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Abstract. We study the behavior of a family of learning algorithms based on Sutton's method of temporal 

differences. In our on-line learning framework, learning takes place in a sequence of trials, and the goal of the 

learning algorithm is to estimate a discounted sum of all the reinforcements that will be received in the future. 

In this setting, we are able to prove general upper bounds on the performance of a slightly modified version 

of Sutton's so-called TD(A) algorithm. These bounds are stated in terms of the performance of the best linear 

predictor on the given training sequence, and are proved without making any statistical assumptions of any 

kind about the process producing the learner's observed training sequence. We also prove lower bounds on 

the performance of any algorithm for this learning problem, and give a similar analysis of the closely related 

problem of learning to predict in a model in which the learner must produce predictions for a whole batch of 

observations before receiving reinforcement. 
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1. Introduction 

As an example, consider the problem of estimating the present value of  a company. At 

the end of  each quarter t, a company returns a profit re. In terms of its future profits, 

what is the company worth today? One possible answer is simply the sum total of  all 

future profits ~ but this is clearly an unsatisfactory measure of present worth E k = O  ?~t+k, 

since a dollar earned today is certainly worth more than a dollar earned ten years from 

now. Indeed, taking into account inflation and the exponential growth rate of  money that 

is invested, it can be argued that future profits drop in value exponentially with time. 

For this reason, it is common to discount profits rt+k earned k time steps in the future 

by "7 k, where 3' < 1 is a parameter that estimates the rate at which future profits diminish 

in value. This leads to a definition of the present value of  the company as the discounted 

s u m  

Yt := ~ ~/krt+k. 

k=O 

(1) 

Suppose now that we want to predict or estimate the present value yt as defined in 

Eq. (1). Obviously, if we know all the future profits rt ,  r~+ l , . . . ,  then we can compute 

Yt directly, but it would be absurd to assume that the future is known in the present. 
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Instead, we consider the problem of estimating Yt based on current observations that can 

be made about the world and the company. We summarize these observations abstractly 

by a vector xt E IR N. This vector might include, for instance, the company's profits 

in recent quarters, current sales figures, the state of the economy as measured by gross 

national product, etc. 

Thus, at the beginning of each quarter t, the vector xt is observed and an estimate 

Yt E ~ is formulated of the company's present value yt.  At the end of the quarter, the 

company returns profit ft. The goal is to make the estimates 9t as close as possible to 

Yt. 

We study this prediction problem more abstractly as follows: At each point in time t = 

1 ,2 , . . . ,  a learning agent makes an observation about the current state of its environment, 

which is summarized by a real vector xt  E ~N.  After having made this observation, the 

learning agent receives some kind of feedback from its environment, which is summarized 

by a real number rt.  The goal of the learning agent is to learn to predict the discounted 

sum yt given in Eq. (1) where "7 E [0, 1) is some fixed constant called the discount rate 

parameter. 

At each time step t, after receiving the instance vector xt and prior to receiving the 

reinforcement signal r t ,  we ask that the learning algorithm make a prediction Yt of the 

value of Yr. We measure the performance of the learning algorithm in terms of the 

discrepancy between Yt and Yr. There are many ways of measuring this discrepancy; in 

this paper, we use the quadratic loss function. That is, we define the loss of the learning 

algorithm at time t to be (Yt - Yt) 2, and the loss for an entire sequence of predictions 

is just the sum of the losses at each trial. Thus, the goal of the learning algorithm is to 

minimize its loss over a sequence of observation/feedback trials. 

We study the worst-case behavior of a family of learning algorithms based on Sutton's 

(1988) method o f  temporal differences . Specifically, we analyze a slightly modified 

version of Sutton's so-called TD(A) algorithm in a worst-case framework that makes no 

statistical assumptions of any kind. All previous analyses of TD(A) have relied heavily 

on stochastic assumptions about the nature of the environment that is generating the data 

observed by the learner (Dayan, 1992; Dayan & Sejnowski, 1994; Jaakkola, Jordan & 

Singh, 1993; Sutton, 1988; Watkins, 1989). For instance, the learner's environment is 

often modeled by a Markov process. We apply some of our results to Markov processes 

later in the paper. 

The primary contribution of our paper is to introduce a method of worst-case analysis to 

the area of temporal-difference learning. We present upper boundson the loss incurred 

by our temporal-difference learning algorithm (denoted by TD*(A)) which hold even 

when the sequence of observations xt and reinforcement signals rt is arbitrary. 

To make our bounds meaningful in such an adversarial setting, we compare the perfor- 

mance of the learning algorithm to the loss that would be incurred by the best prediction 

function among a family of prediction functions; in this paper, this class will always be 

the set of linear prediction functions. More precisely, for any vector u E IR x ,  let 

g 

t = l  
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denote the loss of vector u on the first ! trials of training sequence S. That .is, Le(u, S) 

is the loss that would be incurred by a prediction function that predicts u . xt on each 

observation vector xt. 

We compare the performance of our learning algorithms to the performance of the best 

vector u (of bounded norm) that minimizes the loss on the given sequence. For example, 

we prove below that, for any training sequence S, the loss on the first .! trials of TD* (1) 

is at most1 

min 
( 

Le(u, S) + 2JKux 0% + llul12x02c~) (2) 
llulll~ 

Lf(u,S)lK 

where c, = (1 + -/)/Cl - r>- (H ere, U, X0 and K are parameters that are used to 

“tune” the algorithm’s “learning rate:” specifically, it is assumed that 1 Ixt )I 5 X0, and 

that min{ll(u, S) : I IuI I 5 V} 2 K. Various methods are known for guessing these 

parameters when they are unknown; see, for instance, Cesa-Bianchi, Long and Warmuth’s 

paper (1993)) Thus, TD*(l) will perform reasonably well, provided that there exists 

some linear predictor u that gives a good fit to the training sequence. 

To better understand bounds such as those given in Eq. (2), it is often helpful to consider 

the average per-trial loss that is guaranteed by the bound. Suppose for the moment, as is 

likely to be the case in practice, that U, X0 and y are fixed, and that K grows linearly 

with the number of trials l, so that K = O(C). Then Eq. (2) implies that the average 

per-trial loss of TD*(l) (i.e., the total cumulative loss of TD*(l) divided by the number 

of trials e) is at most 

min Le (u7 s> 
IblllU c 

L’(u,S)<K 

In other words, as the number of trials 1 becomes large, the average per-trial loss of 

TD*(l) rapidly approaches the average loss of the best vector u. Furthermore, the rate 

of convergence is given explicitly as 0(1/d). 

Note that the above result, like all the others presented in this paper, provides a charac- 

terization of the learner’s performance after only afinite number of time steps. In contrast, 

most previous work on TD(X) has focused on its asymptotic performance. Moreover, 

previous researchers have focused on the convergence of the learner’s hypothesis to a 

“true” or “optimal” model of the world. We, on the other hand, take the view that the 

learner’s one and only goal is to make good predictions, and we therefore measure the 

learner’s performance entirely by the quality of its predictions. 

The upper bound given in Eq. (2) on the performance of TD* (1) is derived from a 

more general result we prove on the worst-case performance of TD*(X) for general A. 

