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Abstract: Let A = PQ7, where P and Q are two n x 2 complex matrices of full column rank such that Q7 P is
singular. We solve the quadratic matrix equation AXA = XAX. Together with a previous paper devoted to the case
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1 Introduction

Recently [1], the authors have found all the solutions of the Yang-Baxter-like matrix equation
AXA = XAX, (M

where the given n x n complex matrix A = PQ7 , with two n x 2 matrices P and Q, satisfies the assumption that
the 2 x 2 matrix Q7 P is nonsingular. In the above situation, the eigenvalue 0 of A is semi-simple with multiplicity
n — 2. This leaves the case unsolved that Q7 P is singular, which makes it much more challenging to solve the
corresponding matrix equation. The purpose of this paper is to find all the solutions of (1) for the remaining case that
the algebraic multiplicity of the eigenvalue O of 4 is more than n — 2.

The equation (1) has a similar format to the classical Yang-Baxter equation [2]. Yang [3] in 1967 first considered
a one dimensional quantum mechanical many body problem with a combination of delta functions as the potential
and found a factorization of the scattering matrix, and the Yang-Baxter equation was obtained as a consistence
property for the factorization. Then Baxter in 1972 solved an eight-vertex model in statistical mechanics, resulting in
a similar matrix equation, which, together with that from [3], was first called the Yang-Baxter equation by Russian
researchers at the end of the 1970s. Since then the Yang-Baxter equation has been extensively investigated by
mathematicians and physicists in knot theory, braid group theory, and quantum group theory in the past thirty years;
see, e.g., [2,4-8] and the references therein. In the past several years, the quadratic matrix equation (1) has been
studied with linear algebra techniques; see, for example, the references [9-14].

Solving (1) is a tough job in general since we need to solve a large system of n2 quadratic equations with n>
variables if we multiply out its both sides. By restricting the task to only finding the solutions that commute with A4,
several solution results have been obtained in [10] for matrices A of special Jordan forms, and a more general result
was proved in [15] for the class of diagonalizable matrices. However, no general result has been found so far for non-
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commuting solutions for arbitrary matrices. Thus, it is our hope to find all the solutions of (1) for general matrices A.
When A4 is a rank one matrix, all the solutions of (1) have been found in [13]. The case of A being of rank-two turns
out to be much more tedious to analyze, and some special cases have been solved in our previous paper [1]. In the
current paper we continue to study the rank two case to find all the solutions for the remaining Jordan form structure
of A.

Matrices A of rank at most two in the equation (1) have appeared in the classic Yang-Baxter equation (see, e.g.,
the references in [2, 5]). For example, the two classes of 4 x 4 matrices

a00c t11 0 112 O
0
0bdoO and 0 111 t12 )
0eb0 t21 0 122 0
f00a 0 21 0 t22

with certain values of the given parameters have been studied in [16-18] for completely integrable systems and
inverse scattering problems. Each matrix in the second class is actually the tensor product 77 ® I of the 2 x 2
matrix 7' = [t;;] with the 2 x 2 identity matrix /5, which constitutes a basic operation in the context of the classical
Yang-Baxter equation. Our complete solutions to the quadratic matrix equation with a given rank-two matrix are
expected to find applications in such physical applications. We shall pick up one matrix from (2) to apply our result
in Section 5.

It is well known [10] that solving the Yang-Baxter-like matrix equation for any given matrix A is equivalent
to solving the same equation with A replaced by a matrix that is similar to A, and all the solutions of the first
equation are similar to those of the second one with the same similarity matrix. Thus, solving (1) for the given 4
can be reduced to solving the same equation with the Jordan form of A. Our approach in this paper will follow the
above principle. That is, since any matrix is similar to its simplest possible canonical form J, the Jordan form of the
matrix, which is called a Jordan matrix here for simplicity, is to be found. For the purpose of the present paper that
will supplement the work of [1], we shall solve the following simpler Yang-Baxter-like matrix equation

JYJ =YJY 3)

with J satisfying the conditions:
(i) J is a Jordan matrix of rank-2.
(ii) The eigenvalue O of J has algebraic multiplicity at least n — 1.

