
Machnine Learning, , 95-121 (1996)

(~) 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On the Worst-Case Analysis of
Temporal-Difference Learning Algorithms

ROBERT E. SCHAPIRE schapire@research.att.com

AT&T Bell Laboratories, 600 Mountain Avenue, Room 2A-424, Murray Hill, NJ 07974

MANFRED K. WARMUTH manfred@cse.ucsc.edu

Computer and Information Sciences, University of California, Santa Cruz, CA 95064

Editor: Leslie Pack Kaelbling

Abstract. We study the behavior of a family of learning algorithms based on Sutton's method of temporal

differences. In our on-line learning framework, learning takes place in a sequence of trials, and the goal of the

learning algorithm is to estimate a discounted sum of all the reinforcements that will be received in the future.

In this setting, we are able to prove general upper bounds on the performance of a slightly modified version

of Sutton's so-called TD(A) algorithm. These bounds are stated in terms of the performance of the best linear

predictor on the given training sequence, and are proved without making any statistical assumptions of any

kind about the process producing the learner's observed training sequence. We also prove lower bounds on

the performance of any algorithm for this learning problem, and give a similar analysis of the closely related

problem of learning to predict in a model in which the learner must produce predictions for a whole batch of

observations before receiving reinforcement.

Keywords: machine learning, temporal-difference learning, on-line learning, worst-case analysis

1. Introduction

As an example, consider the problem of estimating the present value of a company. At

the end of each quarter t, a company returns a profit re. In terms of its future profits,

what is the company worth today? One possible answer is simply the sum total of all

future profits ~ but this is clearly an unsatisfactory measure of present worth E k = O ?~t+k,

since a dollar earned today is certainly worth more than a dollar earned ten years from

now. Indeed, taking into account inflation and the exponential growth rate of money that

is invested, it can be argued that future profits drop in value exponentially with time.

For this reason, it is common to discount profits rt+k earned k time steps in the future

by "7 k, where 3' < 1 is a parameter that estimates the rate at which future profits diminish

in value. This leads to a definition of the present value of the company as the discounted

s u m

Yt := ~ ~/krt+k.

k=O

(1)

Suppose now that we want to predict or estimate the present value yt as defined in

Eq. (1). Obviously, if we know all the future profits rt , r~+ l , . . . , then we can compute

Yt directly, but it would be absurd to assume that the future is known in the present.

96 R. E. SCHAPIRE AND M. K. WARMUTH

Instead, we consider the problem of estimating Yt based on current observations that can

be made about the world and the company. We summarize these observations abstractly

by a vector xt E IR N. This vector might include, for instance, the company's profits

in recent quarters, current sales figures, the state of the economy as measured by gross

national product, etc.

Thus, at the beginning of each quarter t, the vector xt is observed and an estimate

Yt E ~ is formulated of the company's present value yt. At the end of the quarter, the

company returns profit ft. The goal is to make the estimates 9t as close as possible to

Yt.

We study this prediction problem more abstractly as follows: At each point in time t =

1 ,2 , . . . , a learning agent makes an observation about the current state of its environment,

which is summarized by a real vector xt E ~N. After having made this observation, the

learning agent receives some kind of feedback from its environment, which is summarized

by a real number rt. The goal of the learning agent is to learn to predict the discounted

sum yt given in Eq. (1) where "7 E [0, 1) is some fixed constant called the discount rate

parameter.

At each time step t, after receiving the instance vector xt and prior to receiving the

reinforcement signal r t , we ask that the learning algorithm make a prediction Yt of the

value of Yr. We measure the performance of the learning algorithm in terms of the

discrepancy between Yt and Yr. There are many ways of measuring this discrepancy; in

this paper, we use the quadratic loss function. That is, we define the loss of the learning

algorithm at time t to be (Yt - Yt) 2, and the loss for an entire sequence of predictions

is just the sum of the losses at each trial. Thus, the goal of the learning algorithm is to

minimize its loss over a sequence of observation/feedback trials.

We study the worst-case behavior of a family of learning algorithms based on Sutton's

(1988) method o f temporal differences . Specifically, we analyze a slightly modified

version of Sutton's so-called TD(A) algorithm in a worst-case framework that makes no

statistical assumptions of any kind. All previous analyses of TD(A) have relied heavily

on stochastic assumptions about the nature of the environment that is generating the data

observed by the learner (Dayan, 1992; Dayan & Sejnowski, 1994; Jaakkola, Jordan &

Singh, 1993; Sutton, 1988; Watkins, 1989). For instance, the learner's environment is

often modeled by a Markov process. We apply some of our results to Markov processes

later in the paper.

The primary contribution of our paper is to introduce a method of worst-case analysis to

the area of temporal-difference learning. We present upper boundson the loss incurred

by our temporal-difference learning algorithm (denoted by TD*(A)) which hold even

when the sequence of observations xt and reinforcement signals rt is arbitrary.

To make our bounds meaningful in such an adversarial setting, we compare the perfor-

mance of the learning algorithm to the loss that would be incurred by the best prediction

function among a family of prediction functions; in this paper, this class will always be

the set of linear prediction functions. More precisely, for any vector u E IR x , let

g

t = l

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 97

denote the loss of vector u on the first ! trials of training sequence S. That .is, Le(u, S)

is the loss that would be incurred by a prediction function that predicts u . xt on each

observation vector xt.

We compare the performance of our learning algorithms to the performance of the best

vector u (of bounded norm) that minimizes the loss on the given sequence. For example,

we prove below that, for any training sequence S, the loss on the first .! trials of TD* (1)

is at most1

min
(

Le(u, S) + 2JKux 0% + llul12x02c~) (2)
llulll~

Lf(u,S)lK

where c, = (1 + -/)/Cl - r>- (H ere, U, X0 and K are parameters that are used to

“tune” the algorithm’s “learning rate:” specifically, it is assumed that 1 Ixt)I 5 X0, and

that min{ll(u, S) : I IuI I 5 V} 2 K. Various methods are known for guessing these

parameters when they are unknown; see, for instance, Cesa-Bianchi, Long and Warmuth’s

paper (1993)) Thus, TD*(l) will perform reasonably well, provided that there exists

some linear predictor u that gives a good fit to the training sequence.

To better understand bounds such as those given in Eq. (2), it is often helpful to consider

the average per-trial loss that is guaranteed by the bound. Suppose for the moment, as is

likely to be the case in practice, that U, X0 and y are fixed, and that K grows linearly

with the number of trials l, so that K = O(C). Then Eq. (2) implies that the average

per-trial loss of TD*(l) (i.e., the total cumulative loss of TD*(l) divided by the number

of trials e) is at most

min Le (u7 s>
IblllU c

L’(u,S)<K

In other words, as the number of trials 1 becomes large, the average per-trial loss of

TD*(l) rapidly approaches the average loss of the best vector u. Furthermore, the rate

of convergence is given explicitly as 0(1/d).

