ − ξ λ ≥ ξ λ − ξ λ∑ ∑ ∑ ∑  (5) 

Proof: Since *

1( )x λ  is an optimal solution when  1λ = λ , its objective value is no larger than 

any other feasible solution. Therefore, 

  

* * *

1 1 1 1

* * *

2 1 2 2

( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ( ))

s s s s s s

s S s S s S

s s s s s s

s S s S s S

p x p x p x

p x p x p x

′ ′
′∈ ∈ ∈

′ ′
′∈ ∈ ∈

ξ λ + λ ξ λ − ξ λ

≤ ξ λ + λ ξ λ − ξ λ

∑ ∑ ∑

∑ ∑ ∑
 (6) 

Similarly, since *

2( )x λ  is an optimal solution when  2λ = λ , it follows that 

 

* * *

2 2 2 2

* * *

1 2 1 1

( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ( ))

s s s s s s

s S s S s S

s s s s s s

s S s S s S

p x p x p x

p x p x p x

′ ′
′∈ ∈ ∈

′ ′
′∈ ∈ ∈

ξ λ + λ ξ λ − ξ λ

≤ ξ λ + λ ξ λ − ξ λ

∑ ∑ ∑

∑ ∑ ∑
 (7) 

Summing up Eqs. (6)-(7), and rearranging terms, we have 

 
* * * *

1 2 1 1 2 2( ) ( ( )) ( ( )) ( ( )) ( ( ))

                                                                 0

s s s s s s s s

s S s S s S s S

p x p x p x p x′ ′ ′ ′
′ ′∈ ∈ ∈ ∈

 
λ −λ ξ λ − ξ λ − ξ λ − ξ λ 

 
≤

∑ ∑ ∑ ∑  (8) 

Since 1 2λ < λ , Eq. (8) leads to Eq. (5).□ 

Since parameters λ  and 
s

p , s S∈ , are non-negative, the mean-absolute-deviation cost 

minimization model (4) can be equivalently transformed into the following minimization 

model by introducing two more non-negative variables 
s

+δ  and 
s

−δ  for each scenario s S∈ :  

 ( ) ( )MADmin , , ( )s s s s s s s

s S s S

C x p x p
+ − + −

∈ ∈

δ δ = ξ + λ δ + δ∑ ∑  (9) 

subject to ( ) ( ) ,
s s s s s

s S

p x x s S+ −
′ ′

′∈

ξ −ξ = δ − δ ∀ ∈∑  (10) 
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 , 0,
s s

s S
+ −δ δ ≥ ∀ ∈  (11) 

 x X∈  (12) 

Eq. (10) implies that  

 ( ) ( )
s s s s s

s S

p x x+ −
′ ′

′∈

δ = ξ −ξ + δ∑  (13) 

The minimization model (9)-(12) can be rewritten as follows after substituting variables 
s

+δ  

with the term on the right-hand side of Eq. (13):   

 ( )MADmin , ( ) ( ) ( ) 2
s s s s s s s s

x X
s S s S s S

C x p x p p x x
− −

′ ′
∈

′∈ ∈ ∈

 
δ = ξ + λ ξ −ξ + δ 

 
∑ ∑ ∑  (14) 

subject to ( ) ( ) 0,
s s s s

s S

p x x s S−
′ ′

′∈

ξ −ξ + δ ≥ ∀ ∈∑  (15) 

 0,
s

s S
−δ ≥ ∀ ∈  (16) 

The mean-absolute-deviation cost minimization model has a linear programming form 

and therefore it is computationally more tractable than the mean-variance cost minimization 

model. The mean-absolute-deviation cost minimization model has been widely used in 

revenue management (Lai and Ng, 2005; Lai et al., 2007), stochastic logistics optimization 

(Yu and Li, 2000; Leung et al., 2002), production planning (Leung et al., 2007a, b) and 

robust supply chain design (Pan and Nagi, 2010). 

