ON THE ZERO-DIVISOR GRAPH OF A RING

David F. Anderson^a AND Ayman Badawi^b

^a Department of Mathematics, The University of Tennessee, Knoxville, TN 37996-1300, U. S. A., anderson@math.utk.edu.

^b Department of Mathematics & Statistics, The American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates, abadawi@aus.edu.

ABSTRACT. Let R be a commutative ring with identity, Z(R) its set of zerodivisors, and Nil(R) its ideal of nilpotent elements. The zero-divisor graph of R is $\Gamma(R) = Z(R) \setminus \{0\}$, with distinct vertices x and y adjacent if and only if xy = 0. In this paper, we study $\Gamma(R)$ for rings R with nonzero zerodivisors which satisfy certain divisibility conditions between elements of Ror comparability conditions between ideals or prime ideals of R. These rings include chained rings, rings R whose prime ideals contained in Z(R) are linearly ordered, and rings R such that $\{0\} \neq Nil(R) \subseteq zR$ for all $z \in Z(R) \setminus Nil(R)$.

Key Words: Linearly Ordered Prime Ideals; ϕ -Rings; Chained Rings; Zero-divisor Graph.

Mathematics Subject Classification: Primary 13A15; Secondary 13F99, 05C99.

1. INTRODUCTION

Let R be a commutative ring with 1, and let Z(R) be its set of zero-divisors. The *zero-divisor graph* of R, denoted by $\Gamma(R)$, is the (undirected) graph with vertices $Z(R)^* = Z(R) \setminus \{0\}$, the set of nonzero zero-divisors of R, and for distinct $x, y \in Z(R)^*$, the vertices x and y are adjacent if and only if xy = 0. Note that $\Gamma(R)$ is the empty graph if and only if R is an integral domain and that a nonempty $\Gamma(R)$ is finite if and only if R is finite and not a field [9, Theorem 2.2]. This concept is due to Beck [24], who let all the elements of R be vertices and was mainly interested in colorings. Our present definition and emphasis on the interplay between ring-theoretic properties of R and graph-theoretic properties of $\Gamma(R)$ are from [9].

In this paper, we study $\Gamma(R)$ for several classes of rings which generalize valuation domains to the context of rings with zero-divisors. These are rings with nonzero zero-divisors that satisfy certain divisibility conditions between elements or comparability conditions between ideals or prime ideals. In Sections 2 and 3, we consider rings R such that the prime ideals of R contained in Z(R) are linearly ordered. In particular, we compute the diameter and girth for $\Gamma(R)$ and $\Gamma(R[X])$. In Section 4, we specialize to the case where R is a chained ring. In the final section, we investigate $\Gamma(R)$ for rings R such that $\{0\} \neq Nil(R) \subseteq zR$ for all $z \in Z(R) \setminus Nil(R)$.

We assume throughout that all rings are commutative with $1 \neq 0$. If R is a ring, then dim(R) denotes its (Krull) dimension, T(R) its total quotient ring, U(R) its

group of units, Z(R) its set of zero-divisors, Nil(R) its ideal of nilpotent elements, $N(R) = \{x \in R \mid x^2 = 0\} \subseteq Nil(R)$, and $Rad(I) = \{x \in R \mid x^n \in I \text{ for some}$ integer $n \geq 1\}$ for I an ideal of R. We say that R is reduced if $Nil(R) = \{0\}$. For $A, B \subseteq R$, let $A^* = A \setminus \{0\}$ and $(A : B) = \{x \in R \mid xB \subseteq A\}$. We let $\mathbb{Z}, \mathbb{Z}_n, \mathbb{Z}_{(p)}, \mathbb{Q}, \mathbb{R}$, and \mathbb{F}_q denote the rings of integers, integers modulo n, integers localized at the prime ideal $p\mathbb{Z}$, rational numbers, real numbers, and the finite field with q elements, respectively. In the next six paragraphs, we recall some background material. To avoid any trivialities when $\Gamma(R)$ is the empty graph, we implicitly assume when necessary that R is not an integral domain. For any undefined ringtheoretic concepts or terminology, see [30] or [31].

Let G be a graph. We say that G is connected if there is path between any two distinct vertices of G. At the other extreme, we say that G is totally disconnected if no two vertices of G are adjacent. For vertices x and y of G, we define d(x, y)to be the length of a shortest path from x to y in $G(d(x, x) = 0 \text{ and } d(x, y) = \infty)$ if there is no such path). The diameter of G is diam $(G) = \sup\{d(x, y) \mid x \text{ and } y$ are vertices of G}. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in $G(\operatorname{gr}(G) = \infty)$ if G contains no cycles). Then $\Gamma(R)$ is connected with diam $(\Gamma(R)) \leq 3$ [9, Theorem 2.3] and $\operatorname{gr}(\Gamma(R)) \leq 4$ if $\Gamma(R)$ contains a cycle [33, (1.4)]. Thus diam $(\Gamma(R)) = 0, 1, 2, \text{ or } 3, \text{ and } \operatorname{gr}(\Gamma(R)) = 3, 4, \text{ or } \infty$. For other papers on zero-divisor graphs, see [1], [2], [7], [8], [10], [11], [12], [26], [32], [33], [34], and [35]. In particular, a list of all the zero-divisor graphs with up to 14 vertices is given in [34]. A general reference for graph theory is [25].

Recall from [29] that an integral domain R with quotient field K is called a *pseudo-valuation domain* (*PVD*) if every prime ideal P of R is *strongly prime*, in the sense that whenever $x, y \in K$ and $xy \in P$, then $x \in P$ or $y \in P$. This concept was extended to rings with zero-divisors in [21], where R is called a *pseudo-valuation ring* (*PVR*) if every prime ideal P of R is *strongly prime*, in the sense that xP and yR are comparable (under inclusion) for all $x, y \in R$. Any valuation domain is a PVD, and it was shown in [21] that an integral domain is a PVD if and only if it is a PVR. It is known that a ring R is a PVR if and only if for all $x, y \in R$, we have either x|y or y|xz for every nonunit $z \in R$ [21, Theorem 5]. We say that a ring R is a *chained ring* if the (principal) ideals of R are linearly ordered (by inclusion), equivalently, if either x|y or y|x for all $x, y \in R$. By our earlier comments, a chained ring is a PVR.

Another generalization of pseudo-valuation rings is given in [15]. Recall from [27] and [14] that a prime ideal of a ring R is called a *divided prime ideal* of R if $P \subseteq xR$ for all $x \in R \setminus P$. Thus a divided prime ideal of R is comparable with every ideal of R. We say that a ring R is a *divided ring* if every prime ideal of R is divided; so the prime ideals in a divided ring are linearly ordered. Let $\mathcal{H} = \{R \mid R \text{ is a ring and} Nil(R) \text{ is a divided prime ideal of } R \}$. Note that an integral domain or a PVR is in \mathcal{H} . For any ring $R \in \mathcal{H}$, the ring homomorphism $\phi = \phi_R : T(R) \longrightarrow R_{Nil(R)}$, given by $\phi(x/y) = x/y$ for all $x \in R$ and $y \in R \setminus Z(R)$, was introduced in [15]. Then $\phi|_R : R \longrightarrow R_{Nil(R)}$ is a ring homomorphism satisfying $\phi(x) = x/1$ for all $x \in R$ and $T(\phi(R)) = R_{Nil(R)}$.

Let $R \in \mathcal{H}$, and put $K = R_{Nil(R)}$. As in [15], a prime ideal Q of $\phi(R)$ is said to be *K*-strongly prime if whenever $x, y \in K$ and $xy \in Q$, then either $x \in Q$ or $y \in Q$. A prime ideal P of R is said to be a ϕ -strongly prime ideal of R if $\phi(P)$ is a K-strongly prime ideal of $\phi(R)$. It is known that the prime ideals of $\phi(R)$ are the sets that are (uniquely) expressible as $\phi(P)$ for some prime ideal P of R (cf. [15, Lemma 2.5]), the key fact being that $Ker(\phi) \subseteq Nil(R)$. If every prime ideal of R is a ϕ -strongly prime ideal, then R is called a ϕ -pseudo-valuation ring (ϕ -PVR). It was shown in [18, Proposition 2.9] that a ring $R \in \mathcal{H}$ is a ϕ -PVR if and only if R/Nil(R) is a PVD. A PVR is a ϕ -PVR, but an example of a ϕ -PVR which is not a PVR was given in [16]. Also, a ϕ -PVR is a divided ring [15, Proposition 4], and thus the prime ideals in a ϕ -PVR (or a PVR) are linearly ordered. In particular, a ϕ -PVR, and hence a PVR or a chained ring, is quasilocal.

Observe that if Nil(R) is a divided prime ideal of R, then Nil(R) is also the nilradical of T(R) and $Ker(\phi)$ is a common ideal of R and T(R). Other useful features of each ring $R \in \mathcal{H}$ include the following: (i) $\phi(R) \in \mathcal{H}$; (ii) $T(\phi(R)) = R_{Nil(R)}$ has only one prime ideal, namely, $Nil(\phi(R))$; (iii) $\phi(R)$ is naturally isomorphic to $R/Ker(\phi)$; (iv) $Z(\phi(R)) = Nil(\phi(R)) = \phi(Nil(R)) = Nil(R_{Nil(R)})$; and (v) $R_{Nil(R)}/Nil(\phi(R)) = T(\phi(R))/Nil(\phi(R))$ is the quotient field of $\phi(R)/Nil(\phi(R))$. For further studies on rings in the class \mathcal{H} , see [4], [5], [15], [16], [17], [18], [22], and [23].

Throughout this paper, we will use the technique of idealization of a module to construct examples. Recall that for an R-module B, the *idealization of* B over R is the ring formed from $R \times B$ by defining addition and multiplication as (r, a)+(s, b) = (r + s, a + b) and (r, a)(s, b) = (rs, rb + sa), respectively. A standard notation for this "idealized ring" is R(+)B; see [30] for basic properties of rings resulting from the idealization construction. In particular, note that the ideal $I = \{0\}(+)B$ of T = R(+)B satisfies $I^2 = \{0\}$; so $I \subseteq Nil(T)$. The zero-divisor graph $\Gamma(R(+)B)$ has recently been studied in [10] and [12].

2. LINEARLY ORDERED PRIMES

In this section, we investigate the zero-divisor graph of a ring R such that the prime ideals of R contained in Z(R) are linearly ordered. These are precisely the rings R such that the prime ideals of T(R) are linearly ordered, and include chained rings, divided rings, PVRs, ϕ -PVRs, rings with Z(R) = Nil(R), and zero-dimensional quasilocal rings. For these rings, we show that diam $(\Gamma(R)) \leq 2$ and gr $(\Gamma(R)) = 3$ or ∞ . We start with the following lemma (cf. [32, Lemma 2.3] and [2, Lemma 3.1]).

