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Abstract: Let A D PQT , where P and Q are two n � 2 complex matrices of full column rank such that QTP is
singular. We solve the quadratic matrix equation AXA D XAX . Together with a previous paper devoted to the case
that QTP is nonsingular, we have completely solved the matrix equation with any given matrix A of rank-two.
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1 Introduction

Recently [1], the authors have found all the solutions of the Yang-Baxter-like matrix equation

AXA D XAX; (1)

where the given n � n complex matrix A D PQT , with two n � 2 matrices P and Q, satisfies the assumption that
the 2 � 2 matrix QTP is nonsingular. In the above situation, the eigenvalue 0 of A is semi-simple with multiplicity
n � 2. This leaves the case unsolved that QTP is singular, which makes it much more challenging to solve the
corresponding matrix equation. The purpose of this paper is to find all the solutions of (1) for the remaining case that
the algebraic multiplicity of the eigenvalue 0 of A is more than n � 2.

The equation (1) has a similar format to the classical Yang-Baxter equation [2]. Yang [3] in 1967 first considered
a one dimensional quantum mechanical many body problem with a combination of delta functions as the potential
and found a factorization of the scattering matrix, and the Yang-Baxter equation was obtained as a consistence
property for the factorization. Then Baxter in 1972 solved an eight-vertex model in statistical mechanics, resulting in
a similar matrix equation, which, together with that from [3], was first called the Yang-Baxter equation by Russian
researchers at the end of the 1970s. Since then the Yang-Baxter equation has been extensively investigated by
mathematicians and physicists in knot theory, braid group theory, and quantum group theory in the past thirty years;
see, e.g., [2,4-8] and the references therein. In the past several years, the quadratic matrix equation (1) has been
studied with linear algebra techniques; see, for example, the references [9-14].

Solving (1) is a tough job in general since we need to solve a large system of n2 quadratic equations with n2

variables if we multiply out its both sides. By restricting the task to only finding the solutions that commute with A,
several solution results have been obtained in [10] for matrices A of special Jordan forms, and a more general result
was proved in [15] for the class of diagonalizable matrices. However, no general result has been found so far for non-
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commuting solutions for arbitrary matrices. Thus, it is our hope to find all the solutions of (1) for general matrices A.
When A is a rank one matrix, all the solutions of (1) have been found in [13]. The case of A being of rank-two turns
out to be much more tedious to analyze, and some special cases have been solved in our previous paper [1]. In the
current paper we continue to study the rank two case to find all the solutions for the remaining Jordan form structure
of A.

Matrices A of rank at most two in the equation (1) have appeared in the classic Yang-Baxter equation (see, e.g.,
the references in [2, 5]). For example, the two classes of 4 � 4 matrices26664

a 0 0 c

0 b d 0

0 e b 0

f 0 0 a

37775 and

26664
t11 0 t12 0

0 t11 0 t12

t21 0 t22 0

0 t21 0 t22

37775 (2)

with certain values of the given parameters have been studied in [16-18] for completely integrable systems and
inverse scattering problems. Each matrix in the second class is actually the tensor product T ˝ I2 of the 2 � 2
matrix T D Œtij � with the 2� 2 identity matrix I2, which constitutes a basic operation in the context of the classical
Yang-Baxter equation. Our complete solutions to the quadratic matrix equation with a given rank-two matrix are
expected to find applications in such physical applications. We shall pick up one matrix from (2) to apply our result
in Section 5.

It is well known [10] that solving the Yang-Baxter-like matrix equation for any given matrix A is equivalent
to solving the same equation with A replaced by a matrix that is similar to A, and all the solutions of the first
equation are similar to those of the second one with the same similarity matrix. Thus, solving (1) for the given A
can be reduced to solving the same equation with the Jordan form of A. Our approach in this paper will follow the
above principle. That is, since any matrix is similar to its simplest possible canonical form J , the Jordan form of the
matrix, which is called a Jordan matrix here for simplicity, is to be found. For the purpose of the present paper that
will supplement the work of [1], we shall solve the following simpler Yang-Baxter-like matrix equation

J YJ D YJ Y (3)

with J satisfying the conditions:
(i) J is a Jordan matrix of rank-2.
(ii) The eigenvalue 0 of J has algebraic multiplicity at least n � 1.

If we can find the solutions of (3) for such Jordan matrices, then the solutions of (1) are available immediately for
any A that is similar to J .

