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1. Introduction

In this paper we prove some existence results concerning a problem arising in
conformal differential geometry. Consider a smooth metra B = {x € R" :

lx| < 1}, the unit ball onR", n > 3, and letA,, R,, v,, h, denote, respectively,

the Laplace-Beltrami operator, the scalar curvaturémfg), the outward unit
normal todB = S"~! with respect tog and the mean curvature 65", g).

Given two smooth function®” andh’, we will be concerned with the existence

of positive solutions: € H'(B) of

(n—l) .
(n— )Au—l—Ru_Ru In B;
1)

L n—1
maugu +hgl/l = h’u"—Z, onoB =S .

It is well known that such a solution i€ providedg, R’ and k' are, see
[10]. If u > 0 is a smooth solution of (1) thegl = u*" g is a metric,
conformally equivalent tg, such thatR’ and 4’ are, respectively, the scalar
curvature of( B, g’) and the mean curvature §” 1, g’). Up to a stereographic
projection, this is equivalent to finding a conformal metric on the upper half
sphereS = {(x1, ..., Xu41) € R™1: |x| = 1, x,41 > 0} such that the scalar
curvature ofs” and the mean curvature ®5" = $"~* are prescribed functions.
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In the first part of the paper we deal with the the case in wigicAndh’ are
constant, saR’ = 1 andh’ = ¢, when (1) becomes
(ﬂ -1 n

———Agu + Rou = un=2, in B;
(—2)

N

) )
n—1

(n—2) Oyt + hou = cun- 2, onoB = §""".

This will be referred as th#¥amabe like problerand was first studied in [10—

12]. More recently, the existence of a solution of (1) has been proved in [14,15]

under the assumption théB, g) is of positive type (for a definition see [14])

and satisfies one of the following assumptions:

(i) (B, g) islocally conformally flat and B is umbilical;
(ii) n > 5 anddB is not umbilical.

Our main result concerning théamabe like problershows that none afi) or
(ii) isrequired whemg is close to the standard metggon B. Precisely, consider
the following clasgj, of bilinear forms

={ge€C™B):llg—gollem <& Vgl <, Vgl pr-1csn-1y < €}.
(2

Inequalities in (2) hold if for exampligg — goll c2(5) < &, 0rif |lg—gollwans) < e.
We will show:

Theorem 1. GivenM > 0 there existgg > 0 such that for every with ¢ €
(0, &9), for everyc > —M and for every metrig € G, problem {) possesses a
positive solution.

In the second part of the paper we will take= go, R’ = 1+ ¢K(x),
h' = ¢ + eh(x) and consider th&calar Curvature like problem

=D
(n—2)
2 Ju

(n — 2)8_ +u= (C‘f‘é‘h(]{))un 2, OnS”—l,

— (14 eK (x))u2, in B:

(Pe)

wherev = v,,. The Scalar Curvature like problerhas been studied in [16]
where a non perturbative problem like

(n — 1) o otz
=R =2 in B;

(n — 2) xX)u

2 Ou

— 0, onS" 1,
n—2a "=
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has been considered. We also mention the paper [9] dealing with the existence
of solutions of

Au =0, in B;
2 du (3

- = (1+e¢h 2, onS" L,
(n—2)8v+u A+eh(x)u

a problem similar in nature taP{).
To give an idea of the existence results we can prove, let us consider the particular
cases that eithér = 0 or K = 0. In the former, problemK,) becomes

-1 o
—4§” ZzAu — (14K (x)urs, in B:
! (P..x)
2 du n 2 on L ’
— 4 u=cur2, ,
(n—2) v

Theorem 2. Suppose thak satisfies

(K1) there exists an absolute maximum (resp. minimpnaj K | g.-1 such that
K'(p)-p <0, resp.K'(p)-p > 0.

Then for|e| sufficiently small, £, ) has a positive solution.
Another kind of result is the following
Theorem 3. Let K |s.-1 be a Morse function and satisfies

K'(x)-x #0, VxeCrit(K|g-1) (K3)

> (—=)meR £, (K3)

xeCrit(K\S,,_l):K’(x)-x<O

wherem (x, K) is the Morse index oK | ¢.-1 atx. Then for|e| sufficiently small,
problem (P k) has a positive solution.

WhenK = 0 problem {¢.) becomes

—4(n_1)Au:u%, in B;
(n—2) (P.s)
2 ou o

- — h 2, onS§" L.
(n—2)8v+u (c+eh(x))u



670 A. Ambrosetti et al.

Theorem 4. Leth € C*°(5"~1) be a Morse function satisfying:
Arh(x) #0, Yx e Crit(h); (h1)
DD G N § (h2)

x€Crit(h):Arh(x)<0

Then for|e| sufficiently small, problem#; ;) has a positive solution.

The preceding results are particular cases of more general ones, dealing with
problem (P.), where assumptions on a suitable combinatiorKoénd / are
made. See Theorems 6 and 7 later on. For a comparison with the results of [9,
16], we refer to Remarks 5 and 6 in Sect. 4.

Solutions of the preceding problems are critical points of the energy functional
I°=1I{: HY(B) — R,

: n—-1) 2 1 2 1 , o
I°(u) =2 /|Vu|dV+—/RudV——/Ru dav,
n—-2Jp ¢ 2t AN ¢

+—1 | haldog—cin—2) | Ku*Zdo,. (4)
aB 0B
In all the cases we will deal withl* can be written in the fornd©(u) = I5(u) +
O(¢), where

(n—1
n—2)

x/ uldo ——/ | dx — cn — 2) |22 do
9B 25 J gn—1

and can be faced by means of a perturbation method in critial point theory
discussed in [1]. First, in Sect. 2, we show tligthas a finite dimensional
manifold Z¢ ~ B of critical points that is\on degeneratén the sense of [1], see
Lemma 3. This allows us to perform a finite dimensional reduction (uniformly
with respectte > — M) that leads to seeking the critical points/éfconstrained
to Z¢. The proof of Theorem 1 is carried out in Sect. 3 and is mainly based upon
the study ofl,. . The lack of compactness inherited byis reflected on the
fact thatZ¢ is not closed. This difficulty is overcome using arguments similar to
those emploied in [3,7]: we show th&t can be extended to the boundarg®
and there resultg; ,. = const., see Proposition 2.

In Sect. 4 we deal with th8calar Curvature likgoroblem. In this case there
results/“(u) = I5(u) + ¢G(u), whereG depends upoX and. only, and one
is lead to study the finite dimensional auxiliary functiodal= G z.. More
precisely, following the approach of [2], we evalud@ten d Z¢, together with its
first and second derivative. This permits to prove some general existence results
which contain as particular cases Theorems 2, 3 and 4. The last part of Sect. 4 is

Ig(u) = 2

/ |Vul?dx + (n — 1)
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devoted to a short discussion of the case in whkctk inherit a simmetry. For
example, ifK andh are even functions R.) has always a solution provideds
small, without any further assumption, see Theorem 8.

Finally, in the Appendix we prove some technical Lemmas.

The main results of this paper has been annouced in [5].

