Digital Object Identifier (DOI) 10.1007/s002080100267

On the Yamabe problem and the scalar curvature problems under boundary conditions

Antonio Ambrosetti · Yan Yan Li · Andrea Malchiodi

Received: 18 May 2000 / Published online: 28 February 2002 – © Springer-Verlag 2002

1. Introduction

In this paper we prove some existence results concerning a problem arising in conformal differential geometry. Consider a smooth metric g on $B = \{x \in \mathbb{R}^n : |x| < 1\}$, the unit ball on \mathbb{R}^n , $n \ge 3$, and let Δ_g , R_g , v_g , h_g denote, respectively, the Laplace-Beltrami operator, the scalar curvature of (B, g), the outward unit normal to $\partial B = S^{n-1}$ with respect to g and the mean curvature of (S^{n-1}, g) . Given two smooth functions R' and h', we will be concerned with the existence of positive solutions $u \in H^1(B)$ of

$$\begin{cases} -4\frac{(n-1)}{(n-2)}\Delta_g u + R_g u = R'u^{\frac{n+2}{n-2}}, \text{ in } B;\\ \frac{2}{(n-2)}\partial_{v_g} u + h_g u = h'u^{\frac{n}{n-2}}, \text{ on } \partial B = S^{n-1}. \end{cases}$$
(1)

It is well known that such a solution is C^{∞} provided g, R' and h' are, see [10]. If u > 0 is a smooth solution of (1) then $g' = u^{4/(n-2)}g$ is a metric, conformally equivalent to g, such that R' and h' are, respectively, the scalar curvature of (B, g') and the mean curvature of (S^{n-1}, g') . Up to a stereographic projection, this is equivalent to finding a conformal metric on the upper half sphere $S^n_+ = \{(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : |x| = 1, x_{n+1} > 0\}$ such that the scalar curvature of S^n_+ and the mean curvature of $\partial S^n_+ = S^{n-1}$ are prescribed functions.

A. Ambrosetti

Y.Y. LI, A. MALCHIODI

S.I.S.S.A., via Beirut, 2-4, 34019 Trieste, Italy (e-mail: ambr@sissa.it)

Department of Mathematics, Rutgers University New Brunswick, NJ 08903, USA (e-mail: yyli@math.rutgers.edu; malchiod@math.rutgers.edu)

The first and the third authors have been supported by the italian M.U.R.S.T. under the national project *Variational Methods and Nonlinear Differential Equations*.

In the first part of the paper we deal with the the case in which R' and h' are constant, say $R' \equiv 1$ and $h' \equiv c$, when (1) becomes

$$\begin{cases} -4\frac{(n-1)}{(n-2)}\Delta_g u + R_g u = u^{\frac{n+2}{n-2}}, \text{ in } B; \\ \frac{2}{(n-2)}\partial_{\nu_g} u + h_g u = cu^{\frac{n}{n-2}}, \text{ on } \partial B = S^{n-1}. \end{cases}$$
(Y)

This will be referred as the *Yamabe like problem* and was first studied in [10–12]. More recently, the existence of a solution of (1) has been proved in [14,15] under the assumption that (B, g) is of positive type (for a definition see [14]) and satisfies one of the following assumptions:

(*i*) (B, g) is locally conformally flat and ∂B is umbilical; (*ii*) n > 5 and ∂B is not umbilical.

Our main result concerning the *Yamabe like problem* shows that none of (*i*) or (*ii*) is required when g is close to the standard metric g_0 on B. Precisely, consider the following class $\mathcal{G}_{\varepsilon}$ of bilinear forms

$$\mathcal{G}_{\varepsilon} = \{ g \in C^{\infty}(B) : \|g - g_0\|_{L^{\infty}(B)} \le \varepsilon, \|\nabla g\|_{L^n(B)} \le \varepsilon, \|\nabla g\|_{L^{n-1}(S^{n-1})} \le \varepsilon \}.$$
(2)

Inequalities in (2) hold if for example $||g-g_0||_{C^1(B)} \le \varepsilon$, or if $||g-g_0||_{W^{2,n}(B)} \le \varepsilon$. We will show:

Theorem 1. Given M > 0 there exists $\varepsilon_0 > 0$ such that for every ε with $\varepsilon \in (0, \varepsilon_0)$, for every c > -M and for every metric $g \in \mathcal{G}_{\varepsilon}$ problem (Y) possesses a positive solution.

In the second part of the paper we will take $g = g_0$, $R' = 1 + \varepsilon K(x)$, $h' = c + \varepsilon h(x)$ and consider the *Scalar Curvature like problem*

$$\begin{cases} -4\frac{(n-1)}{(n-2)}\Delta u = (1+\varepsilon K(x))u^{\frac{n+2}{n-2}}, \text{ in } B;\\ \frac{2}{(n-2)}\frac{\partial u}{\partial v} + u = (c+\varepsilon h(x))u^{\frac{n}{n-2}}, \text{ on } S^{n-1}, \end{cases}$$
(P_{\varepsilon})

where $v = v_{g_0}$. The *Scalar Curvature like problem* has been studied in [16] where a non perturbative problem like

$$\begin{cases} -4\frac{(n-1)}{(n-2)}\Delta u = R'(x)u^{\frac{n+2}{n-2}}, \text{ in } B;\\ \frac{2}{(n-2)}\frac{\partial u}{\partial v} + u = 0, \text{ on } S^{n-1}, \end{cases}$$

has been considered. We also mention the paper [9] dealing with the existence of solutions of

$$\Delta u = 0, \text{ in } B;$$

$$\left\{ \frac{2}{(n-2)} \frac{\partial u}{\partial \nu} + u = (1 + \varepsilon h(x)) u^{\frac{n}{n-2}}, \text{ on } S^{n-1}, \right.$$
(3)

a problem similar in nature to (P_{ε}) .

To give an idea of the existence results we can prove, let us consider the particular cases that either $h \equiv 0$ or $K \equiv 0$. In the former, problem (P_{ε}) becomes

$$\begin{cases} -4\frac{(n-1)}{(n-2)}\Delta u = (1+\varepsilon K(x))u^{\frac{n+2}{n-2}}, \text{ in } B;\\ \frac{2}{(n-2)}\frac{\partial u}{\partial v} + u = c u^{\frac{n}{n-2}}, \text{ on } S^{n-1}, \end{cases}$$
(P_{\varepsilon,K})

Theorem 2. Suppose that K satisfies

(K₁) there exists an absolute maximum (resp. minimum) p of $K|_{S^{n-1}}$ such that $K'(p) \cdot p < 0$, resp. $K'(p) \cdot p > 0$.

Then for $|\varepsilon|$ sufficiently small, $(P_{\varepsilon,K})$ has a positive solution.

Another kind of result is the following

Theorem 3. Let $K|_{S^{n-1}}$ be a Morse function and satisfies

$$K'(x) \cdot x \neq 0, \quad \forall x \in Crit(K|_{S^{n-1}})$$
 (K₂)

$$\sum_{x \in Crit(K|_{S^{n-1}}): K'(x) \cdot x < 0} (-1)^{m(x,K)} \neq 1,$$
 (K₃)

where m(x, K) is the Morse index of $K|_{S^{n-1}}$ at x. Then for $|\varepsilon|$ sufficiently small, problem $(P_{\varepsilon,K})$ has a positive solution.

When $K \equiv 0$ problem (P_{ε}) becomes

$$\begin{cases} -4\frac{(n-1)}{(n-2)}\Delta u = u^{\frac{n+2}{n-2}}, & \text{in } B;\\ \frac{2}{(n-2)}\frac{\partial u}{\partial v} + u = (c+\varepsilon h(x))u^{\frac{n}{n-2}}, & \text{on } S^{n-1}. \end{cases}$$
(P_{\varepsilon,h})

Theorem 4. Let $h \in C^{\infty}(S^{n-1})$ be a Morse function satisfying:

$$\Delta_T h(x) \neq 0, \quad \forall x \in Crit(h); \tag{h}_1$$

$$\sum_{\substack{x \in Crit(h): \Delta_T h(x) < 0}} (-1)^{m(x,h)} \neq 1, \tag{h}_2$$

Then for $|\varepsilon|$ sufficiently small, problem $(P_{\varepsilon,h})$ has a positive solution.

The preceding results are particular cases of more general ones, dealing with problem (P_{ε}), where assumptions on a suitable combination of *K* and *h* are made. See Theorems 6 and 7 later on. For a comparison with the results of [9, 16], we refer to Remarks 5 and 6 in Sect. 4.

Solutions of the preceding problems are critical points of the energy functional $I^c = I_g^c : H^1(B) \to \mathbb{R}$,

$$I^{c}(u) = 2\frac{(n-1)}{(n-2)} \int_{B} |\nabla_{g}u|^{2} dV_{g} + \frac{1}{2} \int_{B} R_{g}u^{2} dV_{g} - \frac{1}{2^{*}} \int_{B} R' u^{2^{*}} dV_{g} + (n-1) \int_{\partial B} h_{g}u^{2} d\sigma_{g} - c(n-2) \int_{\partial B} h' |u|^{2\frac{n-1}{n-2}} d\sigma_{g}.$$
 (4)

In all the cases we will deal with, I^c can be written in the form $I^c(u) = I_0^c(u) + O(\varepsilon)$, where

$$I_0^c(u) = 2\frac{(n-1)}{(n-2)} \int_B |\nabla u|^2 dx + (n-1)$$

 $\times \int_{\partial B} u^2 d\sigma - \frac{1}{2^*} \int_B |u|^{2^*} dx - c(n-2) \int_{S^{n-1}} |u|^{2\frac{n-1}{n-2}} d\sigma$

and can be faced by means of a perturbation method in critial point theory discussed in [1]. First, in Sect. 2, we show that I_0^c has a finite dimensional manifold $Z^c \simeq B$ of critical points that is *non degenerate*, in the sense of [1], see Lemma 3. This allows us to perform a finite dimensional reduction (uniformly with respect to $c \ge -M$) that leads to seeking the critical points of I^c constrained to Z^c . The proof of Theorem 1 is carried out in Sect. 3 and is mainly based upon the study of $I_{|Z^c}^c$. The lack of compactness inherited by I^c is reflected on the fact that Z^c is not closed. This difficulty is overcome using arguments similar to those emploied in [3,7]: we show that I^c can be extended to the boundary ∂Z^c and there results $I_{|\partial Z^c}^c \equiv const.$, see Proposition 2.

In Sect. 4 we deal with the *Scalar Curvature like* problem. In this case there results $I^c(u) = I_0^c(u) + \varepsilon G(u)$, where G depends upon K and h only, and one is lead to study the finite dimensional auxiliary functional $\Gamma = G_{|Z^c}$. More precisely, following the approach of [2], we evaluate Γ on ∂Z^c , together with its first and second derivative. This permits to prove some general existence results which contain as particular cases Theorems 2, 3 and 4. The last part of Sect. 4 is

devoted to a short discussion of the case in which K, h inherit a simmetry. For example, if K and h are even functions, (P_{ε}) has always a solution provided ε is small, without any further assumption, see Theorem 8.

Finally, in the Appendix we prove some technical Lemmas.

The main results of this paper has been annouced in [5].

Notation

B denotes the unit ball in \mathbb{R}^n , centered at x = 0.

We will work mainly in the functional space $H^1(B)$. In some cases it will be convenient to equip $H^1(B)$ with the scalar product

$$(u, v)_1 = 4\frac{(n-1)}{(n-2)} \int_B \nabla u \cdot \nabla v dx + 2(n-1) \int_{\partial B} uv d\sigma$$

that gives rise to the norm $||u||_1^2 = (u, u)_1$, equivalent to the standard one.

If *E* is an Hilbert space and $f \in C^2(E, \mathbb{R})$ is a functional, we denote by f' or ∇f its gradient; $f''(u) : E \to E$ is the linear operator defined by duality in the following way

$$(f''(u)v, w) = D^2 f(u)[v, w], \quad \forall v, w \in E.$$

 σ_S denotes the stereographic projection $\sigma_S : S^n = \{x \in \mathbb{R}^{n+1} | |x| = 1\} \rightarrow \mathbb{R}^n$ trough the south pole, where we identify \mathbb{R}^n with $\{x \in \mathbb{R}^{n+1} | x_{n+1} = 0\}$.

More in general, given $p \in S^n$, we denote by $\sigma_p : \mathbb{R}^n \to S^n$ the stereographic projection trough the point p.