It turns out that the Jordan matrices J that satisfy the conditions (i) and (ii) above are

J D diag.0;ƒ/ (4)

such that ƒ is one of the following three matrices

ƒ1 �

264 0 1 00 0 1

0 0 0

375 ; ƒ2 �
264 0 1 00 0 0

0 0 �

375 ; � ¤ 0I ƒ3 �
26664
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

37775 (5)

and the diagonal block 0 in (4) is either .n � 3/ � .n � 3/ or .n � 4/ � .n � 4/ accordingly. With respect to each of
the three cases for J , there exists a corresponding nonsingular similarity matrix W D Œw1; : : : ; wn� connecting A
to J , so that

A D PQT D WJW �1: (6)

More specifically, in the case thatƒ D ƒ1, the columns w1; : : : ; wn�2 ofW are eigenvectors of A and the columns
wn�1 and wn of W are generalized eigenvectors of A with degrees 2 and 3 respectively, namely

Awn�1 ¤ 0; A
2wn�1 D 0; A

2wn ¤ 0; A
3wn D 0;
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all associated with eigenvalue 0. When ƒ D ƒ2, the first n� 2 columns of W are eigenvectors of A associated with
eigenvalue 0, the columnwn�1 is a generalized eigenvector of degree 2 with respect to eigenvalue 0, and the column
wn is an eigenvector of A associated with eigenvalue � ¤ 0. If ƒ D ƒ3, then the columns w1; : : : ; wn�3, and
wn�1 of W are eigenvectors of A, and the columns wn�2 and wn of W are generalized eigenvectors of degrees 2,
all with respect to eigenvalue 0.

In the next three sections we look for the solutions of the Yang-Baxter-like matrix equation (1) when the
corresponding Jordan matrix J of A is given by (4) with ƒ D ƒ1; ƒ2; ƒ3, respectively; such cases will be referred
to as type I, type II, and type III for the given matrix A. We present two examples of our solution result in Section 5
and conclude with Section 6.

2 Solutions when A is of type I

In this and subsequent sections we let A D PQT in (1) with P D Œp1; p2� and Q D Œq1; q2� of rank-2 such
that detQTP D 0. Let J be the Jordan form of A given by (4), where the diagonal zero sub-matrix 0 is either
.n � 3/ � .n � 3/ and the sub-matrix ƒ D ƒ1 or ƒ2 defined by (5), or the zero sub-matrix 0 is .n � 4/ � .n � 4/
and ƒ D ƒ3 in (5). As pointed out in Section 1, it is enough to find all the solutions of the equation (3) with J the
Jordan form of A, so we just focus on solving (3).

Let Y be partitioned the same way as J into the 2 � 2 block matrix

Y D

"
M U

V T K

#
; (7)

where M is .n � 3/ � .n � 3/ or .n � 4/ � .n � 4/; U D Œu1; u2; u3� or Œu1; u2; u3; u4�; V D Œv1; v2; v3� or
Œv1; v2; v3; v4�, and K is 3 � 3 or 4 � 4, depending on the size of ƒ. Then (3) with J partitioned by (4) is"

0 0

0T ƒ

#"
M U

V T K

#"
0 0

0T ƒ

#
D

"
M U

V T K

#"
0 0

0T ƒ

#"
M U

V T K

#
;

which is equivalent to the system 8̂̂̂<̂
ˆ̂:
UƒV T D 0;

UƒK D 0;

KƒV T D 0;

ƒKƒ D KƒK:

(8)

In the current section we assume that J D diag.0;ƒ1/, and the other two cases that J D diag.0;ƒ2/ and J D
diag.0;ƒ3/ will be investigated in Sections 3 and 4, respectively. So we solve (8) with ƒ D ƒ1. Because of the
special zero structure of ƒ1, the two unknown vectors u3 and v1 actually do not appear at all in the above system,
so they always appear as free variables in the solutions. In addition, the first equation is independent of K and is in
fact

u1v
T
2 C u2v

T
3 D 0:

The last equation of (8),

ƒKƒ D KƒK; (9)

is itself a Yang-Baxter-like matrix equation of small size when ƒ D ƒj with j D 1; 2; 3, and finding all of its
solutions is the first step for solving (8).

Lemma 2.1. The solutions K of the equation (9) with ƒ D ƒ1 are

K1 D

264x y z

0 0 �cy
x

0 0 c

375 ; x ¤ 0I K2 D
264 0 0 z0 0 g

0 0 c

375 ; c ¤ 0I K3 D
264 0 y z0 0 g

0 0 0

375 :
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Proof. Write

K D

264x y z

e f g

a b c

375 :
Then, the matrix equation ƒ1Kƒ1 D Kƒ1K becomes264 0 e f0 a b

0 0 0

375 D
264 ex C ay f x C by gx C cye2 C af ef C bf eg C cf

ae C ab af C b2 ag C bc

375 :
Note that there is no z in the above equation, so all the solutions have z as an arbitrary parameter. The two equations
ef Cbf D a and aeCab D 0 imply a D 0, so b D 0 from 0 D af Cb2 D b2 and e D 0 since 0 D e2Caf D e2.
Thus we have the remaining three equations 8̂<̂

:
f x D 0;

gx C cy D f;

cf D 0

from which f D 0. Hence gx C cy D 0. If x ¤ 0, then g D �cy=x, which gives the first matrix K1 in the lemma.
When x D 0, we have cy D 0. So c ¤ 0 or c D 0, resulting in the other two matrices K2 and K3, respectively.

By Lemma 2.1, all the solutions of the last equation of (8) are K1; K2, and K3. Substituting such matrices into the
first three equations of (8) and solving them respectively, we obtain the following result.