Notation

B denotes the unit ball i", centered at = 0.
We will work mainly in the functional spacB*(B). In some cases it will be
convenient to equig/ *(B) with the scalar product

(n

(u,v)1 = 4(n

-1
)fVu-Vvdx—l—Z(n—l)/ uvdo,
—2) Jp B

that gives rise to the normunf = (u, u)1, equivalent to the standard one.

If E is an Hilbert space and € C?(E, R) is a functional, we denote by’
or Vf its gradient;f”(u) : E — E is the linear operator defined by duality in
the following way

(f" (v, w) = sz(u)[v, w], Yo, w € E.

os denotes the stereographic projectign: $" = {x € R"*!| x| =1} —
R" trough the south pole, where we identiy with {x € R""*|x,;, = 0}.

More in general, givep € S", we denote by, : R" — §” the stereographic
projection trough the poinp.

The stereographic projections give rise to some isometries in the following
way. The projection trough the south pdfeof S" gives rise to the isometry
s : HY(S") — HY(B)

(os_lx), X € B.

2
Tsl/l(X) = mu

Moreover, givenp € 35", the stereographic projection troughgives rise to
the isometryr, : H*(S") — E = D*?(R") given by

Tpu(x)

_ = -1 n
— 1+|x|2u(0p x), x € RL.
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2. The unperturbed problem

Whene = 0, resp.g = go, problem ), resp. ), coincides with the unper-
turbed problem

-1 0
_4(n )Auzunig, in B;
(n—2)

(UP)

e 2)8Uu +u=-cumr2, ondB =S"1

Solutions of problem{ P) can be found as critical points of the functional
1§ : HY(B) — R defined as

1 1 . .
18(u)=§||u||§—§/ ul>dx — c(n — 2) l|u|2n72d0’.
B Sn—

Consider the functiopg : R" — R,

Zo(x) = (%mz) L k= Ky = (Bn(n — 1)1,

The functionzg is the unique solution (up to translation and dilation) to the
problem inR”

_ 1 . )
- (n )Au:u%, in R"; u > 0.
(n—2)
We also set
_n=2 _n=2
Zue =M 2 z0((x — &)/, zu=p 2 zolx/p).

By a stright calculation it follows that, : is a critical points of/g, namely
solutions of the problem{ P), iff

nP+ €7 —ckp—1=0, pu>0. (5)
The set
7 =Azue  p + 1P — e — 1 =0} (6)

is ann-dimensional manifold, diffeomorphic to a ballRi", with boundaryo Z¢
corresponding to the parameter valyes- 0, || = 1.
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We need to study the eigenvaluesi§tz,, ), with z,, . € Z. Recall that, by
definition, > € R is an eigenvalue of](z,.¢) if there existss € HY(B),v # 0
such that/{'(z,. ¢)[v] = Av and this means thatis solution of the linear problem

n-1) _n+ 2 2
1-X1)Av
(n—2) ( ) - 2 eV
(n -1

(n)

4 in B;

1- X)av_Z(n—1)< —H»—l), on s 1.

(7)

n—2 Tk

The following lemma is well known.

Lemma 1. (a) A = Qis an eigenvalue of (7) and the corresponding eigenspace
is n dimensional and coincides with the tangent spacgtat z,, (, namely
is spanned byDz,, .

(b) (7) has precisely one negative eigenvalyér); all the remaining eigenval-
ues are positive.

Item (a) is proved in [14]. Item(b) easily follows from the fact that, ¢ is a
Mountain Pass critical point dfj.

Let A2(c) denote the smallest positive eigenvalud @z, ).

The main result of this section is the following one:

Lemma 2. For all M > 0O there exists a positive constafif, such that

1
— <A@ =Cy, Ye=-M, i=12
Cu

RemarkThere is a numerical evidence thatc) | 0 asc | —oo.

Proof. We will prove separately thak;(c)| < Cy and that% < |Ai(c)|. For
symmetry reasons it is sufficient to takg: = z,, namely to take& = 0. In
such a casg depends only 0§ and (5) yields

wic) = 1 </cc + VK2c? +4) )

2
Case 1/A;(c)| < Cy. By contradiction suppose there exists a sequepce
+oo such thafi;(c;)| — 400, i = 1, 2. Letv; denote an eigenfunction of (7)
with & = X;(c;). Thenv; solves the problem

AUj = aj(x)vj, in B;
(8)

dv; = b;(x)v;, onS" L,



674 A. Ambrosetti et al.

where
1 n+2 4
GO = G —Dam —pome™) Y b
I’l—2 n n—1
”f(x)=z<1_xi<c,»>>( -2 £y + (6 = ) res

Above, it is worth pointing out that; is constant or" 1. Actually, there results
1 _1
o 2(x) =Ku <1+ —2) , Vxest
v
and hence

b= — e (1 1_1,\..1
]:2(1—)»,'(6‘]-)) Cj(n_z)-K//L (Cj)( +WC])> + I(C])_ ,

Vxes§ L

Moreover, sincer ~ kc asc — +oo, it turns out that

(n—2)

Now, integrating by parts we deduce from (8)

/ [V;| 12dx + / a;v; 2dx = b; / vjzdo*. (20)
sn—1

Using (9) and a Poincerlike inequality, we find there exists > 0!

—/ajvjzdx zC/ vjzdx.
B B

This leads to a contradiction becauséx) — 0in C°%(B) andv; # 0.

Case ZCAM < |xi(c)|. Arguing again by contradiction, lef — +oo and suppose
that|x;(c;)| — 0. As before, the corresponding eigenfunctionpsatisfy (10),

where nowb; — 1, because. ~ «c and|x;(c;)| — 0. Choosingy; is such a
way that sup |v;| = 1, then (10) yields that; is bounded int/*(B) and hence
v; — vo weakly in H(B). Passing to the limit in

/ij-Vw—I—/ajvjw—/ bjvjw =0, Yw € HY(B),
B B sn—1

1 in the sequel we will use the same symbiolo denote possibly different positive constants.
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it immedately follows that, satisfies

Avg=0, inB;
(Ps)
d,V9 = Vg, ON S"il.

The solutions of problemHAs) are explicitly known, namely they are the linear
functions anB. We denote byX the vector space of these solutions, which is
n-dimensional. To complete the proof we will show thgt € X leads to a
contradiction. We know that = 0 is an eigenvalue with multiplicity, and the
eigenvectors corresponding to= 0 are precisely the elements Bf Z°. Let

uj € T, ;) Z° With sup, |u;| = 1. Then, by using simple computations, one can
prove that, up to a subsequensg,— v strongly in H1(B) for some function

v € X. We can assume w.l.0.g. that= vo (the weak limit ofv;), so it follows
that (u;, v;) — lvoll?> # 0. But this is not possible, sinag are eigenvectors
corresponding ta, < 0, whileu; are eigenvectors correspondingite= 0 and
hence they are orthogonal. O

In conclusion, taking into account of Lemma 2, we can state:

Lemma 3. The unperturbed functiond} possesses arrdimensional manifold
Z¢ of critical points, diffeomorphic to a ball dR”. Moreover/j satisfies the
following properties

() 1J(z) =1 — K, whereK is a compact operator for everye Z¢,
(i) T,Z¢ = KerD?I§(z) forall z € Z¢.

