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On the winding number and equivariant homotopy classes of maps
of manifolds with some finite group actions

by

C. Bowszye (Warszawa)

Absiract, The paper considers equivariant maps of a closed connected m-dimensional mani-
fold M witl an effective smooth action of a finite group G into a punctured linear (m+1)-dimensic-
nal space E\{0}with a smooth action of @ on E such that O is a fixed point and every isofropy group
of the action on M acts trivially on E. The following questions are investigated:

1. What numbers may be the winding numbers of such maps?

2. What are the equivariant homotopy classes of such maps?

The well-known Borsuk theorem asserts that any equivariant map of a sphere
with the antipodic action of Z, into itself has an odd degree. In this paper we take
up the question what winding numbers (degrees) have equivariant maps of a closed
connected smooth G-manifold M into a linecar G-space E of dimension greater by 1
with O removed when every isotropy group of the action of a finite group G on M
acts trivially on & (Theorem 2.2).

Although these assumptions are very restrictive, they contain the case of free
actions on M and the case of the trivial action on E. Without the imposed assumptions
the results may be false (Example 2.4).

Moreover, Theorems 3.1, 4.3 and 5.1 give 2 complete equivariant homotopy
classification of such maps and may be viewed as a generalization of the Hopf
{heorem. o :

The methods used are similar to those in Krasnoselski’s paper [5]. Although
the maps under consideration are continuous, they are treated by means of rather
differential topology mothods as in [3] or [6].

" In the whole paper G is a finite group. By a manifold we mean a paracompact
smooth manifold without boundary. All actions of a group G are assumed to be
smooth,

1. Auxiliary results. We shall use a kind of mappings given by

1.1, DprNrrion. Let P be a p-dimensional manifold and E a real (m+-1)-di-
mensional vector space. A map J: P — E is called good iff f is continuous on P, f'is
smooth ‘on some open set Q@ containing f ~}(0) and O is a regolar value of f]Q.
If, in addition, & acts smoothly on P and £, fis a G-map and f~*(0) i¢ contained
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in the part P, of P consisting of all points with the trivial isotropy group {e}, then F is
called a G-good map.

For a good map, f~0) is a-{p—m—1)-dimensional submanifold of P (in-
variant if fis G-good and O is a fixed point of the action of G on E) or is empty.

The following facts concern extensions of geod maps to good maps.

1.2. Let P be a manifold, F a closed set contained in an open subset U of P and D
a compact set in P. If {1 U — E is a good map, then there exist an open set W con-
tgining FU D and a good map h: W — E such that I|F = f|F.

Proof. Choose open sets Ug, Uy and U, such that FeUycUye Uy eU U,
< U,cU and a smooth function ¢: P — [0, 1] satisfying conditions ¢ (x) == 0 for
xeU; and @(x) =1 for xeP\U,. Choose open sets ¥, and ¥ such that
DeV, < Vyc Pwith 7 compact. By 1.1 there exists an open set Q containing f ™ (0)
such that f]Q is smooth and O is a regular value of £]Q. Let g0 be the minimum
of | £ (2)| for x belonging to the compact set K = (Vn U )\(Uy U Q). Lot fy: P — E
be a smooth map such that | fo(x)—f (x)| < & for x € K. Define themap f;: Uy WV~ E
by

folx) it xe N\, .

Jf1 is continuous, f1|U, = Uy, fi(x) # 0 for x € K n 'V and therefore f| is smooth
in some open set Z containing Jy }(O) if f71(0) # &.

Let Z, and Z; be open sets such that f7Y(0) A (V\UpcZycZocZ,cZ,
< ZNF with Z, compact. Let ! P - [0, 1] be a smooth function such that ¥ (x) = 0
for xe PN\Z; and ¥(x) = 1 for x € Z,. There exists a compact set K, such that
FTHO) N (ZNZo) n UgeInt Ky K,z UNF and the tangent maps dfy, ate epi-
morphisms for x € K. The set K; = (Z;\Z) n V\IntK, is compact and f,(x) # 0
for x € K. By the Sard lemma there exists a regular value ¢ € E for f;|Z arbitrary
close to 0. Define W= U, u ¥y and h: W E by h(x) = fi(x)—{x)a. If 4| is
sufficiently small, then df, are epimorphisms for x ¢ K, and A(x) # 0 for x & K.
Therefore # is a good map and A[F = f}|F = f|F.

