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ON THE WELL-POSEDNESS AND REGULARITY OF THE WAVE EQUATION
WITH VARIABLE COEFFICIENTS ∗
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Abstract. An open-loop system of a multidimensional wave equation with variable coefficients, par-
tial boundary Dirichlet control and collocated observation is considered. It is shown that the system is
well-posed in the sense of D. Salamon and regular in the sense of G. Weiss. The Riemannian geometry
method is used in the proof of regularity and the feedthrough operator is explicitly computed.
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1. Introduction and main results

In the last two decades, the class of well-posed and regular linear systems has been studied extensively [5,23].
It has been demonstrated that this class of systems is quite general: it covers many control systems described by
partial differential equations with actuators and sensors supported at isolated points, sub-domains, or on a part
of the boundary of the spatial region. More importantly, this class of infinite-dimensional systems, although
the input and output operators are allowed to be unbounded, may possess many properties that are parallel in
many ways to those of finite-dimensional systems.

In particular, the concept of “regularity” is a completely new concept in this framework. However, while
the abstract theory has been quite fruitful, these properties are rarely checked for control systems described by
partial differential equations [4]. The well-posedness and regularity of a multidimensional heat equation with
both Dirichlet and Neumann type boundary controls were established in [3]. For a wave equation with constant
coefficients, boundary Dirichlet input and collocated output on a bounded open domain of Rn with smooth
boundary, the well-posedness was proved in [1] and the regularity was proved recently in [11]. The regularity
of multidimensional Schrödinger and Euler-Bernoulli equations with certain types of control and observation
were shown in [9] and [10], respectively. Other results on the well-posedness and regularity of control systems
described by multidimensional partial differential equations can be found in [20, 22], etc.

Most of the aforementioned multidimensional partial differential equations are with constant coefficients. In
this paper, we generalize the results of [1, 11] to the variable coefficients case. The system is described by the
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following wave equation with variable coefficients, partial boundary Dirichlet control and collocated observation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wtt(x, t) −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂w(x, t)
∂xj

)
= 0, x = (x1, x2, . . . , xn) ∈ Ω, t > 0,

w(x, t) = 0, x ∈ Γ1, t > 0,

w(x, t) = u(x, t), x ∈ Γ0, t > 0,

y(x, t) = −∂A
−1wt(x, t)
∂νA

, x ∈ Γ0, t > 0,

(1.1)

where Ω ⊂ Rn(n ≥ 2) is an open bounded region with smooth boundary ∂Ω =: Γ = Γ0 ∪ Γ1. Γ0,Γ1 are disjoint
parts of the boundary relatively open in ∂Ω with int(Γ0) �= ∅.

Aw(x, t) := −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂w(x, t)
∂xj

)
, D(A) = H2(Ω) ∩H1

0 (Ω)

and for some constant a > 0,

aij(x) = aji(x) ∈ C∞(Rn),
n∑

i,j=1

aij(x)ξiξj ≥ a|ξ|2, ∀x ∈ Ω, ξ = (ξ1, ξ2, . . . , ξn) ∈ C
n, (1.2)

νA :=

(
n∑

k=1

νkak1(x),
n∑

k=1

νkak2(x), . . . ,
n∑

k=1

νkakn(x)

)
,

∂

∂νA
:=

n∑
i,j=1

νiaij(x)
∂

∂xj
, (1.3)

where ν = (ν1, ν2, . . . , νn) is the unit normal of ∂Ω pointing towards the exterior of Ω. u is the input function
(or control) and y is the output function (or observation).

Let H = L2(Ω) ×H−1(Ω) and U = L2(Γ0). The following theorem is the generalization of Proposition 2.2
of [1] for the system (1.1) with constant coefficients.

Theorem 1.1. Let T > 0, (w0, w1) ∈ H and u ∈ L2(0, T ;U). Then there exists a unique solution (w,wt) ∈
C([0, T ];H) to the system (1.1), which satisfies w(·, 0) = w0 and wt(·, 0) = w1. Moreover, there exists a constant
CT > 0, independent of (w0, w1, u), such that

‖(w(·, T ), wt(·, T ))‖2
H + ‖y‖2

L2(0,T ;U) ≤ CT

[
‖(w0, w1)‖2

H + ‖u‖2
L2(0,T ;U)

]
.

Theorem 1.1 implies that the open-loop system (1.1) is well-posed in the sense of D. Salamon with the state
space H and with the input and output space U [11]. From this result and Theorem 2.2 of [2] (see also Th. 3
of [8]), we know that the system (1.1) is exactly controllable in some time interval [0, T ] if and only if its
closed-loop system under the output proportional feedback u = −ky, k > 0 is exponentially stable. We can
thereby say that the conditions for the exponential stabilization [15] and for the exact controllability [19] of the
wave equation with constant coefficients should be the same. Moreover, for the case of variable coefficients, the
condition for the exact controllability stated in Theorem 1.1 of [24] is also the condition for the exponential
stability of the closed-loop system (1.1) under the feedback u = −ky, k > 0. This fact leads to the following
interesting example that comes from [24] and was studied numerically in [7].

Example 1.1. Let n = 2 and

a11(x1, x2) = a22(x1, x2) = (1 + x2
1 + x2

2)
2, a12(x1, x2) = a21(x1, x2) = 0.
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Suppose ∂B1 ⊂ Ω, where B1 is the unit ball of R2. From Example 4.1 of [24] we know that in this case, the
system (1.1) is not exactly controllable even if the control is imposed on the whole boundary: Γ0 = ∂Ω. By
the equivalence between exact controllability and exponential stability just explained above, we can now say
that for this example, there exists an initial datum (w(·, 0), wt(·, 0)) ∈ H for which the closed-loop system (1.1)
under the output proportional feedback u = −ky is not exponentially stable for any k > 0.