Our bounds for the special case when X = 0 or X = 1 can be stated in closed form. 

The proof techniques used in this paper are similar but more general than those used by 

Cesa-Bianchi, Long and Warmuth (1993) in their analysis of the Widrow-Hoff algorithm 

(corresponding to the case that y = 0). 
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Note that min{Le(u ,  S) : u E IR N} is the best an arbitrary linear model can do that 

knows all Yl " " Ye ahead of time. If  the on-line learner were given Yt at the end of  trial 

t (i.e., if 3` = 0), then the Widrow-Hoff algorithm would achieve a worst case bound of  

min 
Ilull<_u 

Le(u,S)<_K 

(Le(u ,  S) + 2v"-KUXo + Ilu[12x0 2) 

(matching the bound in Eq. (2) with 3' set to 0). However, in our model, the learner 

is given only the reinforcements rt ,  even though its goal is to accurately estimate the 

infinite sum Yt given in Eq. (1). Intuitively, as 3' gets larger, this task becomes more 

difficult since the learner must make predictions about events farther and farther into the 

future. All of  our worst-case loss bounds depend explicitly on 3' and, not surprisingly, 

these bounds typically tend to infinity or become vacuous as 3' approaches 1. Thus, 

our bounds quantify the price one has to pay for giving the learner successively less 

information. 

In addition to these upper bounds, we prove a general lower bound on the loss of  any 

algorithm for this prediction problem. Such a lower bound may be helpful in determining 

what kind of  worst-case bounds can feasibly be proved. None of our upper bounds match 

the lower bound; it is an open question whether this remaining gap can be closed (this 

is possible in certain special cases, such as when 2 /=  0). 

Finally, we consider a slightly different, but closely related learning model in which 

the learner is given a whole batch of  instances at once and the task is to give a prediction 

for all instances before an outcome is received for each instance in the batch. The loss 

in a trial t is llY't - Yt[[ 2, where Srt is the vector of predictions and Yt the vector of 

outcomes. Again, the goal is to minimize the additional total loss summed over all trials 

in excess of the total loss of  the best linear predictor (of bounded norm). 

In this batch model all instances count equally and the exact outcome for each instance 

is received at the end of  each batch. A special case of  this model is when the algorithm 

has to make predictions on a whole batch of  instances before receiving the same outcome 

for all of them (a case studied by Sutton (1988)). 

We again prove worst-case bounds for this model (extending Cesa-Bianchi, Long and 

Warmuth's (1993) previous analysis for the noise-free case). We also prove matching 

lower bounds for this very general model, thus proving that our upper bounds are the 

optimal worst-case bounds. 

The paper is outlined as follows. Section 2 describes the on-line model for tempo- 

ral difference learning. Section 3 gives Sutton's original temporal difference learning 

algorithm TD(A) and introduces our new algorithm TD*(A). Section 4 contains the 

worst-case loss bounds for the new algorithm, followed by Section 5 containing a lower 

bound for the on-line model. In Section 6, we illustrate our results with an application of  

TD*(1) to obtain a kind of  convergence result in a Markov-process setting. We present 

our results for the batch model in Section 7. Finally, we discuss the merits of  the method 

of worst-case analysis in Section 8. 
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2. The prediction model 

In this section, we describe our on-line learning model. Throughout the paper, N denotes 

the dimension of  the learning problem. Each trial t (t = 1, 2 , . . . )  proceeds as follows: 

1. The learner receives instance vector xt  E R N. 

2. The learner is required to compute a prediction Yt E IR. 

3. The learner receives a reinforcement  s ignal  rt  E IR. 

The goal of  the learner is to predict not merely the next reinforcement signal, but 

rather a discounted sum of  all of  the reinforcements that will be received in the future. 

Specifically, the learner is trying to make its prediction ~)t as close as possible to 

043  

Yt : =  Z ~/krt+k 
k=0 

where 2/E [0, 1) is a fixed parameter of the problem. (We will always assume that this 

infinite sum converges absolutely for all t.) 

Note that if we multiply Yt by the constant 1 - % we obtain a weighted average of all 

the future rt 's;  that is, (1 - ' / ) Y t  is a weighted average of  rt~ r t + l , . . . .  Thus it might be 

more natural to use the variables y~ = yt (1  - ~) .  (For instance, if all rt equal r, then the 

modified variables y~ all equal r as well.) However, for the sake of notational simplicity, 

we use the variables yt instead (as was done by Sutton (1988) and others). 

The infinite sequence of  pairs of  instances x t  and reinforcement signals rt is called a 

training sequence  (usually denoted by S). The loss of  the learner at trial t is (Yt - ?)t) 2, 

and the total loss of  an algorithm A on the first g trials is 

g 

L~(A ,  S )  :=  ~--2.(Yt - Yt) 2" 

t = l  

Similarly, the total loss of  a weight vector u E ~lv on the first g trials is defined to be 

g 

r ' ( u ,  S)  : - -  - u .  x , )  2. 

t : l  

The purpose of  this paper is to exhibit algorithms whose loss is guaranteed to be "not 

too much worse" than the loss of  the best weight vector for the entire sequence. Thus, 

we would like to show that if there exists a weight vector u that fits the training sequence 

well, then the learner's predictions will also be reasonably good. 
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3. Temporal-difference algorithms 

We focus now on a family of learning algorithms that are only a slight modification of  

those considered by Sutton (1988). Each of these algorithms is parameterized by a real 

number A C [0, 1]. For any sequence S and t = 1, 2,- - -, let 

: =  (3 )  

k = l  

be a weighted sum of all previously observed instances xk. The parameter ,k controls 

how strong an influence past instances have. For instance, when ), = 0, Xt  ° = xt  so 

only the most recent instance is considered. 

The learning algorithm TD()~) works by maintaining a weight vector wt E IR N. The 

initial weight vector w l  may be arbitrary, although in the simplest case w l  = 0. The 

weight vector wt  is then updated to the new weight vector w t + l  using the following 

update rule: 

W t +  1 : =  W~ q- l ] t ( r  t + ")'~)t+l ^ ,k --  y t ) X  t . (4)  

As suggested by Sutton (1988), the weight vectors are updated using X~ rather than xt, 

allowing instances prior to xt to have a diminishing influence on the update. 

The constant r h appearing in Eq. (4) is called the learning rate on trial t. We will 

discuss later how to set the learning rates using prior knowledge about the training 

sequence. 

In Sutton's original presentation of  TD(A), and in most of  the subsequent work on the 

algorithm, the prediction at each step is simply ?-.)t = wt  - xt. We, however, have found 

that a variant on this prediction rule leads to a simpler analysis, and, moreover, we were 

unable to obtain worst-case loss bounds for the original algorithm TD(A) as strong as 

the bounds we prove for the new algorithm. 

Our variant of TD(A) uses the same update (4) for the weight vector as the original 

algorithm, but predicts as follows: 

t 1 

: =  + - 

k = l  

t - 1  

= wt-x  - ( s )  

k = l  

This new algorithm, which we call TD* (.k), is summarized in Fig. 1. 

