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ON THE WELL-POSEDNESS OF THE KIRCHHOFF STRING

ALBERTO AROSIO AND STEFANO PANIZZI

Abstract. Let us consider the Cauchy problem for the quasilinear hyperbolic
integro-differential equation

utt −m

(∫
Ω

| 5x u|2 dx

)
4x u = f(x, t) (x ∈ Ω, t > 0),

u(·, t)|∂Ω = 0 (t ≥ 0),

where Ω is an open subset of Rn and m is a positive function of one real
variable which is continuously differentiable. We prove the well-posedness in
the Hadamard sense (existence, uniqueness and continuous dependence of the
local solution upon the initial data) in Sobolev spaces of low order.

1. Introduction

Let m(·) : [0,+∞[−→]0,+∞[ be any continuos function and let Ω be any open
subset of Rn. We are concerned with the following integro-differential equation,
which as in [AG] we call Kirchhoff equation:

utt −m
(∫

Ω

| 5x u|2 dx
)
4x u = f(x, t) (x ∈ Ω, t > 0),

u(·, t)|∂Ω = 0 (t ≥ 0).

(1)

Eq. (1) for n = 1 and
m(r) = c20 + r

was introduced in 1876 by KIRCHHOFF [Ki] as a nonlinear model of the free
transversal vibrations of a clamped string. G. F. CARRIER [Ca] and R. NARA-
SHIMA [Na] recovered Eq.(1), without quoting Kirchhoff. See also [Ka] [NM] [Am].
D. W. OPLINGER [Op] compared numerical and experimental results. We refer
the reader to the survey [Ar] for references about Eq.(1) from a physical point of
view.

From the pure mathematical point of view, Eq.(1) may be considered as the
simplest example of quasilinear evolution equation of hyperbolic type.

There are therefore two good reasons to study Eq.(1): for its intrinsic physical
meaning, and as a prototype for more complicated equations. A variety of papers
have been produced on the existence and uniqueness of the solution of the Cauchy
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306 ALBERTO AROSIO AND STEFANO PANIZZI

problem for Eq.(1): we refer the reader to the survey [Ar] for a (possibly incomplete)
commented list. For reasons of space, we do not consider here any generalization
of Eq.(1) and we limit ourselves to list known papers about Eq.(1) in three classes:
1) local existence in Sobolev spaces: [Be] [Di1] [Me] [Ri] [MM] [AG] [Ma];
1′) same as above, but degenerate (m ≥ 0): [Ni] [Eb] [EMM] [Ya] [Yam] [Ga] [AG];
2) special cases of global existence in Sobolev spaces. Special m(·): [Po2]. Travel-
ling wave solutions in Ω := Rn: [Di2]. Ω := Rn and small data: [GH] [DS2]. See
also [BL].
3) global existence for analytic initial data: [Be] [Po1] [Ni] [Li] [AS] [Nis] [DS1] [Ar].

The outstanding question for Eq.(1) is the global solvability for C∞ initial
data. In this paper we treat another question which seems to be not yet explic-
itly considered: the well-posedness in Hadamard’s classical sense of the Cauchy
problem for Eq.(1). Actually, a straightforward application of T. KATO’s general
theory [K2] for abstract evolution equations would permit us to decide the question
affirmatively. However we felt the exigency of examining the question in its details,
and of providing accurate estimates of the solution, for the purpose of investigating
the continuity modulus of the

resolvent map: (initial data) 7−→ (solution).(2)

We first prove accurate a priori estimates for the energy of a solution, which
yield local well-posedness in Hadamard’s sense for the Cauchy problem for Eq.(1)
(Theorems 4.1-4.2). As a byproduct, Ritz-Galerkin approximants converge uni-
formly in the phase space on a suitable time interval to a function, which is the
unique solution (Corollaries 4.1-4.2). Such a proof of existence and uniqueness dif-
fers substantially from KATO’s point of view, which adopts Banach’s contraction
principle. This result improves all the existence/uniqueness results of the group 1)
above. For instance: in [AG] the open set Ω was assumed to satisfy Poincaré’s
inequality and the technique of proof was based on a fixed point argument, so no
mention was made of Ritz-Galerkin approximations; Matos in [Ma] removed the
coerciveness assumption on the operator −4, allowing Ω to be any open subset
of Rn, but uniqueness was established only for higher Sobolev exponent and the
convergence of the Ritz-Galerkin sequence was proven to hold true only in a weak
sense. Also, our method provides an accurate estimate of the energy, which should
permit us, for instance, to treat in a future paper also the mildly degenerate case

m ≥ 0, m
(∫

Ω
| 5x u0|2 dx

)
> 0, in the spirit of [Ga].

We discover that the modulus of continuity of the map (2) depends only upon
the fixed initial data (and may actually behave very badly), and we describe subsets
of initial data with uniform modulus. In particular we investigate conditions which
guarantee the Hölder continuity of the map (2).

We note that the two crucial points of our proof of the well-posedness are: (i) a
splitting of the difference of two different solutions (this device appears already in
[K3]); (ii) the use of the spectral decomposition of the operator −4.

Because of the presence of the integro-differential term, we have found that the
most profitable way to study Eq.(1) is to reformulate it as an evolution equation in
a Hilbert space.
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ON THE WELL-POSEDNESS OF THE KIRCHHOFF STRING 307

The plan of the paper is as follows:
Section 2. Statement of the main result (the well-posedness of the Cauchy-Dirichlet
problem for Eq.(1)).
Section 3. Preliminaries: abstract framework.
Section 4. A priori estimates.
Section 5 and Section 6. Proof of the main result.
Section 7. Study of the continuity modulus of the resolvent map (2), which in
general is not Hölder continuous.
Appendix.

2. Statement of the main result: well-posedness of the

Cauchy-Dirichlet problem for Eq.(1)

Since we want to study Eq.(1) in Sobolev spaces of fractional order, we recall
the concrete 1 characterization of the domains

Vα(Ω) := D(Aα/2)

of the fractional powers of the operator

D(A) := H2(Ω)
⋂
H1

0 (Ω),

A := −4x :=
n∑
i=1

∂2

∂x2
i

,

where Ω is either (i) any open bounded subset of Rn with boundary ∂Ω of C∞

class, or (ii) the half-space Rn+ := {(x1, . . . , xn) ∈ Rn : xn ≥ 0}, or (iii) Ω ≡ Rn.
In the cases (i), (ii) the characterization is due to D. FUJIWARA [Fu] (cf. [LM]).

Let us recall it.
For α ≥ 0, α = 2k+α′, k ∈ N, 0 ≤ α′ < 2, the space Vα as follows is defined:

Vα(Ω) = {u ∈ Hα(Ω) : (−4x)ju ∈ H1
0 (Ω) for 0 ≤ j ≤ k − 1, (−4x)ku ∈ Bα

′
},

where

Bα
′
(Ω) := Hα′(Ω) for 0 ≤ α′ < 1/2,

Bα
′
(Ω) := {u ∈ Hα′(Ω) : u|∂Ω = 0} for 1/2 < α′ < 2, α′ 6= 3/2.

In the exceptional cases α′ = 1/2, α′ = 3/2 we have:

B1/2(Ω) := {u ∈ H1/2(Ω) :

∫
Ω

d−1(x)|u(x)|2 dx < ∞},

B3/2(Ω) := {u ∈ H3/2(Ω) ∩ H1
0 (Ω) :

∫
Ω

d−1(x)|D̃ju(x)|2 dx < ∞, 0 ≤ j ≤ n−1},

1 For any bounded Ω, the space Vα(Ω) may be characterized in the following abstract way.
Let {vk} be an orthonormal basis such that for each k = 1, 2, . . .