Theorem 2.2. Suppose A D PQT is such that ƒ D ƒ1 in its Jordan form (4). Then all the solutions of (1) are
X D W YW �1, whereW is as given by (6) and Y is partitioned as (7) in whichM is an arbitrary .n� 3/� .n� 3/
matrix such that Y D 26664

M u1
y
x
u1 u3

vT
1

x y z

�
y
x
vT
3
0 0 �

y
x
c

vT
3

0 0 c

37775 ;
26664
M u1 u2 u3

vT
1
x y z

0T 0 0 0

0T 0 0 0

37775 ; x ¤ 0; u2 ¤ y

x
u1; (10)

26664
M 0 0 u3

vT
1
0 0 z

vT
2
0 0 g

vT
3
0 0 c

37775 ;
26664
M u1 �

g
c
u1 u3

vT
1

0 0 z
g
c
vT
3
0 0 g

vT
3

0 0 c

37775 ; c ¤ 0; u1 ¤ 0; (11)

26664
M 0 0 u3

vT
1
0 0 z

vT
2
0 0 g

vT
3
0 0 0

37775 ;
26664
M 0 u2 u3

vT
1
0 y z

vT
2
0 0 g

0T 0 0 0

37775 ; (12)

26664
M u1 u2 u3

vT
1

0 0 z

�
uH1 u2

ku1k2
vT
3
0 0 0

vT
3

0 0 0

37775 ;
26664
M u1 u2 u3

vT
1
0 y z

0T 0 0 0

0T 0 0 0

37775 ; y ¤ 0; u1 ¤ 0: (13)

Here uH is the conjugate transpose of u.

Proof. We just solve the first three equations of (8) withK D K1; K2, andK3 in succession. WhenK D K1, those
equations of (8) are 8̂<̂

:
.u2 �

y
x
u1/v

T
3
D 0;

.u2 �
y
x
u1/c D 0;

v2 D �
y
x
v3
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after simplification. From the first equation, u2�yu1=x D 0 or v3 D 0. If the former is satisfied, then u2 D yu1=x
and the second equation is satisfied. This gives the first solution matrix of (10). In the case that v3 D 0, either
u2 D yu1=x or c D 0 from the second equation. The former case still leads to the first matrix of (10), while the
latter gives the second matrix of (10).

Suppose K D K2. Then K2ƒ1V T D 0, so (8) is reduced to(
u1v

T
2
C u2v

T
3
D 0;

gu1 C cu2 D 0:
(14)

Thus z is a free variable in the solutions. Since c ¤ 0, (14) is equivalent to u2 D �gu1=c and u1.v2 � gv3=c/T D
0. Letting u1 D 0 gives the first matrix of (11), the second matrix of (11) is the consequence of u1 ¤ 0, and
v2 � gv3=c D 0.

If K D K3, then (8) becomes 8̂<̂
:
u1v

T
2
C u2v

T
3
D 0;

gu1 D 0;

yvT
3
D 0:

(15)

Letting u1 D 0; u2 D 0, and y D 0 gives the first matrix of (12), and the choice of u1 D 0 and v3 D 0 produces
the second matrix of (12). If u1 ¤ 0, then the first equation of (15) implies that v2 D �.uH1 u2/v3=ku1k

2, and the
other two equations give that either g D 0 and y D 0, from which we get the first matrix of (13), or g D 0 and
y ¤ 0, which gives the second one.

3 Solutions when A is of type II

We now consider the second case that the Jordan form of the matrix A is J D diag.0;ƒ2/, so we solve (8) with
ƒ D ƒ2. Clearly, the structure of ƒ makes u2 and v1 free vectors in all the solutions of (8), and the first equation
of (8) is now

u1v
T
2 C �u3v

T
3 D 0:

Lemma 3.1. The solutions K of the equation (9) with ƒ D ƒ2 are

K4 �

264 0 y 00 f 0

0 b 0

375 I K5 �
264 0 y z0 f 0

0 0 0

375 ; z ¤ 0I

K6 �

264x y z

0 ��bz
x

0

0 b 0

375 ; x ¤ 0I K7 �
264� y z0 0 g

0 0 0

375 ; g ¤ 0I
K8 �

264 0 y 0

0 f 0

0 0 �

375 I K9 �
264x y 00 0 0

0 0 �

375 ; x ¤ 0I K10 �
264 0 y 00 � 0

a b 0

375 ; a ¤ 0:
Proof. The equation ƒ2Kƒ2 D Kƒ2K now becomes264 0 e �g

0 0 0

0 �a �2c

375 D
264 ex C �az f x C �bz gx C �cze2 C �ag ef C �bg eg C �cg

ae C �ac af C �bc ag C �c2

375 : (16)

Since the unknown y does not appear in the above, it is a free variable in all the solutions. To solve for all the other
unknowns, let a D 0 first. Then e D 0 from e2C�ag D 0. Because of the equation �2c D agC�c2, there are two
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possibilities that c D 0 or c D �. Assume first that c D 0. Since a D 0 and e D 0, the system (16) is reduced to8̂<̂
:
f x D ��bz;

bg D 0;

g.x � �/ D 0:

If g D 0, then the above is just f x D ��bz. When x D 0, we get K4 and K5, and x ¤ 0 implies K6. In the case
that g ¤ 0, we obtain K7. The other possibility of c D � implies K8 and K9.