If we can find the solutions of (3) for such Jordan matrices, then the solutions of (1) are available immediately for
any A that is similar to J.
It turns out that the Jordan matrices J that satisfy the conditions (i) and (ii) above are

J = diag(0, A) @)

such that A is one of the following three matrices

1
010 010 8088
Ai=]001[,A2=[000|,A#0; As= 0001 5)
000 0041 0000

and the diagonal block 0 in (4) is either (n — 3) x (n — 3) or (n — 4) x (n — 4) accordingly. With respect to each of

the three cases for J, there exists a corresponding nonsingular similarity matrix W = [wq, ..., wy] connecting A
to J, so that

A=POT =wyw~L (6)
More specifically, in the case that A = A, the columns wy, ..., w,—» of W are eigenvectors of A and the columns

wyp—1 and w, of W are generalized eigenvectors of A with degrees 2 and 3 respectively, namely

Aw,_1 #£0, A%w,_1 =0, A%w, #0, A3w, =0,
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all associated with eigenvalue 0. When A = A», the first n — 2 columns of W are eigenvectors of A associated with
eigenvalue 0, the column w;,— is a generalized eigenvector of degree 2 with respect to eigenvalue 0, and the column
wy, is an eigenvector of A associated with eigenvalue A # 0. If A = As, then the columns wq, ..., w,—3, and
wy—1 of W are eigenvectors of A, and the columns w;,—> and w, of W are generalized eigenvectors of degrees 2,
all with respect to eigenvalue 0.

In the next three sections we look for the solutions of the Yang-Baxter-like matrix equation (1) when the
corresponding Jordan matrix J of A is given by (4) with A = A1, A2, A3, respectively; such cases will be referred
to as type I, type II, and type III for the given matrix A. We present two examples of our solution result in Section 5
and conclude with Section 6.

2 Solutions when A is of type |

In this and subsequent sections we let A = PQ7 in (1) with P = [p1, p2] and Q = [q1, ¢>] of rank-2 such
that det 7 P = 0. Let J be the Jordan form of A given by (4), where the diagonal zero sub-matrix 0 is either
(n — 3) x (n — 3) and the sub-matrix A = A or A3 defined by (5), or the zero sub-matrix 0 is (n — 4) x (n — 4)
and A = A3 in (5). As pointed out in Section 1, it is enough to find all the solutions of the equation (3) with J the
Jordan form of A, so we just focus on solving (3).

Let Y be partitioned the same way as J into the 2 x 2 block matrix

M U
Y=|:VTKj|’ ™

where M is(n —3) x (n—3)or(n —4) x (n —4),U = [ur,uz,us] or [uy,uz,u3,ual,V = [v1,v2,v3] or
[v1,v2,v3,v4],and K is 3 X 3 or 4 x 4, depending on the size of A. Then (3) with J partitioned by (4) is

R IE E R S [ )

which is equivalent to the system

UAVT = 0,
UAK = 0,
KAavT = o, ®

AKA = KAK.

In the current section we assume that J = diag(0, A1), and the other two cases that J = diag(0, A,) and J =
diag(0, A3) will be investigated in Sections 3 and 4, respectively. So we solve (8) with A = A;. Because of the
special zero structure of A1, the two unknown vectors u#3 and v actually do not appear at all in the above system,
so they always appear as free variables in the solutions. In addition, the first equation is independent of K and is in
fact

ulva +u2v3T =0.

The last equation of (8),

AKA = KAK, 9

is itself a Yang-Baxter-like matrix equation of small size when A = A; with j = 1,2,3, and finding all of its
solutions is the first step for solving (8).

Lemma 2.1. The solutions K of the equation (9) with A = A1 are

Xy z 00z Oyz
Ki=[00-%|,x#0:Kx=[00g |.c#0: K3=[00¢g
00 ¢ 00c 000
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Proof. Write

xXyz
K=|ef
abc
Then, the matrix equation A1 KA1 = KA1 K becomes
Oe f ex+ay fx+bygx+cy
Oab |=|e’>+af ef +bf eg+cf
000 ae +ab af +b> ag + bc

Note that there is no z in the above equation, so all the solutions have z as an arbitrary parameter. The two equations
ef +bf =aandae+ab = Oimplya = 0,50h = 0from0 = af +5b> = b%> ande = Osince 0 = e +-af = e2.
Thus we have the remaining three equations

fx =0,
gx +cy = f,
cf =0

from which f = 0. Hence gx + cy = 0.If x # 0, then g = —cy/x, which gives the first matrix K in the lemma.
When x = 0, we have cy = 0. So ¢ # 0 or ¢ = 0, resulting in the other two matrices K> and K3, respectively. [

By Lemma 2.1, all the solutions of the last equation of (8) are K1, K>, and K3. Substituting such matrices into the

first three equations of (8) and solving them respectively, we obtain the following result.