The stereographic projections give rise to some isometries in the following way. The projection trough the south pole *S* of S^n gives rise to the isometry $\tau_S : H^1(S^n) \to H^1(B)$

$$\tau_{S}u(x) = \frac{2}{1+|x|^{2}}u(\sigma_{S}^{-1}x), \quad x \in B.$$

Moreover, given $p \in \partial S_+^n$, the stereographic projection trough p gives rise to the isometry $\tau_p : H^1(S_+^n) \to E = \mathcal{D}^{1,2}(\mathbb{R}_+^n)$ given by

$$\tau_p u(x) = \frac{2}{1+|x|^2} u(\sigma_p^{-1} x), \qquad x \in \mathbb{R}^n_+.$$

2. The unperturbed problem

When $\varepsilon = 0$, resp. $g = g_0$, problem (P_{ε}) , resp. (Y), coincides with the unperturbed problem

$$\begin{cases} -4\frac{(n-1)}{(n-2)}\Delta u = u^{\frac{n+2}{n-2}}, & \text{in } B; \\ \frac{2}{(n-2)}\partial_{\nu}u + u = cu^{\frac{n}{n-2}}, & \text{on } \partial B = S^{n-1}. \end{cases}$$
(UP)

Solutions of problem (UP) can be found as critical points of the functional $I_0^c: H^1(B) \to \mathbb{R}$ defined as

$$I_0^c(u) = \frac{1}{2} \|u\|_1^2 - \frac{1}{2^*} \int_B |u|^{2^*} dx - c(n-2) \int_{S^{n-1}} |u|^{2\frac{n-1}{n-2}} d\sigma.$$

Consider the function $z_0 : \mathbb{R}^n \to \mathbb{R}$,

$$z_0(x) = \left(\frac{\kappa}{1+|x|^2}\right)^{\frac{n-2}{2}}; \quad \kappa = \kappa_n = (4n(n-1))^{\frac{1}{2}}.$$

The function z_0 is the unique solution (up to translation and dilation) to the problem in \mathbb{R}^n

$$-4\frac{(n-1)}{(n-2)}\Delta u = u^{\frac{n+2}{n-2}}, \text{ in } \mathbb{R}^n; u > 0.$$

We also set

$$z_{\mu,\xi} = \mu^{-\frac{n-2}{2}} z_0((x-\xi)/\mu), \quad z_\mu = \mu^{-\frac{n-2}{2}} z_0(x/\mu).$$

By a stright calculation it follows that $z_{\mu,\xi}$ is a critical points of I_0^c , namely solutions of the problem (UP), iff

$$\mu^{2} + |\xi|^{2} - c\kappa\mu - 1 = 0, \quad \mu > 0.$$
(5)

The set

$$Z^{c} = \{z_{\mu,\xi} : \mu^{2} + |\xi|^{2} - c\kappa\mu - 1 = 0\}$$
(6)

is an *n*-dimensional manifold, diffeomorphic to a ball in \mathbb{R}^n , with boundary ∂Z^c corresponding to the parameter values $\mu = 0$, $|\xi| = 1$.

We need to study the eigenvalues of $I_0''(z_{\mu,\xi})$, with $z_{\mu,\xi} \in Z^c$. Recall that, by definition, $\lambda \in \mathbb{R}$ is an eigenvalue of $I_0''(z_{\mu,\xi})$ if there exists $v \in H^1(B)$, $v \neq 0$ such that $I_0''(z_{\mu,\xi})[v] = \lambda v$ and this means that v is solution of the linear problem

$$\int -4\frac{(n-1)}{(n-2)} (1-\lambda) \, \Delta v = \frac{n+2}{n-2} z_{\mu,\xi}^{\frac{4}{n-2}} v, \qquad \text{in } B;$$

$$\left[4\frac{(n-1)}{(n-2)}\left(1-\lambda\right)\partial_{\nu}v = 2(n-1)\left(c\frac{n}{(n-2)}z_{\mu,\xi}^{\frac{2}{n-2}} + \lambda - 1\right)v, \text{ on } S^{n-1}.$$
(7)

The following lemma is well known.

- **Lemma 1.** (a) $\lambda = 0$ is an eigenvalue of (7) and the corresponding eigenspace is n dimensional and coincides with the tangent space to Z^c at $z_{\mu,\xi}$, namely is spanned by $Dz_{\mu,\xi}$.
- (b) (7) has precisely one negative eigenvalue $\lambda_1(c)$; all the remaining eigenvalues are positive.

Item (a) is proved in [14]. Item (b) easily follows from the fact that $z_{\mu,\xi}$ is a Mountain Pass critical point of I_0^c .

Let $\lambda_2(c)$ denote the smallest positive eigenvalue of $I_0''(z_{\mu,\xi})$.

The main result of this section is the following one:

Lemma 2. For all M > 0 there exists a positive constant C_M such that

$$\frac{1}{C_M} \le |\lambda_i(c)| \le C_M, \quad \forall \ c \ge -M, \quad i = 1, 2.$$

Remark. There is a numerical evidence that $\lambda_2(c) \downarrow 0$ as $c \downarrow -\infty$.

Proof. We will prove separately that $|\lambda_i(c)| \leq C_M$ and that $\frac{1}{C_M} \leq |\lambda_i(c)|$. For symmetry reasons it is sufficient to take $z_{\mu,\xi} = z_{\mu}$, namely to take $\xi = 0$. In such a case μ depends only on ξ and (5) yields

$$\mu(c) = \frac{1}{2} \left(\kappa c + \sqrt{\kappa^2 c^2 + 4} \right).$$

Case 1. $|\lambda_i(c)| \leq C_M$. By contradiction suppose there exists a sequence $c_j \rightarrow +\infty$ such that $|\lambda_i(c_j)| \rightarrow +\infty$, i = 1, 2. Let v_j denote an eigenfunction of (7) with $\lambda = \lambda_i(c_j)$. Then v_j solves the problem

$$\begin{cases} \Delta v_j = a_j(x)v_j, & \text{in } B; \\ \partial_v v_j = b_j(x)v_j, & \text{on } S^{n-1}, \end{cases}$$
(8)

where

$$a_{j}(x) = \frac{1}{(\lambda_{i}(c_{j}) - 1)} \frac{n + 2}{4(n - 1)} z_{\mu(c_{j})}^{\frac{4}{n - 2}}(x), \quad x \in B$$

$$b_{j}(x) = \frac{n - 2}{2(1 - \lambda_{i}(c_{j}))} \left(c_{j} \frac{n}{(n - 2)} z_{\mu(c_{j})}^{\frac{2}{n - 2}}(x) + \lambda_{i}(c_{j}) - 1 \right), \quad x \in S^{n - 1}.$$

Above, it is worth pointing out that b_i is constant on S^{n-1} . Actually, there results

$$z_{\mu}^{\frac{2}{n-2}}(x) = \kappa \ \mu^{-1} \left(1 + \frac{1}{\mu^2}\right)^{-1}, \quad \forall \ x \in S^{n-1},$$

and hence

$$b_j \equiv \frac{n-2}{2(1-\lambda_i(c_j))} \left(c_j \frac{n}{(n-2)} \cdot \kappa \, \mu^{-1}(c_j) \left(1 + \frac{1}{\mu^2(c_j)} \right)^{-1} + \lambda_i(c_j) - 1 \right),$$

$$\forall \, x \in S^{n-1}.$$

Moreover, since $\mu \sim \kappa c$ as $c \to +\infty$, it turns out that

$$b_j \to -\frac{(n-2)}{2}.\tag{9}$$

Now, integrating by parts we deduce from (8)

$$\int_{B} |\nabla v_j|^2 dx + \int_{B} a_j v_j^2 dx = b_j \int_{S^{n-1}} v_j^2 d\sigma.$$
⁽¹⁰⁾

Using (9) and a Poincaré-like inequality, we find there exists $C > 0^{1}$

$$-\int_B a_j v_j^2 dx \ge C \int_B v_j^2 dx.$$

This leads to a contradiction because $a_j(x) \to 0$ in $C^0(\overline{B})$ and $v_j \neq 0$.

Case 2. $\frac{1}{C_M} \leq |\lambda_i(c)|$. Arguing again by contradiction, let $c_j \to +\infty$ and suppose that $|\lambda_i(c_j)| \to 0$. As before, the corresponding eigenfunctions v_j satisfy (10), where now $b_j \to 1$, because $\mu \sim \kappa c$ and $|\lambda_i(c_j)| \to 0$. Choosing v_j is such a way that $\sup_B |v_j| = 1$, then (10) yields that v_j is bounded in $H^1(B)$ and hence $v_j \to v_0$ weakly in $H^1(B)$. Passing to the limit in

$$\int_{B} \nabla v_j \cdot \nabla w + \int_{B} a_j v_j w - \int_{S^{n-1}} b_j v_j w = 0, \quad \forall w \in H^1(B).$$

¹ in the sequel we will use the same symbol C to denote possibly different positive constants.

it immedately follows that v_0 satisfies

$$\Delta v_0 = 0, \quad \text{in } B;$$

$$\partial_v v_0 = v_0, \quad \text{on } S^{n-1}.$$

$$(P_3)$$

The solutions of problem (P_3) are explicitly known, namely they are the linear functions an *B*. We denote by *X* the vector space of these solutions, which is *n*-dimensional. To complete the proof we will show that $v_0 \in X$ leads to a contradiction. We know that $\lambda = 0$ is an eigenvalue with multiplicity *n*, and the eigenvectors corresponding to $\lambda = 0$ are precisely the elements of $T_{z_{\mu}}Z^c$. Let $u_j \in T_{z_{\mu}(c_j)}Z^c$ with $\sup_B |u_j| = 1$. Then, by using simple computations, one can prove that, up to a subsequence, $u_j \rightarrow v$ strongly in $H^1(B)$ for some function $v \in X$. We can assume w.l.o.g. that $v = v_0$ (the weak limit of v_j), so it follows that $(u_j, v_j) \rightarrow ||v_0||^2 \neq 0$. But this is not possible, since v_j are eigenvectors corresponding to $\lambda_1 < 0$, while u_j are eigenvectors corresponding to $\lambda = 0$ and hence they are orthogonal.

In conclusion, taking into account of Lemma 2, we can state:

Lemma 3. The unperturbed functional I_0^c possesses an n-dimensional manifold Z^c of critical points, diffeomorphic to a ball of \mathbb{R}^n . Moreover I_0^c satisfies the following properties

(i) $I_0''(z) = I - \mathcal{K}$, where \mathcal{K} is a compact operator for every $z \in Z^c$; (ii) $T_z Z^c = Ker D^2 I_0^c(z)$ for all $z \in Z^c$.

From (i)-(ii) it follows that the restriction of $D^2 I_0^c$ to $(T_z Z^c)^{\perp}$ is invertible. Moreover, denoting by $L_c(z)$ its inverse, for every M > 0 there exists C > 0 such that

$$\|L_c(z)\| \le C \quad \text{for all} \quad z \in Z^c \quad \text{and for all } c > -M.$$
(11)

3. The Yamabe like problem

3.1. Preliminaries

Solution s of problem (1) can be found as critical points of the functional I^c : $H^1(B) \to \mathbb{R}$ defined in (4).

We recall some formulas from [3] which will be useful for our computations. We denote with g_{ij} the coefficients of the metric g in some local co-ordinates and with g^{ij} the elements of the inverse matrix $(g^{-1})_{ij}$. The volume element dV_g of the metric $g \in \mathcal{G}_{\varepsilon}$, taking into account (2) is

$$dV_g = |g|^{\frac{1}{2}} \cdot dx = (1 + O(\varepsilon)) \cdot dx^2.$$
 (12)

The Christoffel symbols are given by $\Gamma_{ij}^{l} = \frac{1}{2} [D_i g_{kj} + D_j g_{ki} - D_k g_{ij}] g^{kl}$. The components of the Riemann tensor, the Ricci tensor and the scalar curvature are, respectively

$$R_{kij}^{l} = D_{i}\Gamma_{jk}^{l} - D_{j}\Gamma_{ik}^{l} + \Gamma_{im}^{l}\Gamma_{jk}^{m} - \Gamma_{jm}^{l}\Gamma_{ik}^{m}; \ R_{kj} = R_{klj}^{l}; \ R = R_{g} = R_{kj}g^{kj}.$$
(13)

For a smooth function *u* the components of $\nabla_g u$ are $(\nabla_g u)^i = g^{ij} D_j u$, so

$$(\nabla_g u)^i = \nabla u \cdot (1 + O(\varepsilon)). \tag{14}$$

From the preceding formulas and from the fact that $g \in \mathcal{G}_{\varepsilon}$ it readily follows that $I^{c}(u) = I_{0}^{c}(u) + O(\varepsilon)$. More precisely, the following lemma holds. The proof is rather technical and is postponed to the Appendix.

Lemma 4. Given M > 0 there exists C > 0 such that for c > -M and $g \in \mathcal{G}_{\varepsilon}$ there holds

$$\|\nabla I^{c}(z)\| \leq C \cdot \varepsilon \cdot (1+|c|)^{-\frac{n-2}{2}}, \quad \forall z \in Z^{c};$$
(15)

$$\left\| D^2 I^c(z) - D^2 I^c_0(z) \right\| \le C \cdot \varepsilon, \quad \forall z \in Z^c$$
(16)

$$\|I^{c}(z+w) - I^{c}(z+w')\| \leq C \cdot (1+|c|) \cdot$$

$$(\varepsilon + \rho^{\frac{2}{n-2}}) \cdot \|w - w'\|, \quad \forall z \in Z^{c}, w, w' \in H^{1}(B), \quad \forall \|w\|, \|w'\| \leq \rho;$$
(17)

$$\left\|\nabla I^{c}(u+w) - \nabla I^{c}(u)\right\| \leq C \cdot \|w\| \cdot$$

$$\left(1 + \|u\|^{\frac{4}{n-2}} + \|w\|^{\frac{4}{n-2}} + |c| \cdot \|u\|^{\frac{2}{n-2}} + |c| \cdot \|w\|^{\frac{2}{n-2}}\right), \quad \forall u, w \in H^{1}(B).$$
(18)

Moreover, if ||u|| *is uniformly bounded and if* $||w|| \le 1$ *there results*

$$\left\| D^2 I^c(u+w) - D^2 I^c(u) \right\| \le C \cdot (1+|c|) \cdot \|w\|^{\frac{2}{n-2}}.$$
 (19)

3.2. A finite dimensional reduction

The aim of this section is to perform a finite dimensional reduction, using Lemma 3. Arguments of this kind has been emploied, e.g. in [1]. The first step is to construct, for $g \in \mathcal{G}_{\varepsilon}$, a perturbed manifold $Z_g^c \simeq Z^c$ which is a *natural constraint* for I^c , namely: if $u \in Z_g^c$ and $\nabla I^c |_{Z_g^c}(u) = 0$ then $\nabla I^c(u) = 0$.