Now let a ¤ 0. Then e D ��c via equating entries .3; 1/ of the both sides of (16). Since ag D �e2=� from
comparing the .2; 1/ entries, it follows from equating entries .3; 3/ in (16) that

�2c D ag C �c2 D �.��c/2=�C �c2 D 0:

So c D 0 and then e D 0. By equating .3; 2/ entries, we have f D �. Also z D 0 and g D 0 from comparing entries
.1; 1/ and .2; 1/ of (16). Finally x D 0 via comparing the entries .1; 2/ of (16), thus arriving at the corresponding
solution matrix K10.

Lemma 3.1 gives all the solutions K4; : : : ; K10 of the last equation of (8) with ƒ D ƒ2. Substituting them for K in
the system and solving the resulting three equations in succession, we are lead to the next theorem.

Theorem 3.2. SupposeA D PQT is such that its Jordan form is given by (4) withƒ D ƒ2. Then all the solutions of
(1) areX D W YW �1, whereW is given by (6) and Y is partitioned as (7) in whichM is an arbitrary .n�3/�.n�3/
matrix such that Y D 26664

M 0 u2 0

vT
1
0 y 0

vT
2
0 f 0

vT
3
0 b 0

37775 ;
26664
M u1 u2 0

vT
1
0 y 0

0T 0 0 0

vT
3
0 b 0

37775 ;
26664

M u1 u2 u3

vT
1

0 y 0

vT
2

0 f 0

�
uH3 u1

�ku3k2
vT
2
0 �

fuH3 u1

�ku3k2
0

37775 (17)

with u3 ¤ 0, 26664
M 0 u2 u3

vT
1
0 y z

vT
2
0 f 0

0T 0 0 0

37775 ;
26664
M u1 u2 u3

vT
1
0 y z

0T 0 0 0

0T 0 0 0

37775 ; z ¤ 0; u1 ¤ 0; (18)

26664
M u1 u2 u3

vT
1
x y z

0T 0 0 0

0T 0 0 0

37775 ;
26664

M u1 u2
z
x
u1

vT
1

x y z

�
�z
x
vT
3
0 ��bz

x
0

vT
3

0 b 0

37775 ;
26664
M 0 u2 u3

vT
1
� y z

0T 0 0 g

0T 0 0 0

37775 (19)

with x ¤ 0 and g ¤ 0, 26664
M 0 u2 0

vT
1
0 y 0

vT
2
0 f 0

0T 0 0 �

37775 ;
26664
M u1 u2 0

vT
1
0 y 0

0T 0 0 0

0T 0 0 �

37775 ; u1 ¤ 0; (20)

26664
M u1 u2 0

vT
1
x y 0

0T 0 0 0

0T 0 0 �

37775 ;
26664
M 0 u2 0

vT
1
0 y 0

0T 0 � 0

vT
3
a b 0

37775 ; x ¤ 0; a ¤ 0: (21)
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Proof. When K D K4, the system (8) is reduced to(
u1v

T
2
C �u3v

T
3
D 0;

f u1 C �bu3 D 0;

which does not contain y so it will appear in all the solutions. Letting u3 D 0. Then v3 and b can be arbitrary,
and the above system becomes u1vT2 D 0 and f u1 D 0. If u1 D 0, then v2 and f are arbitrary, giving the first
solution matrix of (17). If v2 D 0, then u1 is arbitrary and f D 0, which results in the second matrix of (17). Now
let u3 ¤ 0. Then from the above system,

vT3 D �
uH
3
u1

�ku3k2
vT2 ; b D �

f uH
3
u1

�ku3k2
:

This gives the third matrix of (17).
Next suppose K D K5. Then (8) is simply u1vT2 D 0; f u1 D 0; v3 D 0 since � ¤ 0 and z ¤ 0. All the

solutions are those in (18). Assume K D K6. Then (8) can be written as8̂<̂
:
u1v

T
2
C �u3v

T
3
D 0;

bu3 �
bz
x
u1 D 0;

xv2 C �zv3 D 0:

Since x ¤ 0, we can solve v2 out from the last equation and substitute it into the first one in the above system,
getting 8̂<̂

:
�
u3 �

z
x
u1
�
vT
3
D 0;�

u3 �
z
x
u1
�
b D 0;

v2 D �
�z
x
v3:

Letting b D 0 and v3 D 0 above gives the first matrix of (19), and if u3 D zu1=x, then b and v3 are arbitrary,
giving the second one of (19).

For K D K7, the system is simplified to u1vT2 C �u3v
T
3
D 0; u1 D 0; v2 C zv

T
3
D 0; v3 D 0 since g ¤ 0,

whose solutions are given by the third matrix of (19). When K D K8, the system (8) is actually u3 D 0; v3 D

0; u1v
T
2
D 0; f u1 D 0 since � ¤ 0. The solutions are the two matrices of (20). WithK D K9, the system becomes

v2 D 0; v3 D 0; u1v
T
2
C�u3v

T
3
D 0; u3 D 0 since � ¤ 0 and x ¤ 0, so the first matrix of (21) is obtained. Finally,

asK D K10, we have u1 D 0; v2 D 0; u1vT2 C �u3v
T
3
D 0; u3 D 0 since a ¤ 0, thus obtaining the second matrix

of (21).

