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Abstract. The Wiener index of a graph G, denoted by W (G) is the sum of the

distances between all (unordered) pairs of vertices of G. In this paper, we obtain

the Wiener index of line graphs and some class of graphs.
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Abstrak. Indeks Weiner dari suatu graf G, yang dinotasikan dengan W (G) adalah

jumlahan jarak antara semua pasangan (tak terurut) dari titik-titik G. Pada artikel

ini, kami mendapatkan indeks Weiner dari graf garis dan beberapa kelas dari graf.

Kata kunci: Indeks Wiener, graf garis, jarak, diameter.

1. Introduction

Let G be a simple, connected, undirected graph with vertex set V (G) =
{v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. The distance between two
vertices vi and vj , denoted by d(vi, vj) is the length of shortest path between the
vertices vi and vj in G. The shortest vi − vj path is often called a geodesic. The
diameter diam(G) of a connected graph G is the length of any longest geodesic.
The degree of a vertex vi in G is the number of edges incident to vi and is denoted
by di = deg(vi) [2, 11].

The Wiener index (or Wiener number) [18] of a graph G, denoted by W (G)
is the sum of the distances between all (unordered) pairs of vertices of G, that is
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W (G) =
∑

i<j

d(vi, vj).

TheWiener index is a graph invariant that belongs to the molecules structure-
descriptors called topological indices, which are used for the design of molecules
with desired properties [16].

If µ1 ≥ µ2 ≥ . . . ≥ µn be the eigenvalues of Laplacian Matrix [13] of a tree
T , then [10, 12]

W (T ) = n

n−1
∑

i=1

1

µi

.

For details on Wiener index, see [4, 10, 14].

The line graph L(G) of a graph G is a graph such that the vertices of L(G)
are the edges of G and two vertices of L(G) are adjacent if and only if their cor-
responding edges in G share a common vertex [11]. The concept of line graph has
various applications in physical chemistry [7, 9].

Let F1 be the 5-vertex path, F2 the graph obtained by identifying a vertex
of a triangle with an end vertex of the 3-vertex path, and F3 the graph obtained
by identifying a vertex of a triangle with a vertex of another triangle (see Fig. 1).
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Figure 1

Theorem 1.1. [15] If diam(G) ≤ 2 and none of the graphs F1, F2, F3 of Fig. 1
is an induced subgraph of G then diam(L(G)) ≤ 2.

Recently there has been an interest in understanding the connection between
W (G) and W (L(G)).

Theorem 1.2. [1] For every tree T on n vertices W (L(T )) = W (T )−

(

n
2

)

.
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Theorem 1.3. [6] If G is connected graph with n vertices and m edges then

W (L(G)) ≥ W (G)− n(n− 1) +
m(m+ 1)

2
.

Theorem 1.4. [8] If G is connected unicyclic graph with n vertices then W (L(G)) ≤
W (G) with equality if and only if G is a cycle of length n.

Theorem 1.5. [3] Let G be a connected graph with minimum degree δ(G) ≥ 2 then
W (G) ≤ W (L(G)). Equality holds only for cycles.

Graphs for which W (G) = W (L(G)) are considered in [3, 5].

In the sequel, in this paper we obtain some more results on the Weiner index
of line graphs. Also, we obtain Wiener index of some class of graphs.

2. Wiener Index of Line Graphs

Theorem 2.1. Let G be a connected graph with n vertices, m edges and di =
deg(vi). If diam(G) ≤ 2 and G does not contain Fi, i = 1, 2, 3 (of Fig. 1) as an
induced subgraph then

W (L(G)) = m2 −
1

2

n
∑

i=1

d2i .

Proof. The number of vertices of L(G) is n1 = m and the number of edges of
L(G) is m1 = −m+ 1

2

∑n

i=1 d
2
i [11].