Note that the above result, like all the others presented in this paper, provides a charac-

terization of the learner’s performance after only afinite number of time steps. In contrast,

most previous work on TD(X) has focused on its asymptotic performance. Moreover,

previous researchers have focused on the convergence of the learner’s hypothesis to a

“true” or “optimal” model of the world. We, on the other hand, take the view that the

learner’s one and only goal is to make good predictions, and we therefore measure the

learner’s performance entirely by the quality of its predictions.

The upper bound given in Eq. (2) on the performance of TD* (1) is derived from a

more general result we prove on the worst-case performance of TD*(X) for general A.

Our bounds for the special case when X = 0 or X = 1 can be stated in closed form.

The proof techniques used in this paper are similar but more general than those used by

Cesa-Bianchi, Long and Warmuth (1993) in their analysis of the Widrow-Hoff algorithm

(corresponding to the case that y = 0).

98 R. E. S C H A P I R E A N D M. K. W A R M U T H

Note that min{Le(u , S) : u E IR N} is the best an arbitrary linear model can do that

knows all Yl " " Ye ahead of time. If the on-line learner were given Yt at the end of trial

t (i.e., if 3` = 0), then the Widrow-Hoff algorithm would achieve a worst case bound of

min
Ilull<_u

Le(u,S)<_K

(Le(u , S) + 2v"-KUXo + Ilu[12x0 2)

(matching the bound in Eq. (2) with 3' set to 0). However, in our model, the learner

is given only the reinforcements rt , even though its goal is to accurately estimate the

infinite sum Yt given in Eq. (1). Intuitively, as 3' gets larger, this task becomes more

difficult since the learner must make predictions about events farther and farther into the

future. All of our worst-case loss bounds depend explicitly on 3' and, not surprisingly,

these bounds typically tend to infinity or become vacuous as 3' approaches 1. Thus,

our bounds quantify the price one has to pay for giving the learner successively less

information.

In addition to these upper bounds, we prove a general lower bound on the loss of any

algorithm for this prediction problem. Such a lower bound may be helpful in determining

what kind of worst-case bounds can feasibly be proved. None of our upper bounds match

the lower bound; it is an open question whether this remaining gap can be closed (this

is possible in certain special cases, such as when 2 /= 0).

Finally, we consider a slightly different, but closely related learning model in which

the learner is given a whole batch of instances at once and the task is to give a prediction

for all instances before an outcome is received for each instance in the batch. The loss

in a trial t is llY't - Yt[[2, where Srt is the vector of predictions and Yt the vector of

outcomes. Again, the goal is to minimize the additional total loss summed over all trials

in excess of the total loss of the best linear predictor (of bounded norm).

In this batch model all instances count equally and the exact outcome for each instance

is received at the end of each batch. A special case of this model is when the algorithm

has to make predictions on a whole batch of instances before receiving the same outcome

for all of them (a case studied by Sutton (1988)).

We again prove worst-case bounds for this model (extending Cesa-Bianchi, Long and

Warmuth's (1993) previous analysis for the noise-free case). We also prove matching

lower bounds for this very general model, thus proving that our upper bounds are the

optimal worst-case bounds.

The paper is outlined as follows. Section 2 describes the on-line model for tempo-

ral difference learning. Section 3 gives Sutton's original temporal difference learning

algorithm TD(A) and introduces our new algorithm TD*(A). Section 4 contains the

worst-case loss bounds for the new algorithm, followed by Section 5 containing a lower

bound for the on-line model. In Section 6, we illustrate our results with an application of

TD*(1) to obtain a kind of convergence result in a Markov-process setting. We present

our results for the batch model in Section 7. Finally, we discuss the merits of the method

of worst-case analysis in Section 8.

W O R S T - C A S E ANALYSIS OF T D LEARNING A L G O R I T H M S 99

2. The prediction model

In this section, we describe our on-line learning model. Throughout the paper, N denotes

the dimension of the learning problem. Each trial t (t = 1, 2 , . . .) proceeds as follows:

1. The learner receives instance vector xt E R N.

2. The learner is required to compute a prediction Yt E IR.

3. The learner receives a reinforcement s ignal rt E IR.

The goal of the learner is to predict not merely the next reinforcement signal, but

rather a discounted sum of all of the reinforcements that will be received in the future.

Specifically, the learner is trying to make its prediction ~)t as close as possible to

043

Yt : = Z ~/krt+k
k=0

where 2/E [0, 1) is a fixed parameter of the problem. (We will always assume that this

infinite sum converges absolutely for all t.)

Note that if we multiply Yt by the constant 1 - % we obtain a weighted average of all

the future rt 's; that is, (1 - ' /) Y t is a weighted average of rt~ r t + l , Thus it might be

more natural to use the variables y~ = yt (1 - ~) . (For instance, if all rt equal r, then the

modified variables y~ all equal r as well.) However, for the sake of notational simplicity,

we use the variables yt instead (as was done by Sutton (1988) and others).

The infinite sequence of pairs of instances x t and reinforcement signals rt is called a

training sequence (usually denoted by S). The loss of the learner at trial t is (Yt - ?)t) 2,

and the total loss of an algorithm A on the first g trials is

g

L~(A , S) := ~--2.(Yt - Yt) 2"

t = l

Similarly, the total loss of a weight vector u E ~lv on the first g trials is defined to be

g

r ' (u , S) : - - - u . x ,) 2.

t : l

The purpose of this paper is to exhibit algorithms whose loss is guaranteed to be "not

too much worse" than the loss of the best weight vector for the entire sequence. Thus,

we would like to show that if there exists a weight vector u that fits the training sequence

well, then the learner's predictions will also be reasonably good.

1 0 0 R. E. S C H A P I R E AND M. K. W A R M U T H

3. Temporal-difference algorithms

We focus now on a family of learning algorithms that are only a slight modification of

those considered by Sutton (1988). Each of these algorithms is parameterized by a real

number A C [0, 1]. For any sequence S and t = 1, 2,- - -, let

: = (3)

k = l

be a weighted sum of all previously observed instances xk. The parameter ,k controls

how strong an influence past instances have. For instance, when), = 0, Xt ° = xt so

only the most recent instance is considered.

The learning algorithm TD()~) works by maintaining a weight vector wt E IR N. The

initial weight vector w l may be arbitrary, although in the simplest case w l = 0. The

weight vector wt is then updated to the new weight vector w t + l using the following

update rule:

W t + 1 : = W~ q- l] t (r t + ")'~)t+l ^ ,k -- y t) X t . (4)

As suggested by Sutton (1988), the weight vectors are updated using X~ rather than xt,

allowing instances prior to xt to have a diminishing influence on the update.

The constant r h appearing in Eq. (4) is called the learning rate on trial t. We will

discuss later how to set the learning rates using prior knowledge about the training

sequence.

In Sutton's original presentation of TD(A), and in most of the subsequent work on the

algorithm, the prediction at each step is simply ?-.)t = wt - xt. We, however, have found

that a variant on this prediction rule leads to a simpler analysis, and, moreover, we were

unable to obtain worst-case loss bounds for the original algorithm TD(A) as strong as

the bounds we prove for the new algorithm.