Theorem 1.2. The system (1.1) is regular in the sense of Weiss [21]. More precisely, if w(·, 0) = wt(·, 0) = 0
and u(·, t) ≡ u(·) ∈ U is a step input, then the corresponding output y satisfies

lim
σ→0

∫
Γ0

∣∣∣∣ 1σ
∫ σ

0

y(x, t)dt− |νA(x)|gu(x)
∣∣∣∣2 dx = 0, (1.4)

where

|νA(x)|2g =
n∑

i,j=1

(
gij(x)

n∑
k=1

νkaki(x)
n∑

l=1

νlalj(x)

)
, (gij(x)) = A(x)−1, A(x) = (aij(x)), ∀x ∈ Γ.

Theorems 1.1 and 1.2 ensure that the system (1.1) is a well-posed regular linear system with feedthrough
operator (Du)(x) = |νA(x)|gu(x) for any u ∈ U . The main contributions of this paper are: (a) generalizing
the results of [1, 11] for the system (1.1) where the coefficients are constant to the variable ones; (b) much
simplifying the regularity proof of [11] by using multiplier method on Riemannian manifolds.

The remaining part of the paper are organized as follows. In Section 2, we cast the system (1.1) into an
abstract setting studied in [2] and [8]. The proofs of Theorems 1.1 and 1.2 will be presented in Sections 3 and 4,
respectively.

2. Collocated formulation of the system (1.1)

Let H = H−1(Ω) be the dual space of the Sobolev space H1
0 (Ω) with usual inner product. Let A be the

positive self-adjoint operator in H induced by the bilinear form a(·, ·) defined by

〈Af, g〉H−1(Ω)×H1
0 (Ω) = a(f, g) =

n∑
i,j=1

∫
Ω

aij(x)
∂f

∂xj

∂g

∂xi
dx, ∀f, g ∈ H1

0 (Ω)

where aij(x) are given by (1.2).
By means of the Lax-Milgram theorem, A is a canonical isomorphism from D(A) = H1

0 (Ω) onto H . It is
easy to show that Af = Af whenever f ∈ H2(Ω) ∩H1

0 (Ω) and that A−1g = A−1g for any g ∈ L2(Ω). Hence A
is an extension of A to the space H1

0 (Ω).
It can be easily shown that D(A1/2) = L2(Ω) and A1/2 is an isomorphism from L2(Ω) onto H . Define the

map Υ ∈ L(L2(Γ0), H1/2(Ω)) [15] by Υu = v if and only if{
Av(x) = 0, x ∈ Ω,

v(x) = 0, x ∈ Γ1; v(x) = u(x), x ∈ Γ0.
(2.1)

By virtue of the above map, one can write (1.1) as

ẅ +A(w − Υu) = 0. (2.2)

Since D(A) is dense in H , so is D(A1/2). We identify H with its dual H ′. Then the following relations hold:

D(A1/2) ↪→ H = H ′ ↪→ (D(A1/2))′.
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An extension Ã ∈ L(D(A1/2), (D(A1/2))′) of A is defined by

〈Ãf, g〉(D(A1/2))′×D(A1/2) = 〈A1/2f,A1/2g〉H , ∀f, g ∈ D(A1/2). (2.3)

So (2.2) can be further written in (D(A1/2))′ as

ẅ + Ãw +Bu = 0,

where B ∈ L(U, (D(A1/2))′) is given by

Bu = −ÃΥu, ∀u ∈ U. (2.4)

Define B∗ ∈ L(D(A1/2), U) by

〈B∗f, u〉U = 〈f,Bu〉D(A1/2)×(D(A1/2))′ , ∀f ∈ D(A1/2), u ∈ U.

Then for any f ∈ D(A1/2) and u ∈ C∞
0 (Γ0), we have

〈f,Bu〉D(A1/2)×(D(A1/2))′ = 〈f, ÃÃ−1Bu〉D(A1/2)×(D(A1/2))′ = 〈A1/2f,A1/2Ã−1Bu〉H
= −〈A1/2f,A1/2Υu〉H = −〈f,Υu〉L2(Ω)

= −〈AA−1f,Υu〉L2(Ω) =
〈
∂A−1f

∂νA
, u

〉
U

.

(2.5)

In the last step, we have used the fact

n∑
i,j=1

∫
Ω

aij
∂v

∂xj

∂φ

∂xi
dx = 0, ∀φ ∈ H1

0 (Ω),

which holds for any classical solution v of (2.1). Since C∞
0 (Γ0) is dense in U = L2(Γ0), we finally obtain that

B∗ =
∂A−1

∂νA

∣∣∣∣
Γ0

· (2.6)

Now, we have formulated the open-loop system (1.1) into an abstract form of a second-order system in the state
space H = L2(Ω) ×H−1(Ω): {

ẅ(t) + Ãw(t) +Bu(t) = 0,
y(t) = −B∗ẇ(t),

(2.7)

where B and B∗ are defined by (2.4) and (2.6), respectively. The abstract system (2.7) has been studied in
detail in [2] and [8].

3. Proof of theorem 1.1

In this section, we generalize Proposition 2.2 of [1] to the variable coefficients case. While most of places of
the proof are the same to Theorem 1.1 of [16] for the constant coefficients case, we would rather give the proof
in detail for the sake of completeness.

In what follows, the CT is used frequently to denote some positive constant that is independent of (y, u)
although it may change values from different contexts. We rewrite (1.1) with zero initial data by the operator A
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into the form: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wtt + Aw = 0 in Ω × (0,∞),

w(·, 0) = 0, wt(·, 0) = 0 in Ω,

w = u on Γ0 × (0,∞),

y = −∂A
−1wt

∂νA
on Γ0 × (0,∞).

(3.1)

By Propositions 3.2 and 3.3 of [2] (see also [23]), Theorem 1.1 is equivalent to saying that the solution to (3.1)
satisfies

‖y‖L2(0,T ;U) ≤ CT ‖u‖L2(0,T ;U), ∀u ∈ L2(0, T ;U). (3.2)

By considering u|Γ1 = 0, we may assume without loss of generality that Γ0 = Γ = ∂Ω. Let z := A−1wt, where
w is a solution of (3.1).