For brevity, we denote by $\dot{z} \in H^1(B)$ ^{*n*} an orthonormal *n*-tuple in $T_z Z^c$. Moreover, if $\alpha \in \mathbb{R}^n$ we set $\alpha \dot{z} = \sum \alpha_i \dot{z}_i$.

Proposition 1. Given M > 0, there exist $\varepsilon_0, C > 0$, such that $\forall c > -M$, $\forall z \in Z^c$

 $\forall \varepsilon \leq \varepsilon_0 \text{ and } \forall g \in \mathcal{G}_{\varepsilon} \text{ there are }$

 C^1 functions $w = w(z, g, c) \in H^1(B)$ and $\alpha = \alpha(z, g, c) \in \mathbb{R}^n$ such that the following properties hold

(i) w is orthogonal to $T_z Z^c \quad \forall z \in Z^c$, i.e. $(w, \dot{z}) = 0$;

(*ii*) $\nabla I^c(z+w) = \alpha \dot{z} \quad \forall z \in Z^c;$ (*iii*) $\|(w,\alpha)\| < C \cdot \varepsilon \cdot (1+|c|)^{-\frac{n-2}{2}} \quad \forall z \in Z^c.$

Furthermore, from (i)-(ii) it follows that

(iv) the manifold $Z_g^c = \{z + w(z, g, c) \mid z \in Z^c\}$ is a natural constraint for I^c .

Proof. Let us define ${}^{3}H_{g}: Z^{c} \times H^{1}(B) \times \mathbb{R}^{n} \to H^{1}(B) \times \mathbb{R}^{n}$ by setting

$$H_g(z, w, \alpha) = \begin{pmatrix} \nabla I^c(z+w) - \alpha \dot{z} \\ (w, \dot{z}) \end{pmatrix}.$$

With this notation, the unknown (w, α) can be implicitly defined by the equation $H_g(z, w, \alpha) = (0, 0)$. Setting $R_g(z, w, \alpha) = H_g(z, w, \alpha) - \partial_{(w,\alpha)}H_g(z, 0, 0)$ [(w, α)] we have that

$$H_g(z, w, \alpha) = 0 \quad \Leftrightarrow \quad \partial_{(w,\alpha)} H_g(z, 0, 0)[(w, \alpha)] + R_g(z, w, \alpha) = 0.$$

Let $H_0 = H_{g_0}$. From (11) it follows easily that $\partial_{(w,\alpha)}H_0(z, 0, 0)$ is invertible uniformly w.r.t. $z \in Z^c$ and c > -M. Moreover using (16) it turns out that for ε_0 sufficiently small and for $\varepsilon \le \varepsilon_0$ also the operator $\partial_{(w,\alpha)}H_g(z, 0, 0)$ is invertible and has uniformly bounded inverse, provided $g \in \mathcal{G}_{\varepsilon}$. Hence, for such g there results

$$H_g(z, w, \alpha) = 0 \Leftrightarrow (w, \alpha) = F_{z,g}(w, \alpha)$$

$$:= - \left(\partial_{(w,\alpha)} H_g(z, 0, 0)\right)^{-1} R_g(z, w, \alpha).$$

We prove the Proposition by showing that the map $F_{z,g}$ is a contraction in some ball $B_{\rho} = \{(w, \alpha) \in H^1(B) \times \mathbb{R}^n : ||w|| + |\alpha| \le \rho\}$, with ρ of order

³ *H* depends also on *c*, but such a dependence will be understood.

 $\rho \sim \varepsilon \cdot (1+|c|)^{-\frac{n-2}{2}}$. We first show that there exists C > 0 such that for all $(w, \alpha), (w', \alpha') \in B_{\rho}$, all $z \in Z^{c}$ and all $g \in \mathcal{G}_{\varepsilon}$, there holds

$$\begin{cases} \|F_{z,g}(w,\alpha)\| \le C \cdot \left(\varepsilon \cdot (1+|c|)^{-\frac{n-2}{2}} + (1+|c|) \cdot \rho^{\frac{n}{n-2}}\right), \\ \|F_{z,g}(w',\alpha') - F_{z,g}(w,\alpha)\| \le C \cdot (1+|c|) \cdot \rho^{\frac{2}{n-2}} \cdot \|(w,\alpha) - (w',\alpha')\|. \end{cases}$$
(20)

Condition (20) is equivalent to the following two inequalities

$$\|\nabla I^{c}(z+w) - D^{2}I^{c}(z)[w]\| \le C \cdot \left(\varepsilon \cdot (1+|c|)^{-\frac{n-2}{2}} + (1+|c|) \cdot \rho^{\frac{2}{n-2}}\right);$$
(21)

$$\|(\nabla I^{c}(z+w) - D^{2}I^{c}(z)[w]) - (\nabla I^{c}(z+w') - D^{2}I^{c}(z)[w'])\| \leq (22)$$

$$C \cdot (1+|c|) \cdot \rho^{\frac{2}{n-2}} \cdot \|(w,\alpha) - (w',\alpha')\|.$$

Let us first prove (21). There holds

$$\nabla I^{c}(z+w) - D^{2}I^{c}(z)[w] = \nabla I^{c}(z+w) - \nabla I^{c}(z) + \nabla I^{c}(z) - D^{2}I^{c}(z)[w]$$

= $\nabla I^{c}(z) + \int_{0}^{1} \left(D^{2}I^{c}(z+sw) - D^{2}I^{c}(z) \right)[w]ds.$

Hence it turns out that

$$\|\nabla I^{c}(z+w) - D^{2}I^{c}(z)[w]\| \leq \nabla I^{c}(z) + \|w\| \cdot \sup_{s \in [0,1]} \|D^{2}I^{c}(z+sw) - D^{2}I^{c}(z)\|.$$

Using (19) we have

$$\|\nabla I^{c}(z+w) - D^{2}I^{c}(z)[w]\| \leq \nabla I^{c}(z) + C \cdot (1+|c|) \cdot \rho^{\frac{n}{n-2}}.$$

Hence from (15) we deduce that

$$\|\nabla I^{c}(z+w) - D^{2}I^{c}(z)[w]\| \le C \cdot \left(\varepsilon \cdot (1+|c|)^{-\frac{n-2}{2}} + (1+|c|) \cdot \rho^{\frac{n}{n-2}}\right),$$

and (21) follows. We turn now to (22). There holds

$$\begin{split} \|\nabla I^{c}(z+w) - \nabla I^{c}(z+w') - D^{2}I^{c}(z)[w-w']\| \\ &= \left\| \int_{0}^{1} \left(D^{2}I^{c}(z+w+s(w'-w)) - D^{2}I^{c}(z) \right)[w'-w]ds \right\| \\ &\leq \sup_{s \in [0,1]} \|D^{2}I^{c}(z+w+s(w'-w)) - D^{2}I^{c}(z)\| \cdot \|w'-w\|. \end{split}$$

Using again (19), and taking $||w||, ||w'|| \le \rho$ we have that

$$||D^2 I^c(z+w'+s(w-w')) - D^2 I^c(z)|| \le C \cdot (1+|c|) \cdot \rho^{\frac{2}{n-2}},$$

proving (22). Taking $\rho = 2C \cdot \varepsilon \cdot (1 + |c|)^{-\frac{n-2}{2}}$ and $\varepsilon \leq \varepsilon_0$, with ε_0 sufficiently small, there results

$$\begin{cases} C \cdot \left(\varepsilon \cdot (1+|c|)^{-\frac{n-2}{2}} + (1+|c|) \cdot \rho^{\frac{n}{n-2}} \right) < \rho, \\ C \cdot (1+|c|) \cdot \rho^{\frac{2}{n-2}} < 1. \end{cases}$$

Then $F_{z,g}$ is a contraction in B_{ρ} and hence $H_g = 0$ has a unique solution $w = w(z, g, c), \alpha = \alpha(z, g, c)$ with $||(w, \alpha)|| \le 2C \cdot \varepsilon \cdot (1 + |c|)^{-\frac{n-2}{2}}$. \Box

Remark 1. In general, the preceding arguments give rise to the following result, see [1]. Let $I_{\varepsilon}(u) = I_0(u) + O(\varepsilon)$ denote a C^2 functional and suppose that I_0 has an *n*-dimensional manifold *Z* of critical points satisfying (i) - (ii) of Lemma 3. Then for $|\varepsilon|$ small there exists a unique $w = w_{\varepsilon}(z)$ satisfying (i) - (ii) - (iii) of Proposition 1. Furthermore, the manifold $Z_{\varepsilon} = \{z + w_{\varepsilon}(z) : z \in Z\}$ is a natural constraint for I_{ε} . Hence any critical point of $I_{\varepsilon}(z + w_{\varepsilon}(z)), z \in Z$ is a critical point of I_{ε} .

3.3. Proof of Theorem 1

Throughout this section we will take ε and c is such a way that Proposition 1 applies. The main tool to prove Theorem 1 is the following Proposition

Proposition 2. There results

$$\lim_{\mu \to 0} I^c(z_{\mu,\xi} + w_g(z_{\mu,\xi})) = b_c, \quad uniformly \text{ for } \xi \text{ satisfying (5)}.$$
(23)

Hence $I^{c}|_{Z_{a}^{c}}$ can be continuously extended to ∂Z_{a}^{c} by setting

$$I^c|_{\partial Z^c_p} = b_c. (24)$$

Postponing the proof of Proposition 2, it is immediate to deduce Theorem 1.

Proof of Theorem 1. The extended functional I^c has a critical point on the compact manifold $Z_g^c \cup \partial Z_g^c$. From (24) it follows that either I^c is identically constant or it achieves the maximum or the minimum in Z_g^c . In any case I^c has a critical point on Z_g^c . According to Proposition 1, such a critical point gives rise to a solution of (Y).

In order to prove Proposition 2 we prefer to reformulate (Y) in a more convenient form using the stereographic projection σ_p , trough an appropriate point $p \in \partial S_+^n$, see Remark 3. In this way the problem reduces to study an elliptic equation in \mathbb{R}_+^n , where calculation are easier. More precisely, let $\tilde{g}_{ij} : \mathbb{R}_+^n \to \mathbb{R}$ be the components of the metric g in σ_p -stereographic co-ordinates, and let

$$\overline{g}_{ij} = \left(\frac{1+|x|^2}{2}\right)^2 \tilde{g}_{ij}.$$
(\overline{g})

Then problem (Y) is equivalent to find solutions of

$$\begin{cases} -4\frac{(n-1)}{(n-2)}\Delta_{\overline{g}}u + R_{\overline{g}}u = u^{\frac{n+2}{n-2}}, & \text{in } \mathbb{R}^n_+; \\ \frac{2}{(n-2)}\partial_{\nu_{\overline{g}}}u + h_{\overline{g}}u = cu^{\frac{n}{n-2}}, & \text{on } \partial\mathbb{R}^n_+ = \mathbb{R}^{n-1}, \\ u > 0, \quad u \in \mathcal{D}^{1,2}(\mathbb{R}^n_+), \end{cases}$$
(\overline{Y})

where the symbols have obvious meaning. Solutions of problem (\overline{Y}) can be found as critical points of the functional $f_{\overline{g}}: \mathcal{D}^{1,2}(\mathbb{R}^n_+) \to \mathbb{R}$ defined in the following way

$$f_{\overline{g}}(u) = 2\frac{(n-1)}{(n-2)} \int_{\mathbb{R}^{n}_{+}} |\nabla_{\overline{g}}u|^{2} dV_{\overline{g}} + \frac{1}{2} \int_{\mathbb{R}^{n}_{+}} R_{\overline{g}} u^{2} dV_{\overline{g}} - \frac{1}{2^{*}} \int_{\mathbb{R}^{n}_{+}} u^{2^{*}} dV_{\overline{g}} + (n-1) \int_{\partial\mathbb{R}^{n}_{+}} h_{\overline{g}} u^{2} d\sigma_{\overline{g}} - c(n-2) \int_{\partial\mathbb{R}^{n}_{+}} |u|^{2\frac{n-1}{n-2}} d\sigma_{\overline{g}}.$$

In general the transformation (\overline{g}) induces an isometry between $H^1(B)$ and $\mathcal{D}^{1,2}(\mathbb{R}^n_+)$ given by

$$u(x) \mapsto \overline{u}(x) := \left(\frac{2}{(x')^2 + (x_n + 1)^2}\right)^{\frac{n-2}{2}} \\ \times u\left(\frac{2x'}{(x')^2 + (x_n + 1)^2}, \frac{(x')^2 + x_n^2 - 1}{(x')^2 + (x_n + 1)^2}\right),$$

where $x' = (x_1, ..., x_{n-1})$. It turns out that

$$f_{\overline{g}}(\overline{u}) = I^c(u) \tag{25}$$

as well as

$$\nabla f_{\overline{g}}(\overline{u}) = \nabla I^c(u).$$

In particular this implies that u solves (Y) if and only if \overline{u} is a solution of (\overline{Y}).