The rule (4) for updating w t + l  has w t+ l  implicit in 9t+1, so at first it seems impossible 

to do this update rule. 2 However, by multiplying Eq. (4) by X x , t+l one can first solve 

for ~)t+l and then compute Wt+l.  Specifically, this gives a solution for ~)t+l of  

y t ) X t )  XtA+l t t + l - k ^  (wt +rh(r~ ~ ~' - " - v k  

1 - , t T X t  x" Xt~+l 
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Algorithm TD* (A) 

P a r a m e t e r s :  discount rate 7 E [0, 1) 

), ~ [o, 1] 
start vector w 1 C ~ N  

method of  computing learning rate r/t 

G i v e n :  training sequence x l  , r l  , x 2 ,  r 2 ,  . . . 

P r e d i c t :  9 1 ,  ~)2, " " " 

P r o c e d u r e :  

get x ,  

1 1  ~ +--- X 1 

Yl +-- Wl " 1 1  ~ 

for  t = 1 , 2 , . . .  

predict Yt (* Yt w t - X t  x -  , -1  : E k = l  ( ' T A ) t - k y k  * )  

get r t  

get Xt+l 

X~+l 4---- Xt+l -4- (7,~)Xt A 

COmpute r h 

w,  x t+ 1 -t-- ~ ] t ( r ,  - -  ^ A • y , ) X ~  - X ~ + l  
Yt+l +-- 

1 - ~ ,TXt ~.  X 5 1  

Wt+l *-  wt  + r h ( r t  + 7Yt+l - y t )Xt  x 

end 

Figure  l .  Pseudocode for TD* (A). 

(wt + q t  ( r t  ^ A -- y t ) X t  )" Xt~+l ("}//~)W t " EtA 

1 - ~ , - r x ~  x ) + l  

• y t ) X t  • X~+ 1 Wt Xt+l + r h ( r t  - ^ 

1 - rhvXff-  X L 1  

where, in the first equality, we assume inductively that Eq. (5} holds at trial t. Thus, 

we can solve successfully for Yt+l provided that "fY]tXt ~ • EtA+ 1 • 1, as will be the case 

for all the values of  z/t we consider. Also, note that Yt+l is computed after the instance 

Xt+l is received but before the reinforcement r t+l  is available (see Pig. 1 for details}. 

Note that for the prediction Yt = wt - xt  of TD(A), 

V w ,  (y,  9~) 2 = 2,7,(y, - 0 h x ,  

- 2 r h ( r t  + "Y~)t+l Y,)Xt" 

(Since Yt  = r t  + 7Yt+l is not available to the learner, it is approximated by r t  + 7~)t+l.) 

Thus with the prediction rule of TD(A) the update rule (4) i s  n o t  gradient descent for 
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all choices of  ,~. In contrast, with the new prediction rule (5) of  TD*(.~), the update 

rule (4) used by both algorithms is gradient descent, a since if t)t is set according to the 

new prediction rule then 

V w ~ ( y t  - 9~) 2 = - 2 ~ ( y ~  - ydX~^ ~' 

--2rh(rt  + V~)t+l - -  y t ) X t .  ^ ;~ 

We can also motivate the term - ~-]~--11(%k)t-kgk in the prediction rule of  TD*(A) 

given in Eq. (5): In this paper, we are comparing the total loss of the algorithm with the 

total loss of  the best linear predictor, so both algorithms TD(,k) and TD*()Q try to match 

the yt ' s  with an on-line linear model. In particular, if Yt = w - x t  (that is, the yt ' s  are 

a linear function of the x t ' s )  and the initial weight vector is the "correct" weight vector 

w, then the algorithms should always predict correctly (so that Yt = Yt) and the weight 

vector wt  of  the algorithms should remain unchanged. It is easy to prove by induction 

that both algorithms have this property. 

Thus, in sum, the prediction rule Yt = wt  • X t  ~ + et is motivated by gradient descent, 

where ct is any term that does not depend on the weight vector wt.  The exact value for 

ct is derived using the fact that, in the case described above, we want Yt = Yt for all t. 

4. Upper bounds for TD*(~)  

In proving our upper bounds, we begin with a very general lemma concerning the per- 

formance of TD* (A). We then apply the lemma to derive an analysis of  some special 

cases of  interest. 

LEMMA 1 Let "y C [0, 1), A ~ [0, 1], and let S be an arbitrary training sequence such 

that t]X{I[ <_ X x  f o r  all trials t. Let  u be any weight vector, and let g > O. 

I f  we execute TD* (A) on S with initial vector w l  and learning rates rh = ~7 where 

0 < r /Xx2" /<  1, then 

s) _<inf { bL (u,S)+Cbllu- w, l12 b > O, Cb > 0} 

where Cb equals 

2 r / - r / 2 X , x 2 ( l + 7  2 ) -  -g- 1 +  7 A 

Proof: For l < t  < g ,  w e l e t  et = y t - ~ ) t ,  and eu,t = y t - u - x t .  We further define 

ee+l = 0. Note that the loss of the algorithm at trial t is et  2 and the loss of u is eu,t 2. 

Since, for t < ~, 

r t  + 7~) t+l  -- ~)t ---- r t  + "YYt +I  --  (7"t + ' Y Y t + I )  + Y t  - -  Y t  
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we can write Eq. (4), the update of  our algorithm, conveniently as 

W t + l  = Wt -}- r/(et -- ~/et+l)X{. (6) 

To simplify the proof, we also define 

we+l  = we + rTeeX~ 

so that Eq. (6) holds .for all t _< g. (In fact, this definition of  we+l  differs from the vector 

that would actually be computed by TD* (A). This is not a problem, however, since we 

are here only interested in the behavior of  the algorithm on the first g trials which are 

unaffected by this change.) 

We use the function progr  t to measure how much "closer" the algorithm gets to u 

during trial t as measured by the distance function []. 112: 

progrt  = I l u  - w t l l  2 - i l u  - w t + , l l  2. 

Let A w t  = Wt+l - wt  for t < g. We have that 

2 ~ 12 I I A w ~ l l  2 = ~ 2 ( e t  - ~ /e~+l )  I l X t  I 

< r /eX ,x2(e t  - ~ /e t+l )  2 

and that 

A w t - ( w t - -  u)  = , ( ~  - ~ + ~ ) ( w ~ .  x ~  - u .  x ~ )  

t 

= ~ ( ~  - ~+~) 3-~(~)~-~(~ - u .  ×~) 
k = l  

t 

= , ( ~  - ~ + ~ )  ~ ( 7 ~ ) ~ - k ( ~ . , ~  - ~) 
k = l  

where the second equality follows from Eqs. (3) and (5), and the last equality from the 

fact that 

~ ) k - - u ' x k  = ~ ) k - - Y k + Y k - - U ' X k  

eu, k - -  Ck. 