Avk = λ2
kvk ;

we have that u ∈ Vα(Ω) if and only if

+∞∑
k=1

k2α/n

∣∣∣∣∫
Ω

u(x)vk(x) dx

∣∣∣∣2 < +∞.
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308 ALBERTO AROSIO AND STEFANO PANIZZI

where d(x) := dist(x, ∂Ω), and (D̃j)0≤j≤n−1 is a system of first order differential
operators, the restriction of which to ∂Ω forms a basis of the tangent space to
∂Ω.

Finally, in case (iii) we simply have

Vα(Rn) := Hα(Rn).(3)

In the following we denote by | · | the norm in L2(Ω) and by | · |Vα the
seminorm |Aα/2(·)|. As for the norm in the space Vα(Ω), we set

‖ · ‖Vα := (c| · |2 + | · |2Vα)1/2

where c is any positive number in the cases (ii), (iii) and c = 0 in the case (i).
We need the following definition

Definition 2.1. We say that the function m is coercive if and only if there exists
a constant ν such that

m(s) ≥ ν > 0 (s ≥ 0).

We say that the function m is coercive at ∞ if and only if

m(s) > 0 (s ≥ 0)

and ∫ +∞

0

m(s) ds = +∞.(4)

Let us set

M(r) :=

∫ r

0

m(s) ds (r ≥ 0).

Given a pair (u0, u1) in H1(Ω)× L2(Ω) let us define the Hamiltonian [Be]

H(u0, u1) := M(

∫
Ω

| 5x u0|2 dx) +

∫
Ω

|u1(x)|2 dx(5)

and the quantities ν(u0, u1) and L(u0, u1) as the best constants such that

M(r) ≤ H(u0, u1) =⇒ m(r) ≥ ν(u0, u1),(6) [
M(r) ≤ H(u0, u1), M(s) ≤ H(u0, u1)

]
=⇒ |m(r)−m(s)| ≤ L(u0, u1) |r − s|.

(7)

Note that if m is a locally Lipschitz function coercive at ∞, we have (see
Proposition 6.2 below)

ν(u0, u1) > 0, L(u0, u1) < +∞.
We remark that part (a) of the following theorem, i. e. existence and uniqueness

in Sobolev spaces of order ≥ 3/2, was already proven, by using a fixed point
technique, in [AG] under the assumption: Ω contained in a bounded strip of Rn,
namely −4 strictly positive. Moreover in [Ma] the existence of a solution in
Sobolev spaces of order ≥ 3/2 was proven without restrictions on the set Ω, but
the uniqueness was proven only for solutions in Sobolev spaces of order ≥ 2. The
technique of proof in [Ma] was based on the spectral decomposition of the operator
−4, in order to construct a sequence of Ritz-Galerkin approximations converging
in a weak star topology to a solution.
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ON THE WELL-POSEDNESS OF THE KIRCHHOFF STRING 309

We also note that the life span exhibited in [AG] is improved by a factor 4.

Theorem 2.1 (main result). Let Ω be either any bounded open subset of Rn
with C∞ boundary or the half-space Rn+ or Ω ≡ Rn. Let m be any locally
Lipschitz function coercive at ∞, and let α ≥ 3/2.

Then (a) for any pair of initial data (u0, u1) ∈ Vα(Ω) × Vα−1(Ω) and any
function f ∈ L1

loc([0,+∞[;Vα−1(Ω)), there exists a unique solution

u ∈ C0([0, T ∗∗[;Vα(Ω)) ∩ C1([0, T ∗∗[;Vα−1(Ω)),

of the problem
utt −m

(∫
Ω

| 5x u|2 dx
)
4x u = f(x, t) (x ∈ Ω, t > 0),

u(x, 0) = u0(x), ut(x, 0) = u1(x) (x ∈ Ω),

u(·, t) ∈ Vα(Ω), ut(·, t) ∈ Vα−1(Ω) (t ≥ 0).

Let us introduce the time T ∗

T ∗ :=
ν(u0, u1)3/2

L(u0, u1)

(
m(

∫
Ω

| 5x u0|2 dx)|u0|2V3/2(Ω) + |u1|2V1/2(Ω)

) .
The critical time T ∗∗ is implicitly defined by the formula

T ∗ = T ∗∗
{

1 +

(
m(

∫
Ω

| 5x u0|2 dx)|u0|2V3/2(Ω) + |u1|2V1/2(Ω)

)−1/2

×
∫ T∗∗

0

|f(·, s)|V1/2(Ω) ds

}
.

Moreover : (b) the solution is the uniform limit of the whole sequence of its
Ritz-Galerkin approximations ; (c) the solution depends continuously upon the data;
namely, for every T < T ∗, the map

data 7−→ solution

Vα × Vα−1 × L1([0, T ];Vα−1(Ω)) −→ C0([0, T ];Vα) ∩C1([0, T ];Vα−1)

is continuous at the point (u0, u1, f).

The above statement follows by a straightforward application of the abstract
results given in Section 4 (note: in the cases (ii), (iii) one works with an arbitrary
c > 0, and then lets c→ 0+).

3. Preliminaries: abstract framework

To reformulate Eq. (1) as an evolution equation in a Hilbert space, we need
some preliminaries and notations.

Let V and H be real or complex Hilbert spaces, normed respectively by ‖ · ‖
and | · |, V ⊆ H. If V ′ denotes the (anti)dual of V , we have then V ⊆ H ⊆ V ′,
in the sense that the duality bracket 〈·, ·〉 := 〈·, ·〉V×V ′ coincides with the inner
product (·, ·) := (·, ·)H on H × V .

Let A : V −→ V ′ be a linear bounded operator, symmetric in the sense that

〈Av,w〉 = 〈Aw, v〉 (w ∈ V, v ∈ V ).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



310 ALBERTO AROSIO AND STEFANO PANIZZI

Moreover assume that for some c(A) ≥ 0 and η(A) > 0,

〈Av, v〉 ≥ 0 (v ∈ V ),

〈Av, v〉 + c(A)|v|2 ≥ η(A)‖v‖2 (v ∈ V ).
(8)

The operator (A + c(A)) turns out to be an isomorphism of V onto V ′. We
denote D := D(A) := {v ∈ V : Av ∈ H}. It is D(A+ cIH) = D for every c ∈ R.
The operator

Ac := (A+ cIH) : D −→ H (c ≥ c(A)),

turns out to be a self-adjoint positive definite operator in H, hence A : D −→ H
is a self-adjoint nonnegative operator in H.

In this paper we establish results for the Cauchy problem for the abstract evo-
lution equation, (·)′ := d

dt ,

u′′ +m (〈Au, u〉)Au = f (t > 0),(9)

but for the sake of clearness in calculations, we will give complete proofs only in
the case when f ≡ 0, i.e. for the equation

u′′ +m (〈Au, u〉)Au = 0 (t > 0).(10)

with initial data

u(0) = u0, u′(0) = u1.(11)

If we consider any open set Ω ⊆ Rn and we set

V := H1
0 (Ω), H := L2(Ω) and A := −4x :=

n∑
i=1

∂2

∂x2
i

,

then Eq. (9) reads as Eq. (1). Moreover we may choose

c(A) =

{
0 in the case (i),
any c > 0 in the cases (ii), (iii).

Hereafter we set for simplicity’s sake

c := c(A).

We will base our spectral analysis upon the operator A1/2, which in the concrete
case of the Kirchhoff string (1) is a first order (pseudodifferential) operator.