Theorem 2.2. Suppose A = PQT is such that A = A in its Jordan form (4). Then all the solutions of (1) are
X = WYW™, where W is as given by (6) and Y is partitioned as (7) in which M is an arbitrary (n —3) x (n —3)
matrix such that Y =

Uz U3

.—C\]E
=
e
=
SIS
<
SIS
c o x =

,X750,M27é§u1, (10)

!
=<
<
W
S O =
S O <
!

[<

o

S
S O <

z
0
0

o
]
~

M 00u3 M ui —%ul us
U]TOOZ vlT 0 0 z
vioog || %] 0 o

v3TOOc v3T 0 0 c

, ¢ #0,u; #0, (11

M 00 u3 M 0us us3
vTOOz viFOyZ
vFoog ["|vfoo0 g
v 00 0 0700 0

. 12)

M Ul Uz U3 M

T
131 0 0 z vlT
uyuz T ’ T
— ve 0 0 O 0
g ]| 73

v 0 00 0

<
—_
<
)
<
w

.y #0,u; #0. (13)

oS O O
oS O =<
S O N

H

Here u™ is the conjugate transpose of u.

Proof. We just solve the first three equations of (8) with K = K, K>, and K3 in succession. When K = K1, those
equations of (8) are

y T _
(uz — cu)vy = 0,
(uz —Zuy)e = 0,
__y
U2 = —XU3
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after simplification. From the first equation, u» — yu1/x = 0 or v3 = 0. If the former is satisfied, then u» = yu;/x
and the second equation is satisfied. This gives the first solution matrix of (10). In the case that vz = 0, either
ur = yuyi/x or ¢ = 0 from the second equation. The former case still leads to the first matrix of (10), while the
latter gives the second matrix of (10).

Suppose K = K»5. Then K2 A1 vT =0,s0 (8) is reduced to

ulva +u2v3T =0,

14
gui + cuz = 0. (14

Thus z is a free variable in the solutions. Since ¢ # 0, (14) is equivalent to u» = —gu{/c and u1(v2 — gva/c)T =
0. Letting u; = 0 gives the first matrix of (11), the second matrix of (11) is the consequence of u; # 0, and
vy —guv3/c =0.

If K = K3, then (8) becomes

ulva +u2v3T =0,
guy =0, (15)
yv3T =0.

Letting u1 = 0,u» = 0, and y = 0 gives the first matrix of (12), and the choice of u; = 0 and vsz = 0 produces
the second matrix of (12). If u1 # 0, then the first equation of (15) implies that v, = —(u{{uz)vg/ l1]|%, and the
other two equations give that either g = 0 and y = 0, from which we get the first matrix of (13), or g = 0 and
¥ # 0, which gives the second one. O

3 Solutions when A is of type Il

We now consider the second case that the Jordan form of the matrix A is J = diag(0, A2), so we solve (8) with
A = A». Clearly, the structure of A makes u» and v; free vectors in all the solutions of (8), and the first equation
of (8) is now

urvl + Auzvl =o.

Lemma 3.1. The solutions K of the equation (9) with A = A, are

0yo0 0yz
Ki=|0f0|; Ks=|0f0],z#0;
0b0 000
X Yy z Ayz
Ke=|0-2220| x#0;K;={00g|.g#0;
0 b 0 000
0yO0 xy0 0y0
Kg=|0f0]|; Ko=|000|,x#0; Kjop=|0A0|,a#0.
00A 00A ab0

Proof. The equation A KA, = KA» K now becomes

0e Ag ex +Aaz fx + Abz gx + Acz
00 0 |=|e%>+2ragef +Abg eg + Acg |. (16)
0 Aa A%c ae + ac af + Abc ag + Ac?