Since - p r o g r  t = 2 A w t -  (wt - u)  + [[nWtl] 2, we have that 

- I l w l  - u l l  2 _< I I w ~ + x  - u l l  2 - I I w l  - ,111 ~ 

g 

-- E pr°gr t  
t = l  

< 2 ~  (e, -~e~+l)~(~)~-~(~u,~ - ~) 
t = l  k = l  

g 

-~)~2XA2 ~ (e t  --  " / e t + l )  2. (7)  

t = l  



104 R. E. S C H A P I R E  A N D  M. K. W A R M U T H  

This can be written more concisely using matrix notation as follows: Let Zk be the 

g x ~ matrix whose entry (i, j )  is defined to be 1 if j = i + k and 0 otherwise. (For 

instance, Z0 is the identity matrix.) Let D = Zo - 7 Z l ,  and let 

g--1 

v = 

t=O 

Finally, let e (respectively, eu)  be the length g vector whose t th element is e t (respectively, 

eu,t). Then the last expression in Eq. (7) is equal to 

rl2Xx2eTDTDe + 2rIeTDTVT(eu -- e).  (8) 

This can be seen by noting that, by a straightforward computation, the t th element of  

D e  is et - 7et+l, and the t th element of V T ( e u  -- e) is 

t 

k = l  

We also used the identity (De)  T = eTD T. 

Using the fact that 2 p T q  < Ilplt 2 + tlqlt 2 for any pair of  vectors p,  q E R e, we can 

upper bound Eq. (8), for any b > 0, by 

2 

rl2X),2eTDTDe -- 2~leTDTVTe + b e T D T V T V D e  + be,T e ,  (9) 

(where we use p ---- (r//v/-b) V D e  and q = v ~  eu).  Defining 

2 

M = r /2XA2DTD - r / (VD + D T v  T) + - ~ D T V T V D ,  

and noting that eTDTVTe  = e T V D e ,  we can write Eq. (9) simply as 

e T M e  + beuTeu . 

Note that M is symmetric. It is known that in this case 

e T M e  
m a x  - -  -- p ( M )  (10) 
e¢O e T e  

where p ( M )  is the largest eigenvalue of M .  (See, for instance, Horn and Johnson (1985) 

for background on matrix theory.) Thus, for all vectors e, e T M e  < p ( M ) e T e .  It follows 

from Eq. (7) that 

g 

- t l w l  - uil 2 _< b eu,? + p(M)Z   2 

t = l  t = l  

SO 
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g t 

-p(M) get 2 _< IIw~ - ,-,IP + b ~ e~,, ~. 

t=l  t=l  

In the appendix, we complete the proof by arguing that p ( M )  < --Cb. 

Having proved Lemma 1 in gory generality, we are now ready to apply it to some 

special cases to obtain bounds that are far more palatable. We begin by considering the 

case that A = 0. Note that TO(0) and TO*(0) are identical. 

THEOREM 1 Let 0 <_ 3  ̀ < 1, and let S be any sequence of  instances~reinforcements. 

Assume that we know a bound Xo for which [[xt[[ _< Xo. 

I f  TD*( O ) uses any start vector w l  and learning rates ~t = 77 = 1 / (Xo 2 + 1), we have 

for all g > 0 and for all u C IRN: 

Le(TD*(O), S) <_ (1 + Xo2) (Le(u ,S )  + Ilwl - u l l  2) 
1 - 3`2 

(11) 

Assume further that we know bounds K and U such that for some u we have Le(u, S) < 

I (  and [[w] - ull <_ U. Then for the learning rate 

U 

r/t = r/ = X o v ' ~  + Xo2U 

we have that 

Le(TD*(0), S) <_ Le(u'  S) + 2UXov/-K + Xo2[lWl - ull z 

1 - 3 ̀2 
(12) 

Proof: When A = 0, Cb simplifies to 

2~- r/2 (X02 + 1)(1 q-72)- 23̀  T] -- 112 ( N o 2  -[- 1 )  . 

To minimize the loss bound given in Lemma 1, we need to maximize CD with respect 

to 77. It can be shown that, in this case, Cb is maximized, for fixed b, when 

1 

rl - Xo 2 + l / b  (13) 

The first bound (Eq. (11)) is then obtained by choosing b = 1. 

If  bounds K and U are known as stated in the theorem, an optimal choice for b can 

be derived by plugging the choice for r/ given in Eq. (13) into the bound in Lemma 1, 

and replacing Le(u, S) by K and Iiu - Wall 2 by U 2. This gives 

(bK + U2)(Xo 2 + i /b)  

1 ,,/2 
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which is minimized when b = U/(Xov / -K) .  Plugging this choice of b into the bound of  

Lemma 1 (and setting 17 as in Eq. (13)) gives the bound 

(ULg(u,S)/Xov/~ + ,IU-Wl][2) (Xo2 q-Xov/-'K/U) 
1 - 7 2 

Le(u,  S) + Le(u,  S ) X o U / v / - K  + I l u  - w~l?XoV-~/u + I 1 "  - w ,  l l 2 X o  2 

< 

1 - ~/2 

rffu,  S) + 2XoUv~ + t 1 , - , -  Wlll2Xo 2 

I -- 7 2 

P r o o f :  W h e n  A = 1,  

172 
Cb = 217 -- 172212(1 + 7)2 b 

This is maximized, with respect to 17, when 

1 

17 = X12(1 + 7) 2 + l /b" 

Proceeding as in Theorem 1, we see that the best choice for b is 

U 
b =  

(1 -I- 7)Xl ,~K- 

Plugging into the bound in Lemma 1 completes the theorem. • 

The bound in Eq. (2) is obtained from Theorem 2 by setting w l  = 0, and noting that 

max{flxk[I : 1 < k < t} 
Ilxllt-< 7'-kl[xkl[-< 1 - 7  (14) 

k=l 

Next, we consider the case that ), = 1. 

THEOREM 2 Let 0 < 7 < 1, g > 0 and let S be any sequence o f  instances~reinforcements. 

Assume that we know a bound X1 for  which IIxti[[ < X1, and that we know bounds 

K and U such that for  some u we have L e ( u , S )  < K and IIwl - ull <_ u.  Then if 

TD*(1) uses any start vector Wl and learning rates 

U 

17t = 17 = UX]2(1  + .7) ~ + XI(1  + 7)v/-K ' 

then 

Le(TD*(1), S) < Le(u,  S) + 2v/-K(1 + y ) U X i  + (1 + 7)211wi - u]l~X12. 
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Figure 2. The loss bound given in L e m m a  1 as a function of  A when r / i s  chosen so as to minimize  the hound. 

by the triangle inequality; thus, X1 can be replaced by X 0 / ( 1  - 7 ) -  Note that the bounds 

in Eqs. (2) and (12) are incomparable in the sense that, depending on the values of  the 

quantities involved, either bound can be better than the other. This suggests that TD* (0) 

may or may not be better than TD*(1) depending on the particular problem at hand; the 

bounds we have derived quantify those situations in which each will perform better than 

the other. 