Furthermore, there results

- g_0 corresponds to the trivial metric δ_{ij} on \mathbb{R}^n_+ ; - z_0 corresponds to $\overline{z}_0 \in \mathcal{D}^{1,2}(\mathbb{R}^n_+)$ given by

$$\overline{z}_0(x) = z_0(x - (0, a_0 c)), \quad x \in \mathbb{R}^n_+; \quad a_0 = \frac{\kappa}{2};$$

- Z^c corresponds to \overline{Z}^c given by

$$\overline{Z}^c = \left\{ \overline{z}_{\mu,\xi'} := \mu^{-\frac{n-2}{2}} z_0\left(\frac{x - (\xi', a_0 c\mu)}{\mu}\right), \mu > 0, \xi' \in \mathbb{R}^{n-1} \right\}.$$

Let us point out that the manifold \overline{Z}^c is nothing but $\tau_p \circ \tau_s^{-1} Z^c$ (see Notations). From the preceding items it follows that the equation

$$\nabla f_{\overline{g}}(\overline{z} + \overline{w}) \in T_{\overline{z}}\overline{Z}^c,$$

have a unique solution $\overline{w} \perp T_{\overline{z}} \overline{Z}^c$ and there results

$$\overline{w}_{\overline{g}}(\overline{z}) = \overline{w_g(z)}.$$

From this and (25) it follows

$$I^{c}(z+w_{g}(z)) = f_{\overline{g}}(\overline{z}+\overline{w}_{\overline{g}}(\overline{z})).$$
(26)

Let us now introduce the metric $\overline{g}^{\delta}(x) := \overline{g}(\delta x), \ \delta > 0$ and let $f_{\overline{g}^{\delta}} : \mathcal{D}^{1,2}(\mathbb{R}^{n}_{+}) \to \mathbb{R}$ be the corresponding Euler functional. For all $u \in \mathcal{D}^{1,2}(\mathbb{R}^{n}_{+})$ there results

$$f_{\overline{g}^{\delta}}(u) = f_{\overline{g}}\left(\delta^{\frac{2-n}{2}}u(\delta^{-1}x)\right).$$

Introducing the linear isometry $T_{\delta} : \mathcal{D}^{1,2}(\mathbb{R}^n_+) \to \mathcal{D}^{1,2}(\mathbb{R}^n_+)$ defined by $T_{\delta}(u) := \delta^{-\frac{n-2}{2}} u(x/\delta)$ this becomes

$$f_{\overline{g}^{\delta}}(u) = f_{\overline{g}}(T_{\delta}u), \qquad (27)$$

Furthermore, for all $u \in \mathcal{D}^{1,2}(\mathbb{R}^n_+)$ one has

$$\nabla f_{\overline{g}}(u) = T_{\delta} \nabla f_{\overline{g}^{\delta}}(T_{\delta}^{-1}u)$$
(28)

$$D^{2} f_{\overline{g}}(u)[v,w] = D^{2} f_{\overline{g}^{\delta}}(T_{\delta}^{-1}u)[T_{\delta}^{-1}v, T_{\delta}^{-1}w].$$
(29)

Arguing as above, there exists $\overline{w}_{\overline{g}^{\delta}}(\overline{z}_0) \in (T_{\overline{z}_0}\overline{Z}^c)^{\perp}$ such that

$$\nabla f_{\overline{g}^{\delta}}(\overline{z}_0 + \overline{w}_{\overline{g}^{\delta}}) \in T_{\overline{z}_0}\overline{Z}^c.$$

and there results

$$\overline{w}_{\overline{g}^{\delta}}(\overline{z}_0)(x) = \delta^{\frac{n-2}{2}} \overline{w}_{\overline{g}}(\overline{z}_{\delta})(\delta x),$$

namely

$$\overline{w}_{\overline{g}}(\overline{z}_{\delta}) = T_{\delta} \overline{w}_{\overline{g}^{\delta}}(\overline{z}_{0}).$$
(30)

Remark 2. From (27), (28), (29) and using the relations between $f_{\overline{g}}$ and I^c discussed above, it is easy to check that the estimates listed in Lemma 4 hold true, substituting I^c with $f_{\overline{g}^{\delta}}$ and z with \overline{z} . A similar remark holds for Proposition 1.

We are interested to the behaviour of $f_{\overline{g}^{\delta}}$ as $\delta \to 0$. To this purpose, we set

$$f_{\overline{g}(0)}(u) = \int_{\mathbb{R}^{n}_{+}} \left(2 \frac{(n-1)}{(n-2)} \sum_{i,j} \overline{g}^{ij}(0) D_{i} u D_{j} u - \frac{1}{2^{*}} |u|^{2^{*}} \right) dV_{\overline{g}(0)}$$
$$-c(n-2) \int_{\partial \mathbb{R}^{n}_{+}} |u|^{2\frac{n-1}{n-2}} d\sigma_{\overline{g}(0)},$$

which is the Euler functional corresponding to the constant metric $\overline{g}(0)$.

Remark 3. Unlike the \overline{g}^{δ} , the metric $\overline{g}(0)$ does not come from a smooth metric on *B*. This is the main reason why it is easier to deal with (\overline{Y}) instead of (Y).

Lemma 5. For all $u \in \mathcal{D}^{1,2}(\mathbb{R}^n_+)$ there results

$$\lim_{\delta \to 0} ||\nabla f_{\overline{g}^{\delta}}(u) - \nabla f_{\overline{g}(0)}(u)|| = 0;$$
(31)

$$\lim_{\delta \to 0} f_{\overline{g}^{\delta}}(u) = f_{\overline{g}(0)}(u).$$
(32)

Proof. For any $v \in \mathcal{D}^{1,2}(\mathbb{R}^n_+)$ there holds

$$\left(\nabla f_{\overline{g}^{\delta}}(u) - \nabla f_{\overline{g}(0)}(u), v\right) = \theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5,$$

where

$$\begin{aligned} \theta_{1} &= 4 \frac{n-1}{n-2} \left(\int_{\mathbb{R}^{n}_{+}} \nabla_{\overline{g}^{\delta}} u \cdot \nabla_{\overline{g}^{\delta}} v \, dV_{\overline{g}^{\delta}} - \int_{\mathbb{R}^{n}_{+}} \nabla_{\overline{g}(0)} u \cdot \nabla_{\overline{g}(0)} v \, dV_{\overline{g}(0)} \right); \\ \theta_{2} &= \int_{\mathbb{R}^{n}_{+}} R_{\overline{g}^{\delta}} u \, v \, dV_{\overline{g}^{\delta}}; \\ \theta_{3} &= \int_{\mathbb{R}^{n}_{+}} |u|^{\frac{4}{n-2}} u \, v \, (dV_{\overline{g}^{\delta}} - dV_{\overline{g}(0)}); \\ \theta_{4} &= 2(n-1) \int_{\partial \mathbb{R}^{n-1}} h_{\overline{g}^{\delta}} u \, v \, d\sigma_{\overline{g}^{\delta}}; \\ \theta_{5} &= 2c(n-1) \left(\int_{\partial \mathbb{R}^{n}_{+}} |u|^{\frac{2}{n-2}} u \, v \, d\sigma_{\overline{g}^{\delta}} - \int_{\partial \mathbb{R}^{n}_{+}} |u|^{\frac{2}{n-2}} u \, v \, d\sigma_{\overline{g}(0)} \right). \end{aligned}$$

Using the Dominated Convergence Theorem and the integrability of $|\nabla u|^2$ and of $|u|^{2^*}$, it is easy to show that θ_1, θ_3 and θ_5 converge to zero. As far as θ_2 is concerned, we first note that the bilinear form $(u, v) \rightarrow \int_{\mathbb{R}^n_+} R_{\overline{g}} u v dV_{\overline{g}}$ is uniformly bounded for $\overline{g} \in \overline{\mathcal{G}}_{\varepsilon}$, so it turns out that given $\eta > 0$ there exists $u_\eta \in C_c^{\infty}(\overline{\mathbb{R}^n_+})$ such that

$$\left| \int_{\mathbb{R}^{n}_{+}} R_{\overline{g}^{\delta}} u \ v \ dV_{\overline{g}^{\delta}} - \int_{\mathbb{R}^{n}_{+}} R_{\overline{g}^{\delta}} u_{\eta} \ v \ dV_{\overline{g}^{\delta}} \right| \leq \eta \cdot \|v\|; \qquad \forall v \in \mathcal{D}^{1,2}(\mathbb{R}^{n}_{+}).$$
(33)

Hence, since it is $R_{\overline{g}^{\delta}}(\delta^{-1}x) = \delta^2 R_{\overline{g}}(x)$ (see (13)), it follows that for δ sufficiently small

$$\left|\int_{\mathbb{R}^n_+} R_{\overline{g}^{\delta}} u_{\eta} \ v \ dV_{\overline{g}^{\delta}}\right| \leq \delta^2 \|R_{\overline{g}}\|_{L^{\infty}(B)} \|u_{\eta}\|_{\infty} \int_{supp(u_{\eta})} |v| = o(1) \cdot \|v\|$$

So, using (33) and the arbitrarity of η , one deduces that $\theta_2 = o(1) \cdot ||v||$. Similar computations hold for the term θ_4 . In the same way one can prove also (32).

We need a more complete description of $\overline{w}^0(\overline{z})$. For this, according to Remark 3, we shall study the functional $f_{\overline{g}(0)}$ in a direct fashion. If $g \in \mathcal{G}_{\varepsilon}$ then the constant metric $\overline{g}(0)$ on \mathbb{R}^n_+ satisfies $\|\overline{g}(0) - Id\|_{\infty} = O(\varepsilon)$ and thus $f_{\overline{g}(0)}$ can be seen as a perturbation of the functional

$$f_0(u) = 2\frac{(n-1)}{(n-2)} \int_{\mathbb{R}^n_+} |\nabla u|^2 dV_0 - \frac{1}{2^*} \int_{\mathbb{R}^n_+} u^{2^*} dV_0 - c(n-2) \int_{\partial \mathbb{R}^n_+} |u|^{2\frac{n-1}{n-2}} d\sigma_0,$$

corresponding to the trivial metric δ_{ij} .

Then the procedure used in Sect. 3.2 yields to find $\overline{w}^0(\overline{z})$ such that

(j) $\overline{w}^{0}(\overline{z})$ is orthogonal to $T_{\overline{z}}\overline{Z}^{c}$; (jj) $\nabla f_{\overline{g}(0)}(\overline{z} + \overline{w}^{0}(\overline{z})) \in T_{\overline{z}}\overline{Z}^{c}$; (jjj) $\|\overline{w}^{0}(\overline{z})\| \leq C \cdot \varepsilon \cdot (1 + |c|)^{-\frac{n-2}{2}} \quad \forall \overline{z} \in \overline{Z}^{c}$.

The following Lemma proves that a property stronger than (jj) holds.

Lemma 6. For all $\overline{z} \in \overline{Z}^c$ there results

$$\nabla f_{\overline{g}(0)}(\overline{z} + \overline{w}_{\overline{g}(0)}(\overline{z})) = 0.$$
(34)

Hence $\overline{z} + \overline{w}_{\overline{g}(0)}(\overline{z})$ solves

$$\begin{cases} -4\frac{(n-1)}{(n-2)}\sum_{i,j=1}^{n}\overline{g}^{ij}(0)D_{ij}^{2}u = u^{\frac{n+2}{n-2}} & \text{in } \mathbb{R}^{n}_{+};\\ \frac{2}{(n-2)}\frac{\partial u}{\partial \overline{v}} = cu^{\frac{n}{n-2}} & \text{on } \partial \mathbb{R}^{n}_{+}. \end{cases}$$
(35)

Here $\overline{\nu}$ *is the unit normal vector to* $\partial \mathbb{R}^n_+$ *with respect to* $\overline{g}(0)$ *, namely*

$$\overline{g}(0)(\overline{v},\overline{v}) = 1; \quad \overline{g}(0)(\overline{v},v) = 0, \quad \forall v \in \partial \mathbb{R}^n_+.$$

Proof. The Lemma is a simple consequence of the invariance of the functional under the transformation $T_{\mu,\xi'}: \mathcal{D}^{1,2}(\mathbb{R}^n_+) \to \mathcal{D}^{1,2}(\mathbb{R}^n_+)$ defined in the following way

$$T_{\mu,\xi'}(u) = \mu^{-\frac{n-2}{2}} u\left(\frac{x - (\xi', 0)}{\mu}\right)$$

This can be achieved with an elementary computation. It then follows that

$$\overline{w}_{\overline{g}(0)}(\overline{z}_{\mu,\xi'}) = T_{\mu,\xi'}(\overline{w}_{\overline{g}(0)}(\overline{z}_0)), \quad \text{for all } \mu,\xi'.$$

Hence, from the invariance of $f_{\overline{g}(0)}$, it turns out that

$$f_{\overline{g}(0)}(\overline{z}_{\mu,\xi'} + \overline{w}_{\overline{g}(0)}(\overline{z}_{\mu,\xi'})) = f_{\overline{g}(0)}(T_{\mu,\xi'}(\overline{z}_0 + \overline{w}_{\overline{g}(0)}(\overline{z}_0))) = f_{\overline{g}(0)}(\overline{z}_0 + \overline{w}_{\overline{g}(0)}(\overline{z}_0)).$$

Since $f_{\overline{g}(0)}(\overline{z}_{\mu,\xi'} + \overline{w}_{\overline{g}(0)}(\overline{z}_{\mu,\xi'}))$ is a constant function then, according to (j) - (jj), any $\overline{z} + \overline{w}_{\overline{g}(0)}(\overline{z})$ is a critical point of $f_{\overline{g}(0)}$, proving the lemma.