If diam(G) ≤ 2, then [17]

W (G) = n(n− 1)−m (1)

From Theorem 1.1, since diam(G) ≤ 2 and G has no Fi, i = 1, 2, 3 as its
induced subgraph then diam(L(G)) ≤ 2. Therefore from Eq. (1),

W (L(G)) = n1(n1 − 1)−m1

= m(m− 1)−

[

−m+
1

2

n
∑

i=1

d2i

]

= m2 −
1

2

n
∑

i=1

d2i . ✷
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Corollary 2.2. If G is a connected r-regular graph on n vertices with diam(G) ≤ 2
and none of Fi, i = 1, 2, 3 (of Fig. 1) as an induced subgraph of G then,

W (L(G)) =
nr2(n− 2)

4
.

Proof. Since G is an r-regular graph on n vertices, the number of edges of G is
m = nr/2 and di = deg(vi) = r. From Theorem 2.1,

W (L(G)) = m2 −
1

2

n
∑

i=1

d2i

=
(nr

2

)2

−
1

2

n
∑

i=1

r2

=
n2r2

4
−

nr2

2
=

nr2(n− 2)

4
. ✷

Let e = (uv) be an edge of a graph G where u and v are the end vertices of
e. The degree of edge e is defined as deg(e) = deg(u) + deg(v)− 2.

Theorem 2.3. Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn}
and edge set E(G) = {e1, e2, . . . , em}. Let di = deg(vi). Then

W (L(G)) ≥

n
∑

i=1

di(di − 1)

2
+m(m− 1)−

m
∑

i=1

deg(ei).

The equality holds if and only if diam(G) ≤ 2 and none of the three graphs
of Fig. 1 is an induced subgraph of G.

Proof. If di = deg(vi) then for each vertex vi there are di edges incident to vi.
These di edges form a complete graph on di vertices in L(G). Which contributes
di(di − 1)/2 to the W (L(G)).

Consider an edge e = (uv) which is adjacent to deg(u) + deg(v)− 2 = deg(e)
edges at u and v taken together. Hence the edge e is not adjacent to remaining
m−1−deg(e) edges of G. In L(G) the distance between e and the remaining these
m− 1− deg(e) vertices is more than 1. Hence each edge e = (uv) contributes the
distance at least 2(m− 1− deg(e)) in L(G). Therefore
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W (L(G)) ≥

n
∑

i=1

di(di − 1)

2
+

1

2

∑

e∈E(G)

2(m− 1− deg(e))

=
n
∑

i=1

di(di − 1)

2
+

m
∑

i=1

(m− 1− deg(ei))

=
n
∑

i=1

di(di − 1)

2
+m(m− 1)−

m
∑

i=1

deg(ei). ✷

For the equality:

If diam(G) ≤ 2 and none of the three graphs of Fig. 1 is an induced subgraph
of G, then from Theorem 1.1, diam(L(G)) ≤ 2. Therefore as explained above, the
distance between e and the remainingm−1−deg(e) vertices in L(G) is 2. Therefore

W (L(G)) =
n
∑

i=1

di(di − 1)

2
+

∑

e∈E(G)

(m− 1− deg(e)) (2)

=
n
∑

i=1

di(di − 1)

2
+m(m− 1)−

m
∑

i=1

deg(ei)

Conversely, the first part of Eq. (2) contributes the distance betwen the
adjacent edges and the second part contributes the distance 2 between non adjacent
edges. For this let ei and ej be nonadjacent edges in G. Since d(ei, ej) = 2 in L(G),
there is an edge ek adjacent to ei and ej in G and none of the three graphs of Fig.
1 is an induced subgraph of G, diam(G) ≤ 2. Hence G is required graph. ✷

If G is an r-regular graph then di = r, deg(e) = 2r − 2 and m = nr/2, so we
have following corollary.

Corollary 2.4. If G is a connected r-regular graph on n vertices then W (LG)) ≥
nr2(n− 2)/4 with equality if and only if G is an r-regualr graph with diam(G) ≤ 2
and none of the three graphs of Fig. 1 is an induced subgraph of G.