Ultimately, we hope to extend our analysis to facilitate the optimal choice of  r/ > 0 

and A E [0, 1 I. In the meantime, we can numerically find the choices of  r/ and A that 

minimize the worst-case bound given in Lemma 1. Fig. 2 shows graphs of the worst- 

case bound given in Lemma 1 as a function of  A when r/ is chosen so as to minimize 

our worst-case bound and for fixed settings of  the other parameters. More specifically, 

in all the graphs we have assumed IlWl - ull -- 1, and IIx~/I _< 1 (which implies that 

IEx~II _< 1/(1 - 3`~x)). We have also fixed 3' 0.7. Figs. 2a, b, c and d assume that 

L~(u, S) equals 3, 30, 300 and 3000, respectively, and each curve shows the upper 

bound on Le(TD*(A), S)  given in Lemma 1. The straight solid line in each figure shows 
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the lower bound obtained in Section 5. In each figure the x-axis crosses the y-axis at 

the value of  Le(u, S). Note that the gap between the lower bound and Le(u, S) grows 

as O ( ~ S ) )  when all other variables are kept constant. (This is not visible from 

the figures because the scaling of  the figures varies.) The figures were produced using 

Mathematica. 

As the figures clearly indicate, the higher the loss Lt(u,  S), the higher should be our 

choice for A. It is interesting that in some intermediate cases, an intermediate value for 

A in (0, 1) is the best choice. 

5. A lower bound 

We next prove a lower bound on the performance of  any learning algorithm in the model 

that we have been considering. 

THEOREM 3 Let ~ E [0, 1], Xo > O, I (  > O, U > 0 and ~ a positive integer. For every 

algorithm A, there exists a sequence S such that the following hold: 

1. [ I x t l l  _< So, 

2. 1 ( =  min{Le(u,S)  : I[ull < U}, and 

3. Le(A, S) >_ (v/-K + U X o v r ~ )  2 

~- 1 ~2k. 
where at :=  ~-~k=0 

Proof :  The main idea of  the proof is to construct a training sequence in which the 

learning algorithm A receives essentially no information until trial g, at which time the 

adversary can force the learner to incur significant loss relative to the best linear predictor. 

Without loss of generality, we prove the result in the one-dimensional case 4 (i.e., 

N = 1), so we write the instance xt  simply as xt. The sequence S is defined as follows: 

We let xt = 7~-tXo for t < g, and xt = 0 for t > g (thus satisfying part 1). The 

reinforcement given is rt = 0 if t ¢ ~?, and re = sz where z = UXo + v/K/~rt and 

s E { - 1 ,  +1}  is chosen adversarially after A has made predictions 91, - . . ,  Ye on the first 

g trials. Then 

k "ye-tsz i f t  < g  

Yt = "Y rt+k = 0 otherwise. 
k=0 

To see that part 2 holds, let u = u be any vector (scalar, really, since N = 1) with 

tul _< U. Then 

g 

L % ,  S )  = - 

t = l  

= - 

t 1 

= ( u X o  - s )2 e. 
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Since ]u] _< U, it can be seen that this is minimized when u = sU, in which case 

Le(u, S) = K by z 's  definition. 

Finally, consider the loss of A on this sequence: 

g 

Lg(A,S)  = E ( ~ ) t -  yt) 2 = E ( f l t -  sTg-tz) 2. 
t = l  t = l  

For any real numbers p and q, we have (p - q )2  + (p + q)2  = 2(i92 + q2) > 2q2.  Thus, 

if s E { - 1 ,  +1}  is chosen uniformly at random, then A 's  expected loss will be 

t = l  

>_ 2 = z2 , = ( , / - y  + UXov ) 

t = l  

It follows that for the choice of s E { - 1 ,  +1}  that maximizes A's  loss, we will have 

that Le(A, S) > (x/--K + UXov/-~) 2 as claimed. • 

When K = 0, Theorem 3 gives a lower bound of  U2Xo2/Crt which approaches 

U2Xo2/(1 - 7 2) as g becomes large. This lower bound matches the second bound 

of  Theorem 1 in the corresponding case. Thus, in the "noise-free" case that there ex- 

ists a vector u that perfectly matches the data (i.e., min{Le(u ,  S) : [lull _< u }  = 0), 

this shows that TD* (0) is "optimal" in the sense that its worst-case performance is best 

possible. 

6. An application to Markov processes 

For the purposes of  illustration, we show in this section how our results can be applied 

in the Markov-process setting more commonly used for studying temporal-difference 

algorithms. Specifically, we prove a kind of  convergence theorem for TD*(1). 

We consider Markov processes consisting of  a finite set of  states denoted 1, 2 , . . . ,  N.  

An agent moves about the Markov process in the usual manner: An initial state il is 

chosen stochastically. Then, at each time step t, the agent moves stochastically from 

state it to state/~+1 where i t+l  may depend only on the preceding slate/t-  Upon exiting 

state it, the agent receives a probabilistic reward rt which also may depend only on it. 
Formally, the Markov process is defined by a transition matrix Q E [0, 1] N×N and 

an initial state distribution matrix P l c  [0, 1] N. The entries of  each column of  Q 

sum to 1, as do the entries of  Pl .  The interpretation here is that the initial state il is 

distributed according to Pl ,  and, if the agent is in state it at time t, then the next state 

i t+l  is distributed according to the it TM column of  Q. Thus, state it has distribution 

Pc = Q t - l p l .  

The reward ?'t received at time t depends only on the current state it so formally we 

can write rt = r(wt, i t )  where wl, w2 , . . ,  are independent identically distributed random 

variables from some event space gt, and r : ~ × { 1 , . . . ,  N }  --+ R is some fixed function. 
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Let V/ denote the expected discounted reward for a random walk produced by the 

Markov process that begins in state i. That is, we define the value func t ion  

V ~ : = E  k "Y r l + k  t i l  = i 

where, as usual, 0f E [0, 1) is a fixed parameter. Our goal is to estimate Vi, a problem 

often referred to as value-function approximation. 

At each time step t, the learner computes an estimate V[ of  the value function. Thus, 

learning proceeds as follows. At time t = 1, 2 , . . . ,  g: 

1. The learner formulates an estimated value function ~ t .  

2. The current state i t  is observed. 

3. The current reward rt  is observed. 

4. The learner moves to the next state i t+l .  

The states it and rewards r t  are random variables defined by the stochastic process 

described above. All expectations in this section are with respect to this random process. 

Theorem 4, the main result of  this section, gives a bound for TD*(1) on the average 

expected squared distance of ~ t  to the correct values Vi. Specifically, we show that 

1 s - 2 _< o ~ 
t = l  

for some setting of  the learning rate, and given certain benign assumptions about the 

distribution of rewards. Note that E [(I)/t - Vh)21J is the expected squared distance 

between the t TM estimate l)/t and the tree value function 1//where the expectation is with 

respect to the stochastic choice of  the ~th state i t .  Thus, the states more likely to be 

visited at step t receive the greatest weight under this expectation. Theorem 4 states that 

the average of these expectations (over the first g time steps) rapidly drops to zero. 

We apply TD* (1) to this problem in the most natural manner. We define the observation 

vector xt  E IR N to have a 1 in component  it ,  and 0 in all other components. (The 

generalization to other state representations is straightforward.) We then execute TD* (1) 

using the sequence Xl, T1, X2, r 2 , - - . ,  Xd, rg where these are random variables defined by 

the Markov process. 