Let us introduce some further notation: \overline{G} denotes the matrix $\overline{g}_{ij}(0)$, $\nu_{\overline{g}(0)}$ is the outward unit normal to $\partial \mathbb{R}^n_+$ with respect to $\overline{g}_{ij}(0)$, and e_1, \ldots, e_n is the standard basis of \mathbb{R}^n .

Lemma 7. *The solutions u of problem (35) are, up to dilations and translations, of the form*

$$u = \overline{z}_0(Ax),$$

where A is a matrix which satisfies

$$A\overline{G}^{-1}A^T = I, \qquad \nu_{\overline{g}(0)} = \sum_j (A^{-1})_{jn} e_j.$$
(36)

In particular, up to dilations, one has that

$$\overline{z}_0 + \overline{w}_{\overline{g}(0)}(\overline{z}_0) = \overline{z}_0(A \cdot).$$

Proof. First of all we prove the existence of a matrix *A* satisfying (36). The first equality simply means that the bilinear form represented by the matrix \overline{G}^{-1} can be diagonalized, and this is standard. The matrix *A* which satisfies the first equation in (36) is defined uniquely up to multiplication on the left by an orthogonal matrix. Let (x_1, \ldots, x_n) be the co-ordinates with respect to the standard basis (e_1, \ldots, e_n) of \mathbb{R}^n , let (f_1, \ldots, f_n) be the basis given by $\mathbf{f} = (\mathbf{A}^{-1})^T \mathbf{e}$, and let (y_1, \ldots, y_n) be the co-ordinates with respect to this implies the relation between the co-ordinates x = Ay and the first of (36) implies that the bilinear form $\overline{g}^{ij}(0)$ is diagonal with respect to y_1, \ldots, y_n . Moreover, by the transitive action of O(n) over S^{n-1} we can ask that $f_n = v$; this is exactly the second equation in (36). In this way the matrix *A* is determined up to multiplication on the left by O(n-1).

We now prove that the function $\tilde{z}_0 = \bar{z}_0(Ax) = \bar{z}_0(y)$ is a solution of (35). First of all, since $v_{\overline{g}(0)}$ is $\overline{g}(0)$ -orthogonal to $\partial \mathbb{R}^{n-1}$, the domain $x_n > 0$ coincides with $y_n > 0$ and the equation in the interior is, by formula (36)

$$-4\frac{(n-1)}{(n-2)}\sum_{i,j=1}^{n}D_{x_{i}x_{j}}^{2}\tilde{z}_{0}(x) = -4\frac{(n-1)}{(n-2)}\sum_{i,j}\overline{g}^{ij}A_{li}A_{kj}D_{y_{k}y_{l}}^{2}\overline{z}_{0}(Ay) = \tilde{z}_{0}^{\frac{n+2}{n-2}}(x).$$

Moreover, since $\nu = f_n = \sum_j (A^{-1})_{nj}^T e_j = \sum_j (A^{-1})_{jn} e_j$, it turns out that on $\partial \mathbb{R}^n_+$

$$\begin{aligned} \frac{\partial \tilde{z}_0}{\partial \bar{\nu}}(x) &= \sum_j (A^{-1})_{jn} D_{x_j} \bar{z}_0(Ay) \\ &= \sum_{j,k} (A^{-1})_{jn} A_{kj} D_{y_k} \bar{z}_0(Ay) = D_{y_n} \bar{z}_0(Ay) = c \tilde{z}_0^{\frac{n}{n-2}}(x). \end{aligned}$$

Hence also the boundary condition is satisfied. Moreover, the function $\overline{z}_0 \in \mathcal{D}^{1,2}(\mathbb{R}^n_+)$ is the unique solution up to dilation and translation of problem (\overline{Y}) with $\overline{g}_{ij} = Id$, see [14]. As pointed out before, if A and A' are two matrices satisfying (36), they differ up to O(n-1). Then it is easy to check that $\overline{z}_0(Ax) = \overline{z}_0(A'x)$ and hence \tilde{z}_0 is unique up to dilation and translation. This concludes the proof.

Corollary 1. The quantity $f_{\overline{g}(0)}(\overline{z}_0 + \overline{w}^0(\overline{z}_0))$ is independent of $\overline{g}(0)$. Precisely one has:

$$f_{\overline{g}(0)}(\overline{z}_0 + \overline{w}^0(\overline{z}_0)) = b_c.$$

Proof. There holds

$$\begin{split} f_{\overline{g}(0)}(\overline{z}_{0} + \overline{w}_{\overline{g}(0)}(\overline{z}_{0})) \\ &= 2 \frac{(n-1)}{(n-2)} \int_{\mathbb{R}^{n}_{+}} \sum_{i,j,k,l} \overline{g}^{ij}(0) A_{ki} A_{lj} D_{k} \overline{z}_{0}(Ay) D_{l} \overline{z}_{0}(Ay) dV_{\overline{g}(0)}(y) \\ &- \frac{1}{2^{*}} \int_{\mathbb{R}^{n}_{+}} |\overline{z}_{0}(Ay)|^{2^{*}} dV_{\overline{g}(0)}(y) - c(n-2) \int_{\partial \mathbb{R}^{n}_{+}} |\overline{z}_{0}(Ay)|^{2\frac{n-1}{n-2}} d\sigma_{\overline{g}(0)}(y). \end{split}$$

Using the change of variables x = Ay, and taking into account equations (12) and (36) we obtain the claim. This concludes the proof.

Lemma 8. There holds

$$\overline{w}_{\overline{g}^{\delta}}(\overline{z}_0) \to \overline{w}_{\overline{g}(0)} \quad as \ \delta \to 0.$$
(37)

Proof. Define $\overline{H}^{\delta} : \mathcal{D}^{1,2}(\mathbb{R}^n_+) \times \mathbb{R}^n \times \overline{Z}^c \to \mathcal{D}^{1,2}(\mathbb{R}^n_+) \times \mathbb{R}^n$ by setting

$$\overline{H}^{\delta}(w,\alpha,\overline{z}) = \begin{pmatrix} \nabla f_{\overline{g}^{\delta}}(\overline{z} + \overline{w}_{\overline{g}(0)} + w) - \alpha \overline{z} \\ (w, \dot{\overline{z}}) \end{pmatrix}.$$

One has that

$$\nabla f_{\overline{g}^{\delta}}(\overline{z} + \overline{w}_{\overline{g}(0)} + w) = \nabla f_{\overline{g}^{\delta}}(\overline{z} + \overline{w}_{\overline{g}(0)}) + D^2 f_{\overline{g}^{\delta}}(\overline{z} + \overline{w}_{\overline{g}(0)})[w] + \vartheta(w)$$

where

$$\vartheta(w) := \int_0^1 \left(D^2 f_{\overline{g}^{\delta}}(\overline{z} + \overline{w}_{\overline{g}(0)} + sw) - D^2 f_{\overline{g}^{\delta}}(\overline{z} + \overline{w}_{\overline{g}(0)}) \right) [w] ds.$$

Recall that $D^2 f_{\overline{g}^{\delta}}(\overline{z})$ is invertible on $(T_{\overline{z}}\overline{Z}^c)^{\perp}$. Since $\overline{w}_{\overline{g}(0)}$ satisfies (jjj), then also $D^2 f_{\overline{g}^{\delta}}(\overline{z} + \overline{w}_{\overline{g}(0)})$ is invertible on $(T_{\overline{z}}\overline{Z}^c)^{\perp}$. As a consequence, the equation $\nabla f_{\overline{g}^{\delta}}(\overline{z} + \overline{w}_{\overline{g}(0)} + w) = 0, w \in (T_{\overline{z}}\overline{Z}^c)^{\perp}$ is equivalent, on $(T_{\overline{z}}\overline{Z}^c)^{\perp}$, to

$$w = -\left(D^2 f_{\overline{g}^{\delta}}(\overline{z} + \overline{w}_{\overline{g}(0)})\right)^{-1} \left[\nabla f_{\overline{g}^{\delta}}(\overline{z} + \overline{w}_{\overline{g}(0)}) + \vartheta(w)\right]$$

In addition, by Remark 2, we can use the estimates corresponding to (19) of Lemma 4 and to (iii) of Proposition 1, to infer that

$$\vartheta(w) = \int_0^1 \left(D^2 f_{\overline{g}^\delta}(\overline{z} + \overline{w}_{\overline{g}(0)} + sw) - D^2 f_{\overline{g}^\delta}(\overline{z} + \overline{w}_{\overline{g}(0)}) \right) [w] ds = o(||w||).$$

Then, repeating the arguments used in Sect. 3.2 with small changes, one can show that the equation $\overline{H}^{\delta} = 0$ has a unique solution $w = \omega$ such that

$$\|\omega\| \le C \cdot \|\nabla f_{\overline{g}^{\delta}}(\overline{z} + \overline{w}_{\overline{g}(0)})\|.$$

From (34) and (31) it follows that $\|\omega\| \to 0$ as $\delta \to 0$. Since both $\overline{w}_{\overline{g}(0)} + \omega$ and $\overline{w}_{\overline{g}^{\delta}}$ solve (on $(T_{\overline{z}}\overline{Z}^c)^{\perp}$) the same equation, we infer by uniqueness that $\overline{w}_{\overline{g}^{\delta}} = \overline{w}_{\overline{g}(0)} + \omega$. Finally, since $\|\omega\| \to 0$ as $\delta \to 0$, then (37) follows. \Box

Remark 4. All the preceding discussion has been carried out by taking the stereographic projection σ_p through an arbitrary $p \in S^{n-1}$. We are interested to the limit (23). When $\mu \to 0$ then $\xi \to \overline{\xi}$ for some $\overline{\xi} \in S^{n-1}$ and it will be convenient to choose $p = -\overline{\xi}$.

We are now in position to give:

Proof of Proposition 2. As pointed out in Remark 4, we take $p = -\overline{\xi}$ and use all the preceding results proved so far in this section. With this choice, when $(\mu, \xi) \rightarrow (0, \overline{\xi})$ with $\xi = |\xi| \cdot \overline{\xi}$, $z_{\mu,\xi}$ corresponds to $\overline{z}_{\mu'} := \overline{z}_{\mu',0}$, for some $\mu' \rightarrow 0$.

Next, in view of (26), we will show that

$$\lim_{\mu'\to 0} f_{\overline{g}}(\overline{z}_{\mu'} + \overline{w}_{\overline{g}}(\overline{z}_{\mu'})) = b_c.$$

By Corollary 1, $b_c = f_{\overline{g}(0)}(\overline{z}_0 + \overline{w}_{\overline{g}(0)})$ and hence we need to prove that

$$\lim_{\mu'\to 0} \left[f_{\overline{g}}(\overline{z}_{\mu'} + \overline{w}_{\overline{g}}(\overline{z}_{\mu'})) - f_{\overline{g}(0)}(\overline{z}_0 + \overline{w}_{\overline{g}(0)}) \right] = 0.$$

Using (30), we have

$$f_{\overline{g}}(\overline{z}_{\mu'} + \overline{w}_{\overline{g}}(\overline{z}_{\mu'})) = f_{\overline{g}}(\overline{z}_{\mu'} + T_{\mu'}\overline{w}_{\overline{g}^{\mu'}}(\overline{z}_0)).$$

Then we can write

$$\begin{split} f_{\overline{g}}(\overline{z}_{\mu'} + \overline{w}_{\overline{g}}(\overline{z}_{\mu\mu'})) &- f_{\overline{g}(0)}(\overline{z}_0 + \overline{w}_{\overline{g}(0)}) = f_{\overline{g}}(\overline{z}_{\mu'} + T_{\mu'}\overline{w}_{\overline{g}^{\mu'}}(\overline{z}_0)) \\ &= f_{\overline{g}}(\overline{z}_{\mu'} + T_{\mu'}\overline{w}_{\overline{g}^{\mu'}}(\overline{z}_0)) - f_{\overline{g}}(\overline{z}_{\mu'} + T_{\mu'}\overline{w}_{\overline{g}(0)}(\overline{z}_0)) \\ &+ \ddot{i}f_{\overline{g}}(\overline{z}_{\mu'} + T_{\mu'}\overline{w}_{\overline{g}(0)}(\overline{z}_0)) - f_{\overline{g}(0)}(\overline{z}_0 + \overline{w}_{\overline{g}(0)}). \end{split}$$

From (17) with I^c substituted by $f_{\overline{g}}$, we infer

$$\begin{split} \left| f_{\overline{g}}(\overline{z}_{\mu'} + T_{\mu'}\overline{w}_{\overline{g}^{\mu'}}(\overline{z}_0)) - f_{\overline{g}}(\overline{z}_{\mu'} + T_{\mu'}\overline{w}_{\overline{g}(0)}(ovz_0)) \right| \\ &\leq C \cdot \|T_{\mu'}\overline{w}_{\overline{g}^{\mu'}}(\overline{z}_0) - T_{\mu'}\overline{w}_{\overline{g}(0)}(\overline{z}_0)\| \\ &\leq C \cdot \|\overline{w}_{\overline{g}^{\mu'}}(\overline{z}_0) - \overline{w}_{\overline{g}(0)}(\overline{z}_0)\| \\ &= o(1) \quad \text{as } \mu' \to 0. \end{split}$$

Using $\overline{z}_{\mu'} = T_{\mu'}\overline{z}_0$ and (27), we deduce

$$f_{\overline{g}}(\overline{z}_{\mu'} + T_{\mu'}\overline{w}_{\overline{g}^{\mu'}}(\overline{z}_0)) = f_{\overline{g}}\left(T_{\mu'}(\overline{z}_0 + \overline{w}_{\overline{g}^{\mu'}}(\overline{z}_0))\right) = f_{\overline{g}^{\mu'}}(\overline{z}_0 + \overline{w}_{\overline{g}(0)}).$$

Finally

$$\begin{split} & \left| f_{\overline{g}}(\overline{z}_{\mu'} + T_{\mu'}\overline{w}_{\overline{g}^{\mu'}}(\overline{z}_0)) - f_{\overline{g}(0)}(\overline{z}_0 + \overline{w}_{\overline{g}(0)}) \right| \\ &= \left| f_{\overline{g}^{\mu'}}(\overline{z}_0 + \overline{w}_{\overline{g}(0)}) - f_{\overline{g}(0)}(\overline{z}_0 + \overline{w}_{\overline{g}(0)}) \right| \to 0, \end{split}$$

according to Lemma 5. Since the above arguments can be carried out uniformly with respect to $\xi' \in S^{n-1}$, the proof is completed.

