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Abstract: We study the classical complexity of k to k insertion words of
a letter in Sturmian words. Then, we determine the Abelian complexity and
palindromic complexity of these words. Finally, we show that the k to k in-
sertion of a letter x in Sturmian words preserves the palindromic richness of
Sturmian words if and only if k = 1.
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1. Introduction

The classical complexity function, which counts the number of distinct factors of
given length in an infinite word, is often used in characterization of some families
of words [1]. For instance, Sturmian words are the infinite words non eventually
periodic with minimal complexity. During the last thirty years, Sturmian words
were the subject of intensive study. These investigations led to the discovery of
numerous characterizations and various properties [3, 6, 7, 11, 14, 15] on these
words. During the last two decades, palindromes were used extensively in the
literature of infinite words combinatorial study (see citealbaca, droupi, kab).
The notion of k to k insertion of a letter in infinite words was introduced in
[13]. It consists to insert a letter x in an infinite word u by steps of k letters.
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Thus, the new word obtained is called “k to k insertion word” of x in u. The
study of classical complexity and palindromic properties of k to k insertion
word of a foreign letter in Sturmian words was treated in [12] and [13]. In this
paper, we propose to complete this study with k to k insertion of an internal
letter in Sturmian words.

The paper is organized as follow. In Section 2, we give useful definitions
and notations, and we recall some properties of Sturmian words. Then, we
determine the classical complexity of k to k insertion word of an internal letter
in Sturmian words (Section 3). Finally, in Section 4, we establish the Abelian
complexity and palindromic complexity of these words, and we show that they
are not rich in palindromes except those for which k = 1.

2. Preliminaries

2.1. Definitions and Notations

An alphabet A, is a non empty finite set whose the elements are called letters.
A word is a finite or infinite sequence of elements of A. The set of finite words
over A denotes A∗ and ε is the empty word. For any u ∈ A∗, the number of
letters of u is called length of u and it is denoted |u|. Moreover, for any letter x
of A, |u|x is the number of occurrences of x in u. A word u of length n written
with a unique letter x is simply denoted u = xn.

Let u = u1u2 · · · un be a word such that ui ∈ A, for all i ∈ {1, 2, · · · , n}.
The image of u by the reversal map is the word denoted u and defined by
u = un · · · u2u1. The word u is simply called reversal image of u. A finite
word u is called palindrome if u = u. If u and v are two finite words over A,
we have uv=vu.

The set of infinite words over A is denoted Aω and we write A∞ = A∗∪Aω.
The set of letters which appear in a word u, is designated by alph(u). An infinite
word u is said to be eventually periodic if there exist two words v ∈ A∗ and
w ∈ A+ such that u = vwω. If v = ε, then u is periodic with period |w|. The
n-th power of a finite word w denoted by wn is the word corresponding to the
concatenation (ww · · ·w) n times of w. By extension, w0 = ε.

Let u ∈ A∞ and w ∈ A∗. The word w is a factor of u if there exist u1 ∈ A∗

and u2 ∈ A∞ such that u = u1wu2. The factor w is said to be a prefix (resp.
a suffix) if u1 (resp. u2) is the empty word.

Let u be an infinite word over A. The set of factors of u of length n, is
written Ln(u) and the set of all factors of u is denoted by L(u).
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For any infinite word u over A, we shall write u = u0u1u2 · · · , where ui ∈ A,
i ≥ 0.

A factor w of length n of an infinite word u = u0u1u2 · · · appears in u at
the position l if w = ulul+1 · · · ul+n−1.

A non empty factor w of an infinite word u, is said to be right (resp. left)
prolongable by a letter x in u if wx (resp. xw) appears in u. The number of
right (resp. left) extensions of w, is denoted ∂+w (resp. ∂−w). The factor w is
said to be right (resp. left) special factor in u if ∂+w > 1 (resp. ∂−w > 1). An
infinite word u is recurrent if each of its factors appears infinitely times in u.
An infinite word u is said to be uniformly recurrent if any factor of u appears
in u with bounded gaps, i.e, for any n ∈ N, there exists an integer N such that
any factor of u of length N contains all factors of u of length n.

The classical complexity function of an infinite word u is the map of N to N
∗

defined by pu(n) = #Ln(u), where #Ln(u) designates the cardinal of Ln(u).

The set of palindromes of u of length n is denoted PALn(u), and the set
of all palindromes of u, is PAL(u). The palindromic complexity function of an
infinite word u is the map of N to N, defined by Palu(n) = #PALn(u).