Since y = −B∗wt = −∂A−1wt

∂νA = − ∂z
∂νA , (3.2) is equivalent to

‖B∗wt‖L2(0,T ;L2(Γ)) ≤ CT ‖u‖L2(0,T ;L2(Γ)) (3.3)

or ∥∥∥∥ ∂z

∂νA

∥∥∥∥
L2(0,T ;L2(Γ))

≤ CT ‖u‖L2(0,T ;L2(Γ)), (3.4)

where z satisfies ⎧⎪⎪⎨⎪⎪⎩
ztt + Az = Υut in Ω × (0,∞),

z(·, 0) = 0, zt(·, 0) = 0 in Ω,

z = 0 on Γ × (0,∞).

(3.5)

Let Σ = Γ× (0, T ), Q = Ω× (0, T ). And denote L2(Σ) := H0(Σ) = L2(0, T ;L2(Γ)), H1(Σ) := L2(0, T ;H1(Γ))∩
H1(0, T ;L2(Γ)), H−1(Σ) := (H1(Σ))′.

The following lemma is Theorem 2.3 of [17] in the variable coefficients case, which has already been indicated
in the same paper.

Lemma 3.1. Assume that

F ∈ L1(0, T ;H−1(Ω)), Φ0 ∈ L2(Ω), Φ1 ∈ H−1(Ω), u ∈ L2(Σ)

and Ã is a second-order uniformly strongly elliptic operator:

Ã := −
n∑

i,j=1

∂

∂xi

(
ãij(x)

∂

∂xj

)
,

where for some α > 0

ãij(x) = ãji(x) ∈ C∞(Rn),
n∑

i,j=1

ãij(x)ξiξj ≥ α|ξ|2, ∀x ∈ Ω, ξ = (ξ1, ξ2, . . . , ξn) ∈ C
n,

νÃ :=

(
n∑

k=1

νkãk1(x),
n∑

k=1

νkãk2(x), . . . ,
n∑

k=1

νkãkn(x)

)
.
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Then the solution Φ to the following equation⎧⎨⎩ Φtt + ÃΦ = F in Q,
Φ(·, 0) = Φ0, Φt(·, 0) = Φ1 in Ω,
Φ = u on Σ

(3.6)

satisfies

(Φ,Φt) ∈ C([0, T ];L2(Ω) ×H−1(Ω)),
∂Φ
∂νÃ

∈ H−1(Σ).

Remark 3.1. In Lemma 3.1, one can show that Φ, Φt and ∂Φ
∂νÃ

depend continuously on the given datum.
Similar remarks apply to all subsequent regularity results.

Apply Lemma 3.1 to (3.1) to get the regularity: (w,wt) ∈ C([0, T ];L2(Ω)×H−1(Ω)). This produces in turn
the regularities of z, the solution of (3.5):{

z ∈ C([0, T ];H1
0 (Ω)), Az = wt ∈ C([0, T ];H−1(Ω)),

zt = A−1wtt = A−1[−Ãw + ÃΥu] = −w + Υu ∈ L2(0, T ;L2(Ω)).
(3.7)

Like Lemma 3.1, the following lemma is a direct corollary of Theorem 2.2 of [17] in the variable coefficients
case.

Lemma 3.2. For the problem (3.6), if

F ∈ L1(0, T ;H1
0 (Ω)), Φ0 = Φ1 = 0, u = 0,

then ∂Φ
∂νÃ

∈ H1(Σ).

Lemma 3.3. Let Ψ be a function defined on Q. Suppose Ψ = 0 on Σ. Then for s = −1 or s = 0,

∂Ψ
∂νÃ

∈ Hs(Σ) ⇐⇒ ∂Ψ
∂ν

∈ Hs(Σ).

Moreover, there exists a constant C > 0 such that

C−1

∥∥∥∥∂Ψ
∂ν

∥∥∥∥
Hs(Σ)

≤
∥∥∥∥ ∂Ψ
∂νÃ

∥∥∥∥
Hs(Σ)

≤ C

∥∥∥∥∂Ψ
∂ν

∥∥∥∥
Hs(Σ)

·

Proof. Since Ψ = 0 on Σ, it has ∂Ψ
∂xj

= νj
∂Ψ
∂ν on Σ for any 1 ≤ j ≤ n, and so ∂Ψ

∂νÃ
=
∑n

i,j=1 ãijνiνj
∂Ψ
∂ν on Σ. By

assumption, we may assume that

C−1 ≤ sup
x∈Ω

n∑
i,j=1

ãijνiνj ≤ C

for some C > 0. We only show that ∂Ψ
∂νÃ

∈ H−1(Σ) =⇒ ∂Ψ
∂ν ∈ H−1(Σ) and ‖∂Ψ

∂ν ‖H−1(Σ) ≤ C‖ ∂Ψ
∂νÃ

‖H−1(Σ) since
the proofs for other cases are similar. Now, for any h ∈ H1

0 (Σ), it has∣∣∣∣∫
Σ

∂Ψ
∂ν

hdΣ
∣∣∣∣ =

∣∣∣∣∣
∫

Σ

∂Ψ
∂νÃ

h∑n
i,j=1 ãijνiνj

dΣ

∣∣∣∣∣ ≤
∥∥∥∥ ∂Ψ
∂νÃ

∥∥∥∥
H−1(Σ)

·
∥∥∥∥∥ h∑n

i,j=1 ãijνiνj

∥∥∥∥∥
H1

0 (Σ)

≤ C

∥∥∥∥ ∂Ψ
∂νÃ

∥∥∥∥
H−1(Σ)

· ‖h‖H1
0(Σ).

This yields ‖∂Ψ
∂ν ‖H−1(Σ) ≤ C‖ ∂Ψ

∂νÃ
‖H−1(Σ). The proof is complete. �
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Proof of Theorem 1.1. The proof will be split into four steps.