1.3. Let G act on a manifold P and on a vector space E with the fixed point O.
Let U be a G-invariant open subset of P and V an Heinvariant open subset of P for
a subgroup H of G such that gV nV =@ for ge G\NH. If f: Uw V — E is a good
map, f ~HOY<P,, £ | U is G-equivariant and f |V is H-equivariant, then there is ¢ unique
extension of f to the G-good map f: U U GV — E.

Proof. Set
f(x)={f(-x) for xe U, .

F09 = {f(x)+(p(x)(fo(x)-—f(x)) it xel, v (Vnl),

gf(g™*x) for xegV and geG.

1.4. Let B be a b-dimensional G-manifold with exactly one type of orbits corres-
ponding to the conjugacy class of isotropy subgroups (H). Let G act on an (m=+ 1)-di-
mensional vecior space E with the fixed point O in such a way that H aets trivially
on Eondb<mor H = [e}. If f1 W — E is a G-good map on an open invarfant sub-
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set W of B containing a closed invariant set A, then f |4 can be extended to a G-good
map b B — E. (If b<m, this means that h{x) # 0 for x € B and h is equivariant.)

Proof. We can assume that B is separable. At any point x € B~d with the iso-
tropy group G, = H there is a slice ¥ (cf. [1] or [4]) which may be identified with R
with an orthogonal action of H. Take a unit closed ball D in, V. Fhe set B\A cau be
covered by tubes IntGD;, where D; are such disks, j = 1,2, ... By induction we
define G-good maps fi: Wy~ E on open invariant sets W, containing

& .
A ) GDy = Fy such that fil Fy = fiv |F for k= 0,1,2,.. Put Wy =W and
jal
o =J . Having f; on W, by 1.2, we choose a good map k: U, U Vyyy — E where
U,oF, is open G-itvatiant, Vs> D,y is open contajned in a slice and iy Fy
= f,|F,. The subgroup H acts trivially on V., and on £, and so by 1.3 there is
a G-good extension fiiy: Wisy = E of &y on Wiy = Uy 0 GViyy D Fryy. The
G-good extension h: B — E of f|4 is defined by A(x) = fi(x) for x & Fy.

If G acts effectively on a connected manifold P, then the trivial group {e} is
principal (cf. [7]). The open and dense set P, is called the principal part of P (cf. [1]
or [4]). Its complement P’ = P\P, will be called the singular part of P. Tt is a finite
union of submanifolds, and the dimension of P’ is the greatest of the dimensions of
those manifolds.

The following lemma will be important in our considerations.

1.5. BXTENSION LEMMA. Let G act on an (m+1)-dimensional vector space E
with the fixed point O. Suppose also that G acts effectively on a connected manifold P
in such a way that each isotropy group of the action on P acts trivially on E dnd
dimP' <m. Iff; U E is a G-good map on an open invariant set UcP containing
« closed invarignt set F, then there exists a G-good extension h: P — E of fIF. If f is
smooth, then h is also smooth.

Proofl. All conjugacy classes of isotropy groups of the G-manifold # are partially
ordered. Thus they can be arranged in a sequence (M), (i), .-, (H,)) = (¢) in
such a way that whenever (H})>(H)) then i<j. The set Py, of points of P with
the isotropy groups belonging to M, is a disjoint union of submanifolds :?f P by the

existence of slices and dimPyry<m if i<a. Denote F,= Fu ) Py for
i=1

;=0,1,..,n The sets Fy are closed because in a slice at a point x of P there are
only points with isotropy groups not greater than G

We shall constract G-good maps fi: Uy — E on open. invariant sets U, con-
taining F, for & = 0,1,...,n such that il = fi. | Fy. Set Uy = U and fy = f.
Suppose that U, and £, have been construeted and k<n. ‘

Denote B = Py, .- Lot W be an open invariant subset of P such that
F e W We U,. Set Vy = B~ W and choose invariant sets ¥, and ¥, open in B
and satisfying the condition Vo=V, eVicV,cVoeBn U, where closures are
taken in B, The map fi[ ¥y is G- good because if k+ 1 <n then fi(x) # 0 forxe Vy<B
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and if k+1 = n then ¥ is open in P. By 1.4 there exists a G-good extension
hy: B Eof filVo. If k+1 =n set

Serax) = {}zf:((;c))

Suppose that k+1<n..There exists an invariant tubular neighbourhood N
of B, open in P, which can be identified with the equivariant normal bundle of B
in P. Let =: N — B be the projection. We can assume that:

1. In this bundle we have an equivariant Riemannian metric.

2. The part of the bundle of the unit open disks &, over ¥, denoted by N,{V,
is contained in Uy. ‘

3, The diameters 6(N,) of the fibres of the vector bundle N over points y ¢ B
in some metric on P tend to O when ¥ tends to infinity — the point added to B in
the one-point compactification of B.