Our variant of TD(A) uses the same update (4) for the weight vector as the original

algorithm, but predicts as follows:

t 1

: = + -

k = l

t - 1

= wt-x - (s)

k = l

This new algorithm, which we call TD* (.k), is summarized in Fig. 1.

The rule (4) for updating w t + l has w t+ l implicit in 9t+1, so at first it seems impossible

to do this update rule. 2 However, by multiplying Eq. (4) by X x , t+l one can first solve

for ~)t+l and then compute Wt+l. Specifically, this gives a solution for ~)t+l of

y t) X t) XtA+l t t + l - k ^ (wt +rh(r~ ~ ~' - " - v k

1 - , t T X t x" Xt~+l

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 101

Algorithm TD* (A)

P a r a m e t e r s : discount rate 7 E [0, 1)

), ~ [o, 1]
start vector w 1 C ~ N

method of computing learning rate r/t

G i v e n : training sequence x l , r l , x 2 , r 2 , . . .

P r e d i c t : 9 1 , ~)2, " " "

P r o c e d u r e :

get x ,

1 1 ~ +--- X 1

Yl +-- Wl " 1 1 ~

for t = 1 , 2 , . . .

predict Yt (* Yt w t - X t x - , -1 : E k = l (' T A) t - k y k *)

get r t

get Xt+l

X~+l 4---- Xt+l -4- (7,~)Xt A

COmpute r h

w, x t+ 1 -t-- ~] t (r , - - ^ A • y ,) X ~ - X ~ + l
Yt+l +--

1 - ~ ,TXt ~. X 5 1

Wt+l *- wt + r h (r t + 7Yt+l - y t)Xt x

end

Figure l . Pseudocode for TD* (A).

(wt + q t (r t ^ A -- y t) X t)" Xt~+l ("}//~)W t " EtA

1 - ~ , - r x ~ x) + l

• y t) X t • X~+ 1 Wt Xt+l + r h (r t - ^

1 - rhvXff- X L 1

where, in the first equality, we assume inductively that Eq. (5} holds at trial t. Thus,

we can solve successfully for Yt+l provided that "fY]tXt ~ • EtA+ 1 • 1, as will be the case

for all the values of z/t we consider. Also, note that Yt+l is computed after the instance

Xt+l is received but before the reinforcement r t+l is available (see Pig. 1 for details}.

Note that for the prediction Yt = wt - xt of TD(A),

V w , (y, 9~) 2 = 2,7,(y, - 0 h x ,

- 2 r h (r t + "Y~)t+l Y,)Xt"

(Since Yt = r t + 7Yt+l is not available to the learner, it is approximated by r t + 7~)t+l.)

Thus with the prediction rule of TD(A) the update rule (4) i s n o t gradient descent for

102 R. E. S C H A P I R E AND M. K. W A R M U T H

all choices of ,~. In contrast, with the new prediction rule (5) of TD*(.~), the update

rule (4) used by both algorithms is gradient descent, a since if t)t is set according to the

new prediction rule then

V w ~ (y t - 9~) 2 = - 2 ~ (y ~ - ydX~^ ~'

--2rh(rt + V~)t+l - - y t) X t . ^ ;~

We can also motivate the term - ~-]~--11(%k)t-kgk in the prediction rule of TD*(A)

given in Eq. (5): In this paper, we are comparing the total loss of the algorithm with the

total loss of the best linear predictor, so both algorithms TD(,k) and TD*()Q try to match

the yt ' s with an on-line linear model. In particular, if Yt = w - x t (that is, the yt ' s are

a linear function of the x t ' s) and the initial weight vector is the "correct" weight vector

w, then the algorithms should always predict correctly (so that Yt = Yt) and the weight

vector wt of the algorithms should remain unchanged. It is easy to prove by induction

that both algorithms have this property.

Thus, in sum, the prediction rule Yt = wt • X t ~ + et is motivated by gradient descent,

where ct is any term that does not depend on the weight vector wt. The exact value for

ct is derived using the fact that, in the case described above, we want Yt = Yt for all t.

4. Upper bounds for TD*(~)

In proving our upper bounds, we begin with a very general lemma concerning the per-

formance of TD* (A). We then apply the lemma to derive an analysis of some special

cases of interest.

LEMMA 1 Let "y C [0, 1), A ~ [0, 1], and let S be an arbitrary training sequence such

that t]X{I[<_ X x f o r all trials t. Let u be any weight vector, and let g > O.

I f we execute TD* (A) on S with initial vector w l and learning rates rh = ~7 where

0 < r /Xx2" /< 1, then

s) _<inf { bL (u,S)+Cbllu- w, l12 b > O, Cb > 0}

where Cb equals

2 r / - r / 2 X , x 2 (l + 7 2) - -g- 1 + 7 A

Proof: For l < t < g , w e l e t et = y t - ~) t , and eu,t = y t - u - x t . We further define

ee+l = 0. Note that the loss of the algorithm at trial t is et 2 and the loss of u is eu,t 2.

Since, for t < ~,

r t + 7~) t+l -- ~)t ---- r t + "YYt +I -- (7"t + ' Y Y t + I) + Y t - - Y t

WORST-CASE ANALYSIS OF TD LEARNING A L G O R I T H M S 103

we can write Eq. (4), the update of our algorithm, conveniently as

W t + l = Wt -}- r/(et -- ~/et+l)X{. (6)

To simplify the proof, we also define

we+l = we + rTeeX~

so that Eq. (6) holds .for all t _< g. (In fact, this definition of we+l differs from the vector

that would actually be computed by TD* (A). This is not a problem, however, since we

are here only interested in the behavior of the algorithm on the first g trials which are

unaffected by this change.)

We use the function progr t to measure how much "closer" the algorithm gets to u

during trial t as measured by the distance function []. 112:

progrt = I l u - w t l l 2 - i l u - w t + , l l 2.

Let A w t = Wt+l - wt for t < g. We have that

2 ~ 12 I I A w ~ l l 2 = ~ 2 (e t - ~ /e~+l) I l X t I

< r /eX ,x2(e t - ~ /e t+l) 2

and that

A w t - (w t - - u) = , (~ - ~ + ~) (w ~ . x ~ - u . x ~)

t

= ~ (~ - ~+~) 3-~(~)~-~(~ - u . ×~)
k = l

t

= , (~ - ~ + ~) ~ (7 ~) ~ - k (~ . , ~ - ~)
k = l

where the second equality follows from Eqs. (3) and (5), and the last equality from the

fact that

~) k - - u ' x k = ~) k - - Y k + Y k - - U ' X k

eu, k - - Ck.