Lemma 2.1. Let R be a ring, and let $x, y \in Nil(R)^*$ be distinct with $xy \neq 0$. Then $(0 : (x, y)) \neq \{0\}$, and moreover, there is a path of length 2 from x to y in $Nil(R)^* \subseteq \Gamma(R)$. In particular, if Z(R) = Nil(R), then $diam(\Gamma(R)) \leq 2$.

Proof. Since $xy \neq 0$ and $x \in Nil(R)^*$, let $n \geq 2$ be the least positive integer such that $x^n y = 0$. Also, since $x^{n-1}y \neq 0$ and $y \in Nil(R)^*$, let $m \geq 2$ be the least positive integer such that $x^{n-1}y^m = 0$. Then $0 \neq x^{n-1}y^{m-1} \in Nil(R)$ and $x^{n-1}y^{m-1} \in (0 : (x, y))$. Thus $x - x^{n-1}y^{m-1} - y$ is a path of length 2 from x to y in $Nil(R)^*$. The "in particular" statement is clear.

When Z(R) = Nil(R), it is easy to explicitly describe the diameter of $\Gamma(R)$; and moreover, diam($\Gamma(R)$) $\neq 3$ in this case. We record this as our first theorem (cf. [32, Theorem 2.6]). Note that in this case, Nil(R) is the unique minimal prime ideal of R and is the only prime ideal of R contained in Z(R); so this is the simplest case where the prime ideals of R contained in Z(R) are linearly ordered. **Theorem 2.2.** Let R be a ring with $Z(R) = Nil(R) \neq \{0\}$. Then exactly one of the following three cases must occur.

- (1) $|Z(R)^*| = 1$. In this case, R is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[X]/(X^2)$, and $diam(\Gamma(R)) = 0$.
- (2) $|Z(R)^*| \ge 2$ and $Z(R)^2 = \{0\}$. In this case, $\Gamma(R)$ is a complete graph, and $diam(\Gamma(R)) = 1$.
- (3) $Z(R)^2 \neq \{0\}$. In this case, $diam(\Gamma(R)) = 2$.

Proof. (1) If $|Z(R)^*| = 1$, then $R \cong \mathbb{Z}_4$ or $\mathbb{Z}_2[X]/(X^2)$ [24, Proposition 2.2]. Thus diam $(\Gamma(R)) = 0$.

(2) If $Z(R)^2 = \{0\}$, then xy = 0 for all $x, y \in Z(R)$. Thus $\Gamma(R)$ is a complete graph with diam $(\Gamma(R)) = 1$ since $|Z(R)^*| \ge 2$.

(3) Suppose that $Z(R)^2 \neq \{0\}$. Then $\Gamma(R)$ is not complete [9, Theorem 2.8], and thus diam $(\Gamma(R)) \geq 2$. Hence diam $(\Gamma(R)) = 2$ by Lemma 2.1.

Thus when studying the diameter of the zero-divisor graph of a ring R, the interesting case is when $Nil(R) \subsetneq Z(R)$. We next give several lemmas. Note that in Lemma 2.4 we need only assume that $x \in Z(R) \setminus N(R)$, where $N(R) = \{x \in R \mid x^2 = 0\}$.

Lemma 2.3. Let R be a ring with $x \in Nil(R)^*$ and $y \in Z(R)^*$. Then $d(x, y) \leq 2$ in $\Gamma(R)$.

Proof. We may assume that $x \neq y$ and $xy \neq 0$. Since $y \in Z(R)^*$ and $xy \neq 0$, there is a $z \in Z(R)^* \setminus \{x\}$ such that yz = 0. Let n be the least positive integer such that $x^n z = 0$ (such an n exists since $x \in Nil(R)^*$). Then $x - x^{n-1}z - y$ is a path of length 2 from x to z (if n = 1, then $x^{n-1}z = z$). Thus $d(x, y) \leq 2$ in $\Gamma(R)$. \Box

Lemma 2.4. Let R be a ring with $x \in Z(R) \setminus Nil(R)$ and $y \in Z(R)^*$ such that $x|zy^n$ for some integer $n \ge 1$ and $z \in R \setminus Z(R)$. Then $d(x,y) \le 2$ in $\Gamma(R)$.

Proof. We may assume that $x \neq y$ and $xy \neq 0$. Since $x \in Z(R) \setminus Nil(R)$ and $xy \neq 0$, there is a $w \in Z(R)^* \setminus \{x, y\}$ such that xw = 0. Since $x \mid zy^n$ with $z \in R \setminus Z(R)$ and xw = 0, we conclude that $y^nw = 0$. Let k be the least positive integer such that $y^kw = 0$. Then $x - y^{k-1}w - y$ is a path of length 2 from x to y. Thus $d(x, y) \leq 2$ in $\Gamma(R)$.

By [13, Theorem 1], the prime ideals of R are linearly ordered if and only if the radical ideals of R are linearly ordered, if and only if for all $x, y \in R$, there is an integer $n = n(x, y) \ge 1$ such that either $x|y^n$ or $y|x^n$. This result easily extends to the prime ideals of R contained in Z(R).

Theorem 2.5. Let R be a ring.

- (1) The prime ideals of R contained in Z(R) are linearly ordered if and only if for all $x, y \in Z(R)$, there is an integer $n = n(x, y) \ge 1$ and an element $z \in R \setminus Z(R)$ such that either $x|zy^n$ or $y|zx^n$.
- (2) The radical ideals of R contained in Z(R) are linearly ordered if and only if for all $x, y \in Z(R)$, there is an integer $n = n(x, y) \ge 1$ such that either $x|y^n$ or $y|x^n$.
- (3) If the prime ideals of R contained in Z(R) are linearly ordered, then Nil(R) and Z(R) are prime ideals of R.

Proof. (1) Note that the prime ideals of R contained in Z(R) are linearly ordered if and only if the prime ideals of T(R) are linearly ordered, if and only if for all $x, y \in T(R)$, there is an integer $n = n(x, y) \ge 1$ such that either $x|y^n$ or $y|x^n$ in T(R) [13, Theorem 1]. The result now easily follows.

(2) Suppose that the radical ideals of R contained in Z(R) are linearly ordered. Let $x, y \in Z(R)$. Then $Rad(xR), Rad(yR) \subseteq Z(R)$; so we may assume that $Rad(xR) \subseteq Rad(yR)$. Thus $x \in Rad(yR)$; so $y|x^n$ for some integer $n \ge 1$. Conversely, let $I, J \subseteq Z(R)$ be radical ideals of R. If I and J are not comparable, pick $x \in I \setminus J$ and $y \in J \setminus I$. If $x|y^n$, then $y^n \in xR \subseteq I$, and hence $y \in I$, a contradiction.

(3) Suppose that the prime ideals of R contained in Z(R) are linearly ordered. Then Nil(R) is an intersection of linearly ordered prime ideals of R since each minimal prime ideal of R is contained in Z(R) [30, Theorem 2.1], and thus Nil(R) is prime. Also, Z(R) is the union of linearly ordered prime ideals of R [31, page 3], and hence Z(R) is prime.

Since Z(R) is a union of prime ideals of R [31, page 3], Z(R) is a prime ideal of R if and only if it is an ideal of R. If $\dim(R) = 0$ (e.g., R is finite) and the prime ideals of R contained in Z(R) are linearly ordered, then R is quasilocal with Z(R) = Nil(R) its unique prime ideal. If $Nil(R) \subsetneq Z(R)$ and Nil(R) is a prime ideal of R, then $\dim(R) \ge 1$ and $\Gamma(R)$ must be infinite. For in this case, R is not an integral domain, and thus if $\Gamma(R)$ is finite, then R must also be finite [9, Theorem 2.2], contradicting $\dim(R) \ge 1$. In particular, if the prime ideals of R contained in Z(R) are linearly ordered and $Nil(R) \subsetneq Z(R)$, then $\Gamma(R)$ is infinite. It is clear that if the radical ideals of R contained in Z(R) are linearly ordered, then the prime ideals of R contained in Z(R) are also linearly ordered. However, we next give an example where the prime ideals of R contained in Z(R) are not linearly ordered, and hence the prime ideals of R are not linearly ordered.

Example 2.6. Let $D = \mathbb{Z} + X\mathbb{Q}[[X]]$, and let $I = \mathbb{Z}_{(2)}X + X^2\mathbb{Q}[[X]]$ be an ideal of D. Set R = D/I. Then $Z(R) = (2\mathbb{Z} + X\mathbb{Q}[[X]])/I = 2R = ann_R(\frac{1}{2}X + I)$, $N(R) = Nil(R) = X\mathbb{Q}[[X]]/I$, and $Nil(R)^2 = \{0\}$. The prime ideals of R contained in Z(R), namely Z(R) and Nil(R), are linearly ordered. But the radical ideals of R contained in Z(R) are not linearly ordered since the two radical ideals (6 $\mathbb{Z} + X\mathbb{Q}[[X]])/I$ and $(10\mathbb{Z} + X\mathbb{Q}[[X]])/I$ are not comparable. Thus the prime ideals of R are also not linearly ordered; for example, $(2\mathbb{Z} + X\mathbb{Q}[[X]])/I$ and $(3\mathbb{Z} + X\mathbb{Q}[[X]])/I$ are not comparable. We have diam $(\Gamma(R)) = 2$ by Theorem 2.7, and $gr(\Gamma(R)) = 3$ by Theorem 2.12. Also note that $R \cong \mathbb{Z}(+)(\mathbb{Q}/\mathbb{Z}_{(2)})$.

The prime ideals of R contained in Z(R) are linearly ordered if and only if the prime ideals of T(R) are linearly ordered. Moreover, $\Gamma(R) \cong \Gamma(T(R))$ ([8, Theorem 2.2]). Thus we can often reduce to the case where the prime ideals of Rare linearly ordered. Note that a reduced ring R with its prime ideals contained in Z(R) linearly ordered is an integral domain. Also observe that a nonreduced ring R has $\Gamma(R)$ complete if and only if $Z(R)^2 = \{0\}$ [9, Theorem 2.8], i.e., if xy = 0 for all $x, y \in Z(R)$ with $x \neq y$, then $x^2 = 0$ for all $x \in Z(R)$. So if R is a nonreduced ring with $Z(R)^2 = \{0\}$, then $\{0\} \neq N(R) = Nil(R) = Z(R)$ and diam $(\Gamma(R)) \leq 1$, with equality when $|Z(R)^*| \geq 2$. We are now ready for the first of the two main results of this section. **Theorem 2.7.** Let R be a ring with $Z(R)^2 \neq \{0\}$ such that the prime ideals of R contained in Z(R) are linearly ordered. Then $diam(\Gamma(R)) = 2$.