The estimated value function ~ is computed as follows: Recall that TD*(1),  at each 
oo k 

time step t, generates an estimate Yt of  the discounted sum Yt = ~k=0"7  r t+k.  Note 

that if we are in state i at time t, then the expected value of Yt is exactly Vi, i.e., 

E [y~ I i~ : ~1 = v~. 

So it makes sense to use the estimate y~ in computing the tth value-function approxima- 

tion ~ t .  
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A minor difficulty arises from the fact that ~)t is computed after x t  is observed (and 

therefore after it is observed), but I ) t  must be computed for all states i before it is 

observed. However, if we fix the history prior to trial t, then Yt is a function only of 

xt,  which in turn is determined by it. Therefore, for each state i, we can precompute 

what the value of ~)t will be if it turns out to be i. We then define ~ t  to be this value. 

Note that, with this definition, the estimate ~)t computed by TD*(1) once it is observed 

is equal to ~ t  **- 

We now state and prove our convergence theorem. For this result, we assume a finite 

upper bound both on the value function and on the variance of  the sum of discounted 

rewards. 

THEOREM 4 Suppose the Markov process is such that, for  all i, IVy[ <_ V and 

E "Tkrl+k -- Vi [ i l  = i < R 

for  finite and known V and R. 

Suppose that TD*(1) is executed as described above with w l  = 0 and learning rate 

v,/-f  
~]t = 77 -- 

j 2  + j ~  

where  J = V v r ~ ( 1  + ~ ) / ( 1  - ~/). Then 

1 g ~f~. j 2  - V~ 2 
- ] -< + T 

t=l  

(15) 

Proof: From Eq. (14), IlXt~ll ~ 1/(1 - 30 so we choose X1 = 1/(1 - 3@ Let u be 

such that ui = V~. Then Ilull _< u where U = V x / ~ .  Finally, let K = Rg. Our choice 

for r/ is identical to that in Theorem 2 where the appropriate substitutions have been 

made. 

Note that 

E [ ( y t  - w 2 = ~ e r [ i t  = i] E - = _ i t )  ] " @r t+k  Vi l i t  i < R 
i=l 

by the assumption in Eq. (15). Thus, because u -  xt = Vi~, 

g g 

E [Lg(u ,S) ]  : E E  [ ( u ' x t -  yt) 2] = E E  [ ( Y / t - y t )  2] ~ P~ = K.  

t=l  t=l  

Taking expectations of  both sides of  the bound in Lemma 1, we have that 
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E [LffTD*(~), S)] < 
bE [Le(u, S)] + Ilu -wal l  2 

Cb 

for any b > 0 for which Cb > 0. Therefore, by a proof identical to the proof of  

Theorem 2 (except that we assume only that Le(u,  S) is bounded by K in expectation), 

we have 

E [Le(TD*(1), S)] < E [Le(u, S)] + 2v/-K(1 + ",[)UX 1 -1-(l J-7)=llull2Xt=.(x6) 

Since u .  xt  : V h ,  ~)t = ~ t  and E [Yt I it] = I f / t ,  it can be verified that 
Z t  ~ 

E [ ( y , -  _ ( y , _  u .  x , ) 2 ]  : E - 

The theorem now follows by averaging over all time steps t and combining with Eq. (16). 

Unfortunately, we do not know how to prove a convergence result similar to Theorem 4 

for TD* (A) for general A. This is because this proof technique requires a worst-case 

bound in which the term Le(u,  S) appears with a coefficient of  1. 

Of  course, Theorem 4 represents a considerable weakening of  the worst-case results 

presented in Section 4. These worst-case bounds are stronger because (1) they are in 

terms of  the actual discounted sum of  rewards rather than its expectation, and (2) they 

do not depend on any statistical assumptions, indeed, the generality of the results in 

Section 4 allows us to say something meaningful about the behavior of  TD*(A) for 

many similar but more difficult situations such as when 

• there are a very large or even an infinite number of  states (a state can be any vector 

in NN). 

• some states are ambiguously represented so that two or more states are represented 

by the same vector. 

• the underlying transition probabilities are allowed to change with time. 

• each transition is chosen,entirely or in part by an adversary (as might be the case in 

a game-playing scenario). 

7. Algorithm for the batch model 

In the usual supervised learning setting, the on-line learning proceeds as follows: In each 

trial t _> 1 the learner receives an instance xt E IR N. Then, after producing a prediction 

~)t it gets a reinforcement Yt and incurs loss (fh - Yt) 2. 

A classical algorithm for this problem is the Widrow-Hoff algorithm. It keeps a linear 

hypothesis represented by the vector wt and predicts with t,)t = wt  • xt.  The weight 

vector is updated using gradient descent: 
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Wt+ l  : =  w t  - 2~t (wt  • x t  - yt )x t .  

Note that 2(wt  "xt  - y t )x t  is the gradient of  the loss ( w t .  x t  - yt) 2 with respect to wt .  

There is a straightforward generalization of  the above scenario when more than one 

instance is received in each trial t. In this generalization, the learner does the following 

in each trial: 

1. receives a real-valued matrix M t  with N columns; 

2. computes a prediction Yt; 

3. gets reinforcement Yt; both Yt and ~'t are real column vectors whose dimension is 

equal to the number of  rows of  M t ;  

4. incurs loss II:~t - y t l l L  

The rows of  the matrix M t  can be viewed as a batch of  instances received at trial t. The 

algorithm has to predict on all instances received in trial t before it gets the reinforcement 

vector Yt which contains one reinforcement per  row. For  each instance, the algorithm 

is charged for the usual square loss, and the loss in trial ~ is summed over all instances 

received in that trial. 

The algorithm we study, called WHM,  is a direct generalization of  the Widrow-Hoff  

algorithm and was previously analyzed in the noise-free case by Cesa-Bianchi,  Long and 

Warmuth (1993), The learner maintains a weight vector w t  E IR N and, on each trial t, 

computes its prediction as 

~rt : ~  Mtwt. 

After  receiving reinforcement Yt, the weight vector is updated using the rule 

Wt+l  :=  w t  -- 2rhMTt ( M t w t  - Yt)- 

Note that the Widrow-Hoff  algorithm is a special case o f  W H M  in which each matrix 

M t  contains exac t ly  one row. Also,  the update is standard gradient descent in that 

2 M T ( M t w t  - Yt) is the gradient of  the loss I IMtwt  - ytl f  2 with respect to wt .  

To model  a particular reinforcement learning problem, we have the freedom to make up 

the matrices M t  and reinforcements Yt tO suit our purpose. For example,  Sutton (1988) 

and others have considered a model  in which the learner takes a random walk on a 

Markov chain until it reaches a terminal state, whereupon it receives some feedback, and 

starts over with a new walk. The learner 's  goal is to predict  the final outcome of  each 

walk. This problem is really a special case of  our model  in which we let M t  contain 

the instances of  a run and set Yt = (z t , .  • •, zt) T, where zt is the reinforcement received 

for the t th run. (In this case, Sutton shows that the Widrow-Hoff  algorithm is actually 

equivalent to a version of  TD(1) in which updates are not made to the weight vector wt  

until the final outcome is received.) 