Step 1. Let u ∈ L2(Σ). Then by Lemma 3.1, the solution to (3.1) satisfies

(w,wt) ∈ C([0, T ];L2(Ω) ×H−1(Ω)),
∂w

∂νA

∣∣∣∣
Σ

∈ H−1(Σ). (3.8)

Since Υu ∈ L2(0, T ;H1/2(Ω)), it follows that [13]

∂

∂νA
Υu ∈ L2(0, T ;H−1(Γ)) ⊂ H−1(Σ). (3.9)

Substituting (3.8) and (3.9) into (3.7) yields

∂zt

∂νA
= − ∂w

∂νA
+

∂

∂νA
Υu ∈ H−1(Σ).

Since z = 0 on Σ, so does zt on Σ. Therefore, it follows from Lemma 3.3 that

∂zt

∂ν
∈ H−1(Σ). (3.10)

Step 2. Like the case of constant coefficients in [11], we can use the transform of geodesic normal coordinates
to change locally Ω and Γ to Ω̂ := {(x, y) ∈ Rn, x > 0, y ∈ Rn−1} and Γ̂ := {(x, y) ∈ Rn, x = 0, y ∈ Rn−1}.
Under such a change of coordinates, the operator A is changed locally to Â := D2

x + r(x, y)D2
y − lot ([18]

or Cor. C.5.3 of [12]), where “lot” denotes the first-order differential operators and r(x, y)D2
y stands for the

second-order tangential strongly elliptic operator in y variable. Denote by ŵ for w, the solution of (3.1), and
by û for u under this change of coordinates. Since ŵ has zero initial data, one can also extend ŵ(t) to be zero
for t < 0. Let φ ∈ C∞

0 (R), |φ| ≤ 1, be a smooth cutoff function in R with φ(t) = 0 for t ≥ (3/2)T and φ(t) = 1
while t ∈ [0, T ] and put

v := ŵφ.

Then v satisfies ⎧⎪⎪⎨⎪⎪⎩
vtt = −Âv = −A0v + lot(ŵ) in Ω̂ × (0,∞),
v(·, 0) = vt(·, 0) = 0 in Ω̂,
v = φû on Γ̂ × (0,∞),
supp(v) ⊂ [0, (3/2)T ],

where A0 := D2
x + r(x, y)D2

y is the principal part of Â. Denote Σ̂ := Γ̂ × (0, T ).
Now, decompose v = ϕ+ ψ, where ϕ, ψ satisfy (3.11) and (3.13) below, respectively.
By Lemma 3.1, the solution ϕ to the following equation⎧⎪⎨⎪⎩

ϕtt + A0ϕ = 0 in Ω̂ × (0,∞),
ϕ(·, 0) = ϕt(·, 0) = 0 in Ω̂,
ϕ = φû on Γ̂ × (0,∞),

(3.11)

satisfies
(ϕ,ϕt) ∈ C([0, T ];L2(Ω̂) ×H−1(Ω̂)). (3.12)

ψ satisfies the following equation ⎧⎪⎨⎪⎩
ψtt + A0ψ = f in Ω̂ × (0,∞),
ψ(·, 0) = ψt(·, 0) = 0 in Ω̂,
ψ = 0 on Γ̂ × (0,∞),

(3.13)
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where f = lot(ŵ). Recalling that w ∈ C([0, T ];L2(Ω)) by (3.8) and so ŵ ∈ C([0, T ];L2(Ω̂)), we obtain, by
Lemma 3.1, that

f ∈ C([0, T ];H−1(Ω̂)) and hence (ψ, ψt) ∈ C([0, T ];L2(Ω̂) ×H−1(Ω̂)). (3.14)

This together with (3.12) gives
(v, vt) ∈ C([0, T ];L2(Ω̂) ×H−1(Ω̂)).

Step 3. We show that for the nonhomogeneous problem (3.13), the map

û �→ B∗ψt : is continuous from L2(Σ̂) to L2(Σ̂). (3.15)

Indeed, since the map û �→ f = lot(ŵ) is continuous from L2(Σ̂) to L2(0, T ;H−1(Ω̂)), it suffices to show that

f �→ B∗ψt : is continuous from L2(0, T ;H−1(Ω̂)) to L2(Σ̂). (3.16)

Apply A−1
0 to (3.13) to give ⎧⎪⎨⎪⎩

Ψtt + A0Ψ = A−1
0 f in Ω̂ × (0,∞),

Ψ(·, 0) = Ψt(·, 0) = 0 in Ω̂,
Ψ = 0 on Γ̂ × (0,∞),

(3.17)

where Ψ := A−1
0 ψ satisfies, by (3.14), that

Ψ ∈ H2(Ω̂) ∩H1
0 (Ω̂), A−1

0 f ∈ L2(0, T ;H1
0(Ω̂)), A−1

0 ψt ∈ C([0, T ];H1
0 (Ω̂)).

Apply Lemma 3.2 to problem (3.17) to obtain

∂Ψ
∂νA0

∈ H1(Σ̂) and so
∂Ψt

∂νA0

∈ L2(Σ̂).

Finally, by (2.6), B∗ψt = B∗A0A−1
0 ψt = B∗A0Ψt = ∂Ψt

∂νA0
, it follows from Remark 3.1 that A−1

0 f �→ ∂Ψt

∂νA0
=

B∗ψt is continuous from L2(0, T ;H1
0 (Ω̂)) to L2(Σ̂). (3.16) then follows from a trivial fact that f �→ A−1

0 f is
continuous from L2(0, T ;H−1(Ω̂)) to L2(0, T ;H1

0(Ω̂)).