Proof. By the above comments, R is not reduced. So $\Gamma(R)$ is not a complete graph and diam $(\Gamma(R)) \geq 2$. Let $x, y \in Z(R)^*$ be distinct with $xy \neq 0$. If $x, y \in Nil(R)$, then d(x, y) = 2 by Lemma 2.1. If $x \in Nil(R)$ and $y \in Z(R) \setminus Nil(R)$, then d(x, y) = 2 by Lemma 2.3. Finally, suppose that $x, y \in Z(R) \setminus Nil(R)$. Since the prime ideals of R contained in Z(R) are linearly ordered, there is an integer $n \geq 1$ and an element $z \in R \setminus Z(R)$ such that either $x|zy^n$ or $y|zx^n$ by Theorem 2.5(1). We may assume that $x|zy^n$ for some integer $n \geq 1$ and $z \in R \setminus Z(R)$. Thus d(x, y) = 2 by Lemma 2.4. Hence diam $(\Gamma(R)) \leq 2$, and thus diam $(\Gamma(R)) = 2$ since diam $(\Gamma(R)) \geq 2$.

Corollary 2.8. If R is any of the following types of rings with $Z(R)^2 \neq \{0\}$, then $diam(\Gamma(R)) = 2$.

- (1) R is a ring such that the prime ideals of R are linearly ordered.
- (2) R is a divided ring.
- (3) R is a PVR.
- (4) R is a ϕ -PVR.
- (5) R is a chained ring.

In view of Theorem 2.7 and [32, Theorem 2.6(3)], we have the following corollary.

Corollary 2.9. Let R be a ring with $Z(R)^2 \neq \{0\}$ such that the prime ideals of R contained in Z(R) are linearly ordered. Then Z(R) is an (prime) ideal of R and each pair of distinct zero-divisors of R has a nonzero annihilator.

Our next example illustrates what can happen when the prime ideals of R contained in Z(R) are not linearly ordered.

Example 2.10. (a) Let $D = \mathbb{R}[[X,Y]] + ZK[[Z]]$, where K is the quotient field of $\mathbb{R}[[X,Y]]$, and let I = ZD. Set R = D/I. Then R is quasilocal with maximal ideal Z(R) = ((X,Y) + ZK[[Z]])/I, N(R) = Nil(R) = ZK[[Z]]/I, $Nil(R)^2 = \{0\}$, and ((X) + ZK[[Z]])/I and ((Y) + ZK[[Z]])/I are incomparable prime ideals of R contained in Z(R). One can easily show that $diam(\Gamma(R)) = 3$ and $gr(\Gamma(R)) = 3$. Also see Example 5.3(b).

(b) Let $R = \mathbb{Z}_2 \times \mathbb{Z}_4$. Then $N(R) = Nil(R) = \{0\} \times \{0, 2\} \subsetneq Z(R) = P \cup Q$, where $P = \mathbb{Z}_2 \times \{0, 2\}$ and $Q = \{0\} \times \mathbb{Z}_4$ are incomparable primes ideals of Rcontained in Z(R). One can easily show that $diam(\Gamma(R)) = 3$ and $gr(\Gamma(R)) = \infty$.

We conclude this section with a discussion of the girth of $\Gamma(R)$ when the prime ideals of R contained in Z(R) are linearly ordered. We first handle the case where Z(R) = Nil(R). In this case, $gr(\Gamma(R)) \neq 4$, and we can explicitly say when the girth is either 3 or ∞ . Note that in Theorem 2.11, $gr(\Gamma(R)) = \infty$ if and only if $\Gamma(R)$ is a finite star graph. (Recall that a graph is a *star graph* if it has a vertex which is adjacent to every other vertex and this is the only adjacency relation. We consider a singleton graph to be a star graph.)

Theorem 2.11. Let R be a ring with $Z(R) = Nil(R) \neq \{0\}$. Then exactly one of the following four cases must occur.

(1) $|Z(R)^*| = 1$. In this case, R is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[X]/(X^2)$, and $gr(\Gamma(R)) = \infty$.

- (2) $|Z(R)^*| = 2$. In this case, R is isomorphic to \mathbb{Z}_9 or $\mathbb{Z}_3[X]/(X^2)$, and $gr(\Gamma(R)) = \infty$.
- (3) $|Z(R)^*| = 3$. If R is isomorphic to \mathbb{Z}_8 , $\mathbb{Z}_2[X]/(X^3)$, or $\mathbb{Z}_4[X]/(2X, X^2-2)$, then $gr(\Gamma(R)) = \infty$. Otherwise, R is isomorphic to $\mathbb{Z}_2[X,Y]/(X,Y)^2$, $\mathbb{Z}_4[X]/(2,X)^2$, $\mathbb{Z}_4[X]/(X^2 + X + 1)$, or $\mathbb{F}_4[X]/(X^2)$; and in this case, $gr(\Gamma(R)) = 3$.
- (4) $|Z(R)^*| \ge 4$. In this case, $gr(\Gamma(R)) = 3$.

Proof. By [10, Theorem 2.3], $\operatorname{gr}(\Gamma(R)) \neq 4$ when Z(R) = Nil(R). Thus $\operatorname{gr}(\Gamma(R)) = 3$ or ∞ . The theorem then follows from [10, Theorem 2.5], [10, Remark 2.6(a)], and [7, Example 2.1].

We next handle the $Nil(R) \subsetneq Z(R)$ case when Nil(R) a prime ideal of R (cf. Remark 2.13(b)). In this case, we have already observed that $\Gamma(R)$ is infinite. The next theorem, together with Theorem 2.11, completely characterizes $gr(\Gamma(R))$ in terms of $|Nil(R)^*|$ when the prime ideals of R contained in Z(R) are linearly ordered. In particular, we have $gr(\Gamma(R)) = 3$ or ∞ , with $gr(\Gamma(R)) = \infty$ if and only if $\Gamma(R)$ is a star graph.

Theorem 2.12. Let R be a ring such that Nil(R) is a prime ideal of R and $Nil(R) \subsetneq Z(R)$. In particular, this holds when the prime ideals of R contained in Z(R) are linearly ordered and $Nil(R) \subsetneq Z(R)$. Then $gr(\Gamma(R)) = 3$ or ∞ . Moreover, $gr(\Gamma(R)) = \infty$ if and only if $|Nil(R)^*| = 1$; and in this case, $\Gamma(R)$ is an infinite star graph.

Proof. Since $\Gamma(R)$) $\cong \Gamma(T(R))[8$, Theorem 2.2], we may assume that R = T(R). Note that R is not reduced; so if $\operatorname{gr}(\Gamma(R)) = 4$, then $R \cong D \times B$, where D is an integral domain and $B = \mathbb{Z}_4$ or $\mathbb{Z}_2[X]/(X^2)$ by [10, Theorem 2.3]. In this case, $Nil(R) \cong \{0\} \times \mathbb{Z}_2$ is not a prime ideal of R. So we must have $\operatorname{gr}(\Gamma(R)) = 3$ or ∞ . The "in particular" statement follows from Theorem 2.5(3). The "moreover" statement follows from [10, Theorem 2.5 and Remark 2.6(a)].

Remark 2.13. (a) $\Gamma(R)$ is a finite star graph if and only if either $R \cong \mathbb{F}_q \times \mathbb{Z}_2$ for some finite field \mathbb{F}_q (when R is reduced), or R is one of the 7 rings with $gr(\Gamma(R)) = \infty$ given in Theorem 2.11 ([9, Theorem 2.13] and [26, Corollary 1.11]).

If $\Gamma(R)$ is an infinite star graph, then either $R \cong D \times \mathbb{Z}_2$ for D an integral domain (when R is reduced), or Nil(R) is a prime ideal of R with $|Nil(R)^*| = 1$ and Z(R) is a prime ideal of R ([26, Theorem 1.12] or [33, (2.1)]). For example, if $R = \mathbb{Z}(+)\mathbb{Z}_2 ~(\cong \mathbb{Z}[X]/(2X, X^2))$, then $\Gamma(R)$ is an infinite star graph with center (0,1) and the prime ideals of R contained in Z(R) are linearly ordered.

(b) The hypothesis that Nil(R) is a prime ideal of R is needed in Theorem 2.12. For example, let $R = \mathbb{Z}_3 \times \mathbb{Z}_3$. Then $Nil(R) \subsetneq Z(R)$, Nil(R) is not a prime ideal of R, and $gr(\Gamma(R)) = 4$.

(c) It is instructive to give an elementary, self-contained proof of Theorem 2.12. If $|Nil(R)^*| = 1$, then $gr(\Gamma(R)) = \infty$ since $\Gamma(R) \setminus Nil(R)$ is totally disconnected (Theorem 3.5(1)). So suppose that $|Nil(R)^*| \ge 2$, and let $z \in Z(R) \setminus Nil(R)$. Then there is a $w \in Nil(R)^*$ with zw = 0. First suppose that $w^2 \ne 0$, and let $m (\ge 3)$ be the least positive integer such that $w^m = 0$. Thus $w^{m-1} \ne w$, and hence $z - w - w^{m-1} - z$ is a cycle of length 3. Now suppose that $w^2 = 0$, and let $d \in Nil(R)^* \setminus \{w\}$. Assume that $wd \ne 0$. Since wd and w are distinct and nonzero, we conclude that z - w - wd - z is a cycle of length 3. Now assume that wd = 0 and $w^2 = 0$. If zd = 0, then z - w - d - z is a cycle of length 3. Thus we may assume that $zd \neq 0$. If zd = w, then $zd^2 = wd = 0$, and hence $w - z^2 - d - w$ is a cycle of length 3. Thus we assume that zd and w are distinct and nonzero. Let nbe the least positive integer such that $zd^n = 0$. Assume n > 2. Then it is clear that $d \neq zd^{n-1}$. If $zd^{n-1} \neq w$, then $w - zd^{n-1} - d - w$ is a cycle of length 3. Assume that $zd^{n-1} = w$. Then $z^2d^{n-1} = zw = 0$. Since zw = 0, d^{n-1} and w are distinct and nonzero, and thus $w - z^2 - d^{n-1} - w$ is a cycle of length 3. Now assume that n = 2 and $zd \neq w$. Then $zd^2 = 0$. If $zd \neq d$, then w - zd - d - w is a cycle of length 3. Thus assume that zd = d. Hence $d^2 = zd^2 = 0$. Since zw = 0 and $zd \neq 0$, we have $w + d \neq 0$. Hence w, d, and w + d are all distinct. Since $w^2 = d^2 = wd = 0$, w - w + d - d - w is a cycle of length 3. Thus $gr(\Gamma(R)) = 3$.