Since - p r o g r t = 2 A w t - (wt - u) + [[nWtl] 2, we have that

- I l w l - u l l 2 _< I I w ~ + x - u l l 2 - I I w l - ,111 ~

g

-- E pr°gr t
t = l

< 2 ~ (e, -~e~+l)~(~)~-~(~u,~ - ~)
t = l k = l

g

-~)~2XA2 ~ (e t -- " / e t + l) 2. (7)

t = l

104 R. E. S C H A P I R E A N D M. K. W A R M U T H

This can be written more concisely using matrix notation as follows: Let Zk be the

g x ~ matrix whose entry (i, j) is defined to be 1 if j = i + k and 0 otherwise. (For

instance, Z0 is the identity matrix.) Let D = Zo - 7 Z l , and let

g--1

v =

t=O

Finally, let e (respectively, eu) be the length g vector whose t th element is e t (respectively,

eu,t). Then the last expression in Eq. (7) is equal to

rl2Xx2eTDTDe + 2rIeTDTVT(eu -- e). (8)

This can be seen by noting that, by a straightforward computation, the t th element of

D e is et - 7et+l, and the t th element of V T (e u -- e) is

t

k = l

We also used the identity (De) T = eTD T.

Using the fact that 2 p T q < Ilplt 2 + tlqlt 2 for any pair of vectors p, q E R e, we can

upper bound Eq. (8), for any b > 0, by

2

rl2X),2eTDTDe -- 2~leTDTVTe + b e T D T V T V D e + be,T e , (9)

(where we use p ---- (r//v/-b) V D e and q = v ~ eu). Defining

2

M = r /2XA2DTD - r / (VD + D T v T) + - ~ D T V T V D ,

and noting that eTDTVTe = e T V D e , we can write Eq. (9) simply as

e T M e + beuTeu .

Note that M is symmetric. It is known that in this case

e T M e
m a x - - -- p (M) (10)
e¢O e T e

where p (M) is the largest eigenvalue of M . (See, for instance, Horn and Johnson (1985)

for background on matrix theory.) Thus, for all vectors e, e T M e < p (M) e T e . It follows

from Eq. (7) that

g

- t l w l - uil 2 _< b eu,? + p(M)Z 2

t = l t = l

SO

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 105

g t

-p(M) get 2 _< IIw~ - ,-,IP + b ~ e~,, ~.

t=l t=l

In the appendix, we complete the proof by arguing that p (M) < --Cb.

Having proved Lemma 1 in gory generality, we are now ready to apply it to some

special cases to obtain bounds that are far more palatable. We begin by considering the

case that A = 0. Note that TO(0) and TO*(0) are identical.

THEOREM 1 Let 0 <_ 3 ̀ < 1, and let S be any sequence of instances~reinforcements.

Assume that we know a bound Xo for which [[xt[[_< Xo.

I f TD*(O) uses any start vector w l and learning rates ~t = 77 = 1 / (Xo 2 + 1), we have

for all g > 0 and for all u C IRN:

Le(TD*(O), S) <_ (1 + Xo2) (Le(u ,S) + Ilwl - u l l 2)
1 - 3`2

(11)

Assume further that we know bounds K and U such that for some u we have Le(u, S) <

I (and [[w] - ull <_ U. Then for the learning rate

U

r/t = r/ = X o v ' ~ + Xo2U

we have that

Le(TD*(0), S) <_ Le(u' S) + 2UXov/-K + Xo2[lWl - ull z

1 - 3 ̀2
(12)

Proof: When A = 0, Cb simplifies to

2~- r/2 (X02 + 1)(1 q-72)- 23̀ T] -- 112 (N o 2 -[- 1) .

To minimize the loss bound given in Lemma 1, we need to maximize CD with respect

to 77. It can be shown that, in this case, Cb is maximized, for fixed b, when

1

rl - Xo 2 + l / b (13)

The first bound (Eq. (11)) is then obtained by choosing b = 1.

If bounds K and U are known as stated in the theorem, an optimal choice for b can

be derived by plugging the choice for r/ given in Eq. (13) into the bound in Lemma 1,

and replacing Le(u, S) by K and Iiu - Wall 2 by U 2. This gives

(bK + U2)(Xo 2 + i /b)

1 ,,/2

106 R. E. SCHAPIRE AND M. K. WARMUTH

which is minimized when b = U/(Xov / -K) . Plugging this choice of b into the bound of

Lemma 1 (and setting 17 as in Eq. (13)) gives the bound

(ULg(u,S)/Xov/~ + ,IU-Wl][2) (Xo2 q-Xov/-'K/U)
1 - 7 2

Le(u, S) + Le(u, S) X o U / v / - K + I l u - w~l?XoV-~/u + I 1 " - w , l l 2 X o 2

<

1 - ~/2

rffu, S) + 2XoUv~ + t 1 , - , - Wlll2Xo 2

I -- 7 2

P r o o f : W h e n A = 1,

172
Cb = 217 -- 172212(1 + 7)2 b

This is maximized, with respect to 17, when

1

17 = X12(1 + 7) 2 + l /b"

Proceeding as in Theorem 1, we see that the best choice for b is

U
b =

(1 -I- 7)Xl ,~K-

Plugging into the bound in Lemma 1 completes the theorem. •

The bound in Eq. (2) is obtained from Theorem 2 by setting w l = 0, and noting that

max{flxk[I : 1 < k < t}
Ilxllt-< 7'-kl[xkl[-< 1 - 7 (14)

k=l

Next, we consider the case that), = 1.

THEOREM 2 Let 0 < 7 < 1, g > 0 and let S be any sequence o f instances~reinforcements.

Assume that we know a bound X1 for which IIxti[[< X1, and that we know bounds

K and U such that for some u we have L e (u , S) < K and IIwl - ull <_ u. Then if

TD*(1) uses any start vector Wl and learning rates

U

17t = 17 = UX]2(1 + .7) ~ + XI(1 + 7)v/-K '

then

Le(TD*(1), S) < Le(u, S) + 2v/-K(1 + y) U X i + (1 + 7)211wi - u]l~X12.

W O R S T - C A S E A N A L Y S I S O F T D L E A R N I N G A L G O R I T H M S 107

120

100

80

C0

0.2 0.4 0,6 o.~

a b

~oo

sso

soo

45o

400

35o

0.2 0.4 0.~ 0.8

c

6500

6000

5500

5000

4500

4000

3500

i

d

Figure 2. The loss bound given in L e m m a 1 as a function of A when r / i s chosen so as to minimize the hound.

by the triangle inequality; thus, X1 can be replaced by X 0 / (1 - 7) - Note that the bounds

in Eqs. (2) and (12) are incomparable in the sense that, depending on the values of the

quantities involved, either bound can be better than the other. This suggests that TD* (0)

may or may not be better than TD*(1) depending on the particular problem at hand; the

bounds we have derived quantify those situations in which each will perform better than

the other.

Ultimately, we hope to extend our analysis to facilitate the optimal choice of r/ > 0

and A E [0, 1 I. In the meantime, we can numerically find the choices of r/ and A that

minimize the worst-case bound given in Lemma 1. Fig. 2 shows graphs of the worst-

case bound given in Lemma 1 as a function of A when r/ is chosen so as to minimize

our worst-case bound and for fixed settings of the other parameters. More specifically,

in all the graphs we have assumed IlWl - ull -- 1, and IIx~/I _< 1 (which implies that

IEx~II _< 1/(1 - 3`~x)). We have also fixed 3' 0.7. Figs. 2a, b, c and d assume that

L~(u, S) equals 3, 30, 300 and 3000, respectively, and each curve shows the upper

bound on Le(TD*(A), S) given in Lemma 1. The straight solid line in each figure shows

1 0 8 R. E. SCHAPIRE AND M. K. WARMUTH

the lower bound obtained in Section 5. In each figure the x-axis crosses the y-axis at

the value of Le(u, S). Note that the gap between the lower bound and Le(u, S) grows

as O (~ S)) when all other variables are kept constant. (This is not visible from

the figures because the scaling of the figures varies.) The figures were produced using

Mathematica.