There is no doubt that the weighting λ  has significant impacts on the optimal solution 

for the mean-absolute-deviation cost minimization model. A wide variability of the 

weightings has been taken by the researchers for solving different robust optimization 

problems. For example, Yu and Li (2000) and Leung et al. (2002, 2007a, 2007b) have set the 

weighting 1λ = ; Lai and Ng (2005) and Lai et al. (2007) have carried out the sensitivity 

analysis on the weighting λ  from the value 1 to several tens; Pan and Nagi (2010) gradually 

increased the value of λ  from 0 and reported the result when λ  equals 0, 1, 10 and a very 

large number. These studies generally observe that when the decision-maker is more 
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conservative, which corresponds to a larger weighting λ , the solution obtained by the mean-

absolute-deviation cost minimization model incurs a higher expected value of cost. Despite 

the numerical analysis, these studies have not examined the impact of the weighting in 

principle. This paper aims to rigorously derive a tight upper bound of the weighting and show 

that the solution obtained from the mean-absolute-deviation cost minimization model actually 

may not be an optimal decision provided that value of the weighting is greater than this upper 

bound.  

The remainder of this paper is organized as follows. Section 2 first uses a straightforward 

example to illustrate the difference between the mean-absolute-deviation model and 

multiobjective minimization model and impact of the weighting. It also defines the absolute 

domination relation. Section 3 gives a tight upper bound of the weighting. Section 4 further 

analyzes the impact of the weighting λ  using numerical examples. Conclusions are presented 

in Section 5.     

2. Definition of the absolute domination and differences between the mean-absolute-

deviation cost minimization model and multiobjective minimization model   

From pure mathematical point of view, the mean-absolute-deviation cost minimization 

model is a weighted transformation of the bi-objective minimization model aiming to 

simultaneously minimize the mean and absolute deviation of the random cost: 

 
( )
( )

( )

min

( ) ( )

s s

s S

x X

s s s s

s S s S

p x
C x

AD x p x p x

∈

∈
′ ′

′∈ ∈

 ξ
  

=      ξ − ξ   
 

∑

∑ ∑
 (17) 

However, such an interpretation is inappropriate to a certain extent as demonstrated by a 

hypothetical example as follows: 
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Illustrative Example: Suppose that a company can lease machines at the beginning of a year 

to produce products over the year. It is assumed that leasing price per machine is 500  USD 

and each machine can produce a maximum of 1000 units of the products. Marketing 

department of the company predicts that there are two possible demand scenarios 1s  and 2s  

for the products in the year: 
1

1200
s

d =  units and 
2

1500
s

d =  units, namely, { }1 2,S s s= . The 

probability of each demand scenario happening is 
1s

p = ε  and 
2

1
s

p = − ε , where parameter 

( )0,1ε∈ . The demand must be fulfilled. If the production capacity of the leased machines is 

not enough to meet the demand, the company will purchase the lacking products from other 

companies at the price of 1 USD/unit. This company is risk averse and aims to find the 

optimal number of machines to lease by taking into account two factors: minimization of the 

expected cost and the relevant absolute deviation. 

There are two potentially optimal solutions for the company to meet the demand:  lease 

one or two machines, namely, { }1, 2X = . Let solutions 1 1x =  and 2 2x = . The incurred cost 

for each given demand scenario with respect to a feasible solution can be calculated as 

follows: 

 ( )
1 11 1( ) 500 USD/machine 1000 1 USD/unit=700 USD 

s s
x x dξ = × + − ×  (18) 

 
1 2 2( ) 500 USD/machine =1000 USD 

s
x xξ = ×  (19) 

 ( )
2 21 1( ) 500 USD/machine 1000 1 USD/unit=1000 USD 

s s
x x dξ = × + − ×  (20) 

 
2 2 2( ) 500 USD/machine =1000 USD 

s
x xξ = ×  (21) 