3. LINEARLY ORDERED PRIMES-II

In this section, we continue the investigation of $\Gamma(R)$ when the prime ideals of R contained in Z(R) are linearly ordered. We show that for such rings R, $\Gamma(R) \setminus Nil(R)$ is totally disconnected, every finite set of vertices of $\Gamma(R) \setminus Nil(R)$ is adjacent to a common vertex of $Nil(R)^*$, and $\Gamma(R) \setminus Nil(R)$ is infinite when $Nil(R) \subseteq Z(R)$. We also determine diam($\Gamma(R[X])$) and $\operatorname{gr}(\Gamma(R[X]))$. Our first goal is to show that such a ring R is a McCoy ring, where a ring R is called a McCoy ring if every finitely generated ideal of R contained in Z(R) has a nonzero annihilator.

Lemma 3.1. Let R be a ring such that the prime ideals of R contained in Z(R) are linearly ordered, and let $z_1, \ldots, z_n \in Z(R)$. Then there is an integer $i, 1 \leq i \leq n$, a positive integer m, and an $s \in R \setminus Z(R)$ such that $z_i | s z_k^m$ for every integer k, $1 \leq k \leq n$.

Proof. Let T = T(R). Then the prime ideals of T are linearly ordered. Thus $Rad(z_1T), \ldots, Rad(z_nT)$ are prime ideals of T, and hence are linearly ordered. Thus there is an integer i, $1 \le i \le n$, such that $Rad(z_kT) \subseteq Rad(z_iT)$ for every integer k, $1 \le k \le n$. Hence there are positive integers m_1, \ldots, m_n and $s_1, \ldots, s_n \in R \setminus Z(R)$ such that $z_i | s_i z_k^{m_k}$ for every integer $k, 1 \le k \le n$. Let $s = s_1 \cdots s_n \in R \setminus Z(R)$ and $m = \max\{m_1, \ldots, m_n\}$. Then $z_i | sz_k^m$ for every integer $k, 1 \le k \le n$, as desired.

Theorem 3.2. Let R be a ring such that the prime ideals of R contained in Z(R) are linearly ordered. Then R is a McCoy ring.

Proof. Let $I = (z_1, \ldots, z_n)$ be a nonzero finitely generated ideal of R contained in Z(R). By Lemma 3.1, we may assume that there is a positive integer m and an $s \in R \setminus Z(R)$ such that $z_1 | sz_k^m$ for every integer $k, 2 \leq k \leq n$. Let $w \in Z(R)^*$ such that $z_1w = 0$. Thus there is an integer $m_2 \geq 0$ such that $z_2^{m_2}w \neq 0$ and $z_2^{m_2}wz_2 = 0$. Hence $0 \neq z_2^{m_2}w \in (0 : (z_1, z_2))$. Since $z_2^{m_2}wz_1 = 0$ and $z_1 | sz_3^m$, there is an integer $m_3 \geq 0$ such that $z_3^{m_3} z_2^{m_2} w \neq 0$ and $z_3^{m_3} z_2^{m_2} w \in (0 : (z_1, z_2, z_3))$. Continuing in this manner, we can construct a $0 \neq z_n^{m_n} z_{n-1}^{m_{n-1}} \cdots z_2^{m_2} w \in (0 : (z_1, z_2, z_3, \ldots, z_n))$. Hence R is a McCoy ring. \Box

Corollary 3.3. Let R be a ring such that the prime ideals of R contained in Z(R) are linearly ordered, and let $x_1, \ldots, x_n \in Z(R) \setminus Nil(R)$. Then there is a $y \in Nil(R)^*$ such that $x_iy = 0$ for every integer $i, 1 \leq i \leq n$.

Proof. There is a $y \in Z(R)^*$ such that each $x_i y = 0$ since R is a McCoy ring and Z(R) is an ideal of R. Moreover, $y \in Nil(R)$ since $x_1 \notin Nil(R)$ and Nil(R) is a prime ideal of R by Theorem 2.5(3).

Remark 3.4. If R is a McCoy ring and Z(R) is an ideal of R, then clearly $diam(\Gamma(R)) \leq 2$. This observation, together with Theorem 3.2, gives another proof of Theorem 2.7. However, note that $R = \mathbb{Z}_2 \times \mathbb{Z}_4$ is a McCoy ring with $diam(\Gamma(R)) = 3$ (cf. Example 2.10(b)).

We next show that the subgraph $\Gamma(R) \setminus Nil(R)$ of $\Gamma(R)$ is infinite and totally disconnected when Nil(R) is a prime ideal of R and $Nil(R) \subsetneq Z(R)$ (i.e., when $\Gamma(R) \setminus Nil(R)$ is nonempty). This fact gives another proof of the "moreover" statement of Theorem 2.12, namely, that $\Gamma(R)$ is an infinite star graph when Nil(R)is a prime ideal of R, $Nil(R) \subsetneq Z(R)$, and $|Nil(R)^*| = 1$.

Theorem 3.5. Let R be a ring.

- (1) $\Gamma(R) \setminus Nil(R)$ is totally disconnected if and only if Nil(R) is a prime ideal of R.
- (2) If Nil(R) is a prime ideal of R and $Nil(R) \subsetneq Z(R)$, then $Z(R) \setminus Nil(R)$ is infinite.

In particular, $\Gamma(R) \setminus Nil(R)$ is infinite and totally disconnected when the prime ideals of R contained in Z(R) are linearly ordered and $Nil(R) \subsetneq Z(R)$.

Proof. (1) Suppose that $\Gamma(R) \setminus Nil(R)$ is totally disconnected. Let $xy \in Nil(R)$ with $x, y \notin Nil(R)$. Then $x^n y^n = 0$ for some positive integer n. Thus $x^n, y^n \in Z(R) \setminus Nil(R)$ and $x^n \neq y^n$ since $x, y \notin Nil(R)$. But then x^n and y^n are adjacent in $\Gamma(R) \setminus Nil(R)$, a contradiction. Hence Nil(R) is a prime ideal of R. The converse is clear.

(2) Let $x \in Z(R) \setminus Nil(R)$. Suppose that $x^n = x^m$ for some integers $n > m \ge 1$. Then $x^m(1 - x^{n-m}) = 0 \in Nil(R)$ and $x \notin Nil(R)$ implies $1 - x^{n-m} \in Nil(R)$ since Nil(R) is prime. Thus $x^{n-m} = 1 - (1 - x^{n-m}) \in U(R)$, and hence $x \in U(R)$, a contradiction. Thus $Z(R) \setminus Nil(R)$ is infinite.

The "in particular" statement holds since in this case Nil(R) is a prime ideal of R by Theorem 2.5(3).

Combining Lemma 2.1, Theorem 3.5, and Corollary 3.3, we have the following structure theorem for $\Gamma(R)$ when the prime ideals of R contained in Z(R) are linearly ordered. Then $Nil(R)^*$ is a subgraph of $\Gamma(R)$ of diameter at most 2, $\Gamma(R) \setminus Nil(R)$ is infinite and totally disconnected when $Nil(R) \subsetneq Z(R)$, and for each finite set of vertices $Y \subseteq \Gamma(R) \setminus Nil(R)$, there is a vertex $y \in Nil(R)^*$ which is adjacent to every element of Y.

Our next goal is to investigate diam($\Gamma(R[X])$) when the prime ideals of R contained in Z(R) are linearly ordered. The diameter of $\Gamma(R[X])$ has recently been studied in [11], [10], and [32]. In particular, [32, Theorems 3.4 and 3.6] give nice characterizations of diam($\Gamma(R[X])$). If $Z(R)^2 = \{0\}$ (i.e., $\Gamma(R)$ is a complete graph), then $Z(R[X])^2 = \{0\}$; so $\Gamma(R[X])$ is a complete graph with diam($\Gamma(R[X])$) = 1. McCoy's Theorem for polynomial rings states that $f(X) \in Z(R[X])$ if and only if rf(X) = 0 for some $0 \neq r \in R$, i.e., $Z(R[X]) \subseteq Z(R)[X]$. Thus Z(R[X]) is an ideal of R[X] if and only if R is a McCoy ring and Z(R) is an ideal of R [32, Theorem 3.3], and in this case, Z(R[X]) = Z(R)[X].

Theorem 3.6. Let R be a ring such that the prime ideals of R contained in Z(R) are linearly ordered.

- (1) Z(R[X]) is an (prime) ideal of R[X].
- (2) If R is not an integral domain and $Z(R)^2 = \{0\}$, then $diam(\Gamma(R[X])) = 1$.
- (3) If $Z(R)^2 \neq \{0\}$, then $diam(\Gamma(R[X])) = 2$.

Proof. Part (1) follows from Theorem 3.2 and [32, Theorem 3.3]. We have already observed part (2) above. Part (3) follows from Theorem 3.2, Corollary 2.9, and [32, Theorem 3.4(3)].

Corollary 3.7. If R is any of the following types of rings with $Z(R)^2 \neq \{0\}$, then $diam(\Gamma(R[X])) = 2$.

- (1) R is a ring such that the prime ideals of R are linearly ordered.
- (2) R is a divided ring.
- (3) R is a PVR.
- (4) R is a ϕ -PVR.
- (5) R is a chained ring.

Corollary 3.8. Let R be a nonreduced ring such that the prime ideals of R contained in Z(R) are linearly ordered. Then exactly one of the following four cases must occur.

- (1) $|Z(R)^*| = 1$. In this case, R is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[Y]/(Y^2)$, $diam(\Gamma(R)) = 0$, and $diam(\Gamma(R[X])) = 1$.
- (2) $|Z(R)^*| \ge 2$, Z(R) = Nil(R), and $Z(R)^2 = \{0\}$. In this case, $diam(\Gamma(R)) = diam(\Gamma(R[X])) = 1$.
- (3) Z(R) = Nil(R) and $Z(R)^2 \neq \{0\}$. In this case, $diam(\Gamma(R)) = diam(\Gamma(R[X])) = 2$.
- (4) $Nil(R) \subsetneq Z(R)$. In this case, $diam(\Gamma(R)) = diam(\Gamma(R[X])) = 2$.

Proof. This follows directly from Theorem 2.2 and Theorem 3.6.

The following example illustrates the four cases stated in Corollary 3.8. In each case, the ring R is actually a chained ring. The routine details are left to the reader.