An example is a pair ( M t , y t ) ,  and, as before, we use S to denote a sequence of  

examples.  We write Le(A,  S) to denote the total loss of  algori thm A on sequence S: 



114 R. E. SCHAPIRE AND M. K. WARMUTH 

Lt(A,  S) :=  ~ ( Y t  - Yt) 2, 

t= l  

where :Vt is the prediction of  A in the t th trial, and t is the total length of  the sequence. 

Similarly, the total loss of  a weight vector u E ]R N is defined as 

ne (u ,  S)  : =  E ( M t u  - y t )  2. 

t= l  

The proof  of  the fol lowing lemma and theorem are a straightforward generalization of 

the worst-case analysis of  the Widrow-Hoff  algorithm given by Cesa-Bianchi,  Long and 

Warmuth (1993). In the proof, we define, fJMII, the norm of any matrix M ,  as 

IIMII = m a x  I I M x l l .  
Ilxll=l 

For  comparison to the results in the first part of  this paper, it is useful to note that 

IIMII < Xv/-m where m is the number of  rows of  M ,  and X is an upper bound on the 

norm of  each row of  M .  

For  any vector x,  we write x 2 to denote xTx .  

LEMMA 2 Let ( M , y )  be an arbitrary example such that IIMII < M. Let s and u be 

any weight vectors. Let b > O, and let the learning rate be 

1 

= 2(FIMII 2 + i /b)" 

Then 

I I M s -  yl l  2 _< (M2b + 1 ) l l M u -  yl l  2 + ( M  2 + 1 / b ) ( t l u -  sll 2 - I l u -  wll2) ,  

( 1 7 )  

where w = s -  2 r / M T ( M s  - y )  denotes the weight vector of the algorithm W H M  after 

updating its weight vector s. 

Proof :  Let e :-- y - M s  and eu :=  y - M u .  Then inequality (17) holds if 

f :=  II u - wll 2 - I l u  - s l l  2 + 27] °2 - beu 2 ~< 0. 

Since w = s + 2r /MTe,  f can be rewritten as 

f = --4~](u -- s ) T M T e  + 4rl21lMTe[I 2 + 2rle 2 -- beu 2 

= @ ( e  e u ) T e +  @21[MTeII2 + 2 r e  2 - beu 2 

= - 2 r e  2 + 4ve, . ( re  + 4~7211MTerl 2 -- beu 2. 

Since 2euTe  < ---be 2 + _~e 2 and since IIMTel] < IlMlll lel] ,  we can upper bound f 
-- 2r/ u 

by 

e 2 ( - 2 r / +  4~72(11Mll 2 + l / b ) )  = 0. 
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THEOREM 5 Let S be any sequence of examples and let M be the largest norm []Mt[t. 

I f  the matrix algorithm W H M  uses any start vector s and learning rates 

1 

7 ,  = w = 2 ( l l M t i i  2 + M2 ) , 

then we have for any vector u the bound 

Le(WHM, S) < 2(Le(u, S) + M2Ils - u[12). (18) 

Assume further that we know bounds K and U such that for some u we have Le(u, S) < 

K and II s - ull < U. Then for the learning rates 

U 
rh = rl = 

2(I IM,  II=U + Mv/-K)  

we have 

Le(WHM,  S) < Le(u, S) + 2MUv'-K + M2II s - ul[ 2. (19) 

Proof:  Assume that 

1 

rh = r / =  2(IIMII2 + 1/b) 

for some b > 0 to be chosen later. By summing the inequality of  Lemma  2 over all runs 

of S we get 

Le(WHM, S) <_ (bM 2 + 1)Le(u,  S) + ( M  2 + 1/b) ( l lu  - sl 12 - Ilu - w ' l l2) ,  

where w ~ is the weight vector after the last reinforcement of S is processed. Since 

Ilu - w' l t  2 _> 0, we have 

Le(WHM, S) < (bM 2 + 1)Le(u,  S) + ( M  2 + 1/b) l lu  - s]l 2. 

Now setting b = 1 / M  s gives the choice of r/ in the first part of the theorem and so 

yields the bound in Eq. (18). 

Assuming further that Le(u ,S )  <_ K and I Is  - u l l  _< u ,  we get 

Le(WHM, S) <_ Lt (u ,  S) + M2[ls  - u[I 2 + b K M  2 + U2/b. (20) 

The part of  the right hand side that depends on b is b K M  2 + U2/b which is minimized 

when b = U / ( M x / ~ ) .  Using this value of b in Eq. (20) gives the desired choice of  r] 

and the bound in Eq. (19). • 

In the special case that K = 0, setting rh = 1/(2l[Mtl[  2) gives a bound of 

Le(WHM, S) <_ Le (u ,S )  + M2lls  - u[[ 2. 
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Note that to prove this, b = ec is used. The bound for K = 0 was previously proved 

by Cesa-Bianchi, Long and Warmuth (1993). An alternate proof of  the above theorem 

via a reduction from the corresponding theorem for the original Widrow-Hoff algorithm 

was recently provided by Kivinen and Warmuth (1994). 

The following lower bound shows that the bounds of  the above theorem are best 

possible. 

THEOREM 6 Let N, rn >_ 1, K, U >_ 0 and M > O. For every prediction algorithm A 

there exists a sequence S consisting of  a single example (M,  y )  such that the following 

hold: 

1. M is an rn x N matrix and l iMi t  = M; 

2. K = min{Lt (u ,  S) : Ilul[ _< g } ;  and 

3. L t ( A , S )  >_ K + 2 U M v / K + U 2 M  2. 

Proof: As in the proof of Theorem 3, we prove the result in the case that N = 1, 

without loss of  generality. Thus, M is actually a column vector in IR "~. 

Let each component of M be equal to M/v/--m so that IIMI] = M.  Let each compo- 

nent of  y be equal to sz where z = ( M U  + v/-K)/V/-m and s C { - 1 ,  +1}  is chosen 

adversarially after A has made its prediction :9 = (~)1,- - . ,  ~)m) r .  

To see that part 2 holds, let u = u be a vector (scalar, really). Then 

Le(u ,S)  = I ]Mu - y l l  2 = m ( M u / v / - - ~ _  sz) 2 

which is minimized when u = sU for [u[ < U. In this case, Le(u, S) = K.  

Finally, by choosing s adversarially to maximize algorithm A's  loss, we have 

m 

L~(A,S)  = m a x  ~-'(Yi - sz) 2 
s C { - - t , + I }  "= 

W1 

- z) 2 + + z) 2) 
1 

> - 3  
"i=1 

> ~ z  2 = K + 2 M U x / K + M 2 U  z. 

i=1 

8. Discussion 

The primary contribution of  this paper is the analysis of  some simple temporal-difference 

algorithms using a worst-case approach. This method of  analysis differs dramatically 

from the statistical approach that has been used in the past for such problems, and our 

approach has some important advantages. 
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First, the results that are obtained using the worst-case approach are quite robust. Ob- 

viously, any analysis of any learning algorithm is valid only when the assumed conditions 

actually hold in the real world. By making the most minimal of assumptions - -  and, 

in particular, by making no assumptions at all about the stochastic nature of the world 

- -  we hope to be able to provide analyses that are as robust and broadly applicable as 

possible. 