The expected cost and absolute deviation of cost for each feasible solution can be hence 

calculated by  

 ( ) ( ) ( )1 1  700 1 1000 1000 300
s s

s S

C x p x
∈

= ξ = ε× + − ε × = − ε∑  (22) 
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 ( ) ( ) ( ) ( )1 1 1  600 1-s s

s S

AD x p x C x
∈

= ξ − = ε ε∑  (23) 

 ( ) ( ) ( )2 2  1000 1 1000 1000
s s

s S

C x p x
∈

= ξ = ε× + − ε × =∑  (24) 

 ( ) ( ) ( )2 2 2  0s s

s S

AD x p x C x
∈

= ξ − =∑  (25) 

According to Eqs. (22)-(25), it can be concluded that that both solutions 1x  and 2x  are 

Pareto optimal to the bi-objective minimization model (17) according to the multiobjective 

optimality conditions (Chankong and Haimes, 1983). This is because the following two 

vectors are non-dominated: 

 
( )
( ) ( )
1

1

1000 300

600 1

C x

AD x

  − ε 
=     ε − ε  

 (26) 

 
( )
( )
2

2

1000

0

C x

AD x

   
=       

 (27) 

In other words, there is no difference between these two solutions and whether 1x  or 2x  is 

chosen depends on the attitude toward risk in the mean-absolute-deviation cost minimization 

model. As a matter of fact, solution 1x  is always preferable to solution 2x  regardless of the 

attitude toward risk because in scenario 1s , solution 1x  is better than solution 2x  in that 1x  

has lower cost and in scenario 2s , both solutions 1x  and 2x  have the same cost. Therefore, 

the company should definitely choose solution 1x . The drawback of the mean-absolute-

deviation cost minimization model illustrated by this example is due to the inherent 

difference between the mean-absolute-deviation cost minimization and multiobjective 

optimization problems in the criterion to evaluate a solution. A mean-absolute-deviation cost 

minimization problem should take into account the cost incurred for each possible scenario 

rather than the expected cost and absolute deviation of cost. To deal with this issue, we define 

the following absolute domination as an extension of the conventional domination used in the 

multiobjective optimization studies: 
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Definition: A solution x X∈  absolutely dominates solution y X∈  if and only if 

( ) ( )s sx yξ ≤ ξ , s∀ ∈Ω , and there exists a particular scenario s ∈Ω  satisfying 

( ) ( )s sx yξ < ξ . Solution y X∈  is absolutely dominated by solution x X∈  provided that 

solution x  absolutely dominates solution y .  solution y X∈  is absolutely non-dominated if 

y  is not absolutely dominated by any solution x X∈ . 

According to this definition, solution 2x  is absolutely dominated by solution 1x  for the 

illustrative example. 

We now use the illustrative example to analyze impact of the weighting on the solution 

of the mean-absolute-deviation cost minimization model. The sum of the expected cost and 

the absolute deviation of cost in Eq. (4) for each feasible solution of the illustrative example 

can be calculated as follows: 

  ( ) ( ) ( ) ( )MAD 1 1 1 1000 300 600 1C x C x AD x= + λ = − ε + λε − ε  (28) 

 ( ) ( ) ( )MAD 2 2 2 1000C x C x AD x= + λ =  (29) 

If we set the weighting 0.5λ =  in the mean-absolute-deviation model (4), it follows that  

   ( ) ( )2

MAD 1 MAD 21000 300 1000C x C x= − ε < =  (30) 

Eq. (30) implies that the absolutely non-dominated solution 1x  is the solution to the model. 

However, when the weighting 1.0λ =  and ( )0,0.5ε∈ , we have 

 ( ) ( ) ( )MAD 1 MAD 21000 300 1 2 > 1000C x C x= + ε − ε =  (31) 

Eq. (31) indicates that the worse solution 2x  (since it is absolutely dominated by 1x ) is 

chosen by the mean-absolute-deviation cost minimization model. The illustrative example 

clearly demonstrates the importance of the weighting for the mean-absolute-deviation cost 

minimization model. It is thus necessary to derive a range of the weighting such that the 
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optimal solution of the mean-absolute-deviation cost minimization model excludes all 

absolutely dominated solutions. 