Theorem 2.5. If T is a tree with vertices v1, v2, . . . , vn and di = deg(vi), i =
1, 2, . . . , n then

W (L(T )) =
n
∑

i=1

di(di − 1)

2
+
∑

i<j

[1 + d(vi, vj)] (di − 1)(dj − 1). (3)

Proof. Edges of T will be the vertices of L(T ). For each vertex vi there are di
edges incident to it. These edges form a complete graph on di vertices in L(T ).
Therfore the sum of the distances between these di vertices is
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(

di
2

)

=
di(di − 1)

2
, i = 1, 2, . . . , n. (4)

. . . . . . . . . . . .❅
❅

❅❅

❇
❇
❇
❇

�
�

��

❅
❅

❅❅

❇
❇
❇
❇

�
�

��
. . . . . . . . . . . .

✉ ✉ ✉ ✉

✉ ✉ ✉ ✉ ✉ ✉

x1
x2 xdi−1 y1

y2 ydj−1

vi vj
Figure 2

Now suppose vi and vj be the vertices of T and di = deg(vi) and dj = deg(vj).
Let x1, x2, . . . , xdi−1 be the edges incident to vi and y1, y2, . . . , ydj−1 be the edges
incident to vj (Fig. 2). Where xl, (1 ≤ l ≤ di − 1) and yk, (1 ≤ k ≤ dj − 1) do not
have common vertex and these are not the edges of the path between vi and vj .

The distance between xl and yk in L(T ) is 1 + d(vi, vj).

The sum of the distances between all edges x1, x2, . . . , xdi−1 incident to vi
and all edges y1, y2, . . . , ydj−1 incidnet to vj is

[1 + d(vi, vj)](di − 1)(dj − 1). (5)

Thus from Eq. (4) and Eq. (5),

W (L(T )) =

n
∑

i=1

di(di − 1)

2
+
∑

i<j

[1 + d(vi, vj)] (di − 1)(dj − 1). ✷

Theorem 2.6. If T is a tree having k vertices with degree s and remaining with
degree 1. Then

W (L(T )) =
ks(s− 1)

2
+ (s− 1)2

[(

k
2

)

+W (T ′)

]

where T ′ is the tree obtained from T by removing all its end vertices.

Proof. The k vertices are of degree s and the remaining n−k vertices are of degree
1. Say deg(vi) = s for i = 1, 2, . . . , k and deg(vi) = 1 for i = k + 1, k + 2, . . . , n. So
di − 1 = 0 and dj − 1 = 0 for i, j = k + 1, k + 2, . . . , n. From Eq. (3),
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W (L(T )) =
k

∑

i=1

s(s− 1)

2
+

∑

1≤i<j≤k

[1 + d(vi, vj)](s− 1)(s− 1)

=
ks(s− 1)

2
+

∑

1≤i<j≤k

(s− 1)2 +
∑

1≤i<j≤k

(s− 1)2d(vi, vj)

=
ks(s− 1)

2
+ (s− 1)2[(k − 1) + (k − 2) + . . .+ 1] + (s− 1)2

∑

1≤i<j≤k

d(vi, vj)

=
ks(s− 1)

2
+ (s− 1)2

(k − 1)k

2
+ (s− 1)2W (T ′)

=
ks(s− 1)

2
+ (s− 1)2

[(

k
2

)

+W (T ′))

]

✷

3. Wiener Index of Some Class of Graphs

The clique of a graph G is the maximal complete induced subgraph of G [11].

Theorem 3.1. Let G be a connected graph with n vertices having a clique Kk of
order k. Let G(n, k) be the graph obtained from G by removing the edges of Kk,
0 ≤ k ≤ n− 1. Then

W (G(n, k)) ≥
1

2
[n(n− 1) + k(k − 1)].

The equality holds if and only if G ∼= Kn, a complete graph on n vertices.

Proof. Let the vertices of G be v1, v2, . . . , vn. Without loss of generality, let the
vertex set of the clique Kk of G be S1 = {v1, v2, . . . , vk} and the remaining vertices
of G are vk+1, vk+2, . . . , vn.