Example 3.9. (a) Let $R = \mathbb{Z}_4$. Then R is a chained ring with $|Z(R)^*| = 1$. Thus $diam(\Gamma(R)) = 0$ and $diam(\Gamma(R[X])) = 1$.

(b) Let $R = \mathbb{Z}_9$. Then R is a chained ring with $|Z(R)^*| = 2, Z(R) = Nil(R) = N(R)$, and $Z(R)^2 = \{0\}$. Thus $diam(\Gamma(R)) = diam(\Gamma(R[X])) = 1$.

(c) Let $R = \mathbb{Z}_8$. Then R is a chained ring with $N(R) \subsetneq Nil(R) = Z(R)$ and $Z(R)^2 \neq \{0\}$. Thus $diam(\Gamma(R)) = diam(\Gamma(R[X])) = 2$.

(d) Let $D = \mathbb{Z}_{(2)} + X\mathbb{Q}[[X]]$ and $I = XD = \mathbb{Z}_{(2)}X + X^2\mathbb{Q}[[X]]$. Set R = D/I. Then D is a valuation domain; so R is a chained ring. Note that $Z(R) = (2\mathbb{Z}_{(2)} + X\mathbb{Q}[[X]])/I = 2R$ and $N(R) = Nil(R) = X\mathbb{Q}[[X]]/I$; so $Nil(R) \subsetneq Z(R)$ and $Nil(R)^2 = \{0\}$. Thus $diam(\Gamma(R)) = diam(\Gamma(R[X])) = 2$.

Unlike the case for the diameter of the zero-divisor graph of a polynomial ring as in Corollary 3.8, the girth case is very easy. The girth of $\Gamma(R[X])$ and $\Gamma(R[[X]])$ has been studied in [11] and [10], and a complete characterization is given in [10, Theorem 3.2]. For any nonreduced ring R, we always have $\operatorname{gr}(\Gamma(R[X])) =$ $\operatorname{gr}(\Gamma(R[[X]])) = 3$ by [10, Lemma 3.1] (since $aX - aX^2 - aX^3 - aX$ forms a triangle for any $a \in N(R)^*$).

10

4. CHAINED RINGS

In this section, we investigate $\Gamma(R)$ when R is a chained ring. This is probably the nicest case where the prime ideals of R contained in Z(R) are linearly ordered since in a chained ring all the ideals are linearly ordered. A typical example of a chained ring is a homomorphic image of a valuation domain. In particular, \mathbb{Z}_n is a chained ring if and only if n is a prime power. In fact, it was an open question (attributed to Kaplansky) if every chained ring is the homomorphic image of a valuation domain (cf. [30, Chapter V]). However, an example in [28] shows that this is not true in general. It will turn out that the subset $N(R) = \{x \in R \mid x^2 = 0\}$ of Nil(R) will play a major role in describing $\Gamma(R)$ when R is a chained ring. Note that if R is a chained ring, then $N(R) = \{0\}$ if and only if $Z(R) = \{0\}$. Also note that for any ring R, we have N(R) = Nil(R) when $Nil(R)^2 = \{0\}$, and $N(R) = \{0\}$ if and only if $Nil(R) = \{0\}$. We start with several lemmas. In some cases, these results are special cases of ones from previous sections; however, the proofs are much easier in the chained ring setting.

Lemma 4.1. Let R be a ring, $N(R) = \{x \in R \mid x^2 = 0\}$, and $x \in Nil(R) \setminus N(R)$. Then xy = 0 for some $y \in N(R)^* \setminus \{x\}$.

Proof. Let $n \geq 3$ be the least positive integer such that $x^n = 0$, and let $y = x^{n-1}$. Then $xy = x^n = 0$, $y = x^{n-1} \neq 0$, and $y^2 = (x^{n-1})^2 = x^{2n-2} = 0$ because $2n-2 \ge n$ since $n \ge 3$. Clearly $x \ne y$ since $x^2 \ne 0$.

Thus any vertex of the subgraph $Nil(R) \setminus N(R)$ of $\Gamma(R)$ is adjacent to a vertex of $N(R)^*$. We next show, among other things, that for a chained ring R, any vertex of $\Gamma(R) \setminus N(R)$ is adjacent to a vertex of $N(R)^*$ and any two vertices of $N(R)^*$ are adjacent.

Lemma 4.2. Let R be a chained ring, $N(R) = \{x \in R \mid x^2 = 0\}$, and $x, y \in R$.

- (1) If xy = 0, then either $x \in N(R)$ or $y \in N(R)$.
- (2) If $x, y \in N(R)$, then xy = 0.
- (3) If $x, y \in Z(R) \setminus N(R)$, then $xy \neq 0$.
- (4) If $x \in Z(R)^*$, then xy = 0 for some $y \in N(R)^*$.
- (5) If $x_1, \ldots, x_n \in Z(R)^*$, then there is a $y \in N(R)^*$ such that $x_i y = 0$ for every integer $i, 1 \leq i \leq n$.
- (6) N(R) is an ideal of R.
- (7) N(R) is a prime ideal of R if and only if N(R) = Nil(R).

Proof. (1) Suppose that x|y. Then y = rx for some $r \in R$; so $y^2 = rxy = 0$.

(2) Suppose that x|y. Then y = rx for some $r \in R$, and hence $xy = rx^2 = 0$. (3) This follows from part (1).

(4) If $x \in N(R)^*$, then let y = x. If $x \in Z(R) \setminus N(R)$, then xy = 0 for some $0 \neq y \in R$. By part (3) above, we must have $y \in N(R)$.

(5) There is an integer $j, 1 \leq j \leq n$, such that $x_j | x_i$ for all $i, 1 \leq i \leq n$. By part (4) above, there is a $y \in N(R)^*$ such that $x_i y = 0$; so $x_i y = 0$ for all $i, 1 \le i \le n$.

(6) Clearly $xN(R) \subseteq N(R)$ for all $x \in R$; so we need only show that N(R) is closed under addition. Let $x, y \in N(R)$. Then $x^2 = y^2 = 0$, and xy = 0 by part (2) above. Thus $(x + y)^2 = x^2 + 2xy + y^2 = 0$, and hence $x + y \in N(R)$.

(7) This is clear since Nil(R) is the unique minimal prime ideal of R.

One can ask if part(5) above extends to any subset of $Z(R)^*$. Of course, if $X \subseteq xR$ and yx = 0, then $yX = \{0\}$. So if $X \subseteq Z(R)^*$ and $X \subseteq xR$ for some $x \in Z(R)^*$, then $yX = \{0\}$ for some $y \in N(R)^*$. Our next remark addresses this question.

Remark 4.3. (a) Let D = V + XK[[X]], where V is a valuation domain with nonzero maximal ideal M and quotient field K; so D is also a valuation domain. Let $I = XD = VX + X^2K[[X]]$, and set R = D/I. Then R is a chained ring with maximal ideal Z(R) = (M + XK[[X]])/I and N(R) = Nil(R) = XK[[X]]]/I. Note that there is a $y \in N(R)^*$ such that $yZ(R) = \{0\}$ if and only if there is a $y \in M^{-1} \setminus V$. (So for dim(V) = 1, this happens if and only if V is a DVR.)

(b) If R is a chained ring, then $N(R) = \{x \in R \mid x^2 = 0\}$ is an ideal of R by Lemma 4.2(6). In general, N(R) need not be an ideal of R (see Examples 5.5 and 5.6). However, if char(R) = 2, then N(R) is an ideal of R. Also note that if $2 \in U(R)$ and N(R) is an ideal of R, then xy = 0 for all $x, y \in N(R)$.

By Theorem 3.5(1), $\Gamma(R) \setminus Nil(R)$ is totally disconnected when R is a chained ring. Lemma 4.2(3) yields the following stronger result (also see Example 5.5).

Theorem 4.4. Let R be a chained ring and $N(R) = \{x \in R \mid x^2 = 0\}$. Then $\Gamma(R) \setminus N(R)$ is totally disconnected.

Our next result is a special case of Theorem 2.7, but we give a proof in the spirit of this section. We can also explicitly say when diam($\Gamma(R)$) is 0, 1, or 2.

Theorem 4.5. Let R be a chained ring. Then $diam(\Gamma(R)) \leq 2$.

Proof. We may assume that $|Z(R)^*| \ge 2$. Let $N(R) = \{x \in R \mid x^2 = 0\}$, and let $x, y \in Z(R)^*$ be distinct. If $x, y \in N(R)$, then xy = 0 by Lemma 4.2(2), and thus d(x, y) = 1. If $x \in N(R)$ and $y \notin N(R)$, then yz = 0 for some $z \in N(R)^*$ by Lemma 4.2(4), and hence xz = 0 by Lemma 4.2(2). Thus $d(x, y) \le 2$. Finally, let $x \notin N(R)$ and $y \notin N(R)$. Then xz = yz = 0 for some $z \in N(R)^*$ by Lemma 4.2(5). Thus $d(x, y) \le 2$, and hence diam $(\Gamma(R)) \le 2$.

Theorem 4.6. Let R be a chained ring with $Z(R) \neq \{0\}$, and let $N(R) = \{x \in R \mid x^2 = 0\}$. Then exactly one of the following three cases must occur.

- (1) $|Z(R)^*| = 1$. In this case, R is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[X]/(X^2)$, and $diam(\Gamma(R)) = 0$.
- (2) $|Z(R)^*| \ge 2$ and N(R) = Z(R). In this case, $diam(\Gamma(R)) = 1$.
- (3) $N(R) \subsetneq Z(R)$. In this case, $diam(\Gamma(R)) = 2$.

Proof. The first part follows from [24, Proposition 2.2]. The other two follow directly from Lemma 4.2 and Theorem 4.5. \Box

Let R be a chained ring with $N(R) = \{x \in R \mid x^2 = 0\}$. It is now easy to describe the structure of $\Gamma(R)$. First, observe that $N(R)^*$ is a complete subgraph of $\Gamma(R)$ by Lemma 4.2(2), $\Gamma(R) \setminus N(R)$ is totally disconnected by Lemma 4.2(3), and $\Gamma(R) \setminus N(R)$ is infinite if $Nil(R) \subsetneq Z(R)$. Moreover, for any finite set of vertices $Y \subseteq \Gamma(R) \setminus N(R)$, there is a vertex $z \in N(R)^*$ adjacent to every element in Y by Lemma 4.2(5). In particular, $\Gamma(R)$ is complete if and only if Z(R) = N(R). Note that this description of $\Gamma(R)$ recovers Theorem 4.6. Also note that $Nil(R)^*$ need not be a complete subgraph of $\Gamma(R)$ (e.g., when R is the chained ring \mathbb{Z}_{16}).