For every α ∈ R, we will consider the power A
α/2
c (namely the (α/2)th power

of Ac), see e.g. [Ru]. For α ≥ 0, the space Vα := D(A
α/2
c ) = D(Aα/2) is made

a Hilbert space under the norm

‖u‖
α

:= |Aα/2c u|.
We note that Vα ⊆ Vβ for β ≤ α, with continuous and dense injection. For

α < 0, Vα is defined as the (anti)dual space of V−α, endowed with the (anti)dual
norm, which will be still denoted by ‖ · ‖

α
. In any case Vα and H turn out to be

isomorphic via (A
α/2
c )t, where (·)t denotes transposition (for α ≥ 0 this means

that (A
α/2
c )t extends A

α/2
c , i.e. (A

α/2
c )t|Vα = A

α/2
c ). More generally we have

(Aβ/2c )t|Vα = (A(β−α)/2
c )tAα/2c for 0 ≤ α ≤ β,

(Aβ/2c )t|Vα = A(β−α)/2
c (Aα/2c )t for β ≤ α ≤ 0,

so that Vα and Vα−β are isomorphic via (A
β/2
c )t for each α ∈ R, β ∈ R.
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The phase space for Eq.(10) will be

Eα := Vα × Vα−1 (α ∈ R),

and we set, for any continuous nonnegative function a(·) and u ∈ C0([0, T ]; Eα), 2

Eα,a(t, u) := a(t)‖A1/2u(t)‖2α−1 + ‖u′(t)‖2α−1

= a(t)|A(α−1)/2
c A1/2u(t)|2 + |A(α−1)/2

c u′(t)|2 (t ≥ 0).

4. A priori estimates

From now on, we set for brevity

m(u)(t) := m(〈Au(t), u(t)〉).

Let f be any function in L1
loc([0,+∞[;V1/2) and let (u0, u1) ∈ E3/2. In the

following statement we will need the notation (t ≥ 0)

η(t; f, u0, u1) :=

{
1 +

(
m(〈Au0, u0〉)‖A1/2u0‖21/2 + ‖u1‖21/2

)−1/2
∫ t

0

‖f(s)‖1/2 ds
}2

.

Theorem 4.1 (a priori estimates). Let us assume that the operator A satisfies
condition (8), and that there exist two numbers ν and L such that m(r) ≥ ν > 0 (r ≥ 0),

|m(r) −m(s)| ≤ L |r− s| (r ≥ 0, s ≥ 0).
(12)

Let u ∈ C0([0, T ]; Eα
0
), α0 ≥ 3/2, be a solution of (9)–(11), i.e.{
u′′ +m(u)(t)Au = f(t) (t > 0),
u(0) = u0, u′(0) = u1,

and let w ∈ C0([0, T ]; Eβ), β ∈ R, be a solution of

w′′ +m(u)(t)Aw = g(t) (t > 0), with g ∈ L1(0, T ;Vβ−1).(13)

Let us introduce the quantity T ∗ := T ∗(u0, u1) ∈ ]0,+∞] as 3

T ∗ := T ∗(u0, u1) :=
ν3/2

LE3/2,m(u)
(0, u)

,(14)

and let T ∗∗ := T ∗∗(u0, u1, f) be the quantity implicitly defined as

T ∗ = T ∗∗ η(T ∗∗; f, u0, u1).

Then, for every α ≤ α0, the following a priori estimates hold true for 0 ≤ t <
T ∗∗:

Eα,m(u)
(t, u) ≤

(
(Eα,m(u)

(0, u))1/2 +
∫ t

0 ‖f(s)‖α−1 ds
)2

1− η(t; f, u0, u1)t/T ∗
,(15)

2 This is a short notation to mean that (u, u′) ∈ C0([0, T ]; Eα).
3 When T ∗ = +∞ any fraction with T ∗ in the denominator is meant to vanish.
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(16)
(
Eβ,m(u)

(t, w)
)1/2 ≤ (Eβ,m(u)

(0, w)
)1/2

+

∫ t

0

( (
Eβ,m(u)

(s, w)
)1/2

2(T ∗ η(s; f, u0, u1)−1 − s) + ‖g(s)‖β−1

)
ds,

and

Eβ,m(u)
(t, w) ≤

(
(Eβ,m(u)

(0, w))1/2 +

∫ t

0

‖g(s)‖β−1 ds

)2

1− η(t; f, u0, u1) t/T ∗
.(17)

Proof. In order that the schema of proof appear clear, we give the proof only for
the case f ≡ 0. Let us set

y
β
(t) :=

(
Eβ,m(u)

(t, w)

)1/2

,

ϕ(t) :=
L

2ν3/2
E3/2,m(u)

(t, u).

Let us assume for the moment that w belongs to C0([0, T ]; Eβ+1) : then by
Eq.(13) we get that for a. a. t ∈ [0, T ]

1

2

d

dt
(y2
β
) = m′(〈Au, u〉) Re(Au, u′)|A(β−1)/2

c A1/2u|2 + Re(A(β−1)/2
c g,A(β−1)/2

c u′)

≤ ϕy2
β

+ ‖g(s)‖β−1 yβ .

By dividing by y
β

we get

d

dt
(y
β
) ≤ ϕy

β
+ ‖g(s)‖β−1.

By integrating we get for 0 ≤ t ≤ T

y
β
(t) ≤ y

β
(0) +

∫ t

0

(
ϕ(s)y

β
+ ‖g(s)‖β−1

)
ds.(18)

Now, due to the fact that Eq.(13) is linear in w, estimate (18) holds true also
for any function w which is simply in C0([0, T ]; Eβ). We can therefore apply (18)
for the choice w = u, g ≡ 0 and any α ≤ α0 in place of β, to get

(
Eα,m(u)

(t, u)
)1/2 ≤ (Eα,m(u)

(0, u)
)1/2

+

∫ t

0

ϕ(s)
(
Eα,m(u)

(s, u)
)1/2

ds.

(19)

In particular for α = 3/2 we get, by a standard comparison principle for
ordinary differential equations and by (14), that

ϕ(t) ≤ 1
1

ϕ(0)
− 2t

=
1

2(T ∗ − t) (0 ≤ t < T ∗ ∧ T ),(20)

hence by (19), via the Gronwall lemma, that (15) holds true for any α ≤ α0.
Condition (16) follows immediately by (18) and (20); (17) follows in turn from

the Gronwall lemma. Q.E.D.
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Remark 4.1. Estimate (15) is the best estimate that we are able to provide for
Eq.(10), however we are not able to prove that it is sharp. As a matter of fact
no counterexample to the global existence for the Cauchy problem for Eq.(10) has
been exhibited up to now .

5. Proof of the main result

Now we state, in abstract form, our basic result. In order to make the exposition
easier, in this section we will make some simplifying assumptions, namely:
1) m is globally (not merely locally) Lipschitz continuous, and it is bounded;
2) the source term f vanishes identically.

We will discuss the general case in the next section.
For any subset W ⊆ E3/2 and any function m satisfying (12), let us introduce

the following quantities:

E := E(W ) := sup
(u0,u1)∈W

m(〈Au0, u0〉)‖A1/2u0‖21/2 + ‖u1‖21/2,(21)

T ∗ := T ∗(W ) :=
ν3/2

LE
∈ [0,+∞].(22)

If W is bounded in E3/2 it is not difficult to prove that (see Proposition 6.2 in
the next section)

E <∞ and 0 < T ∗ ≤ ∞.