The set B\Vy= Fys\Fpis closed in P and the closure in P N;|B\V) is the part
of the bundle of the unit closed disks of N over B\V, by condition 3. Let
@: B~ [0, 1] be an equivariant smooth map such that ¢(x) = I for xe V, and
@{x) =0 for xeB\V,;. We can assume that fi{x) # 0 for xeN;|V,. Defing
Uppr = (UNEGIBNV)) U Ny and fiyqt Ugyq =+ E'by

if xeVy,
if xeB=P,.

e for x e UM IBNV:) ,
Srea () = f}c(‘f’(x)x) for xeNy|Vs,,
hy 0 () for xe N, |B\V, .

Se+1 18 a well-defined G-good map on Uy,

The last map k=, is a G-good extension of f|F on the whole manifald
P=T, _ .

All maps in 1.2, 1.3, 1.4 and 1.5 are smooth if f was smooth,

1.6. COROLLARY. Let M be a closed connected manifold with an effective action
of G. Let G act on the vector space E with the fixed point O in such a way that each
isetropy group of the aition on M acts trivially on E. Denote Ey = EN{0}.

a) If dimM <dimE, then there is ¢ smooth G-map fi+ M — E,.

b) IfdimM <dim E—1, then any twe continuous (smooth) G-maps fo, /12 M —~ Iy
are G-homotapic (smoothiy).

For the proof we take in 1.5 P = M and U = @ in case a) and

P=RxM, Us=@J{4DWxM, F={0,1}xM
and
o [fox) forte(—o0,d), xeM '
S %) = {fl(x) for e (3, +oo), xeal 0 A D)

The following example shows that equivariant maps do not always exist.
1.7. ExAMPLE. There is no equivariant map of the unit sphere S*<R® with
the antipodic action of Z, into an orientable surface S, of genus g=>0 embedded
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symmetrically with respect to O in R® with the action of Z, by symmetry with
respect fo O,

Ifsuchamapf: S* — S, exists, then 7is homotopic to a constant map because §2
has a trivial fundamental group and the universal covering space of S, is homeomor-
phic to an open disk. Therefore degf = 0. By 1.6 a) there exists an equivariant
map g: S, = 5% because S is an cquivariant deformation retract of R3\0, The
map gef: 8 — S% is equivariant with deg g o f = 0, which contradicts Borsuk’s
theoren.

1.8, HoMOGENILTY 1EMMA, Let G act effectively on a connected manifold P.
If x, v belong to the same component C of the principal part P,, then theve exists an
equivariant diffeomorphism h: P — P mapping x to y, equivariontly diffeotopic to id,
by the diffeotopy hy, which does not move points beyond some compact invariant set
and beyond P,.

The proof is similar to that in the non-equivariant case ([6]). We have in C the
equivalence relation: x~y iff the statement of 1.8 is true, Let ¥ be a slice at x in €
diffeomorphic to a Buclidean space and let ye V. By the non-equivariant homogeneity
there exists a diffectopy fi: ¥ — ¥ such that fy = idy, f1(x) =y and fi(2) = z
beyond some compact set. We define the equivariant diffectopy #,: P =P by

iz = z if ze PNGV,
ne gfi{g™s) T zegV, ged.

Therefore the classes of the relation are open and C is the only class by connectivity.

1.9. Remark. If the cemponent C s a nonorientable manifold and o, and o,
are any orientations of the tangent spaces T, P and TP, respectively, for x,ye C,
then the G-diffeomorphism /i of 1.8 can be chosen in such a way that the tangent
map dh, maps o, to o,. ’

1.10. There is a generalization of 1.8 (and 1.9) analogous to that in the non-
equivariant case: If dimP>1 and x;, y; for i =1, ..., k are two k-tuples of poinis
of @ component C belonging to different orbits, then there is a G-diffeomorphism
h: P P G-diffeotopic io idp such that h(x) =y, for i=1,..., k.

This follows by induction on k because a finite set does not separate a manifold
of dimension greater than 1.