The structure of $\Gamma(R)$ described in the preceding paragraph also extends to $\Gamma(R[X])$ when R is a chained ring. Note that when R is a chained ring, we have N(R[X]) = N(R)[X], Nil(R[X]) = Nil(R)[X], and Z(R[X]) = Z(R)[X] (of course, Nil(R[X]) = Nil(R)[X] holds for any ring R). These statements are easy to verify directly, or just note that for any $0 \neq f \in R[X]$, we have $f = af^*$, where $a \in R$ and $f^* \in R[X]$ has unit content. Then $f \in N(R[X])$ (resp., Nil(R[X]), Z(R[X])) if and only if $a \in N(R)$ (resp., Nil(R), Z(R)). Thus $N(R[X])^*$ is a complete subgraph of $\Gamma(R[X]), \Gamma(R[X]) \setminus N(R[X])$ is totally disconnected, and for any finite set of vertices $Y \subseteq \Gamma(R[X]) \setminus N(R[X])$, there is a vertex $f \in N(R[X])^*$ which is adjacent to every element in Y when R is a chained ring. Moreover, $N(R[X])^*$ and $\Gamma(R[X]) \setminus N(R[X])$ are both infinite when R is a nonreduced chained ring. This observation shows that diam($\Gamma(R[X])) = 1$ when $Z(R)^2 = \{0\}$ and diam($\Gamma(R[X])) = 2$ when $Z(R)^2 \neq \{0\}$.

The above description of $\Gamma(R)$ also enables us to easily determine $\operatorname{gr}(\Gamma(R))$ when R is a chained ring (cf. Theorem 2.12). Note that $\Gamma(R)$ is a finite star graph in the first three cases of the next theorem, but it is not possible to have $\Gamma(R)$ be an infinite star graph when R is a chained ring (cf. Theorem 2.12).

Theorem 4.7. Let R be a chained ring with $N(R) = \{x \in R \mid x^2 = 0\} \neq \{0\}$. Then exactly one of the following five cases must occur.

- (1) $|N(R)^*| = 1$ and N(R) = Z(R). In this case, R is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[X]/(X^2)$, and $gr(\Gamma(R)) = \infty$.
- (2) $|N(R)^*| = 1$ and $N(R) \subsetneq Z(R)$. In this case, R is isomorphic to $\mathbb{Z}_8, \mathbb{Z}_2[X]/(X^3)$, or $\mathbb{Z}_4[X]/(2X, X^2 - 2)$, and $gr(\Gamma(R)) = \infty$.
- (3) $|N(R)^*| = 2$ and N(R) = Z(R). In this case, R is isomorphic to \mathbb{Z}_9 or $\mathbb{Z}_3[X]/(X^2)$, and $gr(\Gamma(R)) = \infty$.
- (4) $|N(R)^*| = 2$ and $N(R) \subsetneq Z(R)$. In this case, $gr(\Gamma(R)) = 3$.
- (5) $|N(R)^*| \ge 3$. In this case, $gr(\Gamma(R)) = 3$.

Proof. If $|N(R)^*| \geq 3$, then clearly $\operatorname{gr}(\Gamma(R)) = 3$ by Lemma 4.2(2). Suppose that $|N(R)^*| = 2$; say $N(R)^* = \{x, y\}$. If $y \neq -x$, then x + y is a third nonzero element of N(R), a contradiction. Thus y = -x; so $\operatorname{ann}_R(x) = \operatorname{ann}_R(y)$. If there is a $z \in Z(R) \setminus N(R)$, then x - y - z - x is a triangle by Lemma 4.2(4); so $\operatorname{gr}(\Gamma(R)) = 3$. Otherwise, Z(R) = N(R), and thus $\operatorname{gr}(\Gamma(R)) = \infty$. Finally, suppose that $|N(R)^*| = 1$, say $N(R) = \{0, x\}$. If Z(R) = N(R), then $R \cong \mathbb{Z}_4$ or $\mathbb{Z}_2[X]/(X^2)$ by [24, Proposition 2.2]. In this case, $\operatorname{gr}(\Gamma(R)) = \infty$. So suppose that $N(R) \subsetneq Z(R)$. By parts (3) and (4) of Lemma 4.2, $\Gamma(R)$ is a star graph with center x. Thus |R| = 8, |R| = 9, or |R| > 9 and $Nil(R) = \{0, x\}$ by [8, Lemma 3.7]. The |R| > 9 case can not happen. For in this case, Nil(R) = N(R) = xR is a prime ideal of R. Let $y \in Z(R)^* \setminus \{x\}$. Then $xR \subsetneq yR$; so x = yr for some $0 \neq r \in R$. Hence $r \in xR = \{0, x\}$ since xR is a prime ideal of R; so r = x. Thus x = yx, and hence x(1-y) = 0. But R is quasilocal; so $1-y \in U(R)$, and thus x = 0, a contradiction. If |R| = 8, then $R \cong \mathbb{Z}_8, \mathbb{Z}_2[X]/(X^3)$, or $\mathbb{Z}_4[X]/(2X, X^2 - 2)$; and if |R| = 9, then $R \cong \mathbb{Z}_9$ or $\mathbb{Z}_3[X]/(X^3)$ by [8, Corollary 3.11]. As each of these rings is a chained ring, the result follows.

We close this section with several examples.

Example 4.8. (a) Let R be the (nonreduced) chained ring \mathbb{Z}_{p^n} , where p is prime and $n \geq 2$. Then $diam(\Gamma(R)) = 0$ if and only if p = 2 and n = 2, $diam(\Gamma(R)) = 1$ if and only if p > 2 and n = 2, and $diam(\Gamma(R)) = 2$ if and only if $n \geq 3$.

We have $gr(\Gamma(R)) = \infty$ if either p = 2 and $2 \le n \le 3$ or p = 3 and n = 2; otherwise, $gr(\Gamma(R)) = 3$.

(b) We have $N(R) \subseteq Nil(R) \subseteq Z(R)$ for any ring R. We give examples to show that all four cases for inclusion or proper inclusion are possible when R is a chained ring. The easy details are left to the reader. Recall that $\{0\} \neq Nil(R) \subsetneq Z(R)$ forces a chained ring R to be infinite, and thus so is $\Gamma(R)$. (i) Let $R = \mathbb{Z}_4$. Then N(R) = Nil(R) = Z(R). (ii) Let $R = (\mathbb{Z}_{(2)} + X\mathbb{Q}[[X]])/(X)$. Then N(R) = $Nil(R) \subsetneq Z(R)$. (iii) Let $R = \mathbb{Z}_8$. Then $N(R) \subsetneq Nil(R) = Z(R)$. (iv) Let $R = (\mathbb{Z}_{(2)} + X\mathbb{Q}[[X]])/(X^2)$. Then $N(R) \subsetneq Nil(R) \subsetneq Z(R)$.

(c) Let R_1 and R_2 be chained rings and $R = R_1 \times R_2$. Then $N(R) = N(R_1) \times N(R_2)$ and R is never a chained ring since the ideals (1,0)R and (0,1)R are not comparable. Note that $N(R)^*$ is still a complete subgraph of $\Gamma(R)$ and any $(x, y) \in \Gamma(R)$ is still adjacent to some element of $N(R)^*$, but $\Gamma(R) \setminus N(R)$ is not totally disconnected since (0,1) and (1,0) are adjacent.

(d) We have already observed that for a chained ring R, its zero-divisor graph $\Gamma(R)$ is complete if and only if Z(R) = N(R). However, if R is not a chained ring, then Z(R) = N(R) does not imply that $\Gamma(R)$ is complete. For example, let $R = \mathbb{Z}_2[X,Y]/(X^2,Y^2) = \mathbb{Z}_2[x,y]$. Then R is not a chained ring since the ideals xR and yR are not comparable. However, $N(R) = Nil(R) = Z(R) = \{0, x, y, x + y, xy, x + xy, y + xy, x + y + xy\}$, but $\Gamma(R)$ is not complete since $xy \neq 0$. Note that the prime ideals of R are (trivially) linearly ordered, $diam(\Gamma(R)) = 2$, and $gr(\Gamma(R)) = 3$.

(e) A ring R such that $Nil(R)^* (= N(R)^*)$ is a complete subgraph of $\Gamma(R)$ and $\Gamma(R) \setminus Nil(R)$ is totally disconnected, but R is not a chained ring. Let D be an integral domain which is not a valuation domain, and let K be the quotient field of D. Set R = D(+)(K/D); for example, let $R = \mathbb{Z}(+)(\mathbb{Q}/\mathbb{Z})$. Note that $N(R) = Nil(R) = \{0\}(+)(K/D) \subsetneq Z(R) = (D \setminus U(D))(+)(K/D)$ and $Nil(R)^2 = \{0\}$. Thus one can easily verify that R satisfies the desired conditions.

5. $\Gamma(R)$ when $R \in \mathcal{H}$

In this final section, we are interested in the case where the ring R satisfies $\{0\} \neq Nil(R) \subseteq zR$ for all $z \in Z(R) \setminus Nil(R)$. In particular, this condition holds when $R \in \mathcal{H}$ is not an integral domain (i.e., when Nil(R) is a nonzero divided prime ideal of R; so $\{0\} \neq Nil(R) \subseteq zR$ for all $z \in R \setminus Nil(R)$). We start by showing that if $\{0\} \neq Nil(R) \subseteq zR$ for all $z \in Z(R) \setminus Nil(R)$, then Nil(R) is a prime ideal of R (cf. the proof of [3, Proposition 5.1]), and that Nil(R) is a divided prime ideal of R when $Nil(R) \subsetneq Z(R)$.

Theorem 5.1. Let R be a ring with $\{0\} \neq Nil(R) \subseteq zR$ for all $z \in Z(R) \setminus Nil(R)$.

- (1) Nil(R) is a prime ideal of R.
- (2) $Nil(R) \subseteq \bigcap_{n \ge 1} z^n R$ for all $z \in Z(R) \setminus Nil(R)$.
- (3) If $Nil(R) \subsetneq \overline{Z}(R)$, then Nil(R) is a divided prime ideal of R.

Proof. (1) If Nil(R) = Z(R), then Nil(R) is a prime ideal of R. So we may assume that $Nil(R) \subsetneq Z(R)$ and $Nil(R) \subseteq zR$ for all $z \in Z(R) \setminus Nil(R)$. Suppose that Nil(R) is not prime. Then there are $x, y \in Z(R) \setminus Nil(R)$ with $xy \in Nil(R)$. Thus $x^2 \in Z(R) \setminus Nil(R)$, and hence $Nil(R) \subseteq x^2R$. Thus $xy = x^2d$ for some $d \in R$, and hence $y - xd \notin Nil(R)$ since $xd \in Nil(R)$ and $y \notin Nil(R)$. Since

(y - xd)x = 0, we have $y - xd \in Z(R) \setminus Nil(R)$. Thus $Nil(R) \subseteq (y - xd)R$, and hence $xNil(R) \subseteq x(y - xd)R = \{0\}$. Let $0 \neq z \in Nil(R) \subseteq x^2R$. Then $z = x^2r$ for some $r \in R$, and $xr \in Nil(R)$. Thus z = x(xr) = 0, a contradiction. Hence Nil(R)is a prime ideal of R.