Let u be an infinite word over an alphabet A = {a1, a2, · · · , aq}. The
Abelian complexity function of u, is the map of N to N

∗ defined by ρabu (n) =
#

{

(|w|a1 , |w|a2 , · · · , |w|aq ) : w ∈ Ln(u)
}

.

The Shift, is the application S of Aω to Aω which erases the first letter of
the word; for example, S(abaababaa · · · ) = baababaa · · · .

A morphism f is a map of A∗ into itself such that f(uv) = f(u)f(v) for
any u, v ∈ A∗.

2.2. Sturmian Words

In this section we consider the binary alphabet A = {a, b}.

Definition 1. An infinite word u over A is a Sturmian word if for any
natural n, pu(n) = n+ 1.

The most well-known Sturmian word is the famous Fibonacci word. It is
generated by the morphism ϕ defined by ϕ(a) = ab and ϕ(b) = a.

Definition 2. A Sturmian word u is said to be a-Sturmian (resp. b-
Sturmian) when it contains a2 (resp. b2).

Definition 3. An infinite word u = u0u1u2 · · · is said to be modulo-
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recurrent if for all i ≥ 1, any factor w of u, appears in u at all positions
modulo i, i.e.

∀i ∈ {0, 1, 2, · · · , l − 1} , ∃gi ∈ N : w = ulgi+iulgi+i+1 · · · ulgi+i+|w|−1.

Factors of length n occurring in u at a position which is multiple of n, as
above, are called n-window factors of u.

Proposition 1. ([7]) Let u be a modulo-recurrent word. Then, for all n,
the set of n-window factors of u is equal to Ln(u).

Definition 4. A word u is said to be α-balanced if α is the smallest
natural such that for any pair (v, w) of factors of u of same length and for any
letter x:

||v|x − |w|x| ≤ α.

If α = 1, u is said to be balanced.

The following theorem presents some classical properties of Sturmian words.

Theorem 2. Let u be a Sturmian word. Then, we have the following
properties:

(1) ([8]) u is not eventually periodic and balanced;

(2) ([8]) For all n ∈ N
∗, ρabu (n) = 2;

(3) ([9]) For all n ∈ N,

palu(n) =

{

1 if n is even
2 otherwise ;

((4) ([13]) u is modulo-recurrent.

3. Classical Complexity

In the following, k designates a positive integer.
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Definition 5. Let u be an infinite word over A. Let us decompose u by
words of constant length. We have:

u = w0w1w2w3 · · ·wi · · · , wi ∈ Lk(u), i ∈ N.
Now, insert in u, between two consecutive factors wi and wi+1 a fixed letter

x. We get the word v = xw0xw1xw2xw3x · · · xwix · · · . This word is called “k
to k insertion word” of x in u and it is denoted Ixk (u).

In [12], the following result is established.

Proposition 3. Let u be a Sturmian word over and v a k to k insertion
word of x in u.

(1) If ps is a factor of u such that p and s are words satisfying |p|+ |s| ≤ k,
then pxs is in v.

(2) If pw1 · · ·wqs is a factor of u such that p, s and wi are words satisfying
|p|+ |s| < k and wi = k, i = 1, · · · , q, then, pxw1x · · ·wqxs is in v.

Lemma 4. Let v be a k to k insertion word of x in a Sturmian word u.
Then, any factor of v is stable by the reversal map.

Proof. Let v1 ∈ L(v). Then, we can write

v1 = w1xw2xw3x · · · xwn−1xwn

with |wi| = k for all i ∈ {2, 3, · · · , n− 1} and |w1|, |wn| ≤ k. Thus, the word
u1 = w1w2 · · ·wn−1wn appears in u. Since u is a Sturmian word, then u1 =
wnwn−1 · · ·w2w1 also appears in u [4]. So, wnxwn−1x · · · xw2xw1 appears in
v by Proposition 1, since u is a Sturmian word. In other terms v1 ∈ L(v). �

Lemma 5. Let u be a Sturmian word over {a, b} and v a k to k insertion
word of x in u. Then, two factors of v with same length come from factors of
u with same or consecutive lengths.