As the figures clearly indicate, the higher the loss Lt(u, S), the higher should be our

choice for A. It is interesting that in some intermediate cases, an intermediate value for

A in (0, 1) is the best choice.

5. A lower bound

We next prove a lower bound on the performance of any learning algorithm in the model

that we have been considering.

THEOREM 3 Let ~ E [0, 1], Xo > O, I (> O, U > 0 and ~ a positive integer. For every

algorithm A, there exists a sequence S such that the following hold:

1. [I x t l l _< So,

2. 1 (= min{Le(u,S) : I[ull < U}, and

3. Le(A, S) >_ (v/-K + U X o v r ~) 2

~- 1 ~2k.
where at := ~-~k=0

Proof : The main idea of the proof is to construct a training sequence in which the

learning algorithm A receives essentially no information until trial g, at which time the

adversary can force the learner to incur significant loss relative to the best linear predictor.

Without loss of generality, we prove the result in the one-dimensional case 4 (i.e.,

N = 1), so we write the instance xt simply as xt. The sequence S is defined as follows:

We let xt = 7~-tXo for t < g, and xt = 0 for t > g (thus satisfying part 1). The

reinforcement given is rt = 0 if t ¢ ~?, and re = sz where z = UXo + v/K/~rt and

s E { - 1 , +1} is chosen adversarially after A has made predictions 91, - . . , Ye on the first

g trials. Then

k "ye-tsz i f t < g

Yt = "Y rt+k = 0 otherwise.
k=0

To see that part 2 holds, let u = u be any vector (scalar, really, since N = 1) with

tul _< U. Then

g

L % , S) = -

t = l

= -

t 1

= (u X o - s)2 e.

W O R S T - C A S E A N A L Y S I S O F T D L E A R N I N G A L G O R I T H M S 109

Since]u] _< U, it can be seen that this is minimized when u = sU, in which case

Le(u, S) = K by z 's definition.

Finally, consider the loss of A on this sequence:

g

Lg(A,S) = E (~) t - yt) 2 = E (f l t - sTg-tz) 2.
t = l t = l

For any real numbers p and q, we have (p - q)2 + (p + q)2 = 2(i92 + q2) > 2q2. Thus,

if s E { - 1 , +1} is chosen uniformly at random, then A 's expected loss will be

t = l

>_ 2 = z2 , = (, / - y + UXov)

t = l

It follows that for the choice of s E { - 1 , +1} that maximizes A's loss, we will have

that Le(A, S) > (x/--K + UXov/-~) 2 as claimed. •

When K = 0, Theorem 3 gives a lower bound of U2Xo2/Crt which approaches

U2Xo2/(1 - 7 2) as g becomes large. This lower bound matches the second bound

of Theorem 1 in the corresponding case. Thus, in the "noise-free" case that there ex-

ists a vector u that perfectly matches the data (i.e., min{Le(u , S) : [lull _< u } = 0),

this shows that TD* (0) is "optimal" in the sense that its worst-case performance is best

possible.

6. An application to Markov processes

For the purposes of illustration, we show in this section how our results can be applied

in the Markov-process setting more commonly used for studying temporal-difference

algorithms. Specifically, we prove a kind of convergence theorem for TD*(1).

We consider Markov processes consisting of a finite set of states denoted 1, 2 , . . . , N.

An agent moves about the Markov process in the usual manner: An initial state il is

chosen stochastically. Then, at each time step t, the agent moves stochastically from

state it to state/~+1 where i t+l may depend only on the preceding slate/t- Upon exiting

state it, the agent receives a probabilistic reward rt which also may depend only on it.
Formally, the Markov process is defined by a transition matrix Q E [0, 1] N×N and

an initial state distribution matrix P l c [0, 1] N. The entries of each column of Q

sum to 1, as do the entries of Pl . The interpretation here is that the initial state il is

distributed according to Pl , and, if the agent is in state it at time t, then the next state

i t+l is distributed according to the it TM column of Q. Thus, state it has distribution

Pc = Q t - l p l .

The reward ?'t received at time t depends only on the current state it so formally we

can write rt = r(wt, i t) where wl, w2 , . . , are independent identically distributed random

variables from some event space gt, and r : ~ × { 1 , . . . , N } --+ R is some fixed function.

l] O R. E. S C H A P I R E AND M. K. WARMUTH

Let V/ denote the expected discounted reward for a random walk produced by the

Markov process that begins in state i. That is, we define the value func t ion

V ~ : = E k "Y r l + k t i l = i

where, as usual, 0f E [0, 1) is a fixed parameter. Our goal is to estimate Vi, a problem

often referred to as value-function approximation.

At each time step t, the learner computes an estimate V[of the value function. Thus,

learning proceeds as follows. At time t = 1, 2 , . . . , g:

1. The learner formulates an estimated value function ~ t .

2. The current state i t is observed.

3. The current reward rt is observed.

4. The learner moves to the next state i t+l .

The states it and rewards r t are random variables defined by the stochastic process

described above. All expectations in this section are with respect to this random process.

Theorem 4, the main result of this section, gives a bound for TD*(1) on the average

expected squared distance of ~ t to the correct values Vi. Specifically, we show that

1 s - 2 _< o ~
t = l

for some setting of the learning rate, and given certain benign assumptions about the

distribution of rewards. Note that E [(I)/t - Vh)21J is the expected squared distance

between the t TM estimate l)/t and the tree value function 1//where the expectation is with

respect to the stochastic choice of the ~th state i t . Thus, the states more likely to be

visited at step t receive the greatest weight under this expectation. Theorem 4 states that

the average of these expectations (over the first g time steps) rapidly drops to zero.

We apply TD* (1) to this problem in the most natural manner. We define the observation

vector xt E IR N to have a 1 in component it , and 0 in all other components. (The

generalization to other state representations is straightforward.) We then execute TD* (1)

using the sequence Xl, T1, X2, r 2 , - - . , Xd, rg where these are random variables defined by

the Markov process.

The estimated value function ~ is computed as follows: Recall that TD*(1), at each
oo k

time step t, generates an estimate Yt of the discounted sum Yt = ~k=0"7 r t+k. Note

that if we are in state i at time t, then the expected value of Yt is exactly Vi, i.e.,

E [y~ I i~ : ~1 = v~.

So it makes sense to use the estimate y~ in computing the tth value-function approxima-

tion ~ t .

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 111

A minor difficulty arises from the fact that ~)t is computed after x t is observed (and

therefore after it is observed), but I) t must be computed for all states i before it is

observed. However, if we fix the history prior to trial t, then Yt is a function only of

xt, which in turn is determined by it. Therefore, for each state i, we can precompute

what the value of ~)t will be if it turns out to be i. We then define ~ t to be this value.