(2) Let $z \in Z(R) \setminus Nil(R)$. Then $z^n \in Z(R) \setminus Nil(R)$ for all integers $n \ge 1$ since Nil(R) is a prime ideal of R by part (1), and thus $Nil(R) \subseteq z^n R$ for all integers $n \ge 1$. Hence $Nil(R) \subseteq \bigcap_{n>1} z^n R$.

(3) Let $z \in R \setminus Nil(R)$ and $w \in Z(R) \setminus Nil(R)$. Then $wz \in Z(R) \setminus Nil(R)$, and thus $Nil(R) \subseteq wzR \subseteq zR$. Hence Nil(R) is a divided prime ideal of R. \Box

Corollary 5.2. The following statements are equivalent for a ring R.

- (1) $\{0\} \neq Nil(R) \subseteq zR$ for all $z \in Z(R) \setminus Nil(R)$ and $Nil(R) \subsetneq Z(R)$.
- (2) $R \in \mathcal{H}$ and $Nil(R) \subsetneq Z(R)$.

The simplest example of a ring R with $\{0\} \neq Nil(R) \subseteq zR$ for all $z \in Nil(R) \setminus Nil(R)$ and $Nil(R) \subsetneq Z(R)$ is a nondomain chained ring R with dim $(R) \geq 1$. We next give two examples to show that the condition $\{0\} \neq Nil(R) \subseteq zR$ for all $z \in Z(R) \setminus Nil(R)$ neither implies nor is implied by the condition that the prime ideals of R contained in Z(R) are linearly ordered. We also show that the $Nil(R) \subsetneq Z(R)$ hypothesis is needed in part (3) of Theorem 5.1.

Example 5.3. (a) Let $R = \mathbb{Z}(+)\mathbb{Z}_2$. Then $N(R) = Nil(R) = \{0\}(+)\mathbb{Z}_2$ and $Z(R) = 2\mathbb{Z}(+)\mathbb{Z}_2$. Thus the prime ideals of R contained in Z(R), namely Nil(R) and Z(R), are linearly ordered, but $Nil(R) \not\subseteq (2,0)R$ for $(2,0) \in Z(R) \setminus Nil(R)$.

(b) Let $R = \mathbb{Z}(+)(\mathbb{Q}/\mathbb{Z})$. Then $N(R) = Nil(R) = \{0\}(+)(\mathbb{Q}/\mathbb{Z})$ and $Z(R) = (\mathbb{Z} \setminus \{1, -1\})(+)(\mathbb{Q}/\mathbb{Z})$. Thus the prime ideals of R contained in Z(R) are not linearly ordered, but $Nil(R) \subseteq zR$ for all $z \in Z(R) \setminus Nil(R)$; so $R \in \mathcal{H}$. We have diam($\Gamma(R)$) = 3 since d((2, 0), (3, 0)) = 3. Also note that R is a McCoy ring, $gr(\Gamma(R)) = 3$, and $R \cong (\mathbb{Z} + X\mathbb{Q}[[X]])/(X)$.

(c) Let $R = \mathbb{Z}_4[X]$ (or $\mathbb{Z}_4[[X]]$). Then N(R) = Nil(R) = Z(R) = 2R; so $\{0\} \neq Nil(R) \subseteq zR$ for all $z \in Z(R) \setminus Nil(R)$. But Nil(R) is not divided since $Nil(R) = 2R \not\subseteq XR$.

Suppose that $R \in \mathcal{H}$ with $Nil(R) \subsetneq Z(R)$. Then we have already observed that $Z(R) \setminus Nil(R)$ must be infinite (Theorem 3.5(2)). In fact, both Nil(R) and $Z(R) \setminus Nil(R)$ are infinite.

Theorem 5.4. Let $R \in \mathcal{H}$ with $Nil(R) \subsetneq Z(R)$.

- (1) If xy = 0 for $x \in Z(R) \setminus Nil(R)$ and $y \in R$, then $y \in N(R) \subseteq Nil(R)$ and $yNil(R) = \{0\}$. Thus $ann_R(x) \subseteq ann_R(Nil(R))$.
- (2) Nil(R) is infinite.
- (3) $\Gamma(R) \setminus Nil(R)$ is infinite and totally disconnected.

Proof. (1) Suppose that xy = 0 for $x \in Z(R) \setminus Nil(R)$ and $y \in R$. Then $y \in Nil(R)$ since Nil(R) is a prime ideal of R. Then $Nil(R) \subseteq xR$ since Nil(R) is a divided prime ideal, and thus $yNil(R) \subseteq xyR = \{0\}$. In particular, $y^2 = 0$; so $y \in N(R)$.

(2) Let $x \in Z(R) \setminus Nil(R)$. We have xz = 0 for some $z \in Nil(R)^*$. Then for each integer $n \ge 1$, we have $z = z_n x^n$ for some $z_n \in R$ by Theorem 5.1(2). Note that $z_n \in Nil(R)^*$ since Nil(R) is a prime ideal of R and $x^n \notin Nil(R)$. If $z_n = z_m$ for some integers $n > m \ge 1$, then $z = x^n z_n = x^n z_m = x^{n-m} (x^m z_m) = x^{n-m} z = 0$, a contradiction. Thus Nil(R) is infinite.

(3) Since Nil(R) is a prime ideal of R, the graph $\Gamma(R) \setminus Nil(R)$ is totally disconnected by Theorem 3.5(1) and infinite by Theorem 3.5(2).

We can now describe the structure of $\Gamma(R)$ when $R \in \mathcal{H}$ and $Nil(R) \subsetneq Z(R)$. The subgraph $\Gamma(R) \setminus Nil(R)$ is infinite and totally disconnected, $Nil(R)^*$ is infinite, and for each vertex $x \in \Gamma(R) \setminus Nil(R)$, there is a vertex $y \in Nil(R)^*$ such that y is adjacent to x and to all other elements of $Nil(R)^*$.

Since $N(R) \subseteq Nil(R)$, the graph $\Gamma(R) \setminus Nil(R)$ is totally disconnected when $\Gamma(R) \setminus N(R)$ is totally disconnected (so this happens when R is a chained ring). However, our next example shows that we may have $\Gamma(R) \setminus Nil(R)$ totally disconnected, but $\Gamma(R) \setminus N(R)$ is not totally disconnected for a ring $R \in \mathcal{H}$ with the prime ideals of R contained in Z(R) linearly ordered.

Example 5.5. Let $D = \mathbb{Z}_{(2)} + X\mathbb{R}[[X]]$ and $I = X^2D = \mathbb{Z}_{(2)}X^2 + X^3\mathbb{R}[[X]]$. Set R = D/I. Then R is quasilocal with maximal ideal $Z(R) = (2\mathbb{Z}_{(2)} + X\mathbb{R}[[X]])/I = 2R$ and $Nil(R) = X\mathbb{R}[[X]]/I$. Note that R is not a chained ring and the prime ideals of R contained in Z(R), namely Nil(R) and Z(R), are linearly ordered. Let $f = \pi X + I$ and $g = \pi^{-1}X + I$. Then $f, g \in Nil(R) \setminus N(R)$, but $fg = X^2 + I = 0$; so $\Gamma(R) \setminus N(R)$ is not totally disconnected. Also N(R) is not an ideal of R and $N(R)^2 \neq \{0\}$ (and hence $Nil(R)^2 \neq \{0\}$) since $f = \sqrt{2}X + I, g = \sqrt{3}X + I \in N(R)$, but $f = \sqrt{6}X^2 + I \neq 0$. It is easy to check that $R \in \mathcal{H}$.

The next example shows that Theorem 5.4(1) need not hold if we only assume that the prime ideals of R contained in Z(R) are linearly ordered.

Example 5.6. Let $D = \mathbb{Q}[X, Y, Z]_{(X,Y,Z)}$ and $I = (X^2, Y^2, XZ)_{(X,Y,Z)}$. Set $R = D/I = \mathbb{Q}[x, y, z]$. Then $Nil(R) = (x, y) \subsetneq (x, y, z) = Z(R)$. The prime ideals of R contained in Z(R), namely Nil(R) and Z(R), are linearly ordered. Then $z \in Z(R) \setminus Nil(R)$ and xz = 0, but $xNil(R) \neq \{0\}$ since $xy \neq 0$. Note that N(R) is not an ideal of R and $Nil(R)^2 \neq \{0\}$.

Observe that if $R \in \mathcal{H}$ and $Nil(R) \subsetneq Z(R)$, then $Ker(\phi) = \{w \in Nil(R) \mid zw = 0 \text{ for some } z \in Z(R) \setminus Nil(R)\} \subseteq Nil(R)$. Thus $Ker(\phi)^*$ is precisely the set of vertices of $\Gamma(R)$ which are adjacent to some vertex of $\Gamma(R) \setminus Nil(R)$. Clearly $Nil(R) \subseteq Ker(\phi)$ when $\phi(R)$ is an integral domain, and thus $Ker(\phi) = Nil(R)$ when $\phi(R)$ is an integral domain.

Corollary 5.7. Let $R \in \mathcal{H}$ with $Nil(R) \subsetneq Z(R)$. Then $Nil(R)Ker(\phi) = \{0\}$, and thus $Ker(\phi)^2 = \{0\}$ (so $Ker(\phi) \subseteq N(R)$). In particular, when $\phi(R)$ is an integral domain, then $Nil(R)^2 = \{0\}$, and hence $Nil(R)^*$ is a complete subgraph of $\Gamma(R)$.

Proof. Let $y \in Ker(\phi)$. Then there is a $z \in Z(R) \setminus Nil(R)$ with zy = 0. Thus $yNil(R) = \{0\}$ by Theorem 5.4(1), and hence $Nil(R)Ker(\phi) = \{0\}$. Thus $Ker(\phi)^2 = \{0\}$ since $Ker(\phi) \subseteq Nil(R)$. Now suppose that $\phi(R)$ is an integral domain. Then $Nil(R) = Ker(\phi)$, and hence $Nil(R)^2 = \{0\}$. Thus $Nil(R)^*$ is a complete subgraph of $\Gamma(R)$.