From (i)-(ii) it follows that the restriction oD?/§ to (7. Z¢)* is invertible. More-
over, denoting by_.(z) its inverse, for ever > 0 there existC > 0 such
that

IL.(2)|| <C for all zeZ° andforallc > —M. (12)

3. The Yamabe like problem
3.1. Preliminaries

Solution s of problem (1) can be found as critical points of the functidhal
H(B) — R defined in (4).

We recall some formulas from [3] which will be useful for our computations.
We denote withg;; the coefficients of the metrig in some local co-ordinates
and withg"/ the elements of the inverse mattix?);;.
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The volume elementV, of the metricg € G,, taking into account (2) is

dV, = |g|? -dx = (1+ O(e)) - dx. (12)

The Christoffel symbols are given Uyg’j = 2[Digij + Djgki — Digij1g". The
components of the Riemann tensor, the Ricci tensor and the scalar curvature are,
respectively

Rl = Dil}y — Dl + I}, T — T Tt Ry = Ryji R= Ry = Ri;g".
(13)

For a smooth function the components o¥,u are(V,u)' = g Dju, SO
(Veu)' = Vu - (14 O(e)). (14)

From the preceding formulas and from the fact that G, it readily follows that
I°(u) = I§(u) + O(e). More precisely, the following lemma holds. The proof
is rather technical and is postponed to the Appendix.

Lemma 4. GivenM > 0 there exist€ > 0such that forc > —M andg € G,
there holds

IVIC) < C-e- L+ |c)~"T, Vze ZE (15)
|D?1°(z) — D?I§(z)|| < C-e, VzeZ° (16)
[1°C+w) —I‘C+w)| <C-A+]c] - 17)

(e +p72) - lw—w'l, VzeZw w eHYB), V|wl, [w] < p;
[VICu+w) - VI‘W| < C-[lw] - (18)
2
(2 17 + w7 + Jel - ull 2 + el - wl72) . Va, w € HY(B).
Moreover, if||lu|| is uniformly bounded and ifw| < 1 there results

| D21 + w) — D21°@)| < C - @+ ey - w72 (19)
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3.2. A finite dimensional reduction

The aim of this section is to perform a finite dimensional reduction, using Lemma
3. Arguments of this kind has been emploied, e.g. in [1]. The first step is to con-
struct, forg € G,, a perturbed manifold&¢ ~ Z< which is anatural constraint

for 1¢, namely: ifu e z, andVIC|Z§- (u) =0thenVIi¢(u) = 0.

For brevity, we denote by € H'(B))" an orthonormak-tuple in 7, Z¢. More-

over, ifo € R" we setwz = ) o;7;.

Proposition 1. Given M > 0, there existsg, C > 0, such thatvc > —M,
VzeZ°

Ve < ggandV g € G, there are

C* functionsw = w(z, g,c) € HY(B) anda = a(z, g, c) € R" such that
the following properties hold

(i) wisorthogonal toT,Z¢ Vz € Z¢, i.e.(w,z) = 0;
(i) VI‘G+w)=az VzeZ

(ii)) I, )l <C e A+l "2 VzeZe.
Furthermore, from (i)-(ii) it follows that

(iv) the manifoldZg = {z + w(z, g, ¢) | z € Z°} is a natural constraint for <.
Proof. Let us definé H, : Z¢ x HY(B) x R" — H(B) x R" by setting

VI‘(z+w) —az
(w, 2) '

Hy(z, w,a) = (

With this notation, the unknoww, «) can be implicitly defined by the equation
H,(z, w,a) = (0,0). SettingR,(z, w, ) = Hy(z, w, &) — dw,a)H,(z,0,0)
[(w, a)] we have that

Hy(z,w,a) =0 & 0Ow,a)He(2,0,0)[(w, a)] + Ry(z, w,x) = 0.

Let Hy = Hg,. From (11) it follows easily thad, ) Ho(z, 0, 0) is invertible
uniformly w.r.t.z € Z¢ andc > —M. Moreover using (16) it turns out that feg
sufficiently small and foe < ¢ also the operatdd,, ) Hy(z, 0, 0) is invertible
and has uniformly bounded inverse, provide& G.. Hence, for sucly there
results

Hg(za w,a) =04 (w,a) = Fz,g(W, o)
‘= — (B He (2, 0,0) " Ry (2, w, ).

We prove the Proposition by showing that the nfap is a contraction in some
ball B, = {(w,a) € HYB) x R" : |w| + |e| < p}, with p of order

SH depends also on, but such a dependence will be understood.
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o~ ¢-(L+|c))~ "z . We first show that there existd > 0 such that for all
(w, a), (W, a') € Bp, allz € Z¢ and allg € G,, there holds

_n=2 T
| F,q(w, )| <C - (a A+ + A+ e]) - pnfz) ,

/ !/ _2_ !/ !/
[ Fzg(w' o) = Fog(w, )| = C- X+ c]) - pm2 - [(w, @) — (w, a)].
(20)

Condition (20) is equivalent to the following two inequalities

191G +w) = DA @[w]| = C- (e L+ [e)™7 + A+ e - p72)
(21)

I(VI(z +w) — D*I()[w]) — (VI(z+w)) = DI‘@wDIl < (22)
C-(L+leh - prz - (w, @) — W', o).
Let us first prove (21). There holds
VI(z +w) — D*I°(2)[w] = VI(z + w) — VI*(z) + VI(z) — D*I°(z)[w]

1
=VI(2) +/ (DZIC(Z + sw) — Dzlc(z)) [w]ds.
0

Hence it turns out that

IVI€(z+w)—D?I°(D)[w]]| < VI“(z)+]|wll- sup | D*°(z+sw)—D?I°(z)]|.
s€[0,1]

Using (19) we have
VI +w) = DXI“@Iwlll < VI() + C - (L + [e]) - p72.
Hence from (15) we deduce that
IV +w) = D@l = C- (e L+ 1e) ™7 + A+ fel) - p72)
and (21) follows. We turn now to (22). There holds
IVIC(z +w) — VI(z + w') — D*I°(2)[w — w']|

1
/ (DZIC(Z +w+sw —w)) — Dzlc(z)>[w’ — wlds
0

IA

sup |D?1°(z + w + s(w' — w)) — D?I°(D)| - |lw' — w].
s€[0,1]

Using again (19), and takingw||, ||w’|]| < p we have that

ID2IG +w' +s(w —w)) — D@ < C- A+ |c]) - pi?,
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proving (22). Takingp = 2C - ¢ - (1 + |c|)‘";22 ande < &g, with &g sufficiently
small, there results

C (e @+1eD™F + At leh - p72) < p,
C-(L+1ch-pr2 <1.