Proof. Let v1 and v2 be two factors of v of same length coming from
factors u1 and u2 of u respectively. So, we can write

v1 = m0xm1xm2xm3x · · · xmh

and
v2 = w0xw1xw2xw3x · · · xwn.
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Thus, we have

u1 = m0m1m2m3 · · ·mh

and

u2 = w0w1w2w3 · · ·wn,

where |mi| = |wj | = k, i = 1, · · · , h− 1; j = 1, · · · , n− 1 and |m0|, |mh|, |w0|,
|wn| ≤ k. Therefore, |v1| = |u1| + h and |v2| = |u2| + n. Let us show that
||u1| − |u2|| ≤ 1.

If n = h, then |u1| = |u2| because |v1| = |v2|.

Suppose α = ||u1| − |u2|| with α ≥ 1. Then, we have |n − h| = α since
|v1|=|v2|. Without loss of generality, we can assume that n = h+α. Thus, we
have
v2 = w0xw1xw2xw3x · · · xwhxwh+1x · · · xwh+α and |v1| = |m0| + k(h − 1) +
h+ |mh|, |v2| = |w0|+ k(h− 1) + h+ kα+ α+ |wh+α|.

Since |v1| = |v2|, it follows that |m0|+ |mh| = |w0|+ kα+α+ |wh+α|. So,
kα + α = |m0|+ |mh| − (|w0|+ |wh+α|). Moreover, we have |m0|, |mh|, |w0|,
|wn| ≤ k. Hence, it follows the inequality kα + α ≤ 2k. Therefore, we obtain
α ≤ 1 and ||u1| − |u2|| ≤ 1. �

In [13], the two of the co-authors have proved the following result.

Theorem 6. Let u be a Sturmian word over A = {a, b}. The classical
complexity function of k to k insertion word v of c /∈ A in u, is given by:

pv(n) =

{

n2 + n+ 1 if n ≤ k
kn+ k + 1 if n > k

.

Here, we propose to extend this result to k to k insertion words of x ∈ {a, b}
in Sturmian words.

Lemma 7. Let u be an a-Sturmian word over {a, b} and u1 a factor of
u such that |u1| ≤ k. If the insertion from two different positions of x in u1

produces the same factor, then the factor which separates these two positions
in u1 is a power of x.

Proof. Let u1 be a factor of u such that |u1| ≤ k. Let v1 and v2 be two
words obtained by k to k insertion of x in u1 from two different positions such
that v1 = v2. Then, u1 can be decomposed in the form u1 = pts with |t| > 0,
|p|, |s| ≥ 0 and v1 = pxts, v2 = ptxs. Since v1 = v2, then pxts = ptxs. So,
we have xt = tx. Thus, t is a power of x since x is a letter. �



ON THE WORDS BY k TO k INSERTION OF A LETTER... 393

Lemma 8. Let u be an a-Sturmian word over {a, b} and u1, a factor of
u sufficiently long. Then, the k to k insertions of x in u1 from two different
positions produce distinct factors of Ixk (u).

Proof. Let u1 be a factor of u such that u1 contains all the k-window
factors of u. The word u is modulo-recurrent by item (4) of Theorem 2 since it
is Sturmian. So, any insertion of x in u1 produces a factor of Ixk (u). Consider
two factors v1 and v2 of Ixk (u), produced by k to k insertion of x from two
different positions in u1 such that v1 = v2. Then, v1 and v2 contain the same
number of inserted letters of x.

For x = a, by Lemma 7, there exists an integer i0 such that u1 can be
written in the form u1 = m0a

i0m1a
i0m2a

i0 · · · ai0mn, where |mi| = |mj | =
k − i0, i, j ∈ {1, · · · , n− 1} and |mo|, |mn| ≤ k − i0. Thus, we obtain v1 =
m0aa

i0m1aa
i0m2aa

i0 · · · aai0mn and
v2 = m0a

i0am1a
i0am2a

i0a · · · ai0amn, where a is the inserted letter a of u1.
Let t be a special factor of u1 of length k − i0. Since u1 contains all the k-
window factors of u, then there exists a word mj0 with 1 < j0 < n, such that
mj0 = t. This contradicts the fact that the words m2, · · · ,mn−1 extend to
right in u1 with the letter a.

For x = b, by Lemma 7, u1 can be written in the form

u1 = m0bm1bm2b · · · bmn

with |mi| = |mj | = k − 1, 0 < i, j < n and |mo|, |mn| ≤ k − 1.

Therefore, we have

v1 = m0bbm1bbm2bb · · · bbmn

and

v2 = m0bbm1bbm2bb · · · bbmn.