4 Solutions when A is of type III

Unlike the previous two cases that involve only 3�3matricesƒ1 andƒ2, the third case that we shall study involves
the 4 � 4 matrix ƒ3. The zero structure of ƒ3 ensures that u2; u4; v1; v3 are not present in the equations, so they
are free vectors in the solutions. The following lemma gives all the solutions of the last equation of (8).

Lemma 4.1. The solutions K of the equation (9) with ƒ D ƒ3 are

K11 �

26664
0 a12 0 a14

0 a22 0 a24

0 a32 0 a34

0 a42 0 a44

37775 I K12 �
26664
0 a12 0 a14

0 a22 0 a24

0 a32 a33 a34

0 0 0 0

37775 ; a33 ¤ 0I

K13 �

26664
0 a12 a13 a14

0 a22 0 a24

0 a32 a33 a34

0 0 0 0

37775 ; a13 ¤ 0IK14 �
26664
0 a12 a13 a14

0 0 0 0

a31 a32 a33 a34

0 0 0 0

37775 ; a13a31 ¤ 0I
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K15 �

26664
0 a12 0 a14

0 �a33a42
a31

0 �a33a44
a31

a31 a32 a33 a34

0 a42 0 a44

37775 ; a31 ¤ 0I

K16 �

26664
a11 a12 a13 a14

0 �a13a42
a11

0 �
a13a44
a11

a31 a32
a13a31
a11

a34

0 a42 0 a44

37775 ; a11 ¤ 0I

K17 �

26664
a11 a12 a13 a14

0 0 0 0

a31 a32 a33 a34

0 0 0 0

37775 ; a11 ¤ 0;
ˇ̌̌̌
ˇa11 a13a31 a33

ˇ̌̌̌
ˇ ¤ 0:

Proof. Denote

K D

26664
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

37775 :
Then the equation Kƒ3K D ƒ3Kƒ3 is just26664

a11a21 C a13a41 a11a22 C a13a42 a11a23 C a13a43 a11a24 C a13a44

a21a21 C a23a41 a21a22 C a23a42 a21a23 C a23a43 a21a24 C a23a44

a31a21 C a33a41 a31a22 C a33a42 a31a23 C a33a43 a31a24 C a33a44

a41a21 C a43a41 a41a22 C a43a42 a41a23 C a43a43 a41a24 C a43a44

37775 D
26664
0 a21 0 a23

0 0 0 0

0 a41 0 a43

0 0 0 0

37775 : (22)

Comparing the .2; 1/; .4; 3/; .2; 3/; .4; 1/ entries above gives the four equations8̂̂̂<̂
ˆ̂:
a2
21
D �a23a41;

a2
43
D �a23a41;

a23.a21 C a43/ D 0;

a41.a21 C a43/ D 0:

(23)

We discuss two cases separately. First assume a41 D 0. Then a21 D a43 D 0 from (23). If a23 ¤ 0, then
a11 D a31 D a44 D 0 from equating entries .1; 3/; .3; 3/; .2; 4/ of both sides in (22), from which a23 D a11a24C
a13a44 D 0, a contradiction. Thus a23 D 0 and (22) is reduced to8̂̂̂<̂

ˆ̂:
a11a22 C a13a42 D 0;

a31a22 C a33a42 D 0;

a11a24 C a13a44 D 0;

a31a24 C a33a44 D 0

(24)

with a21 D a23 D a41 D a43 D 0.
Now we assume a41 ¤ 0. Then the last equation of (23) implies that a21 D �a43. On the other hand, the

entries .4; 2/ and .1; 1/ equations of (22) gives that a22 D �a43a42=a41 and a13 D �a11a21=a41. Hence

a21 D a11a22 C a13a42 D �
a11a43a42

a41
�
a11a21a42

a41
D
a11a21a42

a41
�
a11a21a42

a41
D 0;

and so a43 D 0. On the other hand, the entries .3; 1/ and .4; 2/ equalities give a33 D a22 D 0, so a41 D
a31a22 C a33a42 D 0 from the entry .3; 2/ equality of (22), contradictory to the assumption that a41 ¤ 0.

Therefore, (24) is the only equation for us to solve. Let a11 D 0. Then (24) becomes a13a42 D 0; a31a22 C

a33a42 D 0; a13a44 D 0; a31a24 C a33a44 D 0. If a13 D 0, then the above system is a31a22 C a33a42 D
0; a31a24 C a33a44 D 0. The first case is a31 D 0. Then a33a42 D 0 and a33a44 D 0. If a33 D 0, then we have
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solution matrix K11; otherwise K12 occurs. For the second case a31 ¤ 0, there hold a22 D �a33a42=a31 and
a24 D �a33a44=a31, giving K15. If a13 ¤ 0, then a42 D 0 and a44 D 0, so a31a22 D 0; a31a24 D 0. The case
that a31 D 0 implies K13 and when a31 ¤ 0, we obtain K14.