ThenF, , is a contraction inB, and hence, = 0 has a unique solutiom =
w(z, 8. ¢), o = a2, g ) With [[(w, )| <2C & - (1+|c))~"". O

Remark 1.In general, the preceding arguments give rise to the following result,
see[1]. Letl, (1) = Io(u) + O(e) denote a2 functional and suppose thithas
ann-dimensional manifold& of critical points satisfyindgi) — (ii) of Lemma 3.
Then for|e| small there exists a unique = w,.(z) satisfying(i) — (ii) — (iii) of
Proposition 1. Furthermore, the manifald = {z + w.(z) : z € Z} is a natural
constraint for/,. Hence any critical point of,(z + w.(z)), z € Z is a critical
point of I,.

3.3. Proof of Theorem 1

Throughout this section we will takeandc is such a way that Proposition 1
applies. The main tool to prove Theorem 1 is the following Proposition

Proposition 2. There results
Iim0 I(zp 6 + we(zpe)) = b, uniformly for& satisfying(5). (23)
n—>
Hence/“|z; can be continuously extendedad; by setting
If]yze = be. (24)
Postponing the proof of Proposition 2, it is immediate to deduce Theorem 1.

Proof of Theorem 1.The extended functional® has a critical point on the
compact manifoldZ, U 9 Z¢. From (24) it follows that either is identically
constant or it achieves the maximum or the minimunzjnin any cas€“ has a
critical point onZg. According to Proposition 1, such a critical point gives rise
to a solution of(Y). O

In order to prove Proposition 2 we prefer to reformuld¢in a more convenient
form using the stereographic projectioy trough an appropriate poipte 957,

see Remark 3. In this way the problem reduces to study an elliptic equation in
R”, where calculation are easier. More precisely,dgt: R} — R be the
components of the metrigin o,-stereographic co-ordinates, and let

_ 14 x12\2. _
g8 =\—% ) 8 9]
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Then problemY) is equivalent to find solutions of

n-1 o

(n—Z)A u—l—Ru_un , InR7;
P n __ n— ?
(n_z)avgu+h§u=cun4, onoR% =R 1 (¥)

u>0, ueD"RL),

where the symbols have obvious meaning. Solutions of problentén be
found as critical points of the functiongl : D2(R") — R defined in the
following way

(n—1)
(n—2)

+ (n — l)/ hg u? dog —c(n — 2)/ |u|2% dog.
aR" aR”

In general the transformatiorz) induces an isometry betweed'(B) and
DY2(R") given by

fg( )_2

1 1 .
|VgM|2dVg+§/n Rgude§—§ - ude§
+ +

_ 2 7
ux) — ulx) = <(x’)2 i 1)2>

( 2x' ()2 +x2-1 )
(N2 + (6 + D27 ()2 + (x, + 1)?

wherex’ = (x1, ..., X,—1).
It turns out that
fe(@) = 1°(u) (25)
as well as
V fe (@) = VI(w).

In particular this implies thai solves(Y) if and only if u is a solution of {).
Furthermore, there results

— go corresponds to the trivial metrég; on R’ ;
— zo corresponds t@o € D-2(R™) given by

Zo(x) = zo(x — (0,a0c)), x€RL; ao=

’

N &

— Z¢ corresponds t&" given by

_ /
76 — {ZI/«-E/ = M_%ZO (M) , > O’ gl c Rn_l} .
122
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Let us point out that the manifold” is nothing butr, o rS‘1Z“ (see Notations).
From the preceding items it follows that the equation

ViZ+w) eT:Z,
have a unique solutiom L 7-Z° and there results
wg(2) = w,(2).
From this and (25) it follows
I°(z + wg(2)) = f7(Z + wg(2)). (26)

Letus nowintroduce the metrié (x) := g(8x), § > Oand letf, : DY2(RY) —
R be the corresponding Euler functional. Forak DLZ(R’Q there results

S = f5 (67 us™20))

Introducing the linear isometrf; : D*2(R") — D*(R") defined byT (1) :=

n—2

8772 u(x/8) this becomes
Jep) = fg(Tsu), (27)
Furthermore, for allk € D>2(R") one has
V fe) = TsV f Ty u) (28)
D? fe)lv, w] = D? fo (Ty ) [Ty o, Ty w]. (29)

Arguing as above, there exisﬂ‘%s (zo) € (Tgofc)l such that
V f(Zo + W) € T 2"
and there results
Wi (Z0) (x) = 87 Wg(Z5)(5x).
namely
wg(z5) = Tswg (Zo). (30)

Remark 2.From (27), (28), (29) and using the relations betwegnand /¢
discussed above, it is easy to check that the estimates listed in Lemma 4 hold
true, substituting© with f,» andz with z. A similar remark holds for Proposition

1.
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We are interested to the behaviourf@f ass — 0. To this purpose, we set

(n—-1) —ii 1 "
fe0 (W) = /H;i z(n 2 lzj:gf(O)DiuDju - §|u|2 dVs0)

on=1
—c(n — Z)f lu|“n=2dog ),
OR™

which is the Euler functional corresponding to the constant mgtf.

Remark 3.Unlike theg?, the metricg(0) does not come from a smooth metric
on B. This is the main reason why it is easier to deal with ihstead of {).

Lemma 5. For all u € D>2(R") there results

Im IV fo ) =V feo ()l = O; (31)

(IsiLno fo ) = fzo)(u). (32)
Proof. For anyv € D-2(R") there holds
(Vo) =V fg0)(w), v) = 014 62 + 03 + 64+ 5,
where
o =4t (/ Vestt - Vosv dVis — / Vet - Vo dvg(o)) :
n—2\Jp g g Ry

92:/ Rasu v dV;
RY
w= [

RY

2 2
05 =2c(n — 1) / |u|n—2uvd0§a—/ lu|™2u v dog) | .
aR" R™

Using the Dominated Convergence Theorem and the integrabilityaf and

of [u|%¥, it is easy to show thaty, 63 andfs converge to zero. As far & is

concerned, we first note that the bilinear fofm v) — fR,, Ry u v dVgis
+

uniformly bounded forg € G., SO it turns out that givep > O there exists
u, € CZ(R_) such that

J

Iuléu v (dVp —dVg0); 04 =2(n — 1) /a]R 71h§m v dogs;

Rgau v dvga —/ R?SM,] v dV§5

y <n-lvll; VveD"¥RL). (33)
,

n
+
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Hence, since iti®, (§-x) = §°Rg(x) (see (13)), itfollows that faF sufficiently
small

2
<3 ||Rg||L°°(B)||un||oo/ [v] =0o(D) - vl
supp(uy)

R_su, vdVs
/R'i g g
So, using (33) and the arbitrarity 9f one deduces th&t = o(1) - ||v||. Similar
computations hold for the terf. In the same way one can prove also (321

We need a more complete descriptionidiz). For this, according to Remark 3,
we shall study the functiongl ) in a direct fashion. Ig € G, then the constant
metricg(0) onR’} satisfieg|g(0) — /d|l. = O(e) and thusf) can be seen as
a perturbation of the functional

- 1 l E3 n—

=D Guave— 2 [ wave—cm—2) [ 1 dos
£3

(n—2) Jry 2 Jrr oR",

fow) =2

corresponding to the trivial metris;.
Then the procedure used in Sect. 3.2 yields tofii¢t) such that

() w°@) is orthogonal tdl; Z";
i) VioE+w’@) elZ; B
i) W°@I<C-e-A+leh~7 VzeZ.
The following Lemma proves that a property stronger thai holds.
Lemma 6. Forall 7 € Z' there results
V fz0 (Z + Wz (2)) = 0. (34)

Hencez + wy(o) (z) solves

—1 i nt2 .
4033 18O DZu =ur? inRY;
=cunz onoRY.