Since the unknown y does not appear in the above, it is a free variable in all the solutions. To solve for all the other
unknowns, let ¢ = 0 first. Then e = 0 from e2 + Aag = 0. Because of the equation A2¢c = ag + Ac2, there are two
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possibilities that ¢ = 0 or ¢ = A. Assume first that ¢ = 0. Since a = 0 and e = 0, the system (16) is reduced to

fx =—-Abz,
bg =0,
gx—1)=0.

If g = 0, then the above is just fx = —Abz. When x = 0, we get K4 and K5, and x # 0 implies Kg. In the case
that g # 0, we obtain K7. The other possibility of ¢ = A implies Kg and Kg.

Now let a # 0. Then e = —Ac via equating entries (3, 1) of the both sides of (16). Since ag = —e?/A from
comparing the (2, 1) entries, it follows from equating entries (3, 3) in (16) that

A2e=ag + Ac? = —(=re)? /A + AcZ = 0.

So ¢ = 0 and then e = 0. By equating (3, 2) entries, we have f = A. Also z = 0 and g = 0 from comparing entries
(1,1) and (2, 1) of (16). Finally x = 0 via comparing the entries (1, 2) of (16), thus arriving at the corresponding
solution matrix Kqg. O

Lemma 3.1 gives all the solutions Ky, ..., K1¢ of the last equation of (8) with A = A». Substituting them for K in
the system and solving the resulting three equations in succession, we are lead to the next theorem.

Theorem 3.2. Suppose A = PQ T is such that its Jordan form is given by (4) with A = M. Then all the solutions of
(I)are X = WYW ™!, where W is given by (6) and Y is partitioned as (7) in which M is an arbitrary (n—3)x (n—3)
matrix such that Y =

M Oup 0O M uy up 0 M ui Uz us
T
vlTOyO v1T0yO vy 0 y 0 a7
vIo 0| [07 000 vy 0 f 0
T T _uzu T _fu3u1
v3 000 v; 060 ert2 O —Tnar 0
with uz # 0,
M 0 us uz M uy un u3
T T
vy 0y z vy 0y z
, , 0, 0, 18
wTofol| |orooo| ?70MF (1%
000 0 o 0 0 0
Mu1u2u3 M ui un %ul M0u2u3
T T T
vlTxyz )lb)]Tx ))jb z vlT)Lyz (19)
o 0 0 o0 42,7 0 =222 ¢ 0700 g
07 0 0 0 vi0 b0 0700 0
with x # 0 and g # 0,
M Ou, 0 M uip u 0
UITOyO vlTOyO o 20)
vIofol oo oo T
0700 A o7 0 02
M ui; u 0 M 0Ouy 0
T T
vy, x y O vy 0y 0 0 0 71
o 0 00| |0Torol| ¥TO47O @D
07 0 0 A vabo
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Proof. When K = K4, the system (8) is reduced to

u1v2T +Au3v; =0,
fuy + Abus =0,

which does not contain y so it will appear in all the solutions. Letting u3 = 0. Then vz and b can be arbitrary,
and the above system becomes ulvg = 0and fu; = 0.Ifu; = 0, then v and f are arbitrary, giving the first
solution matrix of (17). If vo = 0, then u; is arbitrary and f = 0, which results in the second matrix of (17). Now
let u3 # 0. Then from the above system,

U:{ = — ug[ul U; = —fug[ul
y .
Mlus]|2 Alusl?

This gives the third matrix of (17).
Next suppose K = Ks. Then (8) is simply ulv;r =0, fu; = 0,v3 = Osince A # 0 and z # 0. All the
solutions are those in (18). Assume K = Kg. Then (8) can be written as

ulva + /\u3v; =0,
bu3 — %ul = 0,
Xv2 + Azvs = 0.

Since x # 0, we can solve v2 out from the last equation and substitute it into the first one in the above system,
getting

(3= Zu)ol = o,
(u3 — %ul)b = 0,
V2 = —%v}

Letting » = 0 and vz = 0 above gives the first matrix of (19), and if us = zu/x, then b and v3 are arbitrary,
giving the second one of (19).