Step 4. The proof will be accomplished if we can show that for problem (3.11), the map

û �→ B∗ϕt : is continuous from L2(Σ̂) to L2(Σ̂). (3.18)

Comparing problem (3.1) with problem (3.11) and noticing the equivalences of (3.2), (3.3) and (3.4), we find
that (3.18) is equivalent to ∥∥∥∥ ∂ẑ

∂νA0

∥∥∥∥
L2(Σ̂)

≤ CT ‖û‖L2(Σ̂), where ẑ := A−1
0 ϕt. (3.19)

Let X (x, y, t) ∈ S0(Ω̂ × R) be a pseudodifferential operator with smooth symbol of localization χ(x, y, t, η, σ)
supported in the elliptic sector of � := D2

t − D2
x − r(x, y)D2

y , where the principal part of the D’Alambertian
is written in local coordinates. Here the dual variables η ∈ Rn−1, σ ∈ R correspond to the Fourier’s variables
of y �→ iη, t �→ iσ. Suppose supp(χ) ⊂ {(x, y, t, η, σ) ∈ Ω̂ × R × Rn−1 × R, |σ| ≤ C1|η|}, and supp(1 − χ) ⊂
{(x, y, t, η, σ) ∈ Ω̂ × R × Rn−1 × R, |σ| ≥ C2|η|}, where 0 < C2 < C1 are constants. We show that

(I −X )
∂ẑ

∂ν
∈ L2(Σ̂). (3.20)
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The trick comes from the application of (3.10). Actually, by (3.10), it has

(
1 + σ2 + |η|2

)− 1
2 (iσ)

∂z̃

∂ν
∈ L2(Rn

η,σ),

where z̃ is the partial Fourier transform of ẑ respect to (y, t). Hence∫
Rn

σ2

1 + σ2 + |η|2

∣∣∣∣∂z̃∂ν
∣∣∣∣2dη dσ < +∞.

Since when |σ| ≥ C2|η|, |η| ≥ 1, it has

C2
2

C2
2 + 2

≤ C2
2

1
|η|2 + C2

2 + 1
=

C2
2 |η|2

1 + |η|2C2
2 + |η|2 ≤ σ2

1 + σ2 + |η|2 ,

hence ∫
|σ|≥C2|η|

∣∣∣∣∂z̃∂ν
∣∣∣∣2 dη dσ ≤

∫
|σ|≥C2|η|

2 + C2
2

C2
2

σ2

1 + σ2 + |η|2

∣∣∣∣∂z̃∂ν
∣∣∣∣2 dη dσ

≤ 2 + C2
2

C2
2

∫
Rn

σ2

1 + σ2 + |η|2

∣∣∣∣∂z̃∂ν
∣∣∣∣2 dη dσ <∞.

Therefore ∫
Rn

|1 − χ|2
∣∣∣∣∂z̃∂ν

∣∣∣∣2 dη dσ =
∫

supp(1−χ)

|1 − χ|2
∣∣∣∣∂z̃∂ν

∣∣∣∣2 dη dσ

≤
∫
|σ|≥C2|η|

∣∣∣∣∂z̃∂ν
∣∣∣∣2 dη dσ <∞.

Thus (3.20) is valid.
Now, we need to show that X ∂ẑ

∂ν ∈ L2(Σ̂). This is a little bit easy due to its ellipticity. Returning to
problem (3.11) for ϕ, rewritten as �ϕ = 0 and applying X , we will see that the variable Xϕ satisfies⎧⎨⎩ �Xϕ = −[X ,�]ϕ ∈ H−1(Q̃),

Xϕ|∂Q̃ ∈ L2(∂Q̃),
(3.21)

where and henceforth we take for Q̃ an extend cylinder based on Ω̂ × [−T, 2T ] and denote Σ̃ := Γ̂ × [−T, 2T ].
Indeed, by the fact that [X ,�] ∈ S1(Q̃) and the priori regularity in (3.12), we have [X ,�]ϕ ∈ H−1(Q̃).

Furthermore, Xϕ|Σ̃ = Xφû ∈ L2(Σ̃). And by the pseudolocal property of pseudodifferential operators and
the fact that supp(ϕ) ⊂ [0, (3/2)T ], we have (Xϕ)(2T, ·) ∈ C∞(Ω̂) and (Xϕ)(−T, ·) ∈ C∞(Ω̂). This yields the
boundary condition Xϕ|∂Q̃ ∈ L2(∂Q̃) in (3.21). Since �X is a pseudodifferential elliptic operator, apply the
classical elliptic theory to the elliptic problem (3.21) to yield

Xϕ ∈ H1/2(Q̃) +H1(Q̃) = H1/2(Q̃), (3.22)

where the first term in the middle of (3.22) is due to the boundary regularity of (3.21), and the second term is
due to the interior regularity. Next, we return to the elliptic problem{

Az = wt in Q,
z|Σ = 0
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from (3.7). Since ẑ := A−1
0 ϕt in Q̃, the counterpart of the above elliptic problem in the half-space Q̃ is (locally){

A0ẑ = ϕt in Q̃,
ẑ|Σ̃ = 0.

Apply X to above problem to yield

A0X ẑ = Xϕt + [A0,X ]ẑ =
d
dt

Xϕ −
[

d
dt
,X
]
ϕ+ [A0,X ]ẑ.

Notice that [A0,X ] ∈ S1(Q̃) and [ d
dt ,X ] ∈ S0(Q̃). By the priori regularity in (3.12) for ϕ and in (3.7) for z, we

conclude that

−
[

d
dt
,X
]
ϕ+ [A0,X ]ẑ ∈ L2(Q̃). (3.23)

Moreover, by virtue of (3.22), Xϕ ∈ H( 1
2 , 12 )(Q̃) ⊂ H(0, 1

2 )(Q̃), where we have used the anisotropic Hörmander’s

spaces of [12] on page 477. In the space H(m,s)(Q̃), m is the order in the normal direction to the plane x = 0
(which plays a distinguished role) and (m + s) is the order in the tangential direction in t and y. Since d

dt is
a first order differential operator in the tangential direction, d

dtXϕ ∈ H(0,− 1
2 )(Q̃) ⊂ H(− 1

2 ,0)(Q̃) = H− 1
2 (Q̃).

By (3.23), we are led to solving the following problem{
A0X ẑ ∈ H−1/2(Q̃) + L2(Q̃) ⊂ H−1/2(Q̃),

(X ẑ)|Σ̃ = 0.

Since A0X is elliptic in Q̃, by the classical elliptic regularity again, we obtain

X ẑ ∈ H3/2(Q̃),
∂

∂ν
X ẑ ∈ L2(Σ̃). (3.24)

Combining (3.24) and (3.20) yields

∂ẑ

∂ν
= (I −X )

∂ẑ

∂ν
+ X ∂ẑ

∂ν
∈ L2(Σ̂).