Observe that the wordsm2, · · · , mn−1 extend to right and to left in u1 with the
letter b only. So, they begin and end by a letter a. Thus, for all i = 2, · · · , n−1,
we have S(mi)b ∈ Lk−1(u). Since u is balanced, there exist two factors t1
and t2 of u1 of length k − 1 such that |t1|b − |t2|b = 1. In addition, since
u1 contains all the k-window factors of u, then there exist two words mi0

and mj0 , 1 < i0, j0 < n such that mi0 = t1 and mj0 = t2. It follows that
|S(mi0)b|b − |mj0 |b = 2. This contradicts the fact that u is balanced. Hence,
we deduce that v1 and v2 are distinct factors. �



394 M. Barro, I. Kaboré, T. Tapsoba

Lemma 9. Let u be an a-Sturmian word and u1,u2 two distinct factors
of u sufficiently long. Then, the k to k insertion words of x in the words u1

and u2 are distinct factors.

Proof. Let u1 and u2 be two distinct factors of u such that u1 and u2

contain all the k-window factors of u. Decompose u1 = m0m1m2 · · ·mh and
u2 = w0w1w2 · · ·wn, where |wi| = |mj | = k, 0 < i < h, 0 < j < n and
|wo|, |mo|, |wn|, |mh| ≤ k. Consider
v1 = m0xm1xm2x · · · xmn and v2 = w0xw1xw2x · · · xwh obtained by k to
k insertion of x in the factors u1 and u2 respectively. Suppose v1 = v2. By
Lemma 5, we have ||u1| − |u2|| ≤ 1 since |v1| = |v2|.

If |mo| = |wo|, then we have h = n since |v1| = |v2|. Thus, we obtain
m0 = w0,m1 = w1, · · · , mh = wn, i.e. u1 = u2. This is impossible because
u1 and u2 are distinct factors.

Now, consider |wo| < |mo|. We can write

m0 = w0xm
′
0,

v1 = w0xm
′
0xm1xm2x · · · xmn,

and

v2 = w0xw1xw2x · · · xwh.

Since v1 = v2, we have wi = w′
ixw

′′
i , where the letter x coincides with the

inserted x in mi−1xmi, for i = 1, · · · , n− 1.

Similarly, mj = m′
jxm

′′
j for j = 1, · · · , h − 1 with x ∈ {a, b}. So, m′

i = w′′
i

and m′′
i = w′

i+1, for all i = 1, · · · , n− 1. Thus, we can write

u1 = w0xw
′
1w

′′
1xw

′
2w

′′
2xw

′
3w

′′
3x · · · xw

′
nw

′′
n

and

u2 = w0w
′
1xw

′′
1w

′
2xw

′′
2w

′
3xw

′′
3 · · ·w

′
nxw

′′
n.

Moreover, |w′
i| = |w′

j | and |w′′
i | = |w′′

j | for all i, j = 1, · · · , n− 1.

If x = b, then b is the unique right extension of w′
i in u1. So, w′′

i begins
with b in u2. This is not possible, otherwise u2 will contain b2 because b is the
unique left extension of w′′

i in u1.

If x = a, we have u1 = w0|aw
′
1w

′′
1 |aw

′
2w

′′
2|aw

′
3w

′′
3|a · · · |aw

′
nw

′′
n. So, the

factors aw′
iw

′′
i begin with a in u1, for all i = 1, · · · , n. Thus, from Proposition

1, we obtain a contradiction since u2 contains all the k-window factors of u. In
conclusion, v1 and v2 are distinct factors of v. �
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Theorem 10. Let u be a Sturmian word. Then, the classical complexity
of k to k insertion word of x in u, is eventually kn+ k + 1.

Proof. By Lemma 9, there exists an integer n0 such that two factors of u
of length greater than n0, produce by insertion of x distinct factors of Ixk (u).
Let l0 be the minimal length of factors produced by those with length n0.
Consequently, using Theorem 6, we deduce that the classical complexity of
Ixk (u) satisfies kn+ k + 1 for all n ≥ l0. �

4. Abelian Complexity and Palindromic Complexity

This section is devoted to balance, Abelian complexity and palindromicity in
words obtained by k to k insertion of a letter in Sturmian words.

4.1. Balance and Abelian Complexity

In this paragraph, we consider the alphabet {a, b, c}.

Theorem 11. Let u be a Sturmian word over {a, b}, and the k to k
insertion word v of x in u. Then, v is 2-balanced.