1.11. Remark. If x and y belong to different components of P,, then a G-dif-
feomorphism ki P -+ P such that 1(x) = ¥ does not always exist, e.gz. if the sub-
group of G preserving the component C of x denoted by G is different from the
subgroup Gyo = gGeg™" for y = gx {as in Example 3 of [7]). If g belong to the
centre of G, then such an A exists. But there is no G-diffeotopy %, from idp to 7
because each hy would map P, onto P, and C onte C.

2. Winding nombers- of equivariant maps.
2.1, Let M be a closed connected mantfold of dimension mz1 with an effective
smooth action of a finite group G. Suppose that G acts smoothly on an (m+1)-dimen-
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sional Euclidean vector space E, O is a fixed point and every isotropy group of the
action on M acts trivially on E. Denote E, = EN{O}. The above assumptions will
always be observed in the sequel.

If M is oriented, there are iwo possibilities:

@) Every g & G simultaneously preserves the orientations of M and E or simul-
taneously reverses them.

b) Some g € G preserves the orientation of M and reverses the orientation of £
or vice versa.

In case a) we shall say that the actions of & on M and E are concordant and in
-case b) that they are discordant.

If M and E are oriented, then for a continuous map f: M — E, the winding
number W(f) is by definition the degree of the map ff| f/'|: M — S" < E, where $*
is the unit sphere in E oriented as the boundary of the unit ball in £ If M is non-
-orientable, then the winding number modulo 2 denoted by W,( f) is defined similariy.

2.2. TueoreM. Let G, M, E, Ey be as in 2.1 and let M be oriented.

a) If the actions of G are concordant, then for any continuous equivariant maps f,,
Jit Mo By W(fo) = W(f)mod |Gl

b) If the actions of G are discordant, then for any continuous equivariant map
o M= Ey W(f) =0 (even without the assumptions about isotropy groups).

Proof. b) Let 8, and i, denote the diffeomorphisms of M and E, respectively,
corresponding to g € G. The local degree at 0, degy,, is equal to 1 if yf, preserves
the orientation of E and equal to —1 otherwise. Since the action of G is discordant,
‘there exists a g € G such that degf, = —degy . The map f is equivariant, and so
Fo8, =, of  Therefore W(f)degl, = dego, W(f), W{(f)= —W(f) and
Wi{f)=0.

a) By the extension Lemma 1.5 applied to the manifold P = Rx M, the sets
U= R{NxM, F=(R0,1))xd and the mapping f: U— E defined by

_ Al if r<d,
fl,2) = {fl(x) if 1>%

there is a G-good homotopy it Ix M — E from f, to f;. (Ix M is a manifold with
boundary, but  can be extended to a G-good map on the manifold P without
boundary. Similarly we shall use the notion of G-good map in the sequel). 14(0)
is a finite equivariant subset of (0, 1)x M, because dim/xM = m+1 = dim &
Choose one point x; in-each orbit of h™*(0) for i=1, .., k.

It is known (cf. [31 or [6]) that W(f)—~W(fo) = ¥ deg.h, where deg.h is .
xeh-1{0)

the local degree at isolated zero x of & If 8, and y, denote the diffeomorphisms of
Ix M and E, respectively, corresponding to g € G, then cl.egZ)ﬂ = degy, because
the actions of .G are concordant. From the equality a O,=y,0oh we get
deg,ch-degll, = degyp,-deg, h and deg, /i = deg,}r for every x 6 h7N0) and g e G.
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So the local dcgreez of /1 at all points of one orbit of A~*(0) are equal. Therefore
W ()~ WS :,ZL!Gldegx,h and W(f) = W(Jy)mod|G|.

2.3. Remark, If the action of G on E is orthogonal, we can consider equi-
variant maps M — S™ instcad of M — E, and the degrees of such maps instead of -
winding numbers. Since the sphere S™ is an equivariant deformation retract of Eg,
this concerns also the results in sections 3-3.

Theorem 2.2 a) may be false if the assumptions on the isotropy groups are not
satisfied.

2.4, Bxampry, Consider the action of Z, on the unit circle M = S1cR?
and £ = R, in which the gencrator of Z, acts by symmetry with respect to a line.
Those actions are concordant. The maps f, = idy and /| = constant map into one
of iwo fixed points on $* are equivariant, but degf, = 1 and degfy = 0.