Now assume that a11 ¤ 0. Then a22 D �a13a42=a11 and a24 D �a13a44=a11, so a31a22 C a33a42 D 0

and a31a24 C a33a44 D 0, or equivalently,8<:a42
�
a33 �

a13a31
a11

�
D 0;

a44

�
a33 �

a13a31
a11

�
D 0:

In the case that a33 D a13a31=a11, the numbers a42 and a44 are arbitrary and the matrix K16 appears, and
otherwise a42 D a44 D 0, so a22 D a24 D 0, resulting in K17. This completes the proof.

Lemma 4.1 gives all the solutions K11; : : : ; K17 of the last equation of (8) with ƒ D ƒ3, which can be used to
prove the next result.

Theorem 4.2. Suppose ƒ D ƒ3 in the Jordan form (4) of A D PQT . Then all the solutions of (1) are X D
W YW �1, where Y is partitioned as (7) in which M is an arbitrary .n � 4/ � .n � 4/ matrix such that Y D2666664

M 0 u2 0 u4

vT
1
0 a12 0 a14

vT
2
0 a22 0 a24

vT
3
0 a32 0 a34

vT
4
0 a42 0 a44

3777775 ;
2666664
M 0 u2 u3 u4

vT
1
0 a12 0 a14

vT
2
0 a22 0 a24

vT
3
0 a32 0 a34

0T 0 0 0 0

3777775 ; u3 ¤ 0; (25)

26666664
M u1 u2 u3 u4

vT
1

0 a12 0 a14

�
uH1 u3

ku1k2
vT
4
0 �

uH1 u3

ku1k2
a42 0 �

uH1 u3

ku1k2
a44

vT
3

0 a32 0 a34

vT
4

0 a42 0 a44

37777775 ; u1 ¤ 0; (26)

2666664
M 0 u2 u3 u4

vT
1
0 a12 0 a14

vT
2
0 a22 0 a24

vT
3
0 a32 a33 a34

0T 0 0 0 0

3777775 ;
2666664
M u1 u2 u3 u4

vT
1
0 a12 0 a14

0T 0 0 0 0

vT
3
0 a32 a33 a34

0T 0 0 0 0

3777775 ; u1 ¤ 0; a33 ¤ 0; (27)

2666664
M 0 u2 u3 u4

vT
1
0 a12 a13 a14

vT
2
0 a22 0 a24

vT
3
0 a32 a33 a34

0T 0 0 0 0

3777775 ;
2666664
M u1 u2 u3 u4

vT
1
0 a12 a13 a14

0T 0 0 0 0

vT
3
0 a32 a33 a34

0T 0 0 0 0

3777775 ; u1 ¤ 0; a13 ¤ 0; (28)

2666664
M u1 u2 u3 u4

vT
1

0 a12 a13 a14

0T 0 0 0 0

vT
3
a31 a32 a33 a34

0T 0 0 0 0

3777775 ;
2666664

M u1 u2
a33
a31
u1 u4

vT
1

0 a12 0 a14

�
a33
a31
vT
4

0 �a33a42
a31

0 �
a33a44
a31

vT
3

a31 a32 a33 a34

vT
4

0 a42 0 a44

3777775 (29)

with a13 ¤ 0; a31 ¤ 0, 2666664
M u1 u2 u3 u4

vT
1

0 a12 0 a14

0T 0 0 0 0

vT
3
a31 a32 a33 a34

0T 0 0 0 0

3777775 ;
2666664
M u1 u2 u3 u4

vT
1
a11 a12 a13 a14

0T 0 0 0 0

vT
3
a31 a32

a13a31
a11

a34

0T 0 0 0 0

3777775 (30)
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with a31 ¤ 0; u3 ¤ a33u1=a31 in the left matrix, and a11 ¤ 0, u3 ¤ a13u1=a11 in the second one,2666664
M u1 u2

a13
a11
u1 u4

vT
1

a11 a12 a13 a14

�
a13
a11
vT
4

0 �a13a42
a11

0 �
a13a44
a11

vT
3

a31 a32
a13a31
a11

a34

vT
4

0 a42 0 a44

3777775 ;
2666664
M u1 u2 u3 u4

vT
1
a11 a12 a13 a14

0T 0 0 0 0

vT
3
a31 a32 a33 a34

0T 0 0 0 0

3777775 (31)

with a11 ¤ 0; a33 ¤ a13a31=a11.

Proof. Clearly the system (8) does not involve u2; u4; v1; v3, so they are free vectors in all the solutions. The first
equation of (8) is u1vT2 C u3v

T
4
D 0. Now we solve the first three equations of (8) with K D K11; : : : ; K17

separately.
When K D K11, the system (8) is reduced to8̂<̂

:
u1v

T
2
C u3v

T
4
D 0;

a22u1 C a42u3 D 0;

a24u1 C a44u3 D 0:

Assume that u1 D 0. Then u3vT4 D 0; a42u3 D 0; a44u3 D 0. If we let u3 D 0, then v4; a42; a44 can be arbitrary,
getting the first matrix of (25). Otherwise v4 D 0; a42 D a44 D 0, which results in the second matrix in (25). Now
assume that u1 ¤ 0. Then v2 D �.uH1 u3/v4=ku1k