3. A tight upper bound for the weighting λ 

The illustrative example shows that the mean-absolute-deviation cost minimization 

model is inherently different from the multiobjective minimization model. It is possible to 

obtain an absolutely dominated solution, namely, a worse solution by the mean-absolute-

deviation cost minimization model for some value of the weighting λ. We now rigorously 

prove that none of the absolutely dominated solutions will be an optimal solution to the 

mean-absolute-deviation cost minimization model for the weighting ( ]0,0.5λ∈ .   

It is straightforward to prove the lemma as follows: 

Lemma: For any two real numbers ,a b∈ℜ , we have  

 a b a b− ≤ −  (32) 

 ,  if 0a b a b ab+ < + <  (33) 

Based on the lemma above, we have the following interesting theorem: 

Theorem 2: If *
x  is an optimal solution to the mean-absolute-deviation cost minimization 

model (4) with a specific weighting ( ]0,0.5λ∈ , then *
x  is an absolutely non-dominated 

solution.   

Proof: Suppose that the optimal solution *
x  is not an absolutely non-dominated solution. 

Hence, there is a solution y X∈  absolutely dominating the optimal solution *
x , namely: 

 ( ) ( )* ,
s s

y x s Sξ ≤ ξ ∀ ∈  (34) 

and there exists at least one particular scenario s S∈  such that  

 ( ) ( )*

s s
y xξ < ξ  (35) 
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Therefore the average cost defined by Eq. (17) with respect to solutions *
x  and y  satisfies:  

 ( ) ( )*C y C x<  (36) 

According to the lemma and Eqs. (34), (35) and (36), we have  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* *

* *

* * * *

\

* * * *

\

* *

\

s s s

s S

s s s

s S

s s s s s s

s S s

s s s s s s s

s S s

s s s

s S s

p y C y x C x

p y x C x C y

p y x C x C y p y x C x C y

p y x C x C y p y x p C x C y

p x y C x C y

∈

∈

∈

∈

∈

 ξ − − ξ − 

   ≤ ξ − ξ + −   

        = ξ − ξ + − + ξ −ξ + −         

  < ξ − ξ + − + ξ − ξ + −   

 = ξ − ξ + − 

∑

∑

∑

∑

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

* *

* *

*2

s s s s

s s s s

s S s S

p x y p C x C y

p x p y C x C y

C x C y

∈ ∈

     + ξ − ξ + −      

= ξ − ξ + −

 = − 

∑

∑ ∑

(37)

For any ( ]0,0.5λ∈ , it can thus be seen that 

 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

*

MAD MAD

* * *

* * *

* *

*

2

2 1 0

s s s s

s S s

s s s

s S

C y C x

C y p y C y C x p x C x

C y C x p y C y x C x

C y C x C x C y

C x C y

∈ ∈Ω

∈

−

 
= + λ ξ − − + λ ξ − 

 

  = − + λ ξ − − ξ −   

   < − + λ −   

 = λ − − ≤ 

∑ ∑

∑  (38) 

In other words, we have 

 ( ) ( )*

MAD MAD<C y C x  (39) 

Eq. (39) implies a contradiction that *
x  is the optimal solution to the mean-absolute-deviation 

cost minimization model (4). □ 

Theorem 2 shows that 0.5 is an upper bound on the weighting λ to guarantee that none of 

the absolutely dominated solutions is an optimal solution to the mean-absolute-deviation cost 

minimization model. We now demonstrate the tightness of this bound using the illustrative 
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example. For the illustrative example, let us take 0.5λ = + δ  where 0δ > . According to Eqs. 