4. The scalar curvature problem

In this section the value of *c* is fixed. Therefore its dependence will be omitted. So we will write I_{ε} instead of I_{ε}^{c} , I_{0} instead of I_{0}^{c} , etc.

4.1. The abstract setting

Solutions of problem (P_{ε}) can be found as critical points of the functional I_{ε} : $H^1(B) \to \mathbb{R}$ defined as

$$I_{\varepsilon}(u) = I_0(u) - \varepsilon G(u)$$

where the unperturbed functional $I_0^c(u)$ is defined by (see Sect. 2)

$$I_0(u) = \frac{1}{2} \|u\|_1^2 - \frac{1}{2^*} \int_B |u|^{2^*} - c(n-2) \int_{S^{n-1}} |u|^{2\frac{n-1}{n-2}}$$

and the perturbation G has the form

$$G(u) = \frac{1}{2^*} \int_B K(x) |u|^{2^*} dx + (n-2) \int_{S^{n-1}} h(x) |u|^{2\frac{n-1}{n-2}} d\sigma.$$

The existence of critical points of I_{ε} will be faced by means of the perturbation theory studied in [1]. Precisely, let us recall that I_0 possesses an *n*-dimensional manifold $Z = Z^c$, given by (6). Moreover, Z is non-degenerate in the sense that (i) - (ii) of Lemma 3 hold true. Then the results of [1] lead to consider the finite dimensional functional $\Gamma := G|_Z$ and give rise to the following Theorem:

Theorem 5. In the preceding setting, let us suppose that either

(a) Γ has a strict maximum (minimum) on Z; or

(b) there exists an open subset $\Omega \subset \subset Z$ such that $deg(\Gamma', \Omega, 0) \neq 0$.

Then I_{ε} has a critical point close to Z, provided ε is small enough.

In our specific case, the function $\Gamma(\mu, \xi) = G(z_{\mu,\xi})$ has the expression

$$\Gamma(\mu,\xi) = \frac{1}{2^*} \int_B K(x) z_{\mu,\xi}^{2^*}(x) dx + (n-2) \int_{S^{n-1}} h(\sigma) z_{\mu,\xi}^{2\frac{(n-1)}{(n-2)}}(\sigma) d\sigma, \quad (38)$$

where $\mu > 0$ and $\xi \in \mathbb{R}^n$ are related to *c* by (5), namely by

$$\mu^2 + |\xi|^2 - c\kappa\mu - 1 = 0.$$

In order to apply the preceding abstract result we need to study the behaviour of Γ at the boundary of Z, which is given by

$$\partial Z = \{ z_{\mu,\xi_0} : \mu = 0, |\xi_0| = 1 \}.$$

The following lemma will be proved in the Appendix and describes the behaviour of Γ at ∂Z . Below a_1, \ldots, a_6 denote positive constants defined in the Appendix.

Lemma 9. Let $|\xi_0| = 1$ and let v denote the outher normal direction to ∂Z at $(0, \xi_0)$. Γ can be extended to ∂Z and there results:

(a) $\Gamma(0,\xi_0) = a_1 K(\xi_0) + a_2 h(\xi_0);$

(b)
$$\partial_{\nu} \Gamma(0, \xi_0) = a_3 K'(\xi_0) \cdot \xi_0$$

(c) suppose that $K'(\xi_0) \cdot \xi_0 = 0$ and let n > 3. Then

$$\partial_{\nu}^{2} \Gamma(0,\xi_{0}) = 4 \left[a_{4} \Delta_{T} K(\xi_{0}) + a_{5} D^{2} K(\xi_{0}) [\xi_{0},\xi_{0}] + a_{6} \Delta_{T} h(\xi_{0}) \right].$$

Furthermore, if n = 3 *and* $\Delta_T h(\xi_0) \neq 0$ *, then*

$$\partial_{\nu}^{2} \Gamma(0,\xi_{0}) = \begin{cases} +\infty \quad \text{provided } \Delta_{T}h(\xi_{0}) > 0, \\ -\infty \quad \text{provided } \Delta_{T}h(\xi_{0}) < 0. \end{cases}$$

The above Lemma is the counterpart of the calculation carried out in [2] for the Scalar Curvature Problem on S^n .

4.2. A general existence result

Let us consider the auxiliary function $\psi : S^{n-1} \to \mathbb{R}$ defined by

$$\psi(x) = a_1 K(x) + a_2 h(x), \quad x \in S^{n-1}.$$

If $x \in Crit(\psi)$ we denote by $m(x, \psi)$ its Morse index.

Theorem 6. Suppose that either

- (a) there exists an absolute maximum (resp. minimum) $p \in S^{n-1}$ of ψ such that $K'(p) \cdot p < 0$ (resp. $K'(p) \cdot p > 0$); or
- (b) ψ is a Morse function satisfying

$$K'(x) \cdot x \neq 0, \quad \forall x \in Crit(\psi);$$
 (39)

$$\sum_{x \in Crit(\psi), K'(x) \cdot x < 0} (-1)^{m(x,\psi)} \neq 1.$$
(40)

Then for $|\varepsilon|$ sufficiently small, problem (P_{ε}) has a positive solution.

Proof. We look for critical points of Γ on $Z \simeq B$. Lemma 9-(*a*) and the notation introduced before says that $\Gamma|_{\partial Z} = \psi$

(a) Let p_0 denote the point where Γ achieves its absolute maximum on the compact set $\overline{Z} = Z \cup \partial Z$. Lemma 9-(b) and the preceding assumption (a)

imply that $p_0 \in Z$. Then the existence of a critical point of I_{ε} , for $|\varepsilon|$ small, follows from Theorem 5-(*a*).

(b) According to Lemma 9-(b), if (39) holds then $\partial_{\nu} \Gamma(p) \neq 0$ at any critical point of $\Gamma|_{\partial Z}$. Hence Γ satisfies the general boundary conditions on ∂Z , see [19]. Moreover, setting

$$\partial Z^- = \{ (0, \xi_0) \in \partial Z : \partial_\nu \Gamma(\xi_0) < 0 \},\$$

there results

$$\partial Z^- = \{(0, \xi_0) : |\xi_0| = 1, K'(\xi_0) \cdot \xi_0 < 0\}.$$

In particular, the critical points of ψ on the *negative boundary* ∂Z^- are precisely the $x \in Crit(\psi)$ such that $K'(x) \cdot x < 0$. Then, by a well known formula, see [13], we infer that

$$deg(\Gamma', Z, 0) = 1 - \sum_{x \in Crit(\psi): K'(x) \cdot x < 0} (-1)^{m(x,\psi)}.$$
 (41)

Hence, by (40), $deg(\Gamma', Z, 0) \neq 0$ and Theorem 5-(*b*) applies yielding the existence of a critical point of I_{ε} , for $|\varepsilon|$ small.

Remark 5. (*a*) If $h \equiv 0$ then ψ equals, up to the positive constant a_1 , *K*. Hence the assumption made in case (*b*) is precisely condition (K_1), while (39) and (40), are nothing but conditions (K_2) and (K_3). As a consequence, Theorem 6-(*a*) implies Theorem 2 and Theorem 6-(*b*) implies Theorem 3.

(b) Theorem 6-(b) is the counterpart of the results of [16] where it is taken c = h = 0 but R' is possibly not close to a constant. Conditions like (b) are reminiscent of conditions used by Bahri-Coron [8] dealing with the scalar curvature problem on S^3 , see also [2, 17] for results on S^n . In contrast, assumption (a) is a new feature due to the presence of the boundary and has no counterpart in the problem on all S^n .

(c) Theorem 6 can be the starting point to prove a global result, see [18]. Here we limit ourselves to point out that (41) can be used to evaluate the degree of I'_{ε} . Actually, since z is a Mountain Pass critical point, the multiplicative property of the degree immediately implies that

$$deg(I_{\varepsilon}', B_r, 0) = (-1) \cdot deg(\Gamma', Z, 0) = \sum_{x \in Crit(\psi): K'(x) \cdot x < 0} (-1)^{m(x, \psi)} - 1.$$
(42)

Our second general existence result deals with the case in which

$$K'(x) \cdot x = 0, \quad \forall x \in Crit(\psi).$$
 (43)

In such a case, motivated by Lemma 9-(c), we introduce the function $\Psi : S^{n-1} \to \mathbb{R}$,

$$\Psi(x) = a_4 \Delta_T K(x) + a_5 D^2 K(x)[x, x] + a_6 \Delta_T h(x).$$

Let us note that, according to Lemma 9-(c) there results $\partial_{\nu}^{2} \Gamma(0, \xi_{0}) = 4\Psi(\xi_{0})$.

Theorem 7. Suppose that (43) holds and that

$$\Psi(x) \neq 0, \quad \forall x \in Crit(\psi).$$
 (44)

Let ψ be a Morse function and assume that

$$\sum_{x \in Crit(\psi), \, \Psi(x) < 0} (-1)^{m(x,\psi)} \neq 1.$$
(45)

Furthermore, if n = 3, we also assume that $\Delta_T h(x) \neq 0$ for all $x \in Crit(\psi)$. Then for $|\varepsilon|$ sufficiently small, problem (P_{ε}) has a solution

Proof. The proof will make use of arguments similar to those emploied for Theorem 6-(b). But, unlike above, the theory of critical points under general boundary conditions cannot be applied directly because now (43) implies that

 $\partial_{\nu}\Gamma = 0$ at all the critical points of ψ . In order to overcome this problem, we consider for $\delta > 0$ sufficiently small, the set $Z_{\delta} := \{(\mu, \xi) \in Z : \mu > \delta\}$ with boundary $\partial Z_{\delta} = \{(\mu, \xi) \in Z : \mu = \delta\}$. Since ψ is a Morse function, it readily follows that for any $\xi_0 \in Crit(\psi)$ there exists (for δ small enough) a unique ξ_{δ} such that

- (*i*) $(\delta, \xi_{\delta}) \in \partial Z_{\delta}$ and $\xi_{\delta} \to \xi_0$ as $\delta \to 0$;
- (*ii*) ξ_{δ} is a critical point of $\Gamma|_{\partial Z_{\delta}}$; moreover, $\Gamma|_{\partial Z_{\delta}}$ has no other critical point but ξ_{δ} ;
- (*iii*) the Morse index of ξ_{δ} is the same $m(\xi_0, \psi)$;

Furthermore, we claim that,

(*iv*) Γ verifies the general boundary conditions on Z_{δ} .

Actually, (44), or $\Delta_T h(\xi_0) \neq 0$ if n = 3, jointly with Lemma 9-(*c*), implies that $\partial_{\nu} \Gamma(\delta, \xi_{\delta}) \neq 0$ for δ small. More precisely, $\partial_{\nu} \Gamma(\delta, \xi_{\delta}) < 0$ iff $\xi_{\delta} \rightarrow \xi_0$ with $\Psi(\xi_0) < 0$. Therefore, the critical points of $\Gamma|_{\partial Z_{\delta}}$ on the *negative boundary* ∂Z_{δ}^- are in one-to-one correspondence with the $x \in Crit(\psi)$ such that $\Psi(x) < 0$. From the above arguments we infer that

$$deg(\Gamma', Z_{\delta}, 0) = 1 - \sum_{x \in Crit(\psi): \Psi(x) < 0} (-1)^{m(x,\psi)}.$$

Then (45) implies that $deg(\Gamma', Z_{\delta}, 0) \neq 0$ and the result follows.

Remark 6. (a) If $K \equiv 0$ then, up to positive constants, $\psi = h$ and $\Psi = \Delta_T h$ and thus Theorem 4 is a particular case of Theorem 7.

(b) It can be shown that our arguments can be adapted to handle an equation like (1) with $R' = \varepsilon K$ and $h' = c + \varepsilon h$, which can be seen as an extension of (3) where R' = 0 and c = 1 is taken. This would lead to improve the results of [9]. For brevity, we do not carry out the details here.