Finally, since ẑ = 0 on Σ̂, it follows from Lemma 3.3 that

∂ẑ

∂νA0

∈ L2(Σ̂),

proving (3.19). The proof is complete. �

4. Proof of Theorem 1.2

Although here we consider the variable coefficients case, the proof below is much simpler than the one in
[11] for the case of constant coefficients. This is due to the use of multiplier method on Riemannian manifolds,
which was an effective tool introduced in [24]. In the case of constant coefficients, the multipliers are reduced
to the usual ones in Euclidean spaces.

Notice the hypothesis (1.2) and set

A(x) := (aij(x)), G(x) := (gij(x)) = A(x)−1, G(x) := det(gij(x)).
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Let Rn be the usual Euclidean space. For each x = (x1, x2, . . . , xn) ∈ Rn, define the inner product and norm
over the tangent space Rn

x = Rn by

g(X,Y ) := 〈X,Y 〉g =
n∑

i,j=1

gij(x)αiβj ,

|X |g := 〈X,X〉1/2
g , ∀X =

n∑
i=1

αi
∂

∂xi
, Y =

n∑
i=1

βi
∂

∂xi
∈ R

n
x .

It is easily checked that (Rn, g) is a Riemannian manifold with Riemannian metric g. Denote by D the Levi-
Civita connection with respect to g. Let H be a vector field on (Rn, g). Then for each x ∈ Rn, the covariant
differential DH of H determines a bilinear form on Rn

x × Rn
x :

DH(X,Y ) = 〈DXH,Y 〉g, ∀X,Y ∈ R
n
x ,

where DXH stands for the covariant derivative of vector field H with respect to X .
For any f ∈ C2(Rn), X =

∑n
i=1 αi

∂
∂xi

, denote

∇gf :=
n∑

i,j=1

∂f

∂xi
aij(x)

∂

∂xj
, divgX :=

n∑
i=1

1√
G(x)

∂

∂xi
(
√

G(x)αi(x)),

∆gf :=
n∑

i,j=1

1√
G(x)

∂

∂xi

(√
G(x)aij(x)

∂f

∂xj

)
= −Af + T f, T :=

n∑
i,j=1

aij(x)√
G(x)

∂
√
G(x)
∂xi

∂

∂xj
·

Now, it follows from the Appendix of [8] that the transfer function of the system (2.7) is

H(λ) = λB∗(λ2 + Ã)−1B, (4.1)

where Ã, B and B∗ are given by (2.3), (2.4) and (2.6), respectively. Moreover, from the well-posedness claimed
by Theorem 1.1, it follows that there are constants M,β > 0 such that ([6])

sup
Reλ≥β

‖H(λ)‖L(U) = M <∞. (4.2)

Proposition 4.1. Theorem 1.2 is valid if for any u ∈ C∞
0 (Γ0), the solution w to the following equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ2w(x) =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂w

∂xj
(x)
)

= −Aw(x), x ∈ Ω,

w(x) = 0, x ∈ Γ1,

w(x) = u(x), x ∈ Γ0

(4.3)

satisfies

lim
λ∈R,λ→+∞

∫
Γ0

∣∣∣∣ 1λ ∂w(x)
∂νA

− |νA|gu(x)
∣∣∣∣2 dx = 0.

Proof. It was shown in [21] that in the frequency domain, (1.4) is equivalent to

lim
λ∈R,λ→+∞

H(λ)u = |νA|gu in the strong topology of U for any u ∈ U, (4.4)
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where H(λ) is given by (4.1). Due to (4.2) and a density argument, it suffices to show that (4.4) is satisfied for
all u ∈ C∞

0 (Γ0).
Now assume that u ∈ C∞

0 (Γ0), and put

w(x) = −((λ2 + Ã)−1Bu)(x).

Then w satisfies (4.3) and

(H(λ)u)(x) = −λ∂(A−1w)
∂νA

(x), ∀x ∈ Γ0. (4.5)

Take a function v ∈ H2(Ω) to satisfy⎧⎪⎪⎨⎪⎪⎩
n∑

i,j=1

∂

∂xi

(
aij(x)

∂v(x)
∂xj

)
= 0, x ∈ Ω,

v(x) = 0, x ∈ Γ1; v(x) = u(x), x ∈ Γ0.

Then (4.3) can be written as⎧⎪⎪⎨⎪⎪⎩
λ2w(x) −

n∑
i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
(w(x) − v(x))

)
= 0, x ∈ Ω,

(w − v)|∂Ω = 0,

or
−λ2(A−1w)(x) = w(x) − v(x).

So (4.5) becomes

(H(λ)u)(x) =
1
λ

∂w(x)
∂νA

− 1
λ

∂v(x)
∂νA

· (4.6)

Since ∂v(x)
∂νA is independent of λ, the required result then follows from (4.6) and (4.4). �

The following lemma, which may be useful for other purposes, is the generalization of Lemma 2.1 in [14],
p. 18, which refers to Euclidean spaces, to the Riemannian manifold (Ω, g).

Lemma 4.1. Suppose ∂Ω is of class Ck, k ≥ 1. Assume (1.2) and (1.3). Then there exists a vector field
N : Ω → Rn of class Ck−1 such that

N(x) = µ(x), x ∈ ∂Ω; |N |g ≤ 1, x ∈ Ω (4.7)

where µ := νA
|νA|g is the unit normal of ∂Ω pointing towards the exterior of Ω in terms of the Riemannian

metric g.

Proof. Since ∂Ω is of class Ck, k ≥ 1, for every fixed x0 ∈ ∂Ω, there is an open neighborhood V of x0 in Rn and
a function φ : V → R of class Ck such that

∇gφ(x) �= 0, ∀x ∈ V and φ(x) = 0 iff x ∈ V ∩ ∂Ω.