(28)-(29), it can be seen that 

 ( )MAD 2 MAD 1( ) ( ) 300 1 2 2C x C x− = ε× + δ ε − δ    (40) 

We can thus choose an ( )2 / 1 2ε < δ + δ   and hence MAD 2 MAD 1( ) ( )C x C x< . Namely, solution 

2x , which is absolutely dominated by solution 1x , is yielded by the mean-absolute-deviation 

cost minimization model. 

We note that given a specific problem, 0.5λ >  does not necessarily mean that an 

absolutely dominated solution will be obtained from the mean-absolute-deviation cost 

minimization model. Moreover, for some practical problems, it might be possible that the 

decision maker is so risk averse that she chooses the value of λ  larger than 0.5. Therefore it 

is necessary to check whether the optimal solution to the mean-absolute deviation cost 

minimization model, denoted by *
x , is absolutely dominated. This can be implemented by 

solving the minimization model below: 

[Check Model] min ( )
s s

x X s

C p x
∈ ∈Ω

= ξ∑  (41) 

subject to *( ) ( ),
s s

x x s Sξ ≤ ξ ∀ ∈  (42) 

Theorem 3: If the optimal objective function value of (41) equals that of the mean-absolute-

deviation cost minimization model (4), then *
x  is absolutely non-dominated.  Otherwise *

x  is 

absolutely dominated. 

The proof of Theorem 3 is straightforward. Denote by x̂  the optimal solution to Eqs. (41)-

(42). If *ˆ( ) ( )
s s s s

s s

p x p x
∈Ω ∈Ω

ξ = ξ∑ ∑ , namely, *
x  is absolutely non-dominated, then we have 

*ˆ( ) ( ),
s s

x x s Sξ = ξ ∀ ∈  as a consequence of the constraints (42). Therefore, either *
x̂ x=  or x̂  

and *
x  lead to the same cost in any scenario s S∈ . In other words, there is no difference 

between x̂  and *
x  whatever criterion is being used. If *

x  is absolutely dominated by x̂ , x̂  is 
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absolutely non-dominated. In such a circumstance, we can either decrease the value of λ 

and reoptimize the mean-absolute-deviation cost minimization model (4), or use x̂  as the 

final decision in place of *
x . 

4. Numerical examples 

In this section we use numerical examples to test whether it is often the case that the 

solution of the mean-absolute-deviation cost minimization model is absolutely dominated 

when 0.5λ > . We had better test the solutions obtained by existing studies (Yu and Li, 2000; 

Leung et al., 2002, 2007a, b, Lai and Ng, 2005; Lai et al., 2007, Pan and Nagi, 2010) using 

the model (41)-(42). Nevertheless, the data used in these studies are not readily available. 

Therefore, we have to use other numerical examples.  

To ensure that the scenarios and their probabilities are representative, we use several 

portfolio optimization examples based on historical data of the S&P 100. The S&P 100 is 

comprised of 100 leading U.S. stocks with exchange-listed options. Constituents of the S&P 

100 are selected for sector balance and represent almost 45% of the market capitalization of 

the U.S. equity markets. The stocks in the S&P 100 are generally among the largest and most 

established companies. We download the S&P 100 historical data from Option Trading Tips 

(2011). Since this dataset is incomplete in that the trading information for some stocks on 

some days is missing, we choose 91 stocks and analyze the monthly rate of return from 

January 2000 to December 2009 for each stock. Each month is considered as a scenario, and 

altogether there are 120 scenarios. We generate 15 test instances, each of which having 12 or 

24 scenarios (months), as shown in the first three columns of Table 1. 