For K = K7, the system is simplified to ulv; + Au3v3T =0,u; =0,vp + zv3T = 0,v3 = O since g # 0,
whose solutions are given by the third matrix of (19). When K = Kjg, the system (8) is actually u3 = 0,v3 =
0,uq v; =0, fu; = 0since A # 0. The solutions are the two matrices of (20). With K = Ko, the system becomes
vy =0,v3 =0,u; va —i-/\ugv{ = 0,u3 = Osince A # 0and x # 0, so the first matrix of (21) is obtained. Finally,
as K = K19, wehaveu; =0,vp =0, ulva + Au3v3T = 0,u3 = O since a # 0, thus obtaining the second matrix
of (21). O

4 Solutions when A is of type llI

Unlike the previous two cases that involve only 3 x 3 matrices A and A, the third case that we shall study involves
the 4 x 4 matrix A3. The zero structure of Az ensures that u», u4, v1, v3 are not present in the equations, so they
are free vectors in the solutions. The following lemma gives all the solutions of the last equation of (8).

Lemma 4.1. The solutions K of the equation (9) with A = Az are

0ai20aq Oaiz 0 ais
0az 0ans 0azxx 0 azxs
K1 = ; Kip = , a3z #0;

0 a3z 0asq 0 a3z aszz azs
0 agn 0 ags 00 0 O

0aiz2 a13 aiq 0 aizaiszais

Oarxy 0 apg 0O 0 0 O

Ki3 = ,a13 #0; K4 = ,aizaz) # 0;
0 a3z aszz asa as1 aszz as3 ass

00 0 O 0 0 0 O
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0 ain 0

_dassas
asg

asg asp ass
0 asn 0

all a2 als
__ai13a4n
ar 0

asy  asz an

ai3asi

a4
aszdaaa

@31 sazy #0;
as4

aaq

a4
__a13a44

an ,ain #0;
as4

— 347

0 asn 0 asq
aiy aiz2 ais a4
0O 0 0 O

a31 a3z azsz daszq
0 0 0 O

a a
.arl #0, tas #0.
asy as;z

K7 =

Proof. Denote

apy ajz a3 a4
az) azp azs dz4
a3zl aszz a33 dza
a4q1 442 443 dq4
Then the equation KA3K = A3 KAz is just

0 az1 0az3

_ 0000 @
0 a41 0aas

0000

ai1azl +aisaq) aj1aze +a13a42 a11a23 + a13a43 a11a24 + a13a44
az1a21 + azza41 a21a22 + a23a42 az1a23 + A23Ad43 A21424 + az3d44
asz1az1 +assa41 az1azz + asz3zasz as1az3 +aszsza43 az1dz4 + aszaqs
a41a21 + a43a41 41022 + a43042 A41023 + 443043 441024 + A43044

Comparing the (2, 1), (4, 3), (2, 3), (4, 1) entries above gives the four equations

a3, = —a»3aai,
az3 = —a23as1,
az3(az1 + as3) =0,
as1(az1 +ag3) = 0.

(23)

We discuss two cases separately. First assume a4; = 0. Then az; = aq3 = 0 from (23). If a3 # 0, then
a1l = a3 = aqqa = 0 from equating entries (1, 3), (3, 3), (2, 4) of both sides in (22), from which a>3 = aj1a24 +
ai3aqq = 0, a contradiction. Thus a»>3 = 0 and (22) is reduced to

ajilazz +aizasr =0,
aziazz +aszasr =0,

(24)
ajiaza +aizass =0,
azi1aza +azzass =0
with ar1 = az3 = aq1 = ag3 = 0.
Now we assume a41 7# 0. Then the last equation of (23) implies that ax; = —a43. On the other hand, the
entries (4,2) and (1, 1) equations of (22) gives that ar» = —a43a42/a41 and a13 = —a11a21/a41. Hence
aila43a4qz  aj1az1d42  A11421442  Aa11421442
az1 =apjazz +aizas = — — = — =0,
aay asgq aal aaq

and so a43 = 0. On the other hand, the entries (3, 1) and (4,2) equalities give a3z = az> = 0, s0 a41 =
as1asz + azzaqr = 0 from the entry (3, 2) equality of (22), contradictory to the assumption that a4 # 0.
Therefore, (24) is the only equation for us to solve. Let @11 = 0. Then (24) becomes aj3a4> = 0,a31a22 +
aszzaqny = 0,a13a44 = 0,a31a24 + azzasqa = 0. If a;3 = 0, then the above system is azjaz> + azzaqr =
0,a31a24 + azzasq = 0. The first case is az; = 0. Then az3a4> = 0 and a3zaqq = 0. If az3 = 0, then we have
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solution matrix K11; otherwise K12 occurs. For the second case a3; # 0, there hold ax» = —a33a4n/az; and
a4 = —azsas4/asi, giving Kis. If a1z # 0, then agr = 0 and aqq = 0, so az1azz = 0,a31a24 = 0. The case
that az; = 0 implies K13 and when a3; # 0, we obtain K14.