Theorem 5.1 (continuous dependence upon the data). Let us assume that the op-
erator A satisfies condition (8), and that

(i) m satisfies (12) and

m(r) ≤ Λ (r ≥ 0);(23)

(ii) W is a bounded set of E3/2.
Let the quantities E and T ∗ be defined as in (21), (22). Let α0 and T be real

numbers such that

α0 ≥ 3/2,(24)

0 < T < T ∗.(25)

Consider any given solution u ∈ C0([0, T ]; Eα
0
) to the problem (10)–(11) with

initial data in W. Let finally α be given such that

1/2 ≤ α ≤ α0.(26)

Then, for every ε > 0, there exists a number δ which depends only upon the
quantities ε, ν, Λ, u0, u1, α, T/T

∗, such that

Eα,ν(0, v − u) < δ =⇒ Eα,ν(t, v − u) < ε (0 ≤ t ≤ T ),

for every v in C0([0, T ]; Eα
0
) which solves problem (10)–(11) with initial data in

W.
Special case: for α ≤ 1/2 we have a Lipschitz dependence upon the initial data,

i.e. the number δ depends in a linear way upon the quantity ε (with coefficient
depending only upon the quantities Λ/ν, T/T ∗).
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Proof. We prove the statement under the following simplifying assumption:

α
0

= 3/2.

Let u and v be as in the statement, and let us denote by (u0, u1) and
respectively (v0, v1) their initial data. Following [K3], in order to estimate the
αth-energy of the difference v − u, we split it in two parts. For this we need an
auxiliary function z in C0([0, T ]; Eα), defined as the solution to the linear “hybrid”
problem:  z′′ +m(v)Az = 0 (0 < t < T ),

z(0) = u0,
z′(0) = u1.

Then we set

w1 := v − z and w2 := z − u,

so that

w1 + w2 = v − u.(27)

The first term w1 is an “innocuous” one. Indeed it satisfies the following linear
problem with vanishing source term w′′1 +m(v)Aw1 = 0 (0 < t < T ),

w1(0) = v0 − u0,
w′1(0) = v1 − u1,

so that we may apply Theorem 4.1 (namely estimate (17)) to get for any β ≤ 3/2

Eβ,m(v)
(t, w1) ≤

Eβ,m(v)
(0, v − u)

1− t/T ∗ (0 ≤ t ≤ T ).(28)

On the other hand, w2 solves the problem w′′2 +m(v)Aw2 = (m(u) −m(v))Au (0 < t < T ),
w2(0) = 0,
w′2(0) = 0.

To simplify the notation, we set, for any β ≤ 3/2,

y
β
(t) :=

(
Eβ,m(v)

(t, w2)

)1/2

.(29)

We can apply Theorem 4.1 (estimate (16)) for any

β ≤ 1/2(30)

to get

y
β
(t) ≤

∫ t

0

(
y
β
(s)

2(T ∗ − s) + |(m(u) −m(v))(s)| · ‖Au(s)‖β−1

)
ds.(31)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE WELL-POSEDNESS OF THE KIRCHHOFF STRING 315

By arguing as in [AG] and by using condition (12), the split (27), estimates (15)
and (28) for β = 1/2, we have for 0 ≤ t ≤ T

|(m(u) −m(v))(t)| ≤ L||A1/2v|2 − |A1/2u|2|
= L|(A1/4

c A1/2(u+ v), A−1/4
c A1/2(v − u))|

≤ L

ν1/2

(
(E3/2,m(v)

(t, v))1/2 + (E3/2,m(u)
(t, u))1/2

)
×
(
‖A1/2w1‖−1/2 + ‖A1/2w2‖−1/2

)
≤ 2LE1/2

ν(1− t/T ∗)1/2

(
(E1/2,m(v)

(0, v − u))1/2

(1− t/T ∗)1/2
+ y1/2(t)

)
.

(32)

Moreover, since

‖A · ‖β−1 ≤ ‖A1/2 · ‖β,
thanks to (15) we have

‖Au(t)‖β−1 ≤
(Eβ+1,m(u)

(0, u))1/2

ν1/2(1− t/T ∗)1/2
(0 ≤ t ≤ T ).(33)

By putting (32) and (33) into (31) we obtain

(34) y
β
(t) ≤ 1

2

∫ t

0

y
β
(s) ds

(T ∗ − s)

+
2LE1/2

ν3/2
(Eβ+1,m(u)

(0, u))1/2

∫ t

0

(
(E1/2,m(v)

(0, v − u))1/2

(1− s/T ∗)3/2
+

y1/2(s)

1− s/T ∗

)
ds.

Thanks to (24) and (30) we can choose β := 1/2 in (34). From the definitions
of E and T ∗ we then get

y1/2(t) ≤ 5

2

∫ t

0

y1/2(s) ds

(T ∗ − s) + 2(T ∗E1/2,m(v)
(0, v − u))1/2

∫ t

0

ds

(T ∗ − s)3/2
.

Now by a standard comparison technique we obtain for 0 ≤ t ≤ T,

y1/2(t) ≤ (E1/2,m(v)
(0, v − u))1/2 (2− t/T ∗)

(1− t/T ∗)5/2
t/T ∗.(35)

If we re-insert the estimate (35) into (34) and we set now β = α, thanks to the
trivial equality

1 +
(2− x)x

(1− x)2
=

1

(1− x)2
,(36)

we get the estimate for 0 ≤ t ≤ T,

y
α
(t) ≤ 1

2

∫ t

0

y
α
(s) ds

(T ∗ − s)

+
2LE1/2

ν3/2

(
Eα+1,m(u)

(0, u)E1/2,m(v)
(0, v − u)

)1/2∫ t

0

ds

(1− s/T ∗)7/2
.
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If T ∗ = ∞, i.e. by (22) LE = 0, the above inequality gives immediately
y
α
≡ 0. In the case T ∗ <∞, by a standard comparison result and (22) we get the

following generalization of (35):

yα(t) ≤
(
Eα+1,m(u)

(0, u)E1/2,m(v)
(0, v − u)

E

)1/2

· (2− t/T ∗)
(1− t/T ∗)5/2

t/T ∗.

(37)

By using (27), (28) for β = α, and (37) we get that (in the case when v and u
have the same initial data the right-hand side of the following inequality is meant
to vanish)

(Eα,ν(t, v − u))1/2 ≤ (Eα,m(v)
(t, v − u))1/2

≤
(Eα,m(v)

(0, v − u))1/2

(1− t/T ∗)5/2

× max

1,

(
Eα+1,m(u)

(0, u)

E

)1/2

·
(
E1/2,m(v)

(0, v − u)

Eα,m(v)
(0, v − u)

)1/2
 .(38)

If α = 1/2, then by (23) we get

E1/2,ν(t, v − u) ≤ Λ

ν

E1/2,ν(0, v − u)

(1− t/T ∗)5
.

This provides our assertion for the case α = 1/2. Unfortunately, (38) does not
(apparently) permit us to prove it for any other value of α.

The difficulty is related to the fact that w2 satisfies no equation with vanishing
source term. However, we have found that by combining the estimates (35) and
(28) with the spectral decomposition of w2 we can overcome this difficulty. The
idea is that the approximation of w2 (up to a fixed frequency n) may be controlled
in a Lipschitz fashion, with Lipschitz constant growing as the accuracy of the ap-
proximation increases. On the other hand, the rest of w2 becomes smaller and
smaller as the frequency n increases. Then, one concludes by a standard ε − δ
argument.

Let E(λ) denote the spectral measure associated to the self-adjoint nonnegative
operator A1/2 (see e.g. [Ru]) and χG the characteristic function of a subset G
of the real line. For each n ∈ N, let us define the following orthogonal projections
in H:

Pn :=

∫
χ

[0,n]
(λ) dE(λ), Qn :=

∫
χ

]n,+∞[
(λ) dE(λ).(39)

Since Pn +Qn = IH , we may split

w2 = Pnw2 +Qnw2.