Replacing φ by −φ if needed, we may assume that

〈µ(x0),∇gφ(x0)〉g > 0.
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Then the function ψ := ∇gφ/|∇gφ|g : V → Rn is of class Ck−1. We show that ψ = µ on V ∩ ∂Ω. In fact, since
φ = 0 on V ∩ ∂Ω, we have

∂φ

∂xj
= νj

(
∂φ

∂ν

)
on V ∩ ∂Ω, j = 1, 2, . . . , n.

Hence

∇gφ =
n∑

i,j=1

∂φ

∂xi
aij

∂

∂xj
=

n∑
i,j=1

νi

(
∂φ

∂ν

)
aij

∂

∂xj
=
∂φ

∂ν

⎛⎝ n∑
i,j=1

νiaij
∂

∂xj

⎞⎠ =
∂φ

∂ν
· νA,

which implies that ψ,∇gφ, νA and µ are parallel to each other on V ∩ ∂Ω. This together with |ψ|g = |µ|g = 1
shows that ψ = µ on V ∩ ∂Ω.

Since Ω is bounded, ∂Ω is compact in Rn; therefore ∂Ω can be covered with a finite number of neighborhoods
V1, V2, . . . , Vm. Each of them plays the role of V in the earlier reasoning. Denoting by ψi, i = 1, 2, . . . ,m the
corresponding functions of Vi, we have

∂Ω ⊂ V1 ∪ V2 . . . ∪ Vm

and
ψi = µ on Vi ∩ ∂Ω, i = 1, 2, . . . ,m.

Fix an open set V0 ⊂ Rn such that

Ω ⊂ V0 ∪ V1 ∪ · · · ∪ Vm, V0 ∩ ∂Ω = ∅

and define ψ0 : V0 → R
n by ψ0(x) = 0 for all x ∈ V0.

Let θ0, θ1, . . . , θm be a partition of unity of class Ck, corresponding to the covering V0, V1, . . . , Vm of Ω:

θi ∈ Ck
0 (Vi) and 0 ≤ θi ≤ 1, i = 0, 1, . . . ,m

and
θ0 + θ1 + · · · + θm = 1 on Ω.

It is obvious that

N :=

(
m∑

i=0

θiψi

)∣∣∣∣∣
Ω

is the required vector field. �

Proof of Theorem 1.2. We define ũ ∈ C∞(Γ) as the extension of u, i.e. ũ = u on Γ0 and ũ = 0 on Γ1. Set

F (λ)ũ :=
1
λ

∂w

∂µ
, x ∈ Γ,

where w satisfies (4.3) with u ∈ C∞
0 (Γ0). µ = νA

|νA|g and ∂
∂µ is defined similarly as ∂

∂νA in (1.3): ∂
∂µ :=∑n

i=1 µi
∂

∂xi
= 1

|νA|g · ∂
∂νA

. The proof will be accomplished if we can show that

lim
λ∈R,λ→∞

F (λ)ũ = ũ on L2(Γ), (4.8)

which will be split into two steps.

Step 1. Let the vector field N be given by (4.7). Since ũ ∈ C∞(Γ), the solution w to (4.3) belongs to C∞(Ω)
and hence N(w) ∈ C. Multiply the both sides of the first equation of (4.3) by N(w) and integrate by parts. By
formulae for divergence on the Riemannian manifold (Ω, g):

divg(|w|2N) = N(|w|2) + |w|2divg(N), (4.9)
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and ∫
Ω

divg(|w|2N)dx =
∫

Γ

〈|w|2N,µ〉gdΓ,

we obtain

LHS = Re
(
λ2

∫
Ω

wN(w)dx
)

=
λ2

2

∫
Ω

N(|w|2)dx =
λ2

2

∫
Ω

[divg(|w|2N) − |w|2divg(N)]dx

=
λ2

2

∫
Γ

〈|w|2N,µ〉gdΓ − λ2

2

∫
Ω

|w|2divg(N)dx

=
λ2

2

∫
Γ

|ũ|2dΓ − λ2

2

∫
Ω

|w|2divg(N)dx.

By the Green’s formula on the Riemannian manifold (Ω, g):∫
Ω

∆gwN(w)dx =
∫

Ω

〈∇gw,∇gN(w)〉gdx−
∫

Γ

N(w)
∂w

∂µ
dΓ

and Lemma 2.1 of [24], we have

RHS = −
∫

Ω

AwN(w)dx =
∫

Ω

∆gwN(w)dx−
∫

Ω

T wN(w)dx

= −
∫

Ω

〈∇gw,∇gN(w)〉gdx+
∫

Γ

N(w)
∂w

∂µ
dΓ −

∫
Ω

T wN(w)dx

= −
∫

Ω

〈∇gw,∇gN(w)〉gdx+
∫

Γ

∣∣∣∣∂w∂µ
∣∣∣∣2 dΓ −

∫
Ω

T wN(w)dx

= −
∫

Ω

DN(∇gw,∇gw)dx − 1
2

∫
Γ

〈|∇gw|2gN,µ〉gdΓ +
1
2

∫
Ω

|∇gw|2gdivg(N)dx

+
∫

Γ

∣∣∣∣∂w∂µ
∣∣∣∣2 dΓ −

∫
Ω

T wN(w)dx

= −
∫

Ω

DN(∇gw,∇gw)dx − 1
2

∫
Γ

|∇gw|2gdΓ +
∫

Γ

∣∣∣∣∂w∂µ
∣∣∣∣2 dΓ

+
1
2

∫
Ω

|∇gw|2gdivg(N)dx−
∫

Ω

T wN(w)dx

=
1
2

∫
Γ

(∣∣∣∣∂w∂µ
∣∣∣∣2 − |∇T ũ|2g

)
dΓ +

∫
Ω

[|∇gw|2g
divg(N)

2
−DN(∇gw,∇gw)]dx

−
∫

Ω

T wN(w)dx,

where we have used the fact N(w) = ∂w
∂µ on Γ, and ∇T is the gradient of the tangential on Γ: |∇gw|2g =

|∂w
∂µ |2 + |∇T ũ|2g on Γ.