Now assume that a;; # 0. Then az> = —aj3a4z/a11 and azq4 = —ay13aq4/ai, so aziazz + azzasz =0

and azjaz4 + azzass = 0, or equivalently,

as (a33 - %) =0,
a4 <a33 — il ) = 0.
In the case that a3z = aj3aszi/aii, the numbers a4p and aqq are arbitrary and the matrix K16 appears, and
otherwise a4p = aqq = 0, s0 ax2 = az4 = 0, resulting in K;7. This completes the proof. O

Lemma 4.1 gives all the solutions K11, ..., K17 of the last equation of (8) with A = A3, which can be used to
prove the next result.

Theorem 4.2. Suppose A = A3z in the Jordan form (4) of A = PQT. Then all the solutions of (1) are X =
WYW ™!, where Y is partitioned as (7) in which M is an arbitrary (n — 4) x (n — 4) matrix such that Y =

M O u> 0 uy M 0 u> usz ug
vlTOa120a14 vlTOalz 0 al4q
Ug 0azy 0ang |, va 0azxy 0 azq |, uz #0, (25)
1); 0aszr 0aszg v; 0aszx 0 azg

vl 0 a4 0 ass 0700 0 0

M Ui us us Ug
vlT 0 alz 0 alq
H H H
uyuz T Uy us Uy us
— v — a ——=da , U 07 26
Tur]2 V4 Tur 2442 Tar 2 444 17 (26)
vg 0 azn 0 azq
UZ 0 asn 0 aq4
(M 0wz us ua | [ M ui us uz usg |
UT Oaip 0 ajg v1T 0 a2 0 ajg
v; 0ax, 0 axe |,|0T 0 0 0 0O |,y #0,a33 #0, (27
vY 0 a3z a33 aza vl 0 a3z azzazs
(o000 0 0o ][0T 0 0 0 O |
(M 0wz us ua | [ M ui us uz usg |
v{()alz ais di4 vlT 0 ajp a3 aig
v 0a» 0 ax |.|0T 0 0 0 O |,u; #0,a13#0, (28)
vg 0 azz azz asa v3T 0 az> a3z azs
(o000 0 o ][0T 0 0 0 O |
M uy up usz ug M Ui us %ul Ug
vl 0 azaizas vl 0 a2 0 aiq
T _a3z T __a33d4p __4d33da4
oT 00 0 0 |, x4 0 -2t 0 ey 29
V3 a31 a3z A3z ass vy a3l as ass asa
o 0 0 0 0 v 0 a0 ass
withayz # 0,a31 # 0,
M up ux usz uy M up up u3z U4
vl 0 a0 as viaiian a3z as
o 0 0 0 0 [,]0" 0 0 0 O (30)
T aiza
v3T as1 azp azsz dsq V3 a3l as2 % asq

o 0 0 0 0 o 0 0 0 0
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with a3y # 0,u3 # az3uy/asy in the left matrix, and a1 # 0, uz # a13u1/ay1 in the second one,

M Ui us %ul Ug M uy ux usz ug
T
vy arlr a2 ais ai4 vl a1 a2 aiz ais
_ai3,,T _ai13aay __a13a44 T
il 0 —ege 0 —egme 0 0 0 0 0 31)
vy a3l azx S5 az V3 431 a3p a3z aszs4
oI 0 aw 0  as o 0 0 0 0

withay1 # 0,a33 # ai13aszi/aii.

Proof. Clearly the system (8) does not involve u»,u4, v1, v3, so they are free vectors in all the solutions. The first
equation of (8) is ulvg + u3v4T = 0. Now we solve the first three equations of (8) with K = Kjp,..., K17
separately.

When K = K1, the system (8) is reduced to

ulva +u3v4T =0,
asouy + aqpusz = 0,
arqu1 + aqqusz = 0.