Proof. Let u1 and u2 be two factors of u. Let v1 and v2 be two k to
k insertion words of x in u1 and u2 respectively such that |v1| = |v2|. So,
by Lemma 5, we have ||u1| − |u2|| ≤ 1 and the factors v1 and v2 contain q
or q + 1 inserted letters x. First, let us show that ||u1| − |u2|| ≤ 1 implies
||u1|y − |u2|y| ≤ 2 for any y ∈ {a, b}. Without loss of generality, we can assume
that |u2| ≥ |u1|. Thus, we can write u2 = u′

2z with z ∈ {ε, x, y}. It follows that
||u1|y−|u2|y| = ||u1|y−|u′

2z|y| = ||u1|y−(|u′
2|y+|z|y)| ≤ ||u1|y−|u′

2|y|+|z|y ≤ 2.
Consider x = c. Then, we have ||v1|c − |v2|c| ≤ 1, since ||u1| − |u2|| ≤ 1

and |v1| = |v2|. Let y ∈ {a, b}, then |v1|y = |u1|y and |v2|y = |u2|y because y
is not an inserted letter in v. So, ||v1|y − |v2|y| = ||u1|y − |u2|y| ≤ 2.

Now, consider x ∈ {a, b}. We have two cases to discuss.

Case 1: |u1| = |u2|. Let y ∈ {a, b}.
• Suppose y 6= x. Then, |v1|y = |u1|y and |v2|y = |u2|y. Thus, we have

||v1|y − |v2|y| = ||u1|y − |u2|y| ≤ 1 because u is balanced.
• Suppose y = x. Then, |v1|y = |u1|y + q and |v2|y = |u2|y + q, where q is

the number of insertions of x.
So, ||v1|y − |v2|y| = ||u1|y − |u2|y| ≤ 1, since u is balanced.
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Case 2: ||u1|−|u2|| = 1. Let y ∈ {a, b}. By Lemma 5, we have ||u1|y−|u2|y| ≤ 2.

• Suppose y 6= x, then ||v1|y−|v2|y| = ||u1|y−|u2|y| ≤ 2, since |v1|y = |u1|y
and |v2|y = |u2|y.

• Suppose y = x. Then, it follows:

||v1|y − |v2|y| = |(|u1|y + q + 1)− (|u2|y + q)| with |u2| = |u1|+ 1

= ||u1|y + 1− |u2|y|

= ||u1|y + 1− |u′
2z|y| with u′

2z = u2 and z ∈ {a, b}

= ||u1|y − |u′
2|y + (1− |z|y)|

≤ ||u1|y − |u′
2|y|+ |1− |z|y |

≤ 1 + 1 = 2.

Furthermore, by Theorem 10, observe that v is neither eventually periodic
nor a Sturmian word. So, there exists a pair (v1, v2) of factors of v and a letter
x such that ||v1|x − |v2|x| ≥ 2. Thus, the value 2 is reached. �

Lemma 12. Let u be a Sturmian word and v, the k to k insertion word
of x in u. Then, any factor of v of length (k + 1)q, is produced by a factor of
u of length kq, q ≥ 0.

Proof. Let u1 be a factor of u and v1, a k to k insertion word of x in u1

such that |v1| = (k + 1)q, q ≥ 0. First, let us observe that any factor of v
of length k + 1 contains only one insertion of x and comes from a factor of u
of length k. Since |v1| = (k + 1)q, v1 contains exactly q inserted letters. In
addition, we have |v1| = (k + 1)q = kq + q. Thus, it results that |u1| = kq. �

Theorem 13. Let u be a Sturmian word over {a, b} and v, the k to k
insertion word of x in u. Then, the Abelian complexity of v verifies:

• For x ∈ {a, b}, we have ρabv (n) ∈ {2, 3}, for all n ≥ 1.

• For x = c, we have :

ρabv (n) =







3 if n = 1
2 if n is multiple of k + 1

4 otherwise
.

Proof. The word v being non eventually periodic, its Abelian complexity
verifies ρabv (n) ≥ 2, for all n ≥ 1. Consider n ≥ 1 such that n = (k+1)q, where
q ≥ 1. By Lemma 12, we have

Ln(v) = {Ixk (u1) : u1 ∈ Lkq(u)}
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for any x ∈ {a, b, c}. Thus, it follows ρabv (n) = ρabu (kq). So, by item (2) of
Theorem 2, we deduce ρabv (n) = 2, for any x ∈ {a, b, c}.

For x ∈ {a, b}, we deduce that ρabv (n) ≤ 3, since v is a 2-balanced binary
word.

Now, let us take x = c.