(c) In all the above results we can deal with $-\Gamma$ instead of Γ . In such a case the condition (40) or (45) become $\sum_{x \in Crit(\psi), \Psi(x)>0} (-1)^{m(x,\psi)} \neq (-1)^{n-1}$, $\sum_{x \in Crit(\psi), K'(x) \cdot x>0} (-1)^{m(x,\psi)} \neq (-1)^{n-1}$, respectively.

4.3. The symmetric case

When *K* and *h* inherit a symmetry one can obtain much more general results. They can be seen as the counterpart of the ones dealing with the Scalar Curvature problem on S^n discussed in [4].

Theorem 8. Let us suppose that K and h are invariant under the action of a group of isometries $\Sigma \subset \mathbf{O}(n)$, such that $Fix(\Sigma) = 0 \in \mathbb{R}^n$. Then for $|\varepsilon|$ sufficiently small, problem (P_{ε}) has a solution.

Proof. The proof relies on the arguments of [4, Sec. 4]. For the sake of brevity, we will be sketchy, referring to such a paper for more details. We use the finite dimensional reduction discussed in the Sect. 3.2, with $I^c = I_{\varepsilon}$ and $Z^c = Z$, see Remark 1. From those results we infer that the manifold

$$Z_{\varepsilon} = \{z_{\mu,\xi} + w_{\varepsilon}(z_{\mu,\xi}) : \mu, \xi \text{ satisfying (5)}\}$$

is a *natural constraint* for I_{ε} . Let us recall that here $w = w_{\varepsilon}(z_{\mu,\xi})$ is the solution of the equation

$$\nabla I_{\varepsilon}(z_{\mu,\xi}+w) \in T_{z_{\mu,\xi}}Z.$$

According to Remark 1, it suffices to find a critical point of $\Phi_{\varepsilon}(\mu, \xi) := I_{\varepsilon}(z_{\mu,\xi} + w_{\varepsilon}(z_{\mu,\xi}))$. It is possible to show that Φ_{ε} is invariant under the action τ of a group acting on Z and depending upon Σ . Moreover, from the fact that $\text{Fix}(\Sigma) = \{0\}$ it follows that $(\mu, \xi) \in \text{Fix}(\tau)$ iff $\xi = 0$ and (hence) $\mu = \mu_0 := \frac{1}{2} \left(c\kappa + \sqrt{c^2 \kappa^2 + 4} \right)$. Plainly, Φ_{ε} has a critical point at $\mu = \mu_0, \xi = 0$, which gives rise to a solution of (P_{ε}) .

For the reader convenience, let us give some more details in the specific case that *K* and *h* are even functions, when the arguments do not require new notation. We claim that if *K* and *h* are even then Φ_{ε} is invariant under the action τ given by $\tau : (\mu, \xi) \mapsto (\mu, -\xi)$. In other words, we will show that there results

$$\Phi_{\varepsilon}(\mu,\xi) = \Phi_{\varepsilon}(\mu,-\xi). \tag{46}$$

In order to prove (46), we first remark that $z_{\mu,-\xi}(x) = z_{\mu,\xi}(-x)$. From this and using the fact that *K* and *h* are even, one checks that $w = w_{\varepsilon}(z_{\mu,\xi})(-x)$ satisfies the equation, defining the *natural constraint* Z_{ε} ,

$$\nabla I_{\varepsilon}(z_{\mu,-\xi}+w) \in T_{z_{\mu,-\xi}}Z,$$

By uniqueness, it follows that $w_{\varepsilon}(z_{\mu,\xi})(-x) = w_{\varepsilon}(z_{\mu,-\xi})(x)$. Then one infers:

$$I_{\varepsilon}(z_{\mu,-\xi}(x) + w_{\varepsilon}(z_{\mu,-\xi})(x)) = I_{\varepsilon}(z_{\mu,\xi}(-x) + w_{\varepsilon}(z_{\mu,\xi})(-x))$$
$$= I_{\varepsilon}(z_{\mu,\xi} + w_{\varepsilon}(z_{\mu,\xi})),$$

proving (46).

Remark 7. (a) Coming back to the Scalar Curvature problem on the upper half sphere S_+^n , an even function K corresponds to prescribing a scalar curvature on S_+^n which is invariant under the symmetry $(x_1, \ldots, x_n, x_{n+1}) \mapsto (-x_1, \ldots, -x_n, x_{n+1})$.

(b) Using again the arguments of [4] one could treat the invariance under a group Σ such that $Fix(\Sigma) \neq \{0\}$.

A. Appendix

A.1. Proofs of technical Lemmas

First we prove

Lemma 10. Given M > 0, there exists C > 0 such that for all c > -M there holds

$$||z|| \le C \cdot (1+|c|)^{-\frac{n-2}{2}} \quad for all \ z \in Z^c.$$
(47)

Proof. By symmetry it suffices to take By symmetry it suffices to take $\xi = 0$ and consider $z = z_{\mu}$. As $c \to +\infty$ one has that $\mu \sim \kappa c$ and $z_{\mu} \sim \mu^{(n-2)/2}$ in *B*. Then the lemma follows by a straight calculation.

Now we start by proving Eq. (15). Since it is clearly $\nabla I_0^c(z) = 0$, it is sufficient to estimate the quantity $\|\nabla I^c(z) - \nabla I_0^c(z)\|$. Given $v \in H^1(B)$ and setting

$$\begin{aligned} \alpha_1 &= 4 \frac{(n-1)}{(n-2)} \int_B \nabla_g z \cdot \nabla_g v \, dV_g - 4 \frac{(n-1)}{(n-2)} \int_B \nabla_z \cdot \nabla v \, dV_0; \\ \alpha_2 &= \int_B R_g \, z \, v \, dV_g; \\ \alpha_3 &= \int_B z^{\frac{n+2}{n-2}} v \, dV_0 - \int_B z^{\frac{n+2}{n-2}} v \, dV_g; \quad \alpha_4 = 2(n-1) \int_{\partial B} h_g \, z \, v \, d\sigma_g; \\ \alpha_5 &= 2(n-1) \, c \int_{\partial B} z^{\frac{n}{n-2}} v \, d\sigma_g - 2(n-1) \, c \int_{\partial B} z^{\frac{n}{n-2}} v \, d\sigma_0, \end{aligned}$$

there holds

$$\left(\nabla I^c(z) - \nabla I^c_0(z), v\right) = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5.$$
(48)

As far as α_1 is concerned, taking into account of equations (12), (14) and the fact that $||z|| \le C \cdot (1 + |c|)^{-\frac{n-2}{2}}$ (see Lemma 10) one deduces that

$$\begin{aligned} |\alpha_1| &\leq C \int_B \left| \nabla_g z \cdot \nabla_g v - \nabla z \cdot \nabla v \right| dx + C \int_B \left| \nabla z \cdot \nabla v \right| \left| dV_g - dV_0 \right| \\ &\leq C \cdot \varepsilon \cdot (1 + |c|)^{-\frac{n-2}{2}} \cdot \|v\|. \end{aligned}$$

$$\tag{49}$$

Turning to α_2 we recall that the expression of R_g as a function of g, is of the type

$$R_g = D\Gamma + G^2;$$
 $\Gamma = Dg,$ \Rightarrow $R_g = D^2g + (Dg)^2.$

We start by estimating the quantity $\int_B R_g z v dV_0$. Integrating by parts, the term $\int_B D^2 g z v dV_0$ transforms into

$$\int_B D^2 g \ z \ v \ dV_0 = \int_{\partial B} Dg \ z \ v \ d\sigma_0 + \int_B Dg \ D(zv) dV_0.$$

Hence, if $g \in \mathcal{G}_{\varepsilon}$ (see expression (2)), from the Hölder inequality it follows that

$$\int_{B} R_{g} z v \, dV_{0} \simeq \int_{B} (D^{2}g + (Dg)^{2}) z v \, dV_{0} \le C \cdot \varepsilon \cdot \|z\| \cdot \|v\|,$$

and hence

$$|\alpha_{2}| \leq \int_{B} \left| R_{g} z v \right| dV_{0} + \int_{B} |R_{g} z v| |dV_{g} - dV_{0}| \leq C \cdot \varepsilon \cdot (1 + |c|)^{-\frac{n-2}{2}} \cdot ||v||.$$
(50)

With simple estimates one can also prove that

$$|\alpha_3| \le C \cdot \varepsilon \cdot (1+|c|)^{-\frac{n+2}{2}} \cdot ||v||.$$
(51)

The function h_g is of the form $h_g = Dg$ so, taking into account (2) one finds

$$|\alpha_4| \le C \cdot \varepsilon \cdot (1+|c|)^{-\frac{n-2}{2}} \cdot ||v||.$$
(52)

In order to estimate the last term α_5 , using the continuous embedding $H^1(B) \hookrightarrow L^{2\frac{n-1}{n-2}}(S^{n-1})$ and the Hölder inequality one deduces that

$$|\alpha_5| \le C \cdot \varepsilon \cdot (1+|c|) \cdot \|z\|_{L^{\frac{n}{n-2}}(S^{n-1})}^{\frac{n}{n-2}} \cdot \|v\| \le C \cdot \varepsilon \cdot (1+|c|) \cdot (1+|c|)^{-\frac{n}{2}} \cdot \|v\|.$$

Putting together equations (49)-(52) one deduces (15).

Turning to equation (19) and given $v_1, v_2 \in H^1(B)$, there holds

$$(D^2 I^c(z+w) - D^2 I^c(z))[v_1, v_2] = \delta_1 + \delta_2,$$

where

$$\delta_{1} = \frac{(n+2)}{(n-2)} \left(\int_{B} u^{\frac{4}{n-2}} v_{1} v_{2} dV_{g} - \int_{B} (u+w)^{\frac{4}{n-2}} v_{1} v_{2} dV_{g} \right)$$

$$\delta_{2} = 2n \frac{(n-1)}{(n-2)} c \left(\int_{\partial B} u^{\frac{2}{n-2}} v_{1} v_{2} d\sigma_{g} - \int_{\partial B} (u+w)^{\frac{2}{n-2}} v_{1} v_{2} d\sigma_{g} \right).$$

Using standard inequalities one finds that

$$\begin{split} |\delta_{1}| &\leq \begin{cases} C \cdot \|w\|^{\frac{4}{n-2}} & \text{for } n \geq 6, \\ C \cdot \|w\| \cdot \left(\|u\|^{\frac{6-n}{n-2}} + \|w\|^{\frac{6-n}{n-2}}\right) & \text{for } n < 6; \end{cases} \\ |\delta_{2}| &\leq \begin{cases} C \cdot (1+|c|) \cdot \|w\|^{\frac{4}{n-2}} & \text{for } n \geq 4, \\ C \cdot (1+|c|) \cdot \|w\| \cdot \left(\|u\|^{\frac{4-n}{n-2}} + \|w\|^{\frac{4-n}{n-2}}\right) & \text{for } n < 4, \end{cases} \\ \|D^{2}I^{c}(z+w) - D^{2}I^{c}(z)\| \leq C \cdot |c| \cdot \|w\|^{\frac{2}{n-2}}. \end{split}$$
(53)

so we obtain the estimate.

We now prove inequality (16). Given $v_1, v_2 \in H^1(B)$ and setting

$$\begin{split} \beta_1 &= 4 \frac{(n-1)}{(n-2)} \int_B \nabla_g v_1 \cdot \nabla_g v_2 \, dV_g - 4 \frac{(n-1)}{(n-2)} \int_B \nabla v_1 \cdot \nabla v_2 \, dV_0; \\ \beta_2 &= \int_B R_g \, v_1 \, v_2 \, dV_g; \\ \beta_3 &= \frac{(n+2)}{(n-2)} \int_B z^{\frac{4}{n-2}} v_1 \, v_2 \, dV_0 - \frac{(n+2)}{(n-2)} \int_B z^{\frac{4}{n-2}} v_1 \, v_2 \, dV_g; \\ \beta_4 &= 2(n-1) \int_{\partial B} h_g \, v_1 \, v_2 \, d\sigma_g; \\ \beta_5 &= 2n \frac{(n-1)}{(n-2)} \, c \int_{\partial B} z^{\frac{2}{n-2}} v_1 \, v_2 \, d\sigma_g - 2n \frac{(n-1)}{(n-2)} \, c \int_{\partial B} z^{\frac{2}{n-2}} v_1 \, v_2 \, d\sigma_0, \end{split}$$

there holds

$$(D^2 I^c(z) - D^2 I^c_0(z))[v_1, v_2] = \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5.$$
(54)

For β_1 , taking into account equation (14) one finds

$$\begin{aligned} |\beta_1| &\leq C \int_B \left| \nabla_g v_1 \cdot \nabla_g v_2 - \nabla v_1 \cdot \nabla v_2 \right| dV_0 + C \int_B \left| \nabla v_1 \cdot \nabla v_2 \right| \cdot \left| dV_g - dV_0 \right| \\ &\leq C \cdot \varepsilon \cdot \|v_1\| \cdot \|v_2\|. \end{aligned}$$
(55)

Turning to β_2 reasoning as for the above term α_2 one deduces that

$$|\beta_2| \le \int_B |R_g z v| dV_g \le C \cdot \varepsilon \cdot ||v_1|| \cdot ||v_2||.$$
(56)

In the same way one can prove that

$$|\beta_3| \le C \cdot \varepsilon \cdot \|z\|^{\frac{4}{n-2}} \cdot \|v_1\| \cdot \|v_2\| \le C \cdot \varepsilon \cdot (1+|c|)^{-2} \cdot \|v_1\| \cdot \|v_2\|.$$
(57)

For the term β_4 , similarly to the expression α_4 above there holds

$$|\beta_4| \le C \cdot \varepsilon \cdot \|v_1\| \cdot \|v_2\|. \tag{58}$$

Turning to β_5 , using the Hölder inequality one deduces that

$$|\beta_{5}| \leq C \cdot c \cdot \varepsilon \cdot (1+|c|) \cdot \|z\|_{L^{\frac{2}{n-2}}(S^{n-1})}^{\frac{2}{n-2}} \cdot \|v_{1}\| \cdot \|v_{2}\| \leq C \cdot \varepsilon \cdot \|v_{1}\| \cdot \|v_{2}\|.$$
(59)

Putting together equations (55)-(59) (59) one deduces inequality (16).