We may split the energy

Eα,ν(t, w2) = Eα,ν(t, Pnw2) +Eα,ν(t, Qnw2).(40)
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Moreover, for α ≥ 1/2, thanks to (12), (29), (35), (23) and (36) we have

Eα,ν(t, Pnw2) ≤ (n2 + c)α−1/2 E1/2,ν(t, Pnw2)

≤ (n2 + c)α−1/2 E1/2,ν(t, w2)

≤ (n2 + c)α−1/2 y2
1/2(t)

≤ (n2 + c)α−1/2 Λ

ν

E1/2,ν(0, v − u)

(1− t/T ∗)5
(41)

On the other hand, we note that Qnu and Qnz solve the following problems
with vanishing source term: (Qnu)′′ +m(u)AQnu = 0,

Qnu(0) = Qnu0,
Qnu

′(0) = Qnu1,
and

 (Qnz)′′ +m(v)AQnz = 0,
Qnz(0) = Qnu0,
Qnz

′(0) = Qnu1.

Let us define for each n ∈ N
hn,α(u0, u1) := ν |QnA(α−1)/2

c A1/2u0|2 + |QnA(α−1)/2
c u1|2.(42)

Thanks to (12) and estimate (17) of Theorem 4.1 and (23), we get

Eα,ν(t, Qnu) ≤ Eα,m(u)
(t, Qnu) ≤

Eα,m(u)
(0, Qnu)

1− t/T ∗ ≤ Λ

ν

hn,α(u0, u1)

1− t/T ∗ .

The analogous estimate holds true for Qnz. Summing up, Qnw2 = Qnz−Qnu
satisfies

Eα,ν(t, Qnw2) ≤ 4Λ

ν

hn,α(u0, u1)

1− t/T ∗ .(43)

We note that the relevant feature of (43) is that the right hand side does not
depend upon (v0, v1), which can vary in all of W, but only upon (u0, u1) , which
is fixed.

Therefore, by (40), (41) and (43) we get for 0 ≤ t ≤ T

Eα,ν(t, w2) ≤ (n2 + c)α−1/2 Λ

ν

E1/2,ν(0, v − u)

(1− t/T ∗)5
+

4Λ

ν

hn,α(u0, u1)

1− t/T ∗ ,

and finally from (27), (28) for β = α and (23) (0 ≤ t ≤ T )

(44) Eα,ν(t, v − u) ≤ 2Λ

ν(1− T/T ∗)

{
(n2 + c)α−1/2 E1/2,ν(0, v − u)

(1− T/T ∗)4

+Eα,ν(0, v − u) + 4hn,α(u0, u1)

}
.

Now fix a number ε > 0. Since (u0, u1) belongs to E3/2 and (26) holds true,
there exists a natural number n̄ such that

8Λ

ν(1− T/T ∗)hn̄,α(u0, u1) <
ε

3
.

Moreover we have still by (26)

E1/2,ν(0, v − u) ≤ K1/2−αEα,ν(0, v − u), where K :=
‖i‖2

V,H

η(A)
.(45)
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Then any number δ > 0 such that

δ
2Λ

ν(1− T/T ∗)

(
1 +

(
n̄2 + c

K

)α−1/2

· 1

(1− T/T ∗)4

)
<

2

3
ε

satisfies the thesis. Q.E.D.

In Theorem 5.1 we have employed the energy

Eα,ν(t, u) := ν‖A1/2u(t)‖2α−1 + ‖u′(t)‖2α−1

since this quantity provides neat estimates. Unfortunately, it has a drawback: when
c > 0, that is, in the concrete case when Ω does not satisfy the Poincaré inequality,
Eα,ν may be not positive definite. However, we can slightly modify Eα,ν to have a
positive definite quantity which fits Theorem 5.1 as well as Eα,ν . Let us introduce
the following modified energy for a function u ∈ C0([0, T ]; Eα):

Ẽα,ν(t, u) := ν‖u(t)‖2α + ‖u′(t)‖2α−1

Theorem 5.2. The statement of Theorem 5.1 holds true too with Ẽα,ν(t, u) in
place of Eα,ν(t, u).

Proof. For every w ∈ C0([0, T ]; Eα), we have

Ẽα,ν(t, w) = Eα,ν(t, w) + cν‖w(t)‖2α−1,(46)

and

‖w(t)‖α−1 ≤ ‖w(0)‖α−1 +

∫ t

0

‖w′(t)‖α−1 ds.

Then

(Ẽα,ν(t, w))1/2 ≤ (Eα,ν(t, w))1/2 + (cν)1/2

(
‖w(0)‖α−1 +

∫ t

0

(Eα,ν(s, w))1/2 ds

)
.

(47)

Let u and v be as in the statement of Theorem 5.1 and let us put w := v− u
in (47). Let us fix a number ε > 0, and let us set

ε′ :=
ε

(2 + (cν)1/2 T )2
.

Now by Theorem 5.1 there exists a positive number δ (≤ ε′) such that

Eα,ν(0, v − u) < δ =⇒ Eα,ν(t, v − u) < ε′ (0 ≤ t ≤ T ).

It is easy to check, by the estimate (47) and by the equality (46), that the number
δ is as required. Q.E.D.

As a first consequence of the above theorem we obtain the uniqueness and the
existence of the solution to problem (10)–(11).

Corollary 5.1 (uniqueness). Let us assume that the operator A satisfies condi-
tion (8), and that m satisfies (12) and (23).

Let T > 0 be given, and let u and v in C0([0, T ]; E3/2) solve Eq. (10), with
the same initial data (u0, u1). Then u coincides with v.
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Proof. Set
T := max{t ∈ [0, T ] : u ≡ v on [0, t]}.

We claim that T = T. If, for a contradiction, T < T, we may restart the Cauchy
problem at time T with initial data (u(T ), u′(T )) = (v(T ), v′(T )). Then we apply
Theorem 5.1 for α0 = 3/2, α = 1 and W = {(u(T ), u′(T ))}. We get, for t in
some right neighborhood of T ,

|(u− v)′(t)|2 ≤ E1,ν(t, u− v) = 0,

hence u(t) = v(t), which contradicts the assumption T < T . Q.E.D.

We remark that Theorem 5.1 provides a mere continuity result of the resolvent
map

(u(0), u′(0)) ∈ Eα 7−→ u ∈ C0([0, T ]; Eα).(48)

In the following theorem we obtain, under a suitable condition (which will be
discussed in the Appendix) on the set W , the uniform continuity of the map in
(48).

Theorem 5.3 (uniformly continuous dependence). Let us assume that the opera-
tor A satisfies condition (8), and that

(i) m satisfies (12) and (23);
(ii) W is a bounded set of E3/2.
Let the quantity T ∗ be defined as in (22) and let α0 and T be real numbers

such that (24) and (25) holds true.
Moreover assume that for each n ∈ N

hn,α := ν|QnA(α−1)/2
c A1/2u0|2 + |QnA(α−1)/2

c u1|2 ≤ σ(n)

with
lim
n→∞

σ(n) = 0.

Then, the number δ in the thesis of Theorem 5.1 (resp.: in the thesis of Theorem
5.2) may be choosen in such a way to depend only upon ε, ν, Λ, σ(·), α, T/T ∗.

Proof. It suffices to substitute in the estimate (44) of the proof of Theorem 5.1 the
quantity σ(n) for hn. Q.E.D.

An immediate consequence of Theorem 5.3 is the local existence of the solution
of the Cauchy problem (10)–(11). Given any (u0, u1) ∈ E3/2, let us set

H(u0, u1) := M(〈Au0, u0〉) + |u1|2.

Corollary 5.2 (existence). Let us assume that the operator A satisfies condi-
tion (8), and that m satisfies (12) and (23).

Let (u0, u1) be in Eα
0

with α
0
≥ 3/2.