Assume that u1 = 0. Then ugvz = 0,a4o2u3 = 0,a44u3z = 0. If we let uz = 0, then v4, @42, a44 can be arbitrary,
getting the first matrix of (25). Otherwise v4 = 0, a42 = aq4 = 0, which results in the second matrix in (25). Now
assume that uy # 0. Then va = —(uiluz)va/|lu1|? a2z = —(ufuz)asa/|lu1ll?. aza = —(u uz)asa/|u1|?.
This gives (26).

For K = K12, (8) becomes

uvs + u3vI =0,
azui =0,
azqu =0,
a331)4T = 0.

Since az3 # 0, we have v4 = 0, so the above is simplified to u1v2T = 0,a2u1 = 0,a24u; = 0. Lettingu; =0
gives the first matrix of (27), and otherwise we have vo = 0, a2 = a4 = 0, leading to the second matrix in (27).
If K = K3, then (8) is simplified to

V4 =0,
ulva =0,
azuy =0,
azqaul = 0.

u1 = 0 produces the left matrix of (28) and otherwise, vo = 0,a2> = az4 = 0, so the second matrix in (28).
With K = K14, we have

ulva + u3vz =0,
a13v4T =0,
a31v2T —I—a33v4T = 0.

Since a13 # 0 and a3y # 0, we have v = v4 = 0, and the first matrix of (29) is obtained.
The choice of K = K5 gives the system

ulva + u3v4T =0,

as (u3 - %?Ml) =0,

aq4 (u3 - %ul) =0,

a31vg +a33vz =0.
Since a3; # 0, from the last equation, v» = —a33v4/a31. Substituting into the first equation, we obtain (43 —
a33u1/a31)v1 = 0. So if uz — az3zui/az; = 0, then v4, a4, as4 are arbitrary and the second matrix of (29) is

true. Otherwise, v4 = 0,a42 = a44 = 0, which gives the first matrix of (30).
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In the case K = K¢, (8) can be written as

u1v2T+u3vZ =0,
aso (u3 - Zﬁul) =0,
asq (u3 - %ul) =0,
01102 +a13v4 =0,

T a3 T\ —
asy <v2 + a11U4> 0.

By the forth equation, vo = —aj3v4/aj;. Substituting into the first one gives (u3 —ajsu;/a; 1)v4T = 0. Hence,
ifus # ajzuyi/air, then vg = 0,a452 = a44 = 0 and we get the right matrix of (30). Otherwise va4, @42, a44 are
arbitrary, so the left matrix of (31).

The last case is K = Kj7. Then

ulv;+u3vz =0,
allva -|-6113I)Z~ =0,
a31vg —|—a33vz =0,

the solutions of which are given by the last matrix of (31). O

5 Examples

We give two examples to illustrate our results. The first one is artificial for the use of Theorem 3.1. Let p; =
[0,1,1,0]7, p2 =10,0,0,1]7, g1 = [1,—1,1,0]7, and ¢» = [-1,1,—1,1]7, so that

00 00 10007000071 0 00
1 -1 10 1100|0010l =11 00

A= piq’ I = =wJw—l =
Pigy + P29> 1 110 0110|0000 || 1 =110
11 —11 0011|0001 ||=-11-11

By Theorem 3.1 and multiplying WY W ! out, all the solutions of (1) are

m+ up —Us u, 0
m+vy+ux+y—ur—yur+y0
vitvty+f -y—fy+f0|
v4+vs+f+b —f—-b f+b0

X =

m—uyi + us Uy —us u 0

m+vy—ur+uz+yur—uz—yuz+y0
vi+y —y y ol

v3+b —b b 0

X =

B m—uj+uz—us up—uz+us Ur—u3 us
X = m4vi—uituz+y—uz ur—uz—y+usz uz+y—u3z u3 uz #0
- vitvoty+S —y—f v+ o[ 43 J
(2t )U—uy/uz)  fui/uz—1) f(A—ui/uz) 0

m—+us—u3 U3—u3 Uz—u3 uz
X = | mruituety—us—z uztz—ur—y ur+y—uz—z uz+z | £ 0
- vitvat+y+/—z z=y—f y+/f—z z ’ ’
L vatf -/ i 0