To formulate the problem, let 
j

R  be a random variable representing the rate of return per 

period of stock j , 1, 2j n= ⋯ , 91n = . Denote by 
j

r  the expected value of 
j

R , and 
jt

r  the 

rate of return of stock j  in scenario t , 1, 2t T= ⋯ . T  is equal to 12 or 24 in the test instances. 
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Without loss of generality, we assume that the total fund for investment is 1. Let 
j

u  be the 

maximum money that can be invested in stock j  and let 
j

x  be the money that will be 

invested in stock j . We set 0.2
j

u =  for all j . The optimal portfolio selection problem can 

be formulated as the mean-absolute-deviation model with the weighting λ : 

 

MAD

1 1 1

1 1

1
min

1
              

j

n n T

j j jt j j j
x

j j t

n T

jt j j j

j t

C r x r x r x
T

r r r x
T

= = =

= =

= − + λ −

 
= λ − − 

 

∑ ∑ ∑

∑ ∑
 (43) 

subject to 
1

1
n

j

j

x
=

=∑  (44) 

 0 , 1, 2
j j

x u j n≤ ≤ = L  (45) 

We solve the above mean-absolute-deviation model for the 15 test instances with 

parameter {1, 2,5,10,100}λ∈ , and then use the minimization model expressed by Eqs. (41)-

(42) to check whether the optimal solution is absolutely dominated by another solution. The 

results are shown in Table 1, where “Y” represents that the obtained solution is absolutely 

dominated by another solution. According to Table 1, a larger λ  tends to yield an absolutely 

dominated solution. In all the instances whenever a λ  yields an absolutely dominated 

solution, all larger λ  will also yield absolutely dominated solutions. The results in Table 1 

demonstrate that the solutions obtained by the mean-absolute-deviation model with 12 or 24 

scenarios are frequently absolutely dominated. It should be mentioned that the larger the 

number of scenarios is, the less likely that a solution is to be absolutely dominated. This is 

because if a solution is absolutely dominated, there must be another solution that is not worse 

than it in every scenario. In practice, planners in industries such as logistics and production 

generally can only propose a few scenarios due to the insufficiency of historical data, for 

example, 4 scenarios for one example and 1 to 12 scenarios for the other example in Yu and 
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Li (2000), 4 scenarios in Leung et al. (2002, 2007a, 2007b), 4 scenarios in Lai and Ng (2005) 

and 3 scenarios in Lai et al. (2007). Therefore, the solutions obtained by these studies are 

very likely to be absolutely dominated. This highlights the importance of our study. 

Table 1 Absolute domination results 

ID Year # Month λ=1 λ=2 λ=5 λ=10 λ=100 

1 2000 12  Y Y Y Y 

2 2001 12 Y Y Y Y Y 

3 2002 12 Y Y Y Y Y 

4 2003 12  Y Y Y Y 

5 2004 12 Y Y Y Y Y 

6 2005 12  Y Y Y Y 

7 2006 12 Y Y Y Y Y 

8 2007 12  Y Y Y Y 

9 2008 12    Y Y 

10 2009 12  Y Y Y Y 

11 2000-2001 24  Y Y Y Y 

12 2002-2003 24 Y Y Y Y Y 

13 2004-2005 24  Y Y Y Y 

14 2006-2007 24   Y Y Y 

15 2008-2009 24      

5. Conclusions 

This paper has analyzed the significant impact of the weighting involved in the mean-

absolute-deviation cost minimization model and pointed out the differences between the 

mean-absolute-deviation cost minimization model and the multiobjective optimization 

problems. These differences enable us to define the absolute domination relation. The mean-

absolute-deviation cost minimization model, despite its robustness, may yield an absolutely 

dominated solution. The tight upper bound on the weighting for the absolute deviation of cost 

is derived, whereby all the absolutely dominated solutions are excluded from the mean-
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absolute-deviation cost minimization model. We also presented a model for checking whether 

an absolutely dominated solution is obtained in problems with the weighting larger than the 

tight upper bound. Numerical experiments demonstrate that the solutions obtained by the 

mean-absolute-deviation model with 12 or 24 scenarios are frequently absolutely dominated. 

Hence, our analysis on the weighting has practical implications for planners in industries such 

as logistics and production where in general only a small number of scenarios can be 

considered. 
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