Set

T ∗(u0, u1) :=
ν3/2

L

(
m(〈Au0, u0〉)‖A1/2u0‖21/2 + ‖u1‖21/2

) .
Then there exists a unique solution u in C0([0, T ∗[; Eα

0
) of the Cauchy prob-

lem (10)– (11).
Moreover the whole sequence of Ritz-Galerkin approximations converges to the

solution u in the norm of the space C0([0, T ]; Eα
0
) for every T < T ∗(u0, u1).
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Proof. Let Pn be the orthogonal projection given by (39), and let us set

W := {(Pnu0, Pnu1) : n ∈ N},
For each n ∈ N we consider the Ritz-Galerkin approximating solution un

corresponding to the initial data (Pnu0, Pnu1), i.e. the solution of the problem
u′′n +m(〈Aun, un〉)Aun = 0 (t > 0),

un(0) = Pnu0,

u′n(0) = Pnu1.

Note that un exists (and is unique) for all t ≥ 0, by the classical Cauchy-
Lipschitz theorem and by the conservation of the Hamiltonian H(t, un), (see Propo-
sition 6.1 below), which implies that |u′n(t)| ≤ Const .

Let T be any number such that

0 < T < T ∗(u0, u1).

Let us observe that T ∗(W ) = T ∗(u0, u1), so we have T < T ∗(W ).
We claim that (un) is a Cauchy sequence in C0([0, T ]; Eα

0
). Since the set W

satisfies the hypoteses of Theorem 5.3, for every ε > 0 there exists a δ > 0 which
satisfies the thesis of Theorem 5.3. Then we choose n̄ large enough to have

Ẽα0,ν(0, un − um) < δ (n ≥ n̄, m ≥ n̄).

By Theorem 5.3 we have therefore

Ẽα
0
,ν(t, un − um) < ε for 0 ≤ t ≤ T.

This is exactly our claim. Therefore (un) converges to a function u ∈
C0([0, T ]; Eα) for each α ≤ α0, in particular for α = 1. By the continuity of
the function m, we have

m(〈Aun(·), un(·)〉) −→ m(〈Au(·), u(·)〉) uniformly on [0, T ].

To achieve the existence it suffices to pass to the limit in Eq.(10). The uniqueness
was already established in Corollary 5.1. Q.E.D.

6. Extensions of the results of section 5

In this section we will prove that the simplifying assumptions made in section 4
may be dispensed with.

First we prove that, due to the conservative character of the Kirchhoff equation,
it is enough to require (12) and (23) in a local sense.

To this aim we recall the Hamiltonian (5), which in abstract form reads as

H(t, u) := M(〈Au(t), u(t)〉) + |u′(t)|2 (t ≥ 0).

We have

Proposition 6.1 ([Be]). Let u ∈ C0([0, T ]; E3/2) be a solution to the Cauchy prob-
lem (10)– (11). Then the Hamiltonian H(t, u) is constant with respect to t.

For any subset W ⊆ E3/2, let us introduce the following (possibly infinite)
quantities. First we set

H := H(W ) := sup
(u0,u1)∈W

M(〈Au0, u0〉) + |u1|2.(49)
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Then we introduce ν := ν(W ), Λ := Λ(W ) and L := L(W ) as the best
constants such that

M(r) ≤ H =⇒ ν ≤ m(r) ≤ Λ,(50)

[
M(r) ≤ H, M(s) ≤ H

]
=⇒ |m(r) −m(s)| ≤ L |r− s|.(51)

Finally let E(W ) and T ∗(W ) be defined as in (21), (22).

Proposition 6.2. Let us assume that the operator A satisfies condition (8), and
that

(i) m : [0,+∞[−→]0,+∞[ is a locally Lipschitz function coercive at ∞ (Def.
1.1);

(ii) W is a bounded subset of E3/2.
Let the quantities H, E, ν, Λ, L and T ∗ be defined as above. Then

H + E + Λ + L < ∞,
0 < ν,

0 < T ∗ ≤ ∞.

Moreover, if we restrict ourselves to solutions in C0([0, T ]; E3/2), for initial data
in W the Cauchy problem (10)–(11) is equivalent to an analogous problem for a
modified function m̃ satisfying (12) and

m̃(s) ≤ Λ (s ≥ 0).

Proof. Assumption (ii) means that the quantity

‖u0‖23/2 + ‖u1‖21/2, (u0, u1) ∈W,

is bounded. The same holds true for the quantity 〈Au0, u0〉 ((u0, u1) ∈ W ), since,

thanks to (8) and the spectral decomposition of the operators A1/2 and A
1/2
c ,

〈Au0, u0〉 ≤ K‖u0‖23/2, where K :=
‖i‖V,H
η(A)1/2

.

Therefore the quantities H and E are finite. Then by assumption (i) it follows
that the quantities Λ, L and T ∗ are finite, and that ν > 0.

Let u ∈ C0([0, T ]; E3/2) be any solution of the problem (10)–(11) with initial
data in W . By Proposition 6.1,

H(t, u) = H(0, u) =: H,
so we have

M(〈Au(t), u(t)〉) ≤ H (0 ≤ t ≤ T ).(52)

Again by (i) (cf. (4)) there exists a number r̃ such that

M(r) > H for r > r̃.(53)

From (52) and (53) it follows that

〈Au(t), u(t)〉 ≤ r̃ (0 ≤ t ≤ T ).
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If we truncate the function m in the following manner:

m̃ :=

{
m(r) if 0 ≤ r < r̃,
m(r̃) if r ≥ r̃,

then u satisfies also the equation

u′′ + m̃(〈Au(t), u(t)〉)Au = 0 (0 < t < T ).

If moreover r̃ is choosen as the smallest number such that (53) holds true (i.e.
r̃ = M−1(H)), we have

inf
[0,+∞[

m̃ = inf
[0,r̃]

m =: ν,

sup
[0,+∞[

m̃ = sup
[0,r̃]

m =: Λ,

sup
r,s∈[0,r̃]
r 6=s

|m̃(r) − m̃(s)|
|r − s| = sup

r,s∈[0,r̃]
r 6=s

|m(r) −m(s)|
|r − s| =: L.

The converse statement may be proven in an analogous way. Q.E.D.

Thanks to Proposition 6.2, it follows that in the statements of Theorems 5.1, 5.2,
5.3 and Corollaries 5.1, 5.2, one might assume m locally Lipschitz and coercive at
∞.

Then we pass to consider the case when a source term f is present. When
we are dealing with Eq.(9), there are a few complications in the statement of the
theorems. More explicitly, let W be a bounded set of E3/2 and let F be a subset

of L1([0, T ∗];Vα
0
−1), F bounded in L1([0, T ∗];V1/2), where T ∗ = T ∗(W ) is given

by (22). We assume that f varies in F . In this case the Hamiltonian H(t) (see
(5) is no longer constant anyway, we have the estimate

H′(t) = 2 Re(u′, f) ≤ 2 |u′| |f | ≤ 2H(t)1/2|f |.
Therefore

H(t) ≤
(
H(0)1/2 +

∫ t

0

|f(s)| ds
)2

.

The presence of the source term forces us to modify the constants ν, Λ, L and
the critical time T ∗. First of all, we set

H̃ := H̃(W,F ) := sup
g∈F

(
H(W )1/2 +

∫ T∗

0

|g(s)| ds
)2

,

then we define ν̃, Λ̃, L̃ as in (50) and (51) with H̃ in place of H(W ). Finally, the
critical time T ∗∗ := T ∗∗(W,F ) is implicitly defined by

ν̃3/2

L̃
= T ∗∗

(
E1/2 + sup

g∈F

∫ T∗∗

0

‖g‖1/2 ds
)2

.

Now we are in a position to state the inhomogeneous version of Theorem 5.1,
which reads as follows. For every ε > 0, there exists a number δ which depends
only upon the quantities ε, ν̃, Λ̃, u0, u1, α, T/T

∗∗, such that

Eα,ν(0, v−u)+

∫ T

0

‖(g−f)(s)‖α−1 ds < δ =⇒ Eα,ν(t, v−u) < ε (0 ≤ t ≤ T ),

for every v in C0([0, T ]; Eα
0
) which solves the Cauchy problem (9)–(11) with

initial data in W and source term g in F .
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In a similar way one might modify the statements of Theorem 5.2, Corollary 5.1,
Theorem 5.3, Corollary 5.2.