2.5, COROLLARY. If the action of G on E is trivial, then for any action of G on M
and mapping f: M — Ey constant on orbits W(f) = 0mod|G}.

2.6. Remark. Theorem 2.2 can always be applied if the action of G' on M is
free. The proof in this case may be considerably simplified.

2.7, BxampLn. Suppose that G acts on an (m+1)-dimensional Euclidean vector
space with the fixed point O, N is a compact (m-+1)-dimensional invariant sub-
manifold of £ with boundary M = IN<E, and the induced action of G on M
is free. Then, for any equivariant map f: M —.Ey, W(f) = 0mod|G| if O¢N
and W(f) = lmod|G| if OeN. ‘ i

Indecd, if f, is the inclusion M - Ey, then it is equivariant and has an extension
to the inclusion f: N — E without zeros if O ¢ N and with exactly one zero 0 with
the local degree degy fo = 1if O € N. Since W(fy) = degy J, this follows from 2.2 a).

L, in addition, the action of G on E is orthogonal, then the Gauss map
fi2 M = S"<=F,, which assigns to a point xe¢ M the unit vector normal to M
at x directed outward of N, is equivariant, The degree of f; is cqual to the Euler-
Poincaré characteristic ¥(N) of N (cf. [2]). For any equivariant map f: M — E,,
W) = x(NMmod |G|, If the number m is even, then yx(N) = 3x (M) (by consi-
dering the double of N). :

2.8, Examerp, Lot &7 be an (m-+1)-dimensional linear space, and N 2 com-
paet (m1)-dimensional manifold in £ with boundary M = &N. Let T: M~ M
be a fixed point free smooth involution. T defines an action. of Z, on M. Cousider E
with the action of Z, generated by symmetry with respect to 0. Let T: N+ Ebe
any continuous extension of 7. The map fu: M - Ey defined by Folx) = x=T(x)
15 equivariant and W) = ind T, where ind T'is the figed point index of T (cf. [2])
(the set of fixed points of T is compact and contained in IntN). By 2.2, for any
equivariant map f; M ~ Iy, W(f) = ind Tmod2.

2.9, ExameLi. Let Z, act on £ = C* with the action of a generator ¢ of Z,
defined by ,(z) = ¢*¥"z or & C?, where r and k are natural numbers. Let Z,
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act also on the unit sphere M = §% 1< C?, the action defined by 0,(z) = &>,
for z& S, where the natural numbers n and [ are relatively prime. The action
on 57! g free. The class of Imodn denoted by [/] is an invertible clement of Z,.
Let [g] = [£)/[]] in Z,, i.e. ¢l = kmodn. The map f: S*7*>CN{0} defined by
Jolag, 2y = (24, ..., z5) is equivariant and W(f,) = ¢® because f, has an exten-
sion fo: C* = C” given by the same formula, O is the unique zero of fy and
deg, Jo = g”. By 2.1, for any equivariant map f: §2~1— C™{0}, W(f) = g*modn.
2.10. Remark. In case 2.2 a) if Gy i=1,..,k, are Sylow subgroups of G
and r; is a number such that G,-maps f;: M — E, have W(f) = r, mod |G| for
i=1,..,k, then the number r of 2.2 a) is uniquely mod |G| defermined by the
numbers r; by the conditions r = r,mod]G,,J for i=1,.., k. .
2.11. CorOLLARY. Under the conditions of Theorem 2.2, if in addition, the action
of G on E is linear, then, for every continuous map f+ M — Ey with W(§') # rmod |G
in the concordant case and W(f) # 0 in the discordunt case, there is a point xe M
such that O € conv{gf{g™*x)},cq-

Indeed, if O ¢ conv{gf (g™ 1%)},cq, then the map fy: M — E, defined by

1
Jolx) = Gl L;Ggf (g“ix)

is equivariant and homotopic to f (by the standard homotopy). Therefore W(f)
= W(fs) = rmod|G| in the concordant case or W{f) = Wi( Jo) = 0 in the discor-
" dant case, which contradicts the assymptions.

Tn particular, if the action of G on E is trivial and if W(f) s 0mod|G)|, then
there is a point x € M such that @ e conv{f (9)}; e5-

In the case of the action of Z, by symmetry with respect to O on F and a free
action of Z, on M we get

2.12. COROLLARY. Let T be a fixed point free smooth imvolution on M and
Jr M — 8™ a continuous map into the unif sphere in E.