Remark 5.8. The proof of Theorem 5.4(2) actually shows that $Ker(\phi)$ is infinite since z and each z_n are in $Ker(\phi)$. Thus by the above corollary, $Ker(\phi)^*$ is an infinite complete subgraph of $\Gamma(R)$ when $R \in \mathcal{H}$ and $Nil(R) \subsetneq Z(R)$. Also $Ker(\phi) \subseteq$ $N(R) \subseteq Nil(R)$; so all three are infinite when $R \in \mathcal{H}$ and $Nil(R) \subsetneq Z(R)$.

The following is an example of a ring $R \in \mathcal{H}$ with $Nil(R) \subsetneq Z(R)$ and $Nil(R)^2 = \{0\}$, but $\phi(R)$ is not an integral domain.

Example 5.9. Let $R = \mathbb{Z}(+)(\mathbb{R}/\mathbb{Z}_{(2)})$. Then $N(R) = Nil(R) = \{0\}(+)(\mathbb{R}/\mathbb{Z}_{(2)})$, $Nil(R)^2 = \{0\}, Z(R) = 2\mathbb{Z}(+)(\mathbb{R}/\mathbb{Z}_{(2)})$, and $Ker(\phi) = \{0\}(+)(\mathbb{Q}/\mathbb{Z}_{(2)})$. Thus $R \in \mathcal{H}$ and $Ker(\phi) \subseteq Nil(R) \subseteq Z(R)$; so $\phi(R)$ is not an integral domain. In fact, $\phi(R) \cong R/Ker(\phi) \cong \mathbb{Z}(+)(\mathbb{R}/\mathbb{Q})$. Note that $Nil(R)^*$ (and hence $Ker(\phi)^*$) is a complete subgraph of $\Gamma(R)$, and $\Gamma(R) \setminus Nil(R)$ is totally disconnected by Theorem 5.4(3). However, $\Gamma(R) \setminus Ker(\phi)$ is not totally disconnected; for example, $(0, \pi + \mathbb{Z}_{(2)})$ and $(0, \pi^{-1} + \mathbb{Z}_{(2)})$ are adjacent in $\Gamma(R) \setminus Ker(\phi)$ (cf. Theorem 5.10).

We next give another characterization for when $\phi(R)$ is an integral domain in terms of complete and totally disconnected subgraphs of $\Gamma(R)$.

Theorem 5.10. The following statements are equivalent for a ring $R \in \mathcal{H}$ with $Nil(R) \subsetneq Z(R)$.

- (1) $\phi(R)$ is an integral domain.
- (2) $Nil(R) = Ker(\phi).$
- (3) $Ker(\phi)^*$ is a complete subgraph of $\Gamma(R)$ and $\Gamma(R) \setminus Ker(\phi)$ is totally disconnected.
- (4) $\Gamma(R) \setminus Ker(\phi)$ is totally disconnected.

Proof. (1) \Leftrightarrow (2) This is clear.

- $(2) \Rightarrow (3)$ This follows from Theorem 5.4(3) and Corollary 5.7.
- $(3) \Rightarrow (4)$ This is also clear.

 $(4) \Rightarrow (2)$ We always have $Ker(\phi) \subseteq Nil(R)$ since $R \in \mathcal{H}$. Suppose that there is a $w \in Nil(R) \setminus Ker(\phi)$, and let $z \in Z(R) \setminus Nil(R)$. Then $zw \in Nil(R) \setminus Ker(\phi)$; so $zw \neq 0$. For if $zw \in Ker(\phi)$, then tzw = 0 for some $t \in Z(R) \setminus Nil(R)$. Thus $w \in Ker(\phi)$ since $tz \in Z(R) \setminus Nil(R)$, a contradiction. Also $zw \neq w$. For if zw = w, then (z-1)w = 0, and hence $z-1 \in Z(R)^*$. Also $z-1 \notin Nil(R)$ since $z-1 \in Nil(R)$ implies that $z = 1 + (z-1) \in U(R)$, a contradiction. But then $z-1 \in Z(R) \setminus Nil(R)$ and (z-1)w = 0; so $w \in Ker(\phi)$, a contradiction. If $w^2 = 0$, then w - zw is an edge in $\Gamma(R) \setminus Ker(\phi)$, a contradiction. Hence we may assume that $w^2 \neq 0$. Let $m \geq 3$ be the least positive integer such that $w^m = 0$. If $w^{m-1} \notin Ker(\phi)$, then $w - w^{m-1}$ is an edge in $\Gamma(R) \setminus Ker(\phi)$, which is again a contradiction. Thus let $k, 1 \leq k \leq m-1$, be the least positive integer such that $w^k \in Ker(\phi)$, and let $d \in Z(R) \setminus Nil(R)$ such that $dw^k = 0$. Then $k \geq 2$ since $w \notin Ker(\phi)$. Also $dw^{k-1} \notin Ker(\phi)$. For if $dw^{k-1} \in Ker(\phi)$, then $tdw^{k-1} = 0$ for some $t \in Z(R) \setminus Nil(R)$. Hence $w^{k-1} \in Ker(\phi)$ since $td \in Z(R) \setminus Nil(R)$, a contradiction. Since $w \neq dw^{k-1}$ because $w^2 \neq 0$, we have that $w - dw^{k-1}$ is an edge in $\Gamma(R) \setminus Ker(\phi)$, a contradiction. Hence $Ker(\phi) = Nil(R)$.

Example 5.3(b) shows that a ring $R \in \mathcal{H}$ with $Nil(R) \subsetneq Z(R)$ may have diam $(\Gamma(R)) = 3$. Thus any of the possible diameters, 0, 1, 2, or 3, may be realized by a ring in \mathcal{H} . However, if $R \in \mathcal{H}$ and $Nil(R) \subsetneq Z(R)$, then diam $(\Gamma(R))$ is either 2 or 3. For if diam $(\Gamma(R)) = 0$ or 1, then $Z(R)^2 = \{0\}$, and thus Nil(R) = Z(R).

We end the paper with the analog of Theorem 2.12 for rings in \mathcal{H} . Note that the $gr(\Gamma(R)) = \infty$ case is not possible since $\Gamma(R)$ can not be an infinite star graph. **Theorem 5.11.** Let $R \in \mathcal{H}$ with $Nil(R) \subsetneq Z(R)$. Then $gr(\Gamma(R)) = 3$.

Proof. The theorem follows directly from Theorem 2.12 and Theorem 5.4(2). \Box

As an alternate proof of the above theorem, just note that $Ker(\phi)^*$ is an infinite complete subgraph of $\Gamma(R)$ when $R \in \mathcal{H}$ and $Nil(R) \subsetneq Z(R)$ by Remark 5.8; so $gr(\Gamma(R)) = 3$.

References

- D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159(1993), 500-514.
- [2] D. F. Anderson, On the diameter and girth of a zero-divisor graph, II, Houston J. Math., to appear.
- [3] D. F. Anderson and A. Badawi, On root closure in commutative rings, Arabian J. Sci. Engrg. 26(1C)(2001), 17-30.
- [4] D. F. Anderson and A. Badawi, On φ-Prüfer rings and φ-Bezout rings, Houston J. Math. 30(2004), 331-343.
- [5] D. F. Anderson and A. Badawi, On φ-Dedekind rings and φ-Krull rings, Houston J. Math. 31(2005), 1007-1022.
- [6] D. F. Anderson, A. Badawi, and D. E. Dobbs, *Pseudo-valuation rings*, II, Bollettino U. M. I. 8(3-B)(2000), 535-545.
- [7] D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, *The zero-divisor graph of a commutative ring*, *II*, Lecture Notes Pure Appl. Math., vol. 202, 61-72, Marcel Dekker, New York/Basel, 2001.
- [8] D. F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180(2003), 221-241.
- [9] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217(1999), 434-447.
- [10] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210(2007), 543-550.
- [11] M. Axtel, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33(2005), 2043-2050.
- [12] M. Axtel and J. Stickles, Zero-divisor graphs of idealizations, J. Pure Appl. Algebra 204(2006), 235-243.
- [13] A. Badawi, On domains which have prime deals that are linearly ordered, Comm. Algebra 23(1995), 4365-4373.
- [14] A. Badawi, On divided commutative rings, Comm. Algebra 27(1999), 1465-1474.
- [15] A. Badawi, On φ-pseudo-valuation rings, Lecture Notes Pure Appl. Math., vol. 205, 101-110, Marcel Dekker, New York/Basel, 1999.
- [16] A. Badawi, On ϕ -pseudo-valuation rings, II, Houston J. Math. 26(2000), 473-480.
- [17] A. Badawi, On φ-chained rings and φ-pseudo-valuation rings, Houston J. Math. 27(2001), 725-736.
- [18] A. Badawi, On divided rings and φ-pseudo-valuation rings, Internat. J. Commutative Rings 1(2002), 51-60.
- [19] A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31(2003), 1669-1677.
- [20] A. Badawi, Factoring nonnil ideals into prime and invertible ideals, Bull. London Math. soc. 37(2005), 665-672.
- [21] A. Badawi, D. F. Anderson, and D. E. Dobbs, *Pseudo-valuation rings*, Lecture Notes Pure Appl. Math., vol. 185, 57-67, Marcel Dekker, New York/Basel, 1995.
- [22] A. Badawi and D. E. Dobbs, Strong ring extensions and φ-pseudo-valuation rings, Houston J. Math. 32(2006), 379-398.
- [23] A. Badawi and T. G. Lucas, On φ-Mori rings, Houston J. Math. 32(2006), 1-32.
- [24] I. Beck, Coloring of commutative rings, J. Algebra 116(1988), 208-226.
- [25] B. Bollaboás, Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979.
- [26] F. DeMeyer and K. Schneider, Automorphisms and zero-divisor graphs of commutative rings, Internat. J. Commutative Rings 1(2002), 93-106.
- [27] D. E. Dobbs, Divided rings and going down, Pacific J. Math. 67(1976), 253-263.
- [28] L. Fuchs and L. Salce, Modules over Valuation Domains, Marcel Dekker, New York/Basel, 1985.
- [29] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domans, Pacific J. Math. 75(1978), 137-147.
- [30] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York/Basel, 1988.
- [31] I. Kaplansky, Commutative Rings, rev. ed., University of Chicago Press, Chicago, 1974.
- [32] T. G. Lucas, The diameter of a zero-divisor graph, J. Algebra 301(2006), 174-193.

18

- [33] S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30(2002), 3533-3558.
 [34] S. P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math. 307(2007), 1155-1166. [35] N. O. Smith, *Planar zero-divisor graphs*, Internat. J. Commutative Rings, 2(2003), 177-188.