7. Study of the continuity modulus of the resolvent map (3), which

in general is not Hölder continuous

Theorem 5.1 guarantees the continuity of the resolvent map (48), but by no
means gives informations about its continuity modulus. Actually, the continuity of
the resolvent map (48) for the Kirchhoff equation cannot in general be improved
to Hölder continuity. To show this we exhibit a counterexample, which is modelled
on a previous one of Kato [K1] for the so-called Burgers’ equation ut + uux = 0.

Let us set Ω ≡ R (we might as well consider a bounded interval of R) and
m(r) := 1 + r. If we are looking for solutions of Eq.(1) (with f ≡ 0) of the form
u0(x− ct), for some positive constant c, we find the conditions

c = c(u0) :=

(
1 +

∫ +∞

−∞

∣∣∣∣du0

dx

∣∣∣∣2 dx)1/2

,(54)

u(x, 0) = u0(x), ut(x, 0) = −c du0

dx
(x) (x ∈ R).(55)

Given a function u0, we call − c(u0) du0/dx the compatible velocity for u0.
Now let us define

f(x) :=


x3/2

logx
if x > 0,

0 if x ≤ 0,

let us consider a function φ ∈ C∞0 (R) such that φ ≡ 1 for |x| ≤ 1/2, and finally
let us consider for δ ∈ [−1, 1], the family of functions uδ0 ∈ H2(R) defined as

uδ0(x) := (δ + f(x))φ(x) (x ∈ R).

Note that

‖uδ0 − u0
0‖H2 = |δ| ‖φ‖H2 .(56)

If we choose as initial data for the Kirchhoff equation the family uδ0 with the
relative compatible velocities, we get the following family of solutions:

uδ(x, t) = (δ + f(x− cδt))φ(x− cδt),
where cδ := c(uδ0) (see (54)).

A simple computation gives for two suitable constants k1, k2 > 0

k1 |δ| ≥ |cδ − c0| ≥ k2 |δ|2 as δ → 0.(57)

Let us evaluate the H2−norm of the difference of the solutions corresponding
to uδ0 and u0

0. Let us fix T > 0. If δ is so small that |cδ − c0|T < 1, we have

sup
t∈[0,T ]

‖uδ(t)− u0(t)‖2H2 ≥
∫ |cδ−c0|T

0

∣∣∣∣d2f

dx2
(x)

∣∣∣∣2 dx
=

∫ |cδ−c0|T
0

x−1

(
3

4 log x
+

2

log2 x
− 2

log3 x

)2

dx.
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Then for δ small enough, by (57) the right-hand side behaves like(
3

4

)2 ∫ |cδ−c0|T
0

dx

x log2 x
=

(
3

4

)2
1

− log(|cδ − c0|T )

≥
(

3

4

)2
1

− log(k2|δ|2T )
.

By (56) one cannot therefore expect Hölder continuity of the map (48) for any
positive exponent.

To conclude, let us investigate which conditions guarantee the Hölder continuity
of the map (48). For example, via an interpolation estimate, it is not difficult
to prove that if W ⊆ Eα+β for some β ∈ ]0, 1], then the map (48) is Hölder
continuous with exponent β. In the next theorem we prove the stronger result
that it suffices to take the fixed initial datum (u0, u1) in Eα+β to have Hölder
continuity of the map (48) at (u0, u1).

Theorem 7.1. Let us assume that the operator A satisfies condition (8), and that
(i) m : [0,+∞[−→]0,+∞[ is a locally Lipschitz function coercive at ∞ ;
(ii) W is a bounded set of E3/2.
Let the quantities E, T ∗ H, ν, Λ and L be defined as in (21), (22), (49)–51).

Let α and T be real numbers such that

α ≥ 3/2,

0 < T < T ∗.

Assume that the initial datum (u0, u1) belongs to Eα+β with 0 < β ≤ 1.
Then

Eα,ν(t, u− v) ≤ C

{
(Eα,ν(0, u− v))β +Eα,ν(0, u− v)

}
(0 ≤ t ≤ T ),

(58)

where the constant C depends upon the quantities ν, Λ, T/T ∗, Eα+β,ν(0, u), E
and α.

The exponent β in (58) cannot be improved.

Remark 7.1. In the case when β = 1, we have Lipschitz continuity of the map (48)
(note that this agrees with the last statement of Theorem 5.1 for the case α = 1/2,
since the initial data belong at least to E3/2).

Proof. Let n ∈ [0,+∞[ and let hn,α(u0, u1) be defined as in (42). We have for
n2 + c > 0

hn,α(u0, u1) ≤ (n2 + c)−βEα+β,ν(0, u).(59)

Let us put α+β−1 in place of α in the estimate (37) of the proof of Theorem
5.1. We get, by (29) and (36), for 0 ≤ t ≤ T

Eα+β−1,m(v)(t, w2) =: y2
α+β−1(t) ≤

Eα+β,m(u)
(0, u)E1/2,m(v)

(0, v − u)

E (1− T/T ∗)5
.
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By following the lines of the estimate (41) with α + β − 1 in place of 1/2, we
have then

Eα,ν(t, Pnw2) ≤ (n2 + c)1−β Eα+β−1,m(v)
(t, w2)

≤ Λ

ν
(n2 + c)1−β Eα+β,m(u)

(0, u)E1/2,ν(0, v − u)

E(1− t/T ∗)5
.(60)

Moreover, thanks to (43) and (59) we have for n2 + c > 0

Eα,ν(t, Qnw2) ≤ 4Λ

ν
(n2 + c)−β

Eα+β,ν(0, u)

1− t/T ∗ .(61)

Therefore, by (27), (28), (40), (60) , (61) and (45) for β = α, we get for
0 ≤ t ≤ T

Eα,ν(t, v − u) ≤ 2Λ

ν(1− T/T ∗)

{
(n2 + c)1−β Eα+β,m(u)

(0, u)E1/2,ν(0, v − u)

E(1− T/T ∗)4

+ 4(n2 + c)−β Eα+β,ν(0, u) + Eα,ν(0, v − u)

}

≤ C
{

(n2 + c)1−β Eα,ν(0, v − u) + (n2 + c)−β + Eα,ν(0, v − u)

}
,

where C is a constant depending only upon Λ/ν, T/T ∗, Eα+β,ν(0, u), E and α.
If we minimize with respect to the (real) variable n, and then maximize with

respect to β ∈]0, 1], we get

Eα,ν(t, u− v) ≤ C

{
(Eα,ν(0, u− v))β

ββ(1− β)1−β +Eα,ν(0, u− v)

}

≤ 2C

{
(Eα,ν(0, u− v))β +Eα,ν(0, u− v)

}
This proves estimate (58).
To show that the exponent β is optimal we will exhibit, for each β, an initial

datum belonging to Eα+β , for which condition (58) fails to hold true for any β′ > β.
We will do it only for α = 2, by adapting the previous counterexample. Let us

define for β > 0

fβ(x) :=


x3/2+β

logx
if x > 0,

0 if x ≤ 0,

and let us consider the following family of functions uδ,β0 , δ ∈ [−1, 1], given by

uδ,β0 (x) := (δ + fβ(x))φ(x).

In order to improve (57) to

k1|δ| ≥ |cδ − c0| ≥ k3 |δ| as δ → 0 (k3 > 0),

we assume now that ∫ +∞

0

dφ

dx

d(φf)

dx
dx 6= 0.
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Since uδ,β0 ∈ H2+β(R), the pair (uδ,β0 , c(uδ,β0 )duδ,β0 /dx) belongs to E2+β (see
(3)).