2; a22 D �.u
H
1
u3/a42=ku1k

2; a24 D �.u
H
1
u3/a44=ku1k

2.
This gives (26).

For K D K12, (8) becomes 8̂̂̂<̂
ˆ̂:
u1v

T
2
C u3v

T
4
D 0;

a22u1 D 0;

a24u1 D 0;

a33v
T
4

D 0:

Since a33 ¤ 0, we have v4 D 0, so the above is simplified to u1vT2 D 0; a22u1 D 0; a24u1 D 0. Letting u1 D 0

gives the first matrix of (27), and otherwise we have v2 D 0; a22 D a24 D 0, leading to the second matrix in (27).
If K D K13, then (8) is simplified to 8̂̂̂<̂

ˆ̂:
v4 D 0;

u1v
T
2
D 0;

a22u1 D 0;

a24u1 D 0:

u1 D 0 produces the left matrix of (28) and otherwise, v2 D 0; a22 D a24 D 0, so the second matrix in (28).
With K D K14, we have 8̂<̂

:
u1v

T
2
C u3v

T
4
D 0;

a13v
T
4

D 0;

a31v
T
2
C a33v

T
4
D 0:

Since a13 ¤ 0 and a31 ¤ 0, we have v2 D v4 D 0, and the first matrix of (29) is obtained.
The choice of K D K15 gives the system8̂̂̂̂

<̂
ˆ̂̂:
u1v

T
2
C u3v

T
4

D 0;

a42

�
u3 �

a33
a31
u1

�
D 0;

a44

�
u3 �

a33
a31
u1

�
D 0;

a31v
T
2
C a33v

T
4
D 0:

Since a31 ¤ 0, from the last equation, v2 D �a33v4=a31. Substituting into the first equation, we obtain .u3 �
a33u1=a31/v

T
4
D 0. So if u3 � a33u1=a31 D 0, then v4; a42; a44 are arbitrary and the second matrix of (29) is

true. Otherwise, v4 D 0; a42 D a44 D 0, which gives the first matrix of (30).
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In the case K D K16, (8) can be written as8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

u1v
T
2
C u3v

T
4

D 0;

a42

�
u3 �

a13
a11
u1

�
D 0;

a44

�
u3 �

a13
a11
u1

�
D 0;

a11v
T
2
C a13v

T
4

D 0;

a31

�
vT
2
C
a13
a11
vT
4

�
D 0:

By the forth equation, v2 D �a13v4=a11. Substituting into the first one gives .u3 � a13u1=a11/vT4 D 0. Hence,
if u3 ¤ a13u1=a11, then v4 D 0; a42 D a44 D 0 and we get the right matrix of (30). Otherwise v4; a42; a44 are
arbitrary, so the left matrix of (31).

The last case is K D K17. Then 8̂<̂
:
u1v

T
2
C u3v

T
4
D 0;

a11v
T
2
C a13v

T
4
D 0;

a31v
T
2
C a33v

T
4
D 0;

the solutions of which are given by the last matrix of (31).

5 Examples

We give two examples to illustrate our results. The first one is artificial for the use of Theorem 3.1. Let p1 D
Œ0; 1; 1; 0�T ; p2 D Œ0; 0; 0; 1�

T ; q1 D Œ1;�1; 1; 0�
T , and q2 D Œ�1; 1;�1; 1�T , so that

A D p1q
T
1 C p2q

T
2 D

26664
0 0 0 0

1 �1 1 0

1 �1 1 0

�1 1 �1 1

37775 D WJW �1 D
26664
1 0 0 0

1 1 0 0

0 1 1 0

0 0 1 1

37775
26664
0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1

37775
26664
1 0 0 0

�1 1 0 0

1 �1 1 0

�1 1 �1 1

37775 :
By Theorem 3.1 and multiplying W YW �1 out, all the solutions of (1) are

X D

26664
mC u2 �u2 u2 0

mC v1 C u2 C y �u2 � y u2 C y 0

v1 C v2 C y C f �y � f y C f 0

v2 C v3 C f C b �f � b f C b 0

37775 ;

X D

26664
m � u1 C u2 u1 � u2 u2 0

mC v1 � u1 C u2 C y u1 � u2 � y u2 C y 0

v1 C y �y y 0

v3 C b �b b 0

37775 ;