(35)

2o
(n—2) 0v

Herev is the unit normal vector toRR", with respect tg(0), namely
g0, v)=1 g, v)=0, VvedR].

Proof. The Lemma is a simple consequence of the invariance of the functional
under the transformatiofy, ¢ : D2?(R") — D*?(R" ) defined in the following

way
_n=2 - (é/’ O)
Tpew)=pn Zu <XT> .

This can be achieved with an elementary computation. It then follows that

Wg(0)(Zp,e) = Ty e (Wg0)(Z0)), forall u, &'.
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Hence, from the invariance g¢f ), it turns out that
f200Zu e + W50 (Zpe) = fz0)(The(Zo+Wg0)(Zo)) = fz0)(Zo+wWg0)(Z0))-

Since f50)(Z.e' + We0)(Zue7)) IS @ constant function then, according(fo —
(jj), anyz + w0 (2) is a critical point of fz), proving the lemma. O

Let us introduce some further notatia@:denotes the matrix;; (0), vz, is the
outward unit normal toRR’}, with respect t@j(O), andeq, ..., e, is the standard
basis ofR".

Lemma 7. The solutions of problem (35) are, up to dilations and translations,
of the form

u = zo(Ax),

whereA is a matrix which satisfies

—1 _
AG AT =1, vzo =Y (A e (36)
j
In particular, up to dilations, one has that

Z0 + Wy(0)(Z0) = Z0(A -).

Proof. First of all we prove the existence of a matdxsatisfying (36). The first

equality simply means that the bilinear form represented by the nGtrican be
diagonalized, and this is standard. The ma#riwhich satisfies the first equation
in (36) is defined uniquely up to multiplication on the left by an orthogonal matrix.
Let(xy, ..., x,) bethe co-ordinates with respect to the standard kesis. . , ¢,)
of R”, let(fu, ..., f,) bethe basis given dy= (A=1)Te, and let(y1, ..., y,) be
the co-ordinates with respect to this new basis. This implies the relation between
the co-ordinates = Ay and the first of (36) implies that the bilinear fofgt (0)
is diagonal with respect tgy, . .. y,. Moreover, by the transitive action @f(n)
overS"~1 we can ask thaf, = v; this is exactly the second equation in (36). In
this way the matrix4 is determined up to multiplication on the left I(n — 1).

We now prove that the functiofy = zZo(Ax) = Zo(y) is a solution of (35).
First of all, sincevg(q) is g(0)-orthogonal tddR”~1, the domainx, > O coincides
with y, > 0 and the equation in the interior is, by formula (36)

n+2

(n—121 “ - n—121 iy _ _ni2
—4 z : Di,ijo(X) :_4(1’1 _ 2) E g]AliAij)z;kylZO(Ay) =2y 2()6).
; Iy
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Moreover, since = f, = Zj(A‘l),{jej = Zj(A‘l)jnej, it turns out that on
OR"
020

o) = Z(A—l)jan,.zo(Ay)

= Z(A-1>jnAijykzo<Ay) = D, Zo(Ay) = ¢ 2 (x).
J.k

Hence also the boundary condition is satisfied. Moreover, the fungtioa

D2(R") is the unique solution up to dilation and translation of probl&ith

8;; = 1d, see [14]. As pointed out before,AfandA’ are two matrices satisfying

(36), they differ up ta0 (n — 1). Then it is easy to check thag(Ax) = Zo(A'x)

and hence is unique up to dilation and translation. This concludes the proof.
|

Corollary 1. The quantityfz) (Zo + w°(Zo)) is independent a§(0). Precisely
one has:
f20)(Zo + 0°(Z0)) = b..

Proof. There holds
fg(O) (Zo + wg(O) (zo)

- (n -2 / 2 870 AL A;; DiZo(AY) DiZo(Ay)d Vi) (y)
+ 1,7,k

1 .
5 J, D F Vo ()~ cn -2 / Zo(Ay) P dogo ().

Using the change of variablas= Ay, and taklng into account equations (12)
and (36) we obtain the claim. This concludes the proof. O

Lemma 8. There holds
w?s (zo) = Wg(0) ass — 0. (37)
Proof. DefineH" : DL2(R") x R" x Z' — D*2(R") x R” by setting

Vfga‘ (z+ w§(o). + w) — (XZ)
(w,?) '

H (w,0,7) = <
One has that
V f T+ W) + w) = V [ + Wgo) + D* f @ + Wy [w] + 7 (w)

where

1
*(w) = f (D? f @ + Wg0) + sw) — D? f5(Z + Wg())) [wlds.
0
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Recall thatD? f, (7) is invertible on(TxZ°)*. Sincetwy o satisfies(jjj), then
aIsoszEa (z + wg(0)) is invertible on(7xZ")*+. As a consequence, the equation
V f3 (2 + Wg0 + w) = 0,w € (T:2)" is equivalent, on7:Z")*, to

w=— (D?fos T+ Wg0)) [V @+ Bg) + 0 (w)]

In addition, by Remark 2, we can use the estimates corresponding to (19) of
Lemma 4 and taiii) of Proposition 1, to infer that

1
P (w) = / (D? f @ + Wg0) + sw) — D? f3(Z + Wgo)) [wlds = o(Jw])).
0

Then, repeating the arguments used in Sect. 3.2 with small changes, one can
show that the equatioﬁ‘S = 0 has a unigue solutiom = w such that

loll < C- IV fp (Z + wgo)ll-

From (34) and (31) it follows thafw|| — 0 asé — 0. Since bothwg) + @
andwy solve (on(T:Z")*) the same equation, we infer by uniqueness that

W = Wz + o. Finally, sincel|lw|| — 0 ass — 0, then (37) follows. O

Remark 4.All the preceding discussion has been carried out by taking the stere-
ographic projectiow, through an arbitrary € $"~1. We are interested to the
limit (23). Whenu — 0thené — £ for someE e $"~1 and it will be convenient

to choosep = —&.

We are now in position to give:

Proof of Proposition 2.As pointed out in Remark 4, we take= —£ and use
all the preceding results proved so far in this section. With this choice, when
(n, &) — (0,&) with & = |£| - &, 7, corresponds 1@,/ := 7,0, for some
u — 0.
Next, in view of (26), we will show that

,!i/To Jfe@w +wg(Zw)) = be.
By Corollary 1,b. = fz0)(zo + Wg)) and hence we need to prove that
JETO [fzGw + We@w) — fe (Zo + Wgo)] = 0.
Using (30), we have

fg@u + wg(zu/)) = fE(ZM/ + T;/.’wgu’ (ZO))
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Then we can write

fE(Zu/ + wg(zuu’)) - fE(O) (ZO + EE(O)) = fg(zu/ + Tu/wgu/ (ZO))
= f§(zu’ + Tu’wgu’ (zo)) — f§(zu’ + Tu’w§(0) (zo))
+H fe@w + T w50 (Z0) — fe0)(Zo + Wg0)-

From (17) with/¢ substituted byfs, we infer
f?(zu’ + Tu’wgu/ (ZO)) - fg(zu’ + Tu’wg(O)( OUZO))
= C- I Tywgw (zo) — Twwgo) (o)

= C - [[wgw (o) — wgo) (o)l
=o0(1) asuy — 0.