Equation (17) follows from similar computations.

A.2. Proof of Lemma 9

Given $\xi_0| = 1$, we introduce a reference frame in \mathbb{R}^n such that $e_n = -\xi_0$. Let $\alpha = \alpha(\mu)$ be such that the pair (μ, ξ) , with $\xi = \alpha\xi_0$, satisfies (5). Setting

$$\gamma(\mu) = \Gamma(\mu, -\alpha(\mu)e_n),$$

one has that

$$\Gamma(0,\xi_0) = \gamma(0), \quad \partial_{\nu} \Gamma(0,\xi_0) = -\gamma'(0), \quad \partial_{\nu}^2 \Gamma(0,\xi_0) = \gamma''(0)$$

In order to evaluate the above quantities, it is convenient to make a change of variables. This will considerably simplify the calculation when we deal with $\gamma'(0)$ and $\gamma''(0)$.

Let $\psi : \mathbb{R}^n_+ \to B$ be the map given by

$$(y', y_n) \in \mathbb{R}^n_+ \to (x', x_n) \in B;$$

 $x' = \frac{2y'}{(y')^2 + (y_n + 1)^2}, \quad x_n = \frac{(y')^2 + y_n^2 - 1}{(y')^2 + (y_n + 1)^2}$

Here and in the sequel, if $x \in \mathbb{R}^n$ we will set $x' = (x_1, \ldots, x_{n-1})$ so that $x = (x', x_n)$.

By using simple computations it turns out that

$$\gamma(\mu) = \tilde{\gamma}(\tilde{\mu}),$$

where

$$\tilde{\gamma}(\tilde{\mu}) = \frac{1}{2^*} \int_{\mathbb{R}^n_+} \tilde{K}(y) (z^c_{\tilde{\mu},0})^{2^*}(y) dy + (n-2) \int_{\partial \mathbb{R}^n_+} \tilde{h}(\omega) (z^c_{\tilde{\mu},0})^{2\frac{n-1}{n-2}}(\omega) d\omega,$$

and

$$\tilde{\mu} = \frac{2\mu}{1 + \mu^2 + \alpha(\mu)}; \qquad \qquad \tilde{K}(y) = K(\psi(y)).$$

Let us point out that the derivatives of *K* and \tilde{K} satisfy the following relations:

$$D_{y_n} K(0, 0) = 2D_{x_n} K(\xi_0);$$

$$D_{y'} \tilde{K}(0, 0) = 2D_{x'}(\xi_0);$$

$$D_{y_n}^2 \tilde{K}(0, 0) = 4 \left(D_{x_n}^2 K - D_{x_n} K \right) (\xi_0);$$

$$D_{y'}^2 \tilde{K}(0, 0) = 4 \left(D_{x'}^2 K - D_{x_n} K \right) (\xi_0);$$

$$D_{y', y_n}^2 \tilde{K}(0, 0) = 4 \left(D_{x', x_n}^2 K - D_{x'} K \right) (\xi_0);$$

The change of variables $y = \tilde{\mu}q$, $\omega = \tilde{\mu}\sigma$ yields

$$\tilde{\gamma}(\tilde{\mu}) = \frac{1}{2^*} \int_{\mathbb{R}^n_+} \tilde{K}(\tilde{\mu}q) (z_{1,0}^c)^{2^*}(q) dq + (n-2) \int_{\partial \mathbb{R}^n_+} \tilde{h}(\tilde{\mu}\sigma) (z_{1,0}^c)^{2\frac{n-1}{n-2}}(\sigma) d\sigma.$$
(60)

Hence, passing to the limit for $\tilde{\mu} \rightarrow 0$, it follows that

$$\gamma(0) = \tilde{\gamma}(0) = a_1 \tilde{K}(0) + a_2 \tilde{h}(0) = a_1 K(\xi_0) + a_2 h(\xi_0),$$

with

$$a_1 = \frac{1}{2^*} \int_{\mathbb{R}^n_+} z_0^{2^*}(q', q_n - \kappa c/2) dq, \qquad a_2 = (n-2) \int_{\partial \mathbb{R}^n_+} z_0^{2\frac{n-1}{n-2}}(\sigma, \kappa c/2) d\sigma.$$

Let us now evaluate the first derivative. There holds

$$\gamma'(0) = \frac{d\tilde{\gamma}}{d\tilde{\mu}}(0) \cdot \frac{d\tilde{\mu}}{d\mu}(0) = 2\tilde{\gamma}'(0).$$

Moreover from formula (60) we deduce

$$\tilde{\gamma}'(\tilde{\mu}) = \frac{1}{2^*} \int_{\mathbb{R}^+_n} \nabla \tilde{K}(\tilde{\mu}q) \cdot q \ |z_{1,0}^c(q)|^{2^*} dq + (n-2)$$
$$\times \int_{\partial \mathbb{R}^n_+} \nabla \tilde{h}(\tilde{\mu}\sigma) \cdot \sigma \ |z_{1,0}^c(\sigma)|^{2\frac{n-1}{n-2}}(\sigma) d\sigma.$$
(61)

For symmetry reasons when $\tilde{\mu} \to 0$, the parallel component to $\partial \mathbb{R}^n_+$ in the first integral and the second integral vanishes, hence it follows that

$$\gamma'(0) = 2\tilde{\gamma}'(0) = \frac{2}{2^*} D_n \tilde{K}(0) \int_{\mathbb{R}^n_+} q_n |z_{1,0}^c(q)|^{2^*} dq = -a_3 K'(\xi_0) \cdot \xi_0, \quad (62)$$

where

$$a_3 = \frac{4}{2^*} \int_{\mathbb{R}^n_+} q_n z_0^{2^*}(q', q_n - \kappa c/2) dq.$$

We are interested in the study of the second derivative only in the case in which the first derivative vanishes, namely when $K'(\xi_0) \cdot \xi_0 = 0$.

As for the second derivative, there holds:

$$\tilde{\gamma}''(\tilde{\mu}) = \frac{1}{2^*} \int_{\mathbb{R}^n_n} \sum_{i,j=1}^n D_{ij}^2 \tilde{K}(\tilde{\mu}q) q_i q_j |z_{1,0}^c(q)|^{2^*} dq + (n-2) \int_{\partial \mathbb{R}^n_+} \sum_{i,j=1}^{n-1} D_{ij}^2 \tilde{h}(\tilde{\mu}\sigma) \sigma_i \sigma_j |z_{1,0}^c(\sigma)|^{2\frac{(n-1)}{(n-2)}} d\sigma := \delta(\tilde{\mu}) + \rho(\tilde{\mu}).$$
(63)

Now we have to distinguish the case n = 3 and the case n > 3. In fact the boundary integral $\rho(\tilde{\mu})$ in (63) is uniformly dominated by a function in $L^1(\partial \mathbb{R}^n_+)$

if and only if n > 3. However it is possible to determine the sign of this integral also for n = 3: it turns out that

$$\lim_{\tilde{\mu}\to 0} \delta(\tilde{\mu}) = \frac{1}{2^*(n-1)} \int_{\mathbb{R}^n_+} |q'|^2 |z_{1,0}^c(q)|^{2^*} dq \cdot \Delta_T \tilde{K}(0) + \frac{1}{2^*} \int_{\mathbb{R}^n_+} q_n^2 |z_{1,0}^c(q)|^{2^*} dq \cdot D_{nn}^2 \tilde{K}(0);$$

and

$$\lim_{\tilde{\mu}\to 0} \rho(\tilde{\mu}u) = (+\infty) \cdot \Delta_T \tilde{h}(0), \qquad \text{for } n = 3;$$
$$\lim_{\tilde{\mu}\to 0} \rho(\tilde{\mu}) = \frac{(n-2)}{(n-1)} \int_{\partial \mathbb{R}^n_+} |\sigma|^2 |z_{1,0}^c(\sigma)|^{2\frac{(n-1)}{(n-2)}} d\sigma \cdot \Delta_T \tilde{h}(0), \qquad \text{for } n > 3.$$

Hence we have that

$$\tilde{\gamma}''(0) = \begin{cases} (+\infty) \cdot \Delta_T h(\xi_0) & \text{for } n = 3; \\ a_4 \Delta_T K(\xi_0) + a_5 D^2 K(\xi_0) [\xi_0, \xi_0] + a_6 \Delta_T h(\xi_0) & \text{for } n > 3, \end{cases}$$
(64)

where

$$a_{4} = \frac{4}{(n-1)2^{*}} \int_{\mathbb{R}^{n}_{+}} |q'|^{2} z_{0}^{2^{*}}(q', q_{n} - \kappa c/2) dq,$$

$$a_{5} = \frac{4}{2^{*}} \int_{\mathbb{R}^{n}_{+}} q_{n}^{2} z_{0}^{2^{*}}(q', q_{n} - \kappa c/2) dq,$$

$$a_{6} = 4 \frac{(n-2)}{(n-1)} \int_{\partial \mathbb{R}^{n}_{+}} |\sigma|^{2} z_{0}^{2\frac{n-1}{n-2}}(\sigma, \kappa c/2) d\sigma.$$

Finally, since $\gamma''(0) = 4\tilde{\gamma}''(0)$, the lemma follows.

References

- 1. A. Ambrosetti, M. Badiale, Homoclinics: Poincaré-Melnikov type results via a variational approach, Ann. Inst. Henri. Poincaré Analyse Non Linéaire **15** (1998), 233–252. 323,
- 2. A. Ambrosetti, J. Garcia Azorero, I. Peral, Perturbation of $-\Delta u + u^{\frac{(N+2)}{(N-2)}} = 0$, the Scalar Curvature Problem in \mathbb{R}^N and related topics, J. Funct. Analysis, **165** (1999), 117–149.
- 3. A.Ambrosetti, A. Malchiodi, A multiplicity result for the Yamabe problem on Sⁿ, J. Funct. Analysis, **168** (1999), 529–561.
- 4. Ambrosetti A., Malchiodi A., On the Symmetric Scalar Curvature Problem on *Sⁿ*, J. Diff. Equations, **170-**1 (2001), 228–245.
- A.Ambrosetti, A. Malchiodi, Yan Yan Li, Scalar Curvature under Boundary Conditions, C. R. Acad. Sci. Paris, 330 (2000), 1013–1018.
- 6. T. Aubin, Some Nonlinear Problems in Differential Geometry, Springer, (1998).

- 7. M.Berti, A. Malchiodi, Multiplicity results and multibump solutions for the Yamabe problem on *S*^{*n*}, J. Funct. Anal. **180** (2001), 210–241.
- A.Bahri, J. M. Coron, The Scalar-Curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1991), 106–172.
- 9. A. Chang, X. Xu, P. Yang, A perturbation result for prescribing mean curvature, Math. Annalen **310** (1998), 473–496.
- P. Cherrier, Problemes de Neumann nonlinearires sur les varietes Riemanniennes, J. Funct. Anal. 57 (1984), 154–207.
- 11. J. Escobar, Conformal deformation of a Riemannian metric to a scalar fla metric with constant mean curvature on the boundary, Ann. Math. **136** (1992), 1–50.
- 12. J. Escobar, Conformal metrics with prescribed mean curvature on the boundary, Cal. Var. 4 (1996), 559–592.
- D.H. Gottlieb, A De Moivre like formula for fixed point theory, Contemp. Math. 72 (1988), 99–105.
- 14. Z.C.Han, Yan Yan Li, The Yamabe problem on manifolds with boundaries: existence and compactness results, Duke Math. J. **99** (1999), 489–542.
- 15. Z.C. Han, Yan Yan Li, The existence of conformal metrics with constant scalar curvature and constant boundary mean curvature, Comm. Anal. Geom., to appear.
- Yan Yan Li, The Nirenberg problem in a domain with boundary, Top. Meth. Nonlin. Anal. 6 (1995), 309–329.
- Yan Li, Prescribing scalar curvature on Sⁿ and related topics, Part I, J. Diff. Equat. 120 (1995), 319–410; Part II, Existence and compactness, Comm. Pure Appl. Math. 49 (1996), 437–477.
- 18. Z. Djadli, A. Malchiodi, M.O. Ahmedou, Prescribing scalar and boundary mean curvature on the half three sphere, preprint.
- M. Morse, G. Van Schaak, The critical point theory under general boundary conditions, Annals of Math. 35 (1934), 545–571.