Note that, with this definition, the estimate ~)t computed by TD*(1) once it is observed

is equal to ~ t **-

We now state and prove our convergence theorem. For this result, we assume a finite

upper bound both on the value function and on the variance of the sum of discounted

rewards.

THEOREM 4 Suppose the Markov process is such that, for all i, IVy[<_ V and

E "Tkrl+k -- Vi [i l = i < R

for finite and known V and R.

Suppose that TD*(1) is executed as described above with w l = 0 and learning rate

v,/-f
~]t = 77 --

j 2 + j ~

where J = V v r ~ (1 + ~) / (1 - ~/). Then

1 g ~f~. j 2 - V~ 2
-] -< + T

t=l

(15)

Proof: From Eq. (14), IlXt~ll ~ 1/(1 - 30 so we choose X1 = 1/(1 - 3@ Let u be

such that ui = V~. Then Ilull _< u where U = V x / ~ . Finally, let K = Rg. Our choice

for r/ is identical to that in Theorem 2 where the appropriate substitutions have been

made.

Note that

E [(y t - w 2 = ~ e r [i t = i] E - = _ i t)] " @r t+k Vi l i t i < R
i=l

by the assumption in Eq. (15). Thus, because u - xt = Vi~,

g g

E [Lg(u ,S)] : E E [(u ' x t - yt) 2] = E E [(Y / t - y t) 2] ~ P~ = K.

t=l t=l

Taking expectations of both sides of the bound in Lemma 1, we have that

112 R. E. SCHAPIRE AND M. K. WARMUTH

E [LffTD*(~), S)] <
bE [Le(u, S)] + Ilu -wal l 2

Cb

for any b > 0 for which Cb > 0. Therefore, by a proof identical to the proof of

Theorem 2 (except that we assume only that Le(u, S) is bounded by K in expectation),

we have

E [Le(TD*(1), S)] < E [Le(u, S)] + 2v/-K(1 + ",[)UX 1 -1-(l J-7)=llull2Xt=.(x6)

Since u . xt : V h , ~)t = ~ t and E [Yt I it] = I f / t , it can be verified that
Z t ~

E [(y , - _ (y , _ u . x ,) 2] : E -

The theorem now follows by averaging over all time steps t and combining with Eq. (16).

Unfortunately, we do not know how to prove a convergence result similar to Theorem 4

for TD* (A) for general A. This is because this proof technique requires a worst-case

bound in which the term Le(u, S) appears with a coefficient of 1.

Of course, Theorem 4 represents a considerable weakening of the worst-case results

presented in Section 4. These worst-case bounds are stronger because (1) they are in

terms of the actual discounted sum of rewards rather than its expectation, and (2) they

do not depend on any statistical assumptions, indeed, the generality of the results in

Section 4 allows us to say something meaningful about the behavior of TD*(A) for

many similar but more difficult situations such as when

• there are a very large or even an infinite number of states (a state can be any vector

in NN).

• some states are ambiguously represented so that two or more states are represented

by the same vector.

• the underlying transition probabilities are allowed to change with time.

• each transition is chosen,entirely or in part by an adversary (as might be the case in

a game-playing scenario).

7. Algorithm for the batch model

In the usual supervised learning setting, the on-line learning proceeds as follows: In each

trial t _> 1 the learner receives an instance xt E IR N. Then, after producing a prediction

~)t it gets a reinforcement Yt and incurs loss (fh - Yt) 2.

A classical algorithm for this problem is the Widrow-Hoff algorithm. It keeps a linear

hypothesis represented by the vector wt and predicts with t,)t = wt • xt. The weight

vector is updated using gradient descent:

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 113

Wt+ l : = w t - 2~t (wt • x t - yt)x t .

Note that 2(wt "xt - y t)x t is the gradient of the loss (w t . x t - yt) 2 with respect to wt .

There is a straightforward generalization of the above scenario when more than one

instance is received in each trial t. In this generalization, the learner does the following

in each trial:

1. receives a real-valued matrix M t with N columns;

2. computes a prediction Yt;

3. gets reinforcement Yt; both Yt and ~'t are real column vectors whose dimension is

equal to the number of rows of M t ;

4. incurs loss II:~t - y t l l L

The rows of the matrix M t can be viewed as a batch of instances received at trial t. The

algorithm has to predict on all instances received in trial t before it gets the reinforcement

vector Yt which contains one reinforcement per row. For each instance, the algorithm

is charged for the usual square loss, and the loss in trial ~ is summed over all instances

received in that trial.

The algorithm we study, called WHM, is a direct generalization of the Widrow-Hoff

algorithm and was previously analyzed in the noise-free case by Cesa-Bianchi, Long and

Warmuth (1993), The learner maintains a weight vector w t E IR N and, on each trial t,

computes its prediction as

~rt : ~ Mtwt.

After receiving reinforcement Yt, the weight vector is updated using the rule

Wt+l := w t -- 2rhMTt (M t w t - Yt)-

Note that the Widrow-Hoff algorithm is a special case o f W H M in which each matrix

M t contains exac t ly one row. Also, the update is standard gradient descent in that

2 M T (M t w t - Yt) is the gradient of the loss I IMtwt - ytl f 2 with respect to wt .

To model a particular reinforcement learning problem, we have the freedom to make up

the matrices M t and reinforcements Yt tO suit our purpose. For example, Sutton (1988)

and others have considered a model in which the learner takes a random walk on a

Markov chain until it reaches a terminal state, whereupon it receives some feedback, and

starts over with a new walk. The learner 's goal is to predict the final outcome of each

walk. This problem is really a special case of our model in which we let M t contain

the instances of a run and set Yt = (z t , . • •, zt) T, where zt is the reinforcement received

for the t th run. (In this case, Sutton shows that the Widrow-Hoff algorithm is actually

equivalent to a version of TD(1) in which updates are not made to the weight vector wt

until the final outcome is received.)

An example is a pair (M t , y t) , and, as before, we use S to denote a sequence of

examples. We write Le(A, S) to denote the total loss of algori thm A on sequence S:

114 R. E. SCHAPIRE AND M. K. WARMUTH

Lt(A, S) := ~ (Y t - Yt) 2,

t= l

where :Vt is the prediction of A in the t th trial, and t is the total length of the sequence.

Similarly, the total loss of a weight vector u E]R N is defined as

ne (u , S) : = E (M t u - y t) 2.

t= l

The proof of the fol lowing lemma and theorem are a straightforward generalization of

the worst-case analysis of the Widrow-Hoff algorithm given by Cesa-Bianchi, Long and

Warmuth (1993). In the proof, we define, fJMII, the norm of any matrix M , as

IIMII = m a x I I M x l l .
Ilxll=l

For comparison to the results in the first part of this paper, it is useful to note that

IIMII < Xv/-m where m is the number of rows of M , and X is an upper bound on the

norm of each row of M .

For any vector x, we write x 2 to denote xTx .