&) If f has an odd degree, then there is a point x € M such that JTxy = —f(x).

by If deg f # rmod2 in the concordant case or deg f # O in the discordant case,
then there is.a point xe M such that f(Tx) = f(x). :

From b) it follows that in the concordant case If r = 1, then every continuouns
map @1 M -+ R™ has a point x € M such that @ (Tx) = @(x) because R™ is honieo-
morphic to S™{pt}.

3. Concordant actions. The following theorem gives the equivariant homotopy
classification of maps in the concordant case. - '

3.1. TuvoREM. Let G, M, E, Ey, r be as in 2.1 and 2.2 a), i.e. M is oriented and
the actions of G on M and E are concordant. Then the Jumetion W [M, Hyle —
{n=r+k|Gforkez 1, assigning io an equivariant homotopy class [ f] represented
by a contimuous equivariant map f: M - Eo its winding mimber W([), is bijective.

Proof. a} Surjectivity. Let f: M — E, be equivariant continuous. -Such

e ©
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a map exists by 1.6 a). We may assume that W(f,) = r. Let k be any integer different
from O and O<a<l. Let p;, i =1,..,k be points of (@, D= C belonging to
different orbits of the G-manifold P = Rx M, where C is a component of M,.
Let ¥; be a slice at p; contained in (¢, 1)x C such that gV, are disjoint for
i=1,..,ka0d gedC. V;can be mapped onto E by a diffeomorphism preserving
the orientation if k>0 and reversing the orientation if k<0 such that Py is mapped
onto 0. Those difTeomorphismskcan be extended by 1.3 to a G-pood map /: U — E,

where U= (R\[a,2])>x M U |] GV, such that S, x) = fy(x) for te R\[a, 2]
HERN
and x & M. By the extension Lemma 1.5 applied to P = Ry M and F = {0,3)%

k
®Mw ) GD, where D, are closed dises about Py in ¥; there exists a G-good map
te,

A [0, 3] % M -+ B such that I|F = [|F,

ETHO) consists of points gp,, ¥ =1, .k, g€ G and additional points 4>
j=1,.., 1. We may assume by [.10 that 4;€(1,2)x M,. Define /,: M — E, by
Ju(x)=h(1, x). Then the restriction of & to Jx M gives a G-good homotopy from f,
to fy. For i=1,..,k deg, /t = sgnk, and for all ge G deg,,,. i = sgnk, because
the actions of G are concordant. Therefore W( JO=W({f) = k|G| and W(f)
= r+k|G|.

b) Injectivity, Suppose that for equivariant continuous maps Jos it M = E,
W{fo) = W(f,). By the extension Lemma 1.5 there exists a G-good homotopy
hi Ix M=+ E from fiy to f,.If 1™1(0) is nonvoid, let h™YO) consist of points api,
i=1,.,k ged, where p,e(0,1)x C and C is a component of M, (cf. Propo-

k
siton 2 of [7]). Trom the equaliies O = W(f)—W(fy) = (0] chgmh and
i=1

deg, /i = 1 it follows that k is even and the points p; can be arranged in such a way
that deg,, t = (~ I Let Ve (0, Dx € be a slice at p and D an open ball about p,
in V. By 1.10 we may assume that ¥ 2"Y0)=D n k™ (0)= {py, p;}. By the
Hopf theorem A]V\.D can be extended to a continuous map J: ¥ = E,. By 1.3 there
Is a G-good map fi: I M - E extending f and BIx MN\GD. F~1(0) consists of the
orbits of p, for' i>2 if k=2, Proceeding further similarly, we get an equivariant
homotopy 7 Ix M - Eg from 7, to £,.

4. Discordant actions. Belore formulating the general result in this case we give
some examples. We still observe the assumptions of 2.1.

4.1, ExameLe, Let A4 be an orientable manifold with a free action of G not
preserving the orientation and let & act trivially on a Huoear space £ In this case the
space of orbits A/ is a nonorientable manifold. There is a bijective correspondence
between the sel of equivariant homotopy classes [M, Fqlq and the set of non-equi-
variant homotopy classes [M/G, Ey]. By the Hopf theorem the degres mod?2 gives
the bijective correspondence [M/G, Ey] & Z, and there are two different equivariant
homotopy classes in [M, Eyl altkough the winding number of any equivariant
map f; M -» Ey is 0 by 2.2 b). The same is true for equivariant maps /2 M — ™
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In particular, there are iwo equivariant homotopy classes if M is an even-di-
mensional sphere with the action of Z; by antipodism (M/Z, is the nonorientable
projective space) or if M is an orientable surface of genus ¢ lying symmetrically with
respect to O in R® with the action of Z; by symmetry with respect to O (M]Z, is
the nonorientable surface of genus g+1).