Statistical methods for analyzing on-line learning algorithms are only necessary when 

worst-case bounds cannot be obtained. In this paper, we demonstrated that temporal- 

difference learning algorithms with simple linear models are highly amenable to worst- 

case analysis. Although one might expect such a pessimistic approach to give rather 

weak results, we have found, somewhat surprisingly, that very strong bounds can often 

be proved even in the worst case. 

Worst-case bounds for on-line linear learning algorithms can be very tight even on 

artificial data (Kivinen & Warmuth, 1994). Good experimental performance of a partic- 

ular algorithm might be seen as weak evidence for showing that the algorithm is good 

since every algorithm performs well on some data, particularly when the data is artifi- 

cial. However, if we have a worst-case bound for a particular algorithm, then we can 

use experimental data to show how much worse the competitors can perform relative to 

the worst-case bound of the algorithm in question. 

Another strength of the worst-case approach is its emphasis on the actual performance 

of the learning algorithm on the actually observed data. Breaking with more traditional 

approaches, we do not analyze how well the learning algorithm performs in expectation, 

or how well it performs asymptotically as the amount of training data becomes infinite, or 

how well the algorithm estimates the underlying parameters of some assumed stochastic 

model. Rather, we focus on the quality of the learner's predictions as measured against 

the finite sequence of data that it actually observes. 

Finally, our method of analysis seems to be more fine-grained than previous approaches. 

As a result, the worst-case approach may help to resolve a number of open issues in 

temporal-difference learning, such as the following: 

• Which learning rules are best f o r  which problems? We use the total worst-case loss as 

our criterion. Minimizing this criterion led us to discover the modified learning rule 

TD* (A). Unlike the original TD(3,), this rule has a gradient descent interpretation for 

general A. Our method can also be used to derive worst-case bounds for the original 

rule, but we were unable to obtain bounds for TD(A) stronger than those given for 

TD*(A). It will be curious to see how the two rules compare experimentally. 

Also, the results in Section 4 provide explicit worst-case bounds on the performance 

of TD*(0) and TD*(1). These bounds show that one of the two algorithms may 

or may not be better than the other depending on the values of the parameters X0, 

K,  etc. Thus, using a priori knowledge we may have about a particular learning 

problem, we can use these bounds to guide us in deciding which algorithm to use. 

• How should a learning algorithm's parameters be tuned? For instance, we have 

shown how the learning rate rl should be chosen for TD*(0) and TD*(1) using 

knowledge which may be available about a particular problem. For the choice of A, 
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Sutton showed experimentally that, in some cases, the learner's hypothesis got closest 

to the target when A is chosen in (0, 1) and that there is clearly one optimal choice. 

So far, our worst-case bounds for TD*(A) are not in closed form when A E (0, 1), 

but, numerically, we have found that our results are entirely consistent with Sutton's 

in this regard. 

How does the performance of a learning algorithm depend on various parameters 

of the problem? For instance, our bounds show explicitly how the performance 

of TD*(/k) degrades as 3' approaches 1. Furthermore, the lower bounds that can 

sometimes be proved (such as in Section 5) help us to understand what performance 

is best possible as a function of these parameters. 

Open problems. There remain many open research problems in this area. The first 

of these is to reduce the bound given in Lemma 1 to closed form to facilitate the optimal 

choice of A E [0, 1]. However, as clearly indicated by Fig. 2, even when )~ and ~7 are 

chosen so as to minimize this bound, there remains a significant gap between the upper 

bounds proved in Section 4 and the lower bound proved in Section 5. This may be a 

weakness of our analysis, or this may be an indication that an algorithm better than either 

TD()~) or TD*(~k) is waiting to be discovered. 

So far, we have only been able to obtain results when the comparison class consists of 

linear predictors defined by a weight vector u which make predictions of the form u- xt. 

It is an open problem to prove worst-case loss bounds with respect to other comparison 

classes. 

As described in Section 3, TD*(),) can be motivated using gradient descent. Rules 

of this kind can alternatively be derived within a framework described by Kivinen and 

Warmuth (1994). Moreover, by modifying one of the parameters of their framework, 

they show that update rules having a qualitatively different flavor can be derived that 

use the approximation of the gradient V,,,, (Yt - ~ ) 2  in the exponent of a multiplicative 

update. (Note that the TD(A) update is additive.) In particular, they analyze such an 

algorithm, which they call EG, for the same problem that we are considering in the 

special case that "7 = 0. Although the bounds they obtain are generally incomparable 

with the bounds derived for gradient-descent algorithms, these new algorithms have great 

advantages in some very important cases. It is straightforward to generalize their update 

rule for 7 > 0, but the analysis of the resulting update rule is an open problem (although 

we have made some preliminary progress in this direction). 

Lastly, Sutton's TD(~) algorithm can be viewed as a special case of Watkin's "Q- 

learning" algorithm (1989). This algorithm is meant to handle a setting in which the 

learner has a set of actions to choose from, and attempts to choose its actions so as 

to maximize its total payoff. A very interesting open problem is the extension of the 

worst-case approach to such a setting in which the learner has partial control over its 

environment and over the feedback that it receives. 
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Appendix 

In this technical appendix, we complete the proof of Lemma 1 by bounding p(M),  the 

largest eigenvalue of the matrix M.  

Let I be the g x £ identity matrix, and, fo r / ,  j _> 0, define 

S~ = Zi + Z T, 

R~ = z T z i ,  

Pij = z/Tzj  -[- ZyZ i .  

Since Z~ is the zero matrix for i > g, we can rewrite V more conveniently as 

v = 

i>0 

By direct but tedious computations, we have that 

D T D  = I - 7Sl  + 72R1, 

and 

i>l 

since Z iZ l  = Zi+~ for i _> O. Also, 

° =  

Thus, M can be written as: 

(~72X.~2 - 2T/+ ~ )  I 
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+ T  i - Z ( ~ )  ~'rt, + Z ('~)'+JP,J 
Li_>1 j>i>1 

It is known that p(A+B) <_ p(A)+p(B) for real, symmetric matrices A and B, Further, 

it can be shown (for instance, using Eq. (10)) that 

p(I)  = 1; 

p (RJ  ___ 1; 

p ( + s 0  _< z; 

p(P i j )  < 2. 

Applying these bounds gives that 

p (M)  _< ~72X:~2 - 2r] + -~- + 2 r / -  "7(1 - ),) - + q2X~272 

,'( 
+ T  l -  Z(~A)" + 2 ~ (~A) '+j 

U>_~ j>i>_l 

Notes 

1. In this paper we only use one vector norm, the L2-norm: HuH = V ~ . . ~ l U ~ .  

2. In some versions of TD(A), this difficulty is overcome by replacing Yt+l = wt+l  " xt+a in the update 

rule (4) by the approximation wt - x t+i .  

3. The factor of two in front of r/t can be absorbed into ~Tt. 

4. If N > 1, we can reduce to the one-dimensional case by zeroing all but one of the components of xt. 
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