Usingz,y = T,»zo and (27), we deduce
fE(Zu’ + T/t’wgu’ (zo) = f§ <Tu’ (zo + wgu’ (EO))> = fgu’ (zo + wg(O))-
Finally
| fe@u + T @) = fr0Go+ W0
= | fo Go+ W50 — fr0/ o+ T0)| = O,
according to Lemma 5. Since the above arguments can be carried out uniformly
with respect t&’ € §"~1, the proof is completed. O
4. The scalar curvature problem
In this section the value afis fixed. Therefore its dependence will be omitted.
So we will write I, instead of/¢, I instead ofig, etc.
4.1. The abstract setting

Solutions of problem,) can be found as critical points of the functioral:
HY(B) — R defined as

Ie(u) = Io(u) — G (u)
where the unperturbed functiongl(x) is defined by (see Sect. 2)

1 1 * n—1
To) = =full2 —/ W —ctn—-2 [ P
2 2>‘< B Sn—l
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and the perturbatio& has the form

1 " .
Gu) = —/ K@) [ul?dx + (n —2) h(x)|u*2do.
2* B Sn—l

The existence of critical points df will be faced by means of the perturbation
theory studied in [1]. Precisely, let us recall tHaipossesses arrdimensional
manifoldZ = Z¢, given by (6). MoreoverZ is non-degenerate in the sense that
(i) — (ii) of Lemma 3 hold true. Then the results of [1] lead to consider the finite
dimensional functional™ := G| and give rise to the following Theorem:

Theorem 5. In the preceding setting, let us suppose that either

(a) I has a strict maximum (minimum) &f1 or
(b) there exists an open subsetcc Z such thatdeg(I™, £2,0) # 0.

Thenl, has a critical point close t&, providede is small enough.

In our specific case, the functidi(u, §) = G(z,.¢) has the expression

(n—1)

1 ’ =D
I =2 f K@Z dx+n -2 |  h@)z,5? (0)do, (38)
B

sn—1

whereu > 0 and¢ € R” are related te by (5), namely by
W2+ 1517 —cxp —1=0.
In order to apply the preceding abstract result we need to study the behaviour
of I" at the boundary of, which is given by
0Z ={zpg =0, [&ol = 1}.

The following lemma will be proved in the Appendix and describes the be-
haviour of I" atdZ. Belowas, . .. , ag denote positive constants defined in the
Appendix.

Lemma 9. Let|&| = 1 and letv denote the outher normal direction 6 at
(0, &). I" can be extended ®Z and there results:

(a) T'(0, &) = a1K (&) + azh(&o);
(b) 9, I'(0, &) = azK'(&) - &o;
(¢) suppose thaK’(&p) - & = Oand letn > 3. Then

97 I'(0, &) = 4[asArK (§0) + asD?K (&o)[£o, ol + asArh(£0)] -

Furthermore, ifn = 3and Arh(&) # O, then

+oo providedArh(&) > O,

82[* 0, — .
050 =1 o providedarh (&) < o.

The above Lemma is the counterpart of the calculation carried out in [2] for the
Scalar Curvature Problem .
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4.2. A general existence result

Let us consider the auxiliary function : $"~! — R defined by

V(x) = a1 K (x) +ash(x), xeS" L
If x € Crit(y) we denote byn(x, ¥) its Morse index.
Theorem 6. Suppose that either

(a) there exists an absolute maximum
(resp. minimumy e §"~ of ¥ such thatk’(p) - p < 0 (resp.
K'(p)-p > 0);
or

(b) ¥ is a Morse function satisfying

K'(x)-x#0, VxeCrit(¥); (39)

> (=ymeV) £ 1, (40)

xeCrit(y), K'(x)-x<0
Then for|e| sufficiently small, problemA;) has a positive solution.

Proof. We look for critical points of " onZ ~ B. Lemma 9¢a) and the notation
introduced before says that;, = v

(a) Let pg denote the point wherE achieves its absolute maximum on the
compact seZ = Z U 9Z. Lemma 9¢b) and the preceding assumptian

imply that pg € Z. Then the existence of a critical point bf, for || small,
follows from Theorem Sx).

(b) According to Lemma 94), if (39) holds therp, I" (p) # 0 at any critical
point of I'|,,. Hencerl” satisfies theyeneral boundary conditionsn 0Z, see
[19]. Moreover, setting

0Z~ ={(0,8) € 9Z : 3,1"(§0) < O},
there results
d3Z~ ={(0,%0) : |6l =1, K'(%0) - &0 < O}.
In particular, the critical points @f on thenegative boundaryZ— are precisely

thex € Crir(y) such thatk’(x) - x < 0. Then, by a well known formula, see
[13], we infer that

deg(I'',Z,0) =1— Z (—1ymeew), (41)
xeCrit(y):K’(x)-x<0

Hence, by (40)deg(I"’, Z,0) # 0 and Theorem %b) applies yielding the
existence of a critical point af;, for || small. ]
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Remark 5.(a) If h = 0 thenyr equals, up to the positive constant K. Hence
the assumption made in cage) is precisely condition K1), while (39) and
(40), are nothing but conditionsk%) and (K3). As a consequence, Theorem
6-(a) implies Theorem 2 and Theorem(by implies Theorem 3.

(b) Theorem 6¢b) is the counterpart of the results of [16] where it is taken
¢ = h = 0 but R’ is possibly not close to a constant. Conditions lilke
are reminiscent of conditions used by Bahri-Coron [8] dealing with the scalar
curvature problem o8, see also [2,17] for results ¢#i. In contrast, assumption
(a) is a new feature due to the presence of the boundary and has no counterpart
in the problem on alk”.

(c) Theorem 6 can be the starting point to prove a global result, see [18]. Here
we limit ourselves to point out that (41) can be used to evaluate the degfee of
Actually, sincez is a Mountain Pass critical point, the multiplicative property of
the degree immediately implies that

deg(/.B,.0) = (-1) -deg(I". Z.0) = Y (-=1"*¥ 1
xeCrit(y):K'(x)-x<0

(42)

Our second general existence result deals with the case in which

K'(x)-x=0, VxeCrit(y). (43)

Insuch a case, motivated by Lemm&®9;we introduce the functiod : §"* —
R,
W (x) = asArK (x) + asD?K (x)[x, x] + asArh(x).

Let us note that, according to Lemma®-there resultﬁff (0, &) = AW (&).