X D

"
m�u1Cu2�u3 u1�u2Cu3 u2�u3 u3

mCv1�u1Cu2Cy�u3 u1�u2�yCu3 u2Cy�u3 u3
v1Cv2CyCf �y�f yCf 0

.v2Cf /.1�u1=u3/ f.u1=u3�1/ f.1�u1=u3/ 0

#
; u3 ¤ 0;

X D

"
mCu2�u3 u3�u2 u2�u3 u3

mCv1Cu2Cy�u3�z u3Cz�u2�y u2Cy�u3�z u3Cz
v1Cv2CyCf�z z�y�f yCf�z z

v2Cf �f f 0

#
; z ¤ 0;

X D

"
m�u1Cu2�u3 u1�u2Cu3 u2�u3 u3

mCv1�u1Cu2Cy�u3�z u1�u2�yCu3Cz u2Cy�u3�z u3Cz
v1Cy�z z�y y�z z

0 0 0 0

#
; u1 ¤ 0; z ¤ 0;
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X D

"
m�u1Cu2�u3 u1�u2Cu3 u2�u3 u3

mCv1�u1�xCu2Cy�u3�z u1Cx�u2�yCu3Cz u2Cy�u3�z u3Cz
v1�xCy�z xCz�y y�z z

0 0 0 0

#
; x ¤ 0;

X D

24 m�u1Cu2�
z
xu1 u1�u2C

z
xu1 u2�

z
xu1

z
xu1

mCv1�u1�xCu2Cy�
z
xu1�z u1Cx�u2�yC

z
xu1Cz u2Cy�

z
xu1�z

z
xu1Cz

v1�
z
x v3�xCyC

z
x b�z xCz�yC z

x b y�z� zx b z

v3.1�
z
x /�

z
x b

z
x b � zx b 0

35 ; x ¤ 0;
X D

"
mCu2�u3 u3�u2 u2�u3 u3

mCv1�1Cu2Cy�u3�z 1�u2�yCu3Cz u2Cy�u3�z u3Cz
v1�1Cy�z�g 1Cz�yCg y�z�g zCg

�g g �g g

#
; g ¤ 0;

X D

26664
mC u2 �u2 u2 0

mC v1 C u2 C y �u2 � y u2 C y 0

v1 C v2 C y C f �y � f y C f 0

v2 C f � 1 1 � f f � 1 1

37775 ;

X D

26664
m � u1 C u2 u1 � u2 u2 0

mC v1 � u1 C u2 C y u1 � u2 � y u2 C y 0

v1 C y �y y 0

�1 1 �1 1

37775 ; u1 ¤ 0;

X D

26664
m � u1 C u2 u1 � u2 u2 0

mC v1 � u1 � x C u2 C y u1 C x � u2 � y u2 C y 0

v1 � x C y x � y y 0

�1 1 �1 1

37775 ; x ¤ 0;

X D

26664
mC u2 �u2 u2 0

mC v1 C u2 C y �u2 � y u2 C y 0

v1 C y C 1 �y � 1 y C 1 0

v3 � aC b C 1 a � b � 1 b C 1 0

37775 ; a ¤ 0:
The matrix in our second example has appeared in the application of the classical Yang-Baxter equation to the inverse
scattering theory [18]. Let p1 D Œ1; 0; 0; 0�T ; p2 D Œ0; 1; 0; 0�T ; q1 D Œ0; 0; 1; 0�T , and q2 D Œ0; 0; 0; 1�T , so

A D p1q
T
1 C p2q

T
2 D

26664
0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

37775 D WJW �1 D
26664
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

37775
26664
0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

37775
26664
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

37775 :
Note that A is a member of the second matrix class in (2) as the tensor product J0 ˝ I2 of the 2 � 2 Jordan block
J0 with eigenvalue 0 and I2. Since J D ƒ3 in this example, all the solutions Y of (3) are exactly K11; : : : ; K17
as given by Lemma 4.1. Multiplying X D W YW �1 D WKkW out with k D 11; : : : ; 17, we find all the solutions
of (1):

X D

26664
0 0 a12 a14

0 0 a32 a34

0 0 a22 a24

0 0 a42 a44

37775 I
26664
0 0 a12 a14

0 a33 a32 a34

0 0 a22 a24

0 0 0 0

37775 ; a33 ¤ 0I

X D

26664
0 a13 a12 a14

0 a33 a32 a34

0 0 a22 a24

0 0 0 0

37775 ; a13 ¤ 0I
26664
0 a13 a12 a14

a31 a33 a32 a34

0 0 0 0

0 0 0 0

37775 ; a13a31 ¤ 0I

X D

26664
0 0 a12 a14

a31 a33 a32 a34

0 0 �a33a42
a31

�
a33a44
a31

0 0 a42 a44

37775 ; a31 ¤ 0I
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X D

26664
a11 a13 a12 a14

a31
a13a31
a11

a32 a34

0 0 �
a13a42
a11

�
a13a44
a11

0 0 a42 a44

37775 ; a11 ¤ 0I

X D

26664
a11 a13 a12 a14

a31 a33 a32 a34

0 0 0 0

0 0 0 0

37775 ; a11 ¤ 0;
ˇ̌̌̌
ˇa11 a13a31 a33

ˇ̌̌̌
ˇ ¤ 0:

6 Conclusions

As continuation of our earlier paper in which all the solutions of the Yang-Baxter-like matrix equation (1) were
found when A D PQT , with P and Q being n � 2 and of rank-two such that QTP is nonsingular, we have found
in this paper all the solutions of (1) when QTP is singular. For each of the resulting three kinds of Jordan forms of
A we solved the corresponding simplified matrix equation, thus obtaining all the structures of the solution matrices.

The various structures of the solution matrices reflect the complicated structure of the algebraic varieties as
solutions of polynomial systems of multi-variable. Although we were not able to use algebraic geometry to find all
the solutions of (1) in the general case, we have been successful in finding all the solutions when the rank of A is at
most 2. Our future work will be devoted to the exploration of solving the Yang-Baxter-like matrix equation with a
given matrix A of rank-k.
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