In G(n, k), d(vi, vj) ≥ 2, if vi, vj ∈ S1 and d(vi, vj) ≥ 1, otherwise. So

(

k
2

)

pairs of vertices are at distance greater than or equal to 2 and remaining

(

n
2

)

−
(

k
2

)

pairs of vertices are at distance greater than or equal to 1. Therefore

W (G(n, k)) =
∑

i<j

d(vi, vj)

≥ (2)

(

k
2

)

+ (1)

[(

n
2

)

−

(

k
2

)]

=
1

2
[n(n− 1) + k(k − 1)].
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For the equality, if G = Kn, then in G(n, k), d(vi, vj) = 2 if vi, vj ∈ S1 and
d(vi, vj) = 1, otherwise. So

W (G(n, k)) = (2)

(

k
2

)

+ (1)

[(

n
2

)

−

(

k
2

)]

=
1

2
[n(n− 1) + k(k − 1)].

Conversely, let W (G(n, k)) = 1
2 [n(n− 1) + k(k − 1)].

Let G ̸= Kn, then there exists at least one pair of vertices which are not adja-
cent. Let v1, v2, . . . , vk be the vertices of the cliqueKk ofG. Let vk+1, vk+2, . . . , vk+l

be the vertices which are not adjacent among themselves in G, where 2 ≤ l ≤ n−k.

Let V1 = {v1, v2, . . . , vk}, V2 = {vk+1, vk+2, . . . , vk+l} and V3 = {vk+l+1, vk+l+2, . . . , vn}.

In G(n, k), d(vi, vj) ≥ 2 if vi, vj ∈ V1, d(vi, vj) ≥ 2 if vi, vj ∈ V2 and
d(vi, vj) ≥ 1, otherwise. Therefore

W (G(n, k)) ≥ (2)

(

k
2

)

+ (2)

(

l
2

)

+ (1)

[(

n
2

)

−

(

k
2

)

−

(

l
2

)]

=
1

2
[n(n− 1) + k(k − 1) + l(l − 1)]

≥
1

2
[n(n− 1) + k(k − 1) + 2(2− 1)] since l ≥ 2

=
1

2
[n(n− 1) + k(k − 1) + 2)].

Which is a contradiction to W (G(n, k)) = 1
2 [n(n − 1) + k(k − 1)]. Hence

G = Kn. ✷

Two subgraphs G1 and G2 of G with the vertex sets V (G1) and V (G2)
respectively are said to be independent if V (G1) ∩ V (G2) = φ.

Theorem 3.2. Let (Kp)i, i = 1, 2, . . . , k be the k independent complete subgraphs
on p vertices of Kn. Let G(n, p, k) be the graph obtained from complete graph Kn

by removing the edges of (Kp)i, i = 1, 2, . . . , k, 1 ≤ k ≤ ⌊n/p⌋ and 0 ≤ p ≤ n− 1,
then

W (G(n, p, k) =
n(n− 1) + kp(p− 1)

2
.

Proof. Let (Kp)1, (Kp)2, . . . , (Kp)k be the independent subgraphs of Kn. Let
v(i−1)p+1, v(i−1)p+2, . . . , v(i−1)p+p be the vertices of (Kp)i, i = 1, 2, . . . , k. So in
G(n, p, k) there are kp(p − 1)/2 pairs of vertices are at distance 2 and remaining
(

n
2

)

− kp(p−1)
2 pairs of vertices are at distance 1. Therefore
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W (G(n, p, k) =
∑

i<j

d(vi, vj)

= (2)
kp(p− 1)

2
+ (1)

[(

n
2

)

−
kp(p− 1)

2

]

=
n(n− 1) + kp(p− 1)

2
. ✷

Theorem 3.3. Let ei, i = 1, 2, . . . , k, 0 ≤ k ≤ n−2 be the edges of complete graph
Kn incident to a vertex v of Kn. Let Kn(k) be the graph obtained from Kn by
removing the edges ei, i = 1, 2, . . . , k. Then

W (Kn(k)) =

(

n
2

)

+ k.

Proof. Let v is adjacent to v1, v2, . . . , vk in the complete graph Kn. Therefore in

Kn(k) there are k pairs of vertices which are at distance 2 and remaining

(

n
2

)

−k

pairs of vertices are at distance 1. Therefore

W (Kn(k)) = 2k +

[(

n
2

)

− k

]

=

(

n
2

)

+ k. ✷
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