If n = 1, then L1(v) = {a, b, c} and so, ρabv (1) = 3.
If 1 < n ≤ k, then Ln(v) = Ln(u)∪{u1cu2 : u1u2 ∈ Ln−1(u)}. So, ρ

ab
v (n)) =

ρabn (n) + ρabu (n− 1). Hence, ρabv (n) = 2 + 2 = 4, by item (2) of Theorem 2.

If n > k + 1 and k + 1 does not divide n, then we can write n = (k +
1)q + r + 1 where q ≥ 1 and 0 ≤ r < k. So, by Lemma 5, it follows that
Ln(v) = {Ick(u1) : u1 ∈ Lkq+r(u)} ∪ {Ick(u2) : u2 ∈ Lkq+r+1(u)}. Therefore,
ρabv (n) = ρabu (kq + r) + ρabu (kq + r + 1). From item (2) of Theorem 2, we
deduce ρabv (n) = 4. �

4.2. Palindromic Properties

In this subsection, we show that the palindromes of a word obtained by k to k
insertion of some letter in a Sturmian word are produced by some palindromes
of the related Sturmian word. After, we determine the palindromic complexity
of these words and prove that they are not rich in palindromes in general.

The following theorem is shown in [12].

Theorem 14. Let u be a Sturmian word over A and c /∈ A.

(1) If k is even, the palindrome complexity of Ick(u), Pal, is given by:

∀n ∈ N : Pal(n) =







1 if n is even, n ≤ k + 1
3 if n is odd, n ≤ k + 1
1 if n > k + 1

.

(2) If k is odd, the palindrome complexity of Ick(u), Pal, is given by:

∀n ∈ N : Pal(n) =







1 if n is even, n ≤ k + 1
0 if n is even, n > k + 1
3 if n is odd

.

Lemma 15. Let u be a Sturmian word and v, the k to k insertion word of
x in u. Then, any palindrome of v sufficiently long, is produced by a palindrome
of u.
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Proof. Let v1 be a palindrome of v sufficiently long. Then, v1 comes from
a factor u1 of u. Since u is a Sturmian word, then u1 is a factor of u. Hence,
v1 comes from u1. So, as v1 is a palindrome, then v1 comes from u1. Since v1

is sufficiently long, by Lemma 9, v1 comes from an only one factor of u and so,
u1 = u1. �

Theorem 16. Let u be a Sturmian word and v, the k to k insertion word
of x in u. Then, there exists n0 ≥ 1 such that for n ≥ n0, we have:

Palv(n) =







1 if k is even
3 if k and n are odd
0 if k is odd and n is even

.

Proof. Let u be a Sturmian word and v the k to k insertion word of the
letter x in u. According to Lemma 9, any factor of v sufficiently long comes
from a unique factor of u. Thus, by Theorem 14, we obtain the result. �

Let w be a finite word. We denote by P (w), the number of distinct palin-

dromes contained in w. We have P (w)=

|w|
∑

n=0

Palw(n).

Definition 6. A word u (finite or infinite) is said to be rich if for any
factor w of u, we have P (w) = |w|+ 1.

The following result is established in [5].

Theorem 17. Let u be an infinite word such that the set of factors is
stable by the reversal map. Then, u is rich if and only if

∀n ∈ N, Palu(n) + Palu(n+ 1) = pu(n + 1)− pu(n) + 2.

Theorem 18. Let u be a Sturmian word. Then, the word Ixk (u) is rich if
and only if k = 1.

Proof. Let u be a Sturmian word. From Lemma 9, the word Ixk (u) is stable
by the reversal map.

• For k even, using Theorems 10, 14 and 16, v is rich if and only if we have
the following equivalences:

1 + 1 = k(n+ 1) + k + 1− (kn+ k + 1) + 2 ⇐⇒ 2 = k + 2
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⇐⇒ k = 0.

This means that v is not rich.

• For k odd, using Theorems 10, 14 and 16, v is rich if and only if we have
the following equivalences:

3 = k(n+ 1) + k + 1− (kn+ k + 1) + 2 ⇐⇒ 3 = k + 2

⇐⇒ k = 1.

�
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[10] S. Dulucq, D. Gouyou-Beauchamps, Sur les facteurs des suites de Sturm,
Theoret. Comput. Sci., 71 (1990), 381-400.

[11] A. Glen, J. Justin, Episturmian words: A survery, RAIRO-Theo. Inf.

Appl., 43 (2009), 402-433.
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