4.2. ExaMpLE., Let M be a G-manifold having a compact fundamental set in
the sense of [7] and let G act trivially on E. There is a bijective correspondence
between [M, Eol; and [F, E,]. If F is contrac’;ib]e, then there is only one homotopy
class in [F, Eg] and in [M, Eolg. ’

In particular, there is one equivariant homotopy class if M is the unit sphere of
any orthogonal representation of G on ¥ whose singular part is a union of hyper-
planes {Corollary $ in [7]). This is the case for the symmetry group of any Platon
polyeder.

In the case of discordant actions of G on M and E the group G is the disjoint
union of the subgroup G, and its coset ¢, where the actions of G, on M and £
are concordant. The number |G| is even. The equivariant homotopy classification of
maps in this case gives

4.3, TeporeM. Let G, M, E, E, be as in 2.1, M being arientable, and let the
actions of G on M and E be discordant, Denote by M' = M\M, the singuldr part of M.

a) If dimM’ = m—1 then [M, Ey]g consisis of ene class.

b) If dimM ' <m—1 then [M, Ey); consists of two classes.

Proof. a) Let fy, fi: M — E, be any equivariant maps (such maps exist
by 1.6 a)). By the extension Lemma 1.5 there is a G-good homotopy i: Ix M ~ E
from f, to fi. The singular part (0, 1) x M’ of the (m-1)-dimensional manifold
P = (0, 1)x M has dimension . Therefore there exists a g, € G\{¢} such that the
fixed set P? of g, has a component @ which is an m-dimensional submanifold of P,
On a slice at any point from @, g, acts by symmetry with respect to a hyperplane,
and so g = e. For any g € G different from e and g, the intersection Q ~ P is
a finite union of manifolds of dimensions less than m. Therefore there exists a point
Xq € @ with the isotropy growp G, = {e, go}. Let ¥ be aslice at Xo. ¥V may be iden-
tified with R™**, xy with 0 and Q n ¥ with a hyperplane H given by the cquation
Xpa1 = 0. go acts on ¥ by symmetry with respect to this hyperplane. Let D be the
unit open ballin ¥, ¥V, = {xe ¥ x,, 20}, V. = {xe V' x,,,<0} and et C be
the component of P, containing Int¥,..

If A~*(0) is nonempty, it is a finite invariant subset of 2., There exists a point
peC i (0). By 1.10we can assumethat ¥, ~ E™H0)=D n Ve n A HO)={p}.
There exists a continuous retraction r: V. — V. \D. Define the map /@ V — E,
by

L Jher(x) for xe V., ,
6y = {hor(gox) for xe V. .

S isG,~equivariant because gq acts trivially on E. By 1.3 there is a G-good map
k: Ix M — E extending f and Al x MN\GD. The number of orbits in A~1(0) is less
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by 1 than that jn E7Y0). By a similar procedure we get an equivariant 'homotopy‘
B Ix M = Ey from fy to fi. ‘

b) The condition dimM '<m~1 implies that M, is connected. Fix some equi-
variant map fo: M - Iy (by 1.6 a)). As in part a) of the proof of 3.1, there is an
equivariant map f;: M — E; and 2 G-good homotopy Hy: I'x M — E from fatofy
such that Hg ' (O) consists of exactly one orbit. We shall prove that [M, E,]; consists.
of two different classes [ /o] and [f].

Let f2 M ~ Iy be any continuous equivariant map. As in part b) of the proof
of 3.1, there is a G~good homotopy it Tx M- E from f; to f. Suppose that k=Y 0)
contains more than onc orbit. Since the actions of G are discordant, for any
P&l (0 dogy,h = dog,lt if g € Gy, degy,h = —deg, )i if g G_ and deg i = %1
because /1 is G- good. We can choose points py, p, € A7 HOY<(0, ) x M = P, from
different orbits in such a way that deg, # = —1 and degy,k = 1. Let ¥ be a slice-
at py; and let D be an open unit ball in V. By 1.10 we may assume that

VAh™0)=Drh™N0) = {p,,ps}

because P, = (0, 1)x M, is connected, As in part b) of the proof of 3.1, we can
modify A to a G-good homotopy i from fy to f without orbits or with one orbit
in A4 O). In the first case [f] = [fp]. In the second case there is a G-good homo-
topy &' from fy to f such that A~Y(0) consists of two orbits. Similarly, ' can be
modified to a G-good hometopy k': IxM - B, from f to f, so [f1=1[fil.