LEMMA 2 Let (M , y) be an arbitrary example such that IIMII < M. Let s and u be

any weight vectors. Let b > O, and let the learning rate be

1

= 2(FIMII 2 + i /b)"

Then

I I M s - yl l 2 _< (M2b + 1) l l M u - yl l 2 + (M 2 + 1 / b) (t l u - sll 2 - I l u - wll2) ,

(1 7)

where w = s - 2 r / M T (M s - y) denotes the weight vector of the algorithm W H M after

updating its weight vector s.

Proof : Let e :-- y - M s and eu := y - M u . Then inequality (17) holds if

f := II u - wll 2 - I l u - s l l 2 + 27] °2 - beu 2 ~< 0.

Since w = s + 2r /MTe, f can be rewritten as

f = --4~](u -- s) T M T e + 4rl21lMTe[I 2 + 2rle 2 -- beu 2

= @ (e e u) T e + @21[MTeII2 + 2 r e 2 - beu 2

= - 2 r e 2 + 4ve, . (re + 4~7211MTerl 2 -- beu 2.

Since 2euTe < ---be 2 + _~e 2 and since IIMTel] < IlMlll lel] , we can upper bound f
-- 2r/ u

by

e 2 (- 2 r / + 4~72(11Mll 2 + l / b)) = 0.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 115

THEOREM 5 Let S be any sequence of examples and let M be the largest norm []Mt[t.

I f the matrix algorithm W H M uses any start vector s and learning rates

1

7 , = w = 2 (l l M t i i 2 + M2) ,

then we have for any vector u the bound

Le(WHM, S) < 2(Le(u, S) + M2Ils - u[12). (18)

Assume further that we know bounds K and U such that for some u we have Le(u, S) <

K and II s - ull < U. Then for the learning rates

U
rh = rl =

2(I IM, II=U + Mv/-K)

we have

Le(WHM, S) < Le(u, S) + 2MUv'-K + M2II s - ul[2. (19)

Proof: Assume that

1

rh = r / = 2(IIMII2 + 1/b)

for some b > 0 to be chosen later. By summing the inequality of Lemma 2 over all runs

of S we get

Le(WHM, S) <_ (bM 2 + 1)Le(u, S) + (M 2 + 1/b) (l lu - sl 12 - Ilu - w ' l l2) ,

where w ~ is the weight vector after the last reinforcement of S is processed. Since

Ilu - w' l t 2 _> 0, we have

Le(WHM, S) < (bM 2 + 1)Le(u, S) + (M 2 + 1/b) l lu - s]l 2.

Now setting b = 1 / M s gives the choice of r/ in the first part of the theorem and so

yields the bound in Eq. (18).

Assuming further that Le(u ,S) <_ K and I Is - u l l _< u , we get

Le(WHM, S) <_ Lt (u , S) + M2[ls - u[I 2 + b K M 2 + U2/b. (20)

The part of the right hand side that depends on b is b K M 2 + U2/b which is minimized

when b = U / (M x / ~) . Using this value of b in Eq. (20) gives the desired choice of r]

and the bound in Eq. (19). •

In the special case that K = 0, setting rh = 1/(2l[Mtl[2) gives a bound of

Le(WHM, S) <_ Le (u ,S) + M2lls - u[[2.

116 R. E. SCHAPIIRE AND M. K. WARMUTH

Note that to prove this, b = ec is used. The bound for K = 0 was previously proved

by Cesa-Bianchi, Long and Warmuth (1993). An alternate proof of the above theorem

via a reduction from the corresponding theorem for the original Widrow-Hoff algorithm

was recently provided by Kivinen and Warmuth (1994).

The following lower bound shows that the bounds of the above theorem are best

possible.

THEOREM 6 Let N, rn >_ 1, K, U >_ 0 and M > O. For every prediction algorithm A

there exists a sequence S consisting of a single example (M, y) such that the following

hold:

1. M is an rn x N matrix and l iMi t = M;

2. K = min{Lt (u , S) : Ilul[_< g } ; and

3. L t (A , S) >_ K + 2 U M v / K + U 2 M 2.

Proof: As in the proof of Theorem 3, we prove the result in the case that N = 1,

without loss of generality. Thus, M is actually a column vector in IR "~.

Let each component of M be equal to M/v/--m so that IIMI] = M. Let each compo-

nent of y be equal to sz where z = (M U + v/-K)/V/-m and s C { - 1 , +1} is chosen

adversarially after A has made its prediction :9 = (~)1,- - . , ~)m) r .

To see that part 2 holds, let u = u be a vector (scalar, really). Then

Le(u ,S) = I]Mu - y l l 2 = m (M u / v / - - ~ _ sz) 2

which is minimized when u = sU for [u[< U. In this case, Le(u, S) = K.

Finally, by choosing s adversarially to maximize algorithm A's loss, we have

m

L~(A,S) = m a x ~-'(Yi - sz) 2
s C { - - t , + I } "=

W1

- z) 2 + + z) 2)
1

> - 3
"i=1

> ~ z 2 = K + 2 M U x / K + M 2 U z.

i=1

8. Discussion

The primary contribution of this paper is the analysis of some simple temporal-difference

algorithms using a worst-case approach. This method of analysis differs dramatically

from the statistical approach that has been used in the past for such problems, and our

approach has some important advantages.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 117

First, the results that are obtained using the worst-case approach are quite robust. Ob-

viously, any analysis of any learning algorithm is valid only when the assumed conditions

actually hold in the real world. By making the most minimal of assumptions - - and,

in particular, by making no assumptions at all about the stochastic nature of the world

- - we hope to be able to provide analyses that are as robust and broadly applicable as

possible.

Statistical methods for analyzing on-line learning algorithms are only necessary when

worst-case bounds cannot be obtained. In this paper, we demonstrated that temporal-

difference learning algorithms with simple linear models are highly amenable to worst-

case analysis. Although one might expect such a pessimistic approach to give rather

weak results, we have found, somewhat surprisingly, that very strong bounds can often

be proved even in the worst case.

Worst-case bounds for on-line linear learning algorithms can be very tight even on

artificial data (Kivinen & Warmuth, 1994). Good experimental performance of a partic-

ular algorithm might be seen as weak evidence for showing that the algorithm is good

since every algorithm performs well on some data, particularly when the data is artifi-

cial. However, if we have a worst-case bound for a particular algorithm, then we can

use experimental data to show how much worse the competitors can perform relative to

the worst-case bound of the algorithm in question.

Another strength of the worst-case approach is its emphasis on the actual performance

of the learning algorithm on the actually observed data. Breaking with more traditional

approaches, we do not analyze how well the learning algorithm performs in expectation,

or how well it performs asymptotically as the amount of training data becomes infinite, or

how well the algorithm estimates the underlying parameters of some assumed stochastic

model. Rather, we focus on the quality of the learner's predictions as measured against

the finite sequence of data that it actually observes.

Finally, our method of analysis seems to be more fine-grained than previous approaches.