Theorem 7. Suppose that (43) holds and that

U(x)#0, VxeCrit(y). (44)
Lety be a Morse function and assume that
DSV (45)
x€eCrit(y), ¥(x)<0

Furthermore, ifn = 3, we also assume that;i(x) # Oforall x € Crit ().
Then for|e| sufficiently small, problemA;) has a solution

Proof. The proof will make use of arguments similar to those emploied for
Theorem 6¢b). But, unlike above, the theory of critical points under general
boundary conditions cannot be applied directly because now (43) implies that
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d,I" = 0 at all the critical points ofy. In order to overcome this problem, we
consider fors > 0 sufficiently small, the sefs := {(«, &) € Z : u > 8} with
boundarydZs = {(u, &) € Z : © = §}. Sinceyr is a Morse function, it readily
follows that for anyé, € Crit(y) there exists (fob small enough) a uniquig
such that

(i) (5,&) € 3Zs andg; — & ass — O;

(ii) & is a critical point ofI"|;z,; moreover,l"|;z, has no other critical point
buté&s;

(iii) the Morse index of; is the samen (&g, V);

Furthermore, we claim that,
(iv) I verifies the general boundary conditionsn

Actually, (44), orArh (&) # 0 if n = 3, jointly with Lemma 9¢c), implies that
0,1 (8, &) # 0 for 6 small. More preciselyd, I" (3, &) < 0 iff & — & with

¥ (&) < 0. Therefore, the critical points @f|,2, on thenegative boundar§Z;

are in one-to-one correspondence with the Crit(y) such thatv(x) < 0.

From the above arguments we infer that

deg(I'', Zs,0) = 1 — Z (—1)n&),
xeCrit(Y):¥(x)<0

Then (45) implies thadeg (I, Z5, 0) # 0 and the result follws. O

Remark 6.(a) If K = 0 then, up to positive constantg, = h and¥ = Arh
and thus Theorem 4 is a particular case of Theorem 7.

(b) It can be shown that our arguments can be adapted to handle an equation
like (1) with R = ¢K andh’ = ¢ + ¢h, which can be seen as an extension of
(3) whereR’ = 0 andc = 1 is taken. This would lead to improve the results of
[9]. For brevity, we do not carry out the details here.

(¢) In all the above results we can deal witll™ instead ofl". In such a case
the condition (40) or (45) beCOME. iy w(r-0(—D" ¥ # (=" 1,

> vecrit). k'x-0(= D" # (=1)"~1, respectively.

4.3. The symmetric case

When K and#h inherit a symmetry one can obtain much more general results.
They can be seen as the counterpart of the ones dealing with the Scalar Curvature
problem onS” discussed in [4].

Theorem 8. Let us suppose tha& and h are invariant under the action of a
group of isometriesxy’ C O(n), such that FixY') = 0 € R". Then for|e|
sufficiently small, problemR,) has a solution.
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Proof. The proof relies on the arguments of [4, Sec. 4]. For the sake of brevity,
we will be sketchy, referring to such a paper for more details. We use the finite
dimensional reduction discussed in the Sect. 3.2, Witk I, andZ¢ = Z, see
Remark 1. From those results we infer that the manifold

Z, = {ZM,S + ws(zp.,&‘) iy T 3 SatiSfying (5)

is anatural constrainfor /.. Let us recall that here = w.(z, ¢) is the solution
of the equation

VI (2 +w) €T, 2

According to Remark 1, it suffices to find a critical point®f(it, &) := I (z,.¢ +
we(z,¢)). It is possible to show tha®, is invariant under the actiom of
a group acting orZ and depending upoX’. Moreover, from the fact that
Fix(X) = {0} it follows that (u, &) € Fix(z) iff & = 0 and (henceu =
o = % <c1< + V2 + 4). Plainly, @, has a critical point att = o, £ = 0,
which gives rise to a solution of?).

For the reader convenience, let us give some more details in the specific case
thatK andh are even functions, when the arguments do not require new notation.
We claim that ifK andh are even the, is invariant under the action given
byt : (u, &) — (u, —£). In other words, we will show that there results

In order to prove (46), we first remark thgt ¢ (x) = z,,.¢(—x). From this and
using the fact thak” andh are even, one checks that= w,(z, ) (—x) satisfies
the equation, defining theatural constraintZ,,

VIGu—c+w eT, .Z

p, -0

By uniqueness, it follows that, (z,, ) (—x) = w.(z,,—¢)(x). Then one infers:

Ie(zu,fé (x) + ws(zu,fé)(x)) = IE(Z/L,S(_X) + ws(zu,é)(_x))
= Is(zp.,é‘ + wE(ZM,E))v

proving (46). O

Remark 7.(a) Coming back to the Scalar Curvature problem on the upper
half sphereS”, an even functionk corresponds to prescribing a scalar cur-
vature onS’ which is invariant under the symmetiy, ... , x,, x,41)
(X1, ooy —Xp, Xpt1)-

(b) Using again the arguments of [4] one could treat the invariance under a
group X such that FixX') # {0}.



Yamabe and scalar curvature 693

A. Appendix
A.1. Proofs of technical Lemmas

First we prove

Lemma 10. GivenM > 0, there exist€ > 0 such that for alle > —M there
holds

lzZl <C-A+ch"2° forallze z° (47)

Proof. By symmetry it suffices to take By symmetry it suffices to tgke- 0
and considet = z,,. Asc — +oo one has that ~ «c andz, ~ u"~?/?in B.
Then the lemma follows by a straight calculation. O

Now we start by proving Eq. (15). Since it is cleaRyj(z) = 0, it is sufficient
to estimate the quantityv1¢(z) — VI§(z)|l. Givenv € H(B) and setting

(n—1 (n—-1
"2 ngz-vgvdvg—4(n_2) B

a2=/RgzvdV;
B

0[1:4 VZ'VUdVO;

angzmvdvo—/z%vdVg; ag=2(n—1) hg zvdog;
B B JB

a5=2(n—l)c/

L. _n_
z2vdo, — 2(n — 1) c/ z-2v doy,
B

9B
there holds
(VIC(z) — VIj(2), v) =01+ ar + a3+ ag + as. (48)

As far asu; is concerned, taking into account of equations (12), (14) and the fact
that|z|| < C- 1+ |c|)‘"*52 (see Lemma 10) one deduces that

o 50/3|vgz-vgv—vZ-vU|dx+ch|vZ-W| |dV, — dVo|

<Coe-(A+ch™"Z - ol (49)
Turning tox, we recall that the expression B8f as a function og, is of the type
R,=DIr+G* I'=Dg, = R,=D%+(Dg>

We start by estimating the quantify R, z v dVp. Integrating by parts, the term
[z D?g z v dVj transforms into

/ngzvdV():/ Dgzvdoo-i—/Dg D(zv)d V.
B 0B B
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Hence, ifg € G, (see expression (2)), from theoldier inequality it follows that

fRﬂvmhszp§+wpwﬁwdwscbeWﬂ-mw
B B
and hence
|z gf |Ryzv |dv0+/ |Rezv||dVe —dVo| < C - (1+|c)™"Z - |vll.
B B
(50)
With simple estimates one can also prove that
n+2
o3| < C -2 (L+ e~ - |jo]. (51)
The functioni, is of the formh, = Dg so, taking into account (2) one finds
n—2
laal < C-e-(L+[ch™ 2 - vl (52)