On the other hand, by arguing as in the previous counterexample we get, for
δ → 0+

(k2 |δ|T )β

− log2(k2|δ|T )
= O

(
sup
t∈[0,T ]

‖uδ,β(t)− u0,β(t)‖H2

)
.

The above inequality proves that (58) may not hold for any β′ > β. Q.E.D.

Appendix A.

Let H be any real or complex Hilbert space with norm | · | and inner product
(·, ·). Let B : D(B) ⊆ H → H be any self-adjoint operator. We denote by E(λ)
the spectral decomposition relative to B; we refer to [Ru] for the definition and
the properties of E(λ). For any x ∈ H, let Ex,x be the positive measure given
by

Ex,x(ω) = (E(ω)x, x) for any Borel subset ω of R.
For every s ≥ 0, let us define the following orthogonal projection in H

Qs :=

∫
χ

]s,+∞[
dE(λ),

where χ
G

denotes the characteristic function of a set G ⊆ R.

Theorem A.1. For any bounded subset W of H, the following conditions are
equivalent:

lim
s→+∞

|Qsx| = 0 uniformly in x ∈W.(A1)

There exists a measurable real function f such that(A2)

lim
r→+∞

f(r) = +∞, W is a bounded subset of D(f(B)).

Proof. (A2) =⇒ (A1). We have for every x ∈W , for s large enough

|Qsx|2 =

∫
χ

]s,+∞[
dEx,x

≤ 1

inf
]s,+∞[

f2

∫
χ

]s,+∞[
f2 dEx,x

≤ 1

inf
]s,+∞[

f2 |f(B)x|2.

Now (A2) implies that

|f(B)x|2 ≤ Const. (x ∈W ),

and

lim
s→+∞

1

inf
]s,+∞[

f2 = 0.

(A1) =⇒ (A2). Let k0 be the first natural number such that

sup
x∈W

|Qk0x| ≤ 1,
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and by induction for i = 1, 2, . . . let us define ki as the first natural number such
that

ki > ki−1 and sup
x∈W

|Qkix| ≤ 2−i.

We construct the function f in the following way:

f(r) :=

 i if r ∈ ]ki, ki+1],

0 if r ≤ k0.

For every x ∈W , we have

|f(B)x|2 =

∫
f2 dEx,x =

+∞∑
i=0

∫
χ

]ki,ki+1]
f2 dEx,x ≤

+∞∑
i=0

i2 2−i < +∞.

Since limr→+∞ f(r) = +∞, the proof is complete . Q.E.D.

The next theorem states two conditions under which (A1) (equivalently: (A2))
holds true.

Theorem A.2. For any bounded subset W of H, let us consider the following
conditions:

W is a relatively compact subset of H.(A3)

There exists a nonnegative Borel measure µ on R, such that(A4)

µ(R) < +∞ and

on some positive half-line: Ex,x ≤ µ for each x ∈W.
Then each of the above conditions are sufficient to imply (A1), but none is nec-

essary (but if B−1 exists and is a compact operator, then (A3) is necessary).

Proof. (A3) =⇒ (A1). Since for every x ∈ H

|Qsx|2 =

∫
χ

]s,+∞[
dEx,x = Ex,x(]s,+∞[)→ 0 as s→ +∞,

it follows that |Qsx| → 0 uniformly on any relatively compact subset of H.

(A4) =⇒ (A1). We have for s large enough

|Qsx|2 = Ex,x(]s,+∞[) ≤ µ(]s,+∞[) (x ∈W ).

Since µ is finite we have lims→+∞ µ(]s,+∞[) = 0, so that (A1) holds true.
We remark that between the conditions (A3) and (A4) there is in general no

implication, as the following examples show. A fortiori none of these conditions is
necessary to have (A1).

(A3) =⇒/ (A4). Let B be any unbounded positive operator. Then there exists
a sequence (ωk) of subsets of R such that:

(i) the ωk are mutually disjoint;
(ii) E(ωk) 6= 0 for each k ∈ N;
(iii) for each s ∈ R there exists k(s) such that ωk ⊆ [s,+∞[ for each k ≥ k(s)

(e.g. ωk = [λk, λk+1[, where (λk) is a suitable sequence of real numbers ↗ +∞).
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By (ii) there exists xk ∈ H, E(ωk)xk 6= 0. We set

vk := k−1/2 E(ωk)xk
|E(ωk)xk|

(k ∈ N).

We have |vk| = k−1/2, so that W := {vk : k ∈ N} is relatively compact in H.
On the other hand, if µ is any nonnegative Borel measure such that Evk,vk ≤ µ
(k ∈ N) on some half-line [s,+∞[, then by (iii)

k−1 = |vk|2 = Evk,vk(R) = Evk,vk(ωk) ≤ µ(ωk) (k ≥ k(s)),

hence by (i)

µ(R) ≥
∑
k≥0

µ(ωk) ≥
∑
k≥k

k−1 = +∞.

(A4) =⇒/ (A3). Let dim H = ∞, B any bounded operator, W := {x ∈ H :
|x| = 1} and µ ≡ 0.

To finish, we prove that (A3) is a necessary condition to have (A1), if B−1 is a
compact operator. Indeed if (A1) holds true then

W = PsW +QsW.

Now BPs is a bounded operator, hence Ps = B−1BPs is a compact operator.
Therefore PsW is precompact. Since QsW is arbitrarily small as s → +∞, it
follows by a standard argument that W is precompact. Q.E.D.
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[EMM] Y. Ebihara, L. A. Medeiros & M. Miranda, Local solution for a nonlinear degenerate
hyperbolic equation, Nonlinear Anal. T.M.A. 10 (1986), 27–40 MR 86j:35264

[Fu] D. Fujiwara, Concrete characterization of the domains of fractional powers of some el-
liptic differential operators of the second order, Proc. Japan Acad. 43 (1967), 82–86 MR
35:7170

[Ga] S. Garavaldi, Su un modello integrodifferenziale non lineare della corda/membrana vi-
brante, Tesi di Laurea, Univ. Parma, December 1989

[GH] J. M. Greenberg & S. C. Hu, The initial-value problem for a stretched string, Quart.

Appl. Math. 38 (1980), 289–311 MR 82a:35021
[K1] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, (example

5.2) Arch. Rat. Mech. Anal. 58 (1975), 181–205 MR 52:11341
[K2] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equa-

tions, in “Spectral Theory and Differential Equations” (Proc.: Dundee, 1974), 25–70, Lec-
ture Notes Math. 448, Springer, 1975 MR 53:11252; Quasi-linear equations of evolution
of hyperbolic type, in “Hyperbolicity” (C.I.M.E.: Cortona, 1976), 125–191 (Theorem 3.1,
3.2) Liguori, Napoli, 1977 [Zbl 34S:35052]

[K3] T. Kato, Abstract Differential Equations and Nonlinear Problems (Theorem 5.2) Lezioni
Fermiane, Sc. Norm. Sup. Pisa, 1985 MR 88m:34058

[Ka] H. Kauderer, Nichlineare Mechanik, Part 2, B II, §1.88 b, Springer, Berlin, 1958 MR
26:3238

[Ki] G. Kirchhoff, Vorlesungen ober mathematische Physik: Mechanik, ch. 29 §7, Teubner,
Leipzig, 1876

[Li] J. L. Lions, On some questions in boundary value problems of mathematical physics, in
“Contemporary developments in continuum mechanics and PDE’s”, G.M. de la Penha &
L.A. Medeiros eds., North-Holland, Amsterdam, 1978 MR 80a:73003 [Zbl 404:35002]
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