As a result, the worst-case approach may help to resolve a number of open issues in

temporal-difference learning, such as the following:

• Which learning rules are best f o r which problems? We use the total worst-case loss as

our criterion. Minimizing this criterion led us to discover the modified learning rule

TD* (A). Unlike the original TD(3,), this rule has a gradient descent interpretation for

general A. Our method can also be used to derive worst-case bounds for the original

rule, but we were unable to obtain bounds for TD(A) stronger than those given for

TD*(A). It will be curious to see how the two rules compare experimentally.

Also, the results in Section 4 provide explicit worst-case bounds on the performance

of TD*(0) and TD*(1). These bounds show that one of the two algorithms may

or may not be better than the other depending on the values of the parameters X0,

K, etc. Thus, using a priori knowledge we may have about a particular learning

problem, we can use these bounds to guide us in deciding which algorithm to use.

• How should a learning algorithm's parameters be tuned? For instance, we have

shown how the learning rate rl should be chosen for TD*(0) and TD*(1) using

knowledge which may be available about a particular problem. For the choice of A,

118 R. E. SCHAPIRE AND M. K. WARMUTH

Sutton showed experimentally that, in some cases, the learner's hypothesis got closest

to the target when A is chosen in (0, 1) and that there is clearly one optimal choice.

So far, our worst-case bounds for TD*(A) are not in closed form when A E (0, 1),

but, numerically, we have found that our results are entirely consistent with Sutton's

in this regard.

How does the performance of a learning algorithm depend on various parameters

of the problem? For instance, our bounds show explicitly how the performance

of TD*(/k) degrades as 3' approaches 1. Furthermore, the lower bounds that can

sometimes be proved (such as in Section 5) help us to understand what performance

is best possible as a function of these parameters.

Open problems. There remain many open research problems in this area. The first

of these is to reduce the bound given in Lemma 1 to closed form to facilitate the optimal

choice of A E [0, 1]. However, as clearly indicated by Fig. 2, even when)~ and ~7 are

chosen so as to minimize this bound, there remains a significant gap between the upper

bounds proved in Section 4 and the lower bound proved in Section 5. This may be a

weakness of our analysis, or this may be an indication that an algorithm better than either

TD()~) or TD*(~k) is waiting to be discovered.

So far, we have only been able to obtain results when the comparison class consists of

linear predictors defined by a weight vector u which make predictions of the form u- xt.

It is an open problem to prove worst-case loss bounds with respect to other comparison

classes.

As described in Section 3, TD*(),) can be motivated using gradient descent. Rules

of this kind can alternatively be derived within a framework described by Kivinen and

Warmuth (1994). Moreover, by modifying one of the parameters of their framework,

they show that update rules having a qualitatively different flavor can be derived that

use the approximation of the gradient V,,,, (Yt - ~) 2 in the exponent of a multiplicative

update. (Note that the TD(A) update is additive.) In particular, they analyze such an

algorithm, which they call EG, for the same problem that we are considering in the

special case that "7 = 0. Although the bounds they obtain are generally incomparable

with the bounds derived for gradient-descent algorithms, these new algorithms have great

advantages in some very important cases. It is straightforward to generalize their update

rule for 7 > 0, but the analysis of the resulting update rule is an open problem (although

we have made some preliminary progress in this direction).

Lastly, Sutton's TD(~) algorithm can be viewed as a special case of Watkin's "Q-

learning" algorithm (1989). This algorithm is meant to handle a setting in which the

learner has a set of actions to choose from, and attempts to choose its actions so as

to maximize its total payoff. A very interesting open problem is the extension of the

worst-case approach to such a setting in which the learner has partial control over its

environment and over the feedback that it receives.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 119

Acknowledgments

We are very grateful to Rich Sutton for his continued feedback and guidance. Thanks

also to Satinder Singh for thought-provoking discussions, and to the anonymous referees

for their careful reading and feedback.

Manfred Warmuth acknowledges the support of NSF grant IRI-9123692 and AT&T

Bell Laboratories. This research was primarily conducted while visiting AT&T Bell

Laboratories.

Appendix

In this technical appendix, we complete the proof of Lemma 1 by bounding p(M), the

largest eigenvalue of the matrix M.

Let I be the g x £ identity matrix, and, fo r / , j _> 0, define

S~ = Zi + Z T,

R~ = z T z i ,

Pij = z/Tzj -[- ZyZ i .

Since Z~ is the zero matrix for i > g, we can rewrite V more conveniently as

v =

i>0

By direct but tedious computations, we have that

D T D = I - 7Sl + 72R1,

and

i>l

since Z iZ l = Zi+~ for i _> O. Also,

° =

Thus, M can be written as:

(~72X.~2 - 2T/+ ~) I

120 ft. E. SCHAPIRE AND M. K. WARMUTH

+ T i - Z (~) ~'rt, + Z ('~)'+JP,J
Li_>1 j>i>1

It is known that p(A+B) <_ p(A)+p(B) for real, symmetric matrices A and B, Further,

it can be shown (for instance, using Eq. (10)) that

p(I) = 1;

p (RJ ___ 1;

p (+ s 0 _< z;

p(P i j) < 2.

Applying these bounds gives that

p (M) _< ~72X:~2 - 2r] + -~- + 2 r / - "7(1 -),) - + q2X~272

,'(
+ T l - Z(~A)" + 2 ~ (~A) '+j

U>_~ j>i>_l

Notes

1. In this paper we only use one vector norm, the L2-norm: HuH = V ~ . . ~ l U ~ .

2. In some versions of TD(A), this difficulty is overcome by replacing Yt+l = wt+l " xt+a in the update

rule (4) by the approximation wt - x t+i .

3. The factor of two in front of r/t can be absorbed into ~Tt.

4. If N > 1, we can reduce to the one-dimensional case by zeroing all but one of the components of xt.

References

Nicolb Cesa-Bianchi, Philip M. Long, & Manfred K. Warmuth. (1993). Worst-case quadratic loss bounds

for a generalization of the Widrow-Hoff rule. In Proceedings of the Sixth Annual ACM Conference on

Computational Learning Theory, pages 429-438.

Peter Dayan. (1992). The convergence of TD(A) for general A. Machine Learning, 8(3/4):341-362.

Peter Dayau & Terrence J. Sejnowsld. (1994). TD(A) converges with probability 1. Machine Learning,

14(3):295-301.

Roger A. Horn & Charles R. Johnson. (1985). Matrix Analysis. Cambridge University Press.

WORST-CASE ANALYSIS OF TD LEARNING ALGORITHMS 121

Tommi Jaakkola, Michael I. Jordan, & Satinder P. Singh. (1993). On the convergence of stochastic iterative

dynamic programming algorithms. Technical Report 9307, MIT Computational Cognitive Science.

Jyrki Kivinen & Manfred K. Warrnuth. (1994). Additive versus exponenfiated gradient updates for learn-

ing linear functions. Technical Report UCSC-CRL-94-16, University of California Santa Cruz, Computer

Research Laboratory.

Richard S. Sutton. (1988). Learning to predict by the methods of temporal differences. Machine Learning,
3:9-44.

C. J. C. H. Watkins. (1989). Learning from delayed rewards. PhD thesis, University of Cambridge, England,

1989.

Received November 2, 1994

Accepted February 23, 1995

Final Manuscript September 29, 1995