In order to estimate the last texr, using the continuous embeddift (B) —
L2 (8”1 and the Hbider inequality one deduces that

las| < C-e- (14 c]) - IIZIIZTZ vl < C-e-A+leh - A+ e 2 - vl

n%Z (Sn—l)

Putting together equations (49)-(52) one deduces (15).
Turning to equation (19) and given, v, € H(B), there holds

(D?I°(z + w) — D?I°(2))[v1, v2] = 81 + 82,

where

n+2 4 4
81 = n_2 (Lu'lzvl Udeg—ﬁ(M+w)"2U1 UZdVg>

(n—1) 2 2
o =2n c u™2v1 v do, — (u +w)n2vyvpdo, | .
(n—2 9B B

Using standard inequalities one finds that

C - llwl"z forn > 6,
[61] < o o
CWww@wPuwwwﬂfmn<&
C-(L+1c]) - wl|7> forn > 4.
[62] <

C-@+le - wl - (™ + [w) ™) forn <4,

ID2I°(z + w) — D2I(2)|| < C - || - |w]72. (53)



Yamabe and scalar curvature 695

so we obtain the estimate.
We now prove inequality (16). Given, v, € H'(B) and setting

g =l =D Voo Vo dv, 2 D/v Vo, d Vo,
= V1 - v — v v )
1 ( _2) gl g2 g (n_ 1 2 0
ﬂzZ/Rgvlvde;
B
(n+2) 4 n+2 4
= n—2 dV - n=2 dV,
B3 "2 BZ v1v2dVo "2 27-2v1 v
Ba=2(n—-1) thg v1 V2 doy;
(n—l) 2 (n—1) / 2
_2 n—2 d —2 R n—2 d s
Bs n_2 3BZ v1 V2 do, n(n - c 8BZ v1 v2 dog
there holds
(D?I°(z) — D?I§(2))[v1. v2] = B1+ B2+ Ba+ Pa+ Ps. (54)

For 81, taking into account equation (14) one finds
|81 < C/ Vo1 - Vovo — Vg - V| d Vo + c/ |Vvy - V| - [dV, — d Vo
B B
< C-¢- vl - [lvzll- (55)

Turning to B, reasoning as for the above teanone deduces that

o = [ |Rzol vy = ool (56)
B
In the same way one can prove that
_4_ —
|Bsl < C-e-|lzll72 - [loall - vzl < C-e- @+ 1c) 2 ol - w2l (B7)
For the termgB,, similarly to the expression, above there holds
|Bal < C - &+ luall - llvzll. (58)
Turning togBs, using the Hlder inequality one deduces that
2
|Bsl = C-c-e-(1+c]) - Izl iz(s 4y lvall - flv2ll = C - & - flvall - [[vz]].
(59)

Putting together equations (55)-(59) (59) one deduces inequality (16).
Equation (17) follows from similar computations.



696 A. Ambrosetti et al.

A.2. Proof of Lemma 9

Given&g| = 1, we introduce a reference frameli such that, = —&q. Let

o = a(u) be such that the pai, &), with § = a&g, satisfies (5). Setting
y(w) = I'(pn, —a(pne,),

one has that

r0,&) =y(0), 8,10 &) =—y'(0), 87I0, &) =y"().
In order to evaluate the above quantities, it is convenient to make a change of
variables. This will considerably simplify the calculation when we deal with
y'(0) andy”(0).
Lety : R, — B be the map given by
(', yn) e R} — (x', x,) € B;
V= 2y’ _ ON%4yi-1
O+ (m+D2 "

N2+ (w + D2
Here and in the sequelif € R" we will setx’ = (x1,..., x,_1) SO thatx =

(x', Xn).
By using simple computations it turns out that

() =7 (),
where
1 ~ . * ~ . n—=1
Py = | KOE 0" WMdy+(n—2) | 1)z )7 (w)do,
2" Jry oR",
and
R — RO = KW (k)
SRS TS . 7

Let us point out that the derivatives &f andK satisfy the following relations:
Dy, K (0,0) = 2D, K (§);
D, K (0,0) = 2D, (50);
D2 K(0,0) =4 (D2 K — D, K) (£0);
D% K(0,0) = 4(D%K — D,,K) (£0);
D? , K(0.0) =4(D% . K — DyK) (£0).
The change of variables= [iq, ® = fio yields

1 ~ . % ~ . n—1
P = o /R R(ig)(& 97 @dg + (n —2) / o) 0% @)do
: o,
(60)
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Hence, passing to the limit fgr — O, it follows that
y(0) = 7(0) = 1K (0) + a2h(0) = a1K (%) + azh (%),

with

1 N 28l
ar=— | 254 qn—rc/Ddg, az=(n—2) / 20" (0. kc/2)do.
2" Jry ORY,

Let us now evaluate the first derivative. There holds
, dy di -,
y'0 = L0 - E(0) = 27(0).
di du

Moreover from formula (60) we deduce
o1 - R
y(p) = > VK(q) - q 1z10(@)" dg + (n — 2)
Ry
x/ Vi(jio) - o |25 o(0) 27 (a)do. (61)
aR"

For symmetry reasons whe¢n— 0, the parallel component @R’} in the first
integral and the second integral vanishes, hence it follows that

2 ~ %k
V(0 =270 = 5 D,RO [ gl o) dg = —asK'E) b0, (62)

where
4 o
a3 = | %o (G, qn —Kc/2)dq.
R

We are interested in the study of the second derivative only in the case in which
the first derivative vanishes, namely wh&h(&y) - &9 = 0.
As for the second derivative, there holds:

7@ = o fR Y D3R ()| o) dg
" =1

n—1
T~ (n=1)
- 2)/ > Dih(ao)oi0)lzi o(0) 02 do
ORY  j=1

=0(m) + p(in). (63)

Now we have to distinguish the cage= 3 and the case > 3. In fact the
boundary integrab(ix) in (63) is uniformly dominated by a function ihl(aR’jr)
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if and only ifn > 3. However it is possible to determine the sign of this integral
also forn = 3: it turns out that

1 . ~
Iim8”=—/ 12128 2dg - ArK (O
am, (1) 20— 1) Jur 9'1"1z1,0(@)|" dg - AT K(0)
1 ” -
+5: | aizi0@)* dg - D}, K (0);
R}
and
[imo,o(;[u) = (+00) - A7h(0), forn =3;
n—
. ~ (l’l - ) 2 ¢ 2 (=1 ~
lim p() = lo|%1z] o(0) |2 do - Arh(0), forn > 3.
=0 (n—1) Jory "
Hence we have that
(400) - Arh(é0) forn = 3;
7"(0) = (64)
asAr K (§0) + asD?K (£o)[&o, &0l + asArh(&) forn > 3,
where
as = L/ |q’|2zg*(q’, qn — kc/2)dgq,
(n —1)2* Jgr
as = > qug*(q’, qn — kc/2)dq,
R}
-2 n—1
ag = (n ) |cr|22(2J"_2 (o,kc/2)do.
(n—=1) Jorr,

Finally, sincey”(0) = 47”(0), the lemma follows.
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