Tt remains to prove that the classes [fy] and [f,] are different. We have the
G-good homotopy Hy: I'x M — E from f, to f, with H~Y(0) consisting of one
orbit. Suppose, on the contrary, that there exists also a continuous equivariant.
homotopy Hy: Ix M« E, from f; to fy. The homotopies H, and H; may be con-
sidered as G-good maps on the manifold without boundary Rx M and we can
suppose that there are numbers 0<a<b<1 such that Hy(t, x) = H(t, x) = fo(x)
for t<a and Hy(t, x) = H(t, x) = fy(x) for t>b. The G-manifold P = Rx RxM

* has the singular part P’ = RxRxM' and dimP'sm by the assumption of”

dimM <m~2. Extension Lemma 1.5 applied to P, F=P\0, )x (0, 1)xM,
U= P\[o, b] %[, b] % M and to the G-good map H: U - E defined by

Hylt, %) if s=<a,

i i ssb,

Hig, t,x) = (%) if t<a,
fi(.\') if 1>b

gives o G-good map H'i P - K cxtending H|F.

The set L = H"NO) nIxIxM is a compact |-dimensional invariant sub-
manifold of P, whose boundary is the orbit {0} x Hg 1(0). S0 L is the disjoint union
of ares Ly, J =1, .., |G|/2 and & finite number of closed curves. The union L of
ares L, is invariant. The subgroup Gy of G consisting of elements preserving L,
consists of two elements. Let ¢ € Gy \{e}. By the Brouwer fixed point theorem there:
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exists an x € L; =P, such that gx = x. But this is impossible because the action of G
on P, is free.

5. The nonorientable case. For a nonorientable manifold M we have the following
-equivariant homotopic classification of maps. ‘

5.1. THEOREM. Let G, M, E, E, be as in 2.1 and let M be nonorientable. Let M’
be the singular part of M.

a) If G is odd, then the function Wy [M, Eyle — Z,, dssigning to an equiviriant
homotopy class [f] represented by a continuous equivariant mdp f: M = E, its
winding number mod2 W,(f), is bijective.

by If |G is even and dimM’' = m—1, then W,(f) = O for every equivariont
map f+ M — Ey and [M, Eglg consists of one class.

o) If G is even and dimM‘'<m—1, then, for all equivariant maps f1 M — ¥,
W f) is the same and [M, Eglq consists of two classes.

The proof of a) is similar to the proof of 3.1, using 1.9 and the fact that M, is
-connected.

In cases b) and ©) W,(f) are independent of f by arguments as in the proof
of 2.2 a).

In case b) G contains an isotropy group G,, of the action on M of rank 2, which
acts trivially on” E. So the constant map is G -equivariant and W,(f )
= Wy{const) = 0 by the preceeding remark. The proof of the rest of b) is analogous
to that of 4.3a). i

The proof of ¢) is similar to that of 4.3k).

It can be seen by examples that all the cases in Theorem 5.1 are possible (in ¢)
the winding number mod2 may be 0 and 1).

5.2. Let G, M, E, E, be as in 5.1 and in addition let G act on E preserving the
orientation. Denote by M the double orientation covering manifold of M. The points
of M can be thoughs of as the orientations of the tangent spaces T.M. The action of G
on M lifis to the orientation preserving action of G on M: For g € G and an oricnia-
dion 0 of T M, go is the image of the orientation o by the tangent map dy, (comp. [1],
1.9.4). Let T: BT — A1 be the involution on N mapping an orientution o of ToM info
the opposite orientation —o of T M. T commmites with-the action of G on M and re-
verses the orientation of M. Let a: BT — M be the covering projection.

The concordant actions of G on ¥ and E satisfy the assumptions of Theorem 2.2 )
and every equivariant map f: N - E, has the winding number W(f) = Omod|G].

For the proof let gg: M — E, be any cquivaziant map. Set fo = go » n. From
the fact that /o= fo o T we have W(Jfy) = — W(f) and therelore H({f,) = 0.
Then the result is a consequence of 2.2a).
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