In what follows, we use the same C to denote the constant that is independent of λ and w although it may
have different values in different contexts.
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Letting LHS=RHS gives the identity:∫
Γ

|F (λ)ũ|2dΓ =
∫

Γ

|ũ|2dΓ +
1
λ2

∫
Γ

|∇T ũ|2gdΓ +
1
λ2
f(λ), (4.10)

where

f(λ) = Re
(∫

Ω

2DN(∇gw,∇gw)dx
)
−
∫

Ω

(λ2|w|2 + |∇gw|2g)divg(N)dx+ Re
(

2
∫

Ω

T wN(w)dx
)

satisfying
f(λ) ≤ C(λ2‖w‖2

L2(Ω) + ‖|∇gw|g‖2
L2(Ω)). (4.11)

Indeed,

f(λ) ≤
∫

Ω

|2DN(∇gw,∇gw)|dx +
∫

Ω

(λ2|w|2 + |∇gw|2g)|divg(N)|dx+
∫

Ω

2|T w| · |N(w)|dx

≤
∫

Ω

|2〈D∇gwN,∇gw〉g|dx+ C(λ2‖w‖2
L2(Ω) + ‖|∇gw|g‖2

L2(Ω)) +
∫

Ω

|T w|2dx+
∫

Ω

|N(w)|2dx

≤
∫

Ω

2

∣∣∣∣∣∣∣D ∇gw

|∇gw|g

N

∣∣∣∣∣∣∣
g

· |∇gw|2gdx+ C(λ2‖w‖2
L2(Ω) + ‖|∇gw|g‖2

L2(Ω))

+ C‖|∇gw|g‖2
L2(Ω) + ‖|∇gw|g‖2

L2(Ω)

≤ C‖|∇gw|g‖2
L2(Ω) + C(λ2‖w‖2

L2(Ω) + ‖|∇gw|g‖2
L2(Ω)) + C‖|∇gw|g‖2

L2(Ω)

≤ C(λ2‖w‖2
L2(Ω) + ‖|∇gw|g‖2

L2(Ω)),

where we have used the facts sup
x∈Ω

|divg(N)| ≤ C, |T w| ≤ C|∇gw|g and |N(w)| ≤ |∇gw|g when |N |g ≤ 1.

Next, multiply the right side of the first equation of (4.3) by w and integrate by parts to have∫
Ω

−Aw · w dx =
∫

Ω

∆gw · w dx−
∫

Ω

T w · w dx

= −
∫

Ω

〈∇gw,∇gw〉g dx+
∫

Γ

∂w

∂µ
(ũ) dΓ −

∫
Ω

T w · w dx.

This together with (4.3) gives

Re(〈F (λ)ũ, ũ〉L2(Γ)) = Re
(∫

Γ

1
λ

∂w

∂µ
(ũ) dΓ

)

=
1
λ

∫
Ω

〈∇gw,∇gw〉g dx − 1
λ

∫
Ω

Aw · w dx+
1
λ

Re
(∫

Ω

T w · w dx
)

=
1
λ

∫
Ω

|∇gw|2g dx + λ

∫
Ω

|w|2 dx+
1
λ

Re
(∫

Ω

T w · w dx
)
.
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On the other hand, by the Cauchy-Schwartz inequality, one has∣∣∣∣Re
(∫

Ω

T w · w dx
)∣∣∣∣ ≤ C

(
λ

∫
Ω

|w|2 dx+
1
λ

∫
Ω

|∇gw|2g dx
)
.

Hence

Re(〈F (λ)ũ, ũ〉L2(Γ)) ≥
(

1 − C

λ

)(
λ‖w‖2

L2(Ω) +
1
λ
‖|∇gw|g‖2

L2(Ω)

)
. (4.12)

Combining (4.11) and (4.12), we obtain

f(λ)
λ2

≤ C

λ
(λ‖w‖2

L2(Ω) +
1
λ
‖|∇gw|g‖2

L2(Ω)) ≤
C

λ− C
Re(〈F (λ)ũ, ũ〉L2(Γ))

≤ C

2(λ− C)
(‖F (λ)ũ‖2

L2(Γ) + ‖ũ‖2
L2(Γ)).

(4.13)

Finally, from inequality (4.13) and identity (4.10), we conclude that

lim
λ∈R,λ→∞

‖F (λ)ũ‖2
L2(Γ) = ‖ũ‖2

L2(Γ). (4.14)

Step 2. Putting

G(λ)ũ := Re(〈F (λ)ũ, ũ〉L2(Γ)), λ > 0, (4.15)
we deduce from (4.14) that

lim sup
λ→∞

G(λ)ũ ≤ lim sup
λ→∞

‖F (λ)ũ‖L2(Γ)‖ũ‖L2(Γ) = ‖ũ‖2
L2(Γ).

Next, the formula (4.12) implies that

lim
λ→∞

‖w‖2
L2(Ω) = lim

λ→∞

λ‖w‖2
L2(Ω)

λ
≤ lim

λ→∞
Re(〈F (λ)ũ, ũ〉L2(Γ))

λ− C
≤ lim

λ→∞

‖ũ‖2
L2(Γ)

λ− C
= 0.

On the other hand, integrate the both sides of (4.9) over Ω to yield

‖ũ‖2
L2(Γ) = Re

(∫
Ω

2wN(w) dx
)

+
∫

Ω

|w|2divg(N) dx

≤ λ‖w‖2
L2(Ω) +

1
λ
‖|∇gw|g‖2

L2(Ω) + C‖w‖2
L2(Ω) ≤

λ

λ− C
G(λ)ũ + C‖w‖2

L2(Ω),

where we have used (4.12) and the fact |N(w)| ≤ |∇gw|g when |N |g ≤ 1. This together with the fact
limλ→∞ ‖w‖2

L2(Ω) = 0 gives

‖ũ‖2
L2(Γ) ≤ lim inf

λ→∞
λ

λ− C
G(λ)ũ = lim inf

λ→∞
G(λ)ũ.

We have thus obtained that
lim

λ→∞
G(λ)ũ = ‖ũ‖2

L2(Γ). (4.16)

(4.8) then follows from (4.14) and (4.16). The proof is complete. �
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