m+vi—ujtuz+y—uz—z uy—ux—y+uz+z uz+y—uz— zuz+z
s , Z ,
v1+y z 7=y y—z up #0.z2#0

m—ui+uz—u3 up—uz+us Uz—us3 uz |
X =
0 0 0
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m—uy+uz—us u1—u2+us Uz—u3 u3
X = | mtui—ui—x+urt+y—uz—z uyt+x—uz—y+uz+z uo+y—uz—z uz+z [ £0
vi—x+y—z xX+z—y y—z z ’ ’
0 0 0 0
m—uit+uz—Zu; ui—uz+Zui uz—Zu; Zuy
X = mtvi—ur—xt+ust+y—fui—z urtx—us—y+iui+z up+y—Zui—z Zui+z X#0
- vi—Zvz—x+y+ib—z x+z—y+%<b y—z—=2b z ’ ’
v3(1=$)—%b b -3 0
m—+us—u3 Uz—us U2—U3 u3
X = | mtu—lduty—us—z 1mup—ytus+z ua+y—us—z us+z | o £0
vi—1+y—z—g l+z—y+g y—z—g zt+g |’ ’
—-g g —-g g
m+ us —Up u, 0

m+vyt+uz+y—ur—yux+y0

X = ,
vitvet+y+f —y—f y+/0
vo+ f—1 1-f f—-11
m—uy + up Ul — Us u» 0
¥ — m+vy—uy+uz+yur—up—yuz+y0 Ty £0,
vr+y -y y 0
-1 1 -1 1
m—up + ur Ul — Us u» 0
Y = m4vy—ur—x+ux+yur+x—ur—yux+yo X £0,
vp—x+y xX—y y 0
—1 1 -1 1
m—+un —Uuy u» 0
Y — m+vy+ux+y —uz—y uz+y0 a0,
v +y+1 -y—1 y+10

vs—a+b+1 a—-b—-1b+10
The matrix in our second example has appeared in the application of the classical Yang-Baxter equation to the inverse
scattering theory [18]. Let p; = [1,0,0,0]7, p» =1[0,1,0,0]7,¢1 =1[0,0,1,0]7, and > = [0,0,0, 1]7", so

0010 1000 0100 1000
0001 0010 0000 0010
A=pqi T = =wiw! =
Pidr 2% =600 0100|0001 |[0100
0000 0001 0000 0001
Note that A is a member of the second matrix class in (2) as the tensor product Jo ® I» of the 2 x 2 Jordan block
Jo with eigenvalue 0 and /». Since J = A3 in this example, all the solutions Y of (3) are exactly Kyp,..., K17
as given by Lemma 4.1. Multiplying X = WY W ™! = WK, W out with k = 11,..., 17, we find all the solutions
of (1):
00ajz2aia 0 0 ajz2aia
X = 00 azs aza : 0 a3z azz azs a3 £ 0:
00az aza 0 0 azpaz
00 agn ass 00 0 O
0ai3a12 a4 0 aijzaizais
0 aszz asz aza as] azs asz asz4
X = s 0, s 07
0 0 agpan |3 # 0o 0 0 o aisaszy #
00 0 O 0O 0 0 O
0 0 a2 ais
asl azz  asz asq )
X 0 0 _433a4 _dasdas |° asi # 0;
asi asg

0 0 as a44
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ailp ais ai2 a4
aisza
¥ o |93 Tay ax as4 o:
- 0 0 _ai13d4> _ ai3ass » a1l 75 ’
ail all
0 0 asn ass
all aiz ai2 daia
a3l a3z a3z aza ail ais
X = , a1l # 0, 0.
0 0 0 0 a3zl dsz3z

0 0 0 0

6 Conclusions

As continuation of our earlier paper in which all the solutions of the Yang-Baxter-like matrix equation (1) were
found when 4 = PQ7', with P and Q being n x 2 and of rank-two such that Q7 P is nonsingular, we have found
in this paper all the solutions of (1) when Q7 P is singular. For each of the resulting three kinds of Jordan forms of
A we solved the corresponding simplified matrix equation, thus obtaining all the structures of the solution matrices.

The various structures of the solution matrices reflect the complicated structure of the algebraic varieties as
solutions of polynomial systems of multi-variable. Although we were not able to use algebraic geometry to find all
the solutions of (1) in the general case, we have been successful in finding all the solutions when the rank of A is at
most 2. Our future work will be devoted to the exploration of solving the Yang-Baxter-like matrix equation with a
given matrix A of rank-k.
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