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of R is Γ(R) = Z(R) \ {0}, with distinct vertices x and y adjacent if and
only if xy = 0. In this paper, we study Γ(R) for rings R with nonzero zero-
divisors which satisfy certain divisibility conditions between elements of R
or comparability conditions between ideals or prime ideals of R. These rings
include chained rings, rings R whose prime ideals contained in Z(R) are linearly
ordered, and rings R such that {0} 6= Nil(R) ⊆ zR for all z ∈ Z(R) \Nil(R).

Key Words: Linearly Ordered Prime Ideals; φ-Rings; Chained Rings; Zero-
divisor Graph.

Mathematics Subject Classification: Primary 13A15; Secondary 13F99, 05C99.

1. Introduction

Let R be a commutative ring with 1, and let Z(R) be its set of zero-divisors. The
zero-divisor graph of R, denoted by Γ(R), is the (undirected) graph with vertices
Z(R)∗ = Z(R) \ {0}, the set of nonzero zero-divisors of R, and for distinct x, y ∈
Z(R)∗, the vertices x and y are adjacent if and only if xy = 0. Note that Γ(R) is
the empty graph if and only if R is an integral domain and that a nonempty Γ(R) is
finite if and only if R is finite and not a field [9, Theorem 2.2]. This concept is due
to Beck [24], who let all the elements of R be vertices and was mainly interested
in colorings. Our present definition and emphasis on the interplay between ring-
theoretic properties of R and graph-theoretic properties of Γ(R) are from [9].

In this paper, we study Γ(R) for several classes of rings which generalize val-
uation domains to the context of rings with zero-divisors. These are rings with
nonzero zero-divisors that satisfy certain divisibility conditions between elements
or comparability conditions between ideals or prime ideals. In Sections 2 and 3,
we consider rings R such that the prime ideals of R contained in Z(R) are linearly
ordered. In particular, we compute the diameter and girth for Γ(R) and Γ(R[X]).
In Section 4, we specialize to the case where R is a chained ring. In the final
section, we investigate Γ(R) for rings R such that {0} 6= Nil(R) ⊆ zR for all
z ∈ Z(R) \Nil(R).

We assume throughout that all rings are commutative with 1 6= 0. If R is a ring,
then dim(R) denotes its (Krull) dimension, T (R) its total quotient ring, U(R) its
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2 ON THE ZERO-DIVISOR GRAPH OF A RING

group of units, Z(R) its set of zero-divisors, Nil(R) its ideal of nilpotent elements,
N(R) = {x ∈ R | x2 = 0} ⊆ Nil(R), and Rad(I) = {x ∈ R | xn ∈ I for some
integer n ≥ 1} for I an ideal of R. We say that R is reduced if Nil(R) = {0}. For
A,B ⊆ R, let A∗ = A \ {0} and (A : B) = {x ∈ R | xB ⊆ A}. We let Z, Zn, Z(p),
Q, R, and Fq denote the rings of integers, integers modulo n, integers localized
at the prime ideal pZ, rational numbers, real numbers, and the finite field with
q elements, respectively. In the next six paragraphs, we recall some background
material. To avoid any trivialities when Γ(R) is the empty graph, we implicitly
assume when necessary that R is not an integral domain. For any undefined ring-
theoretic concepts or terminology, see [30] or [31].

Let G be a graph. We say that G is connected if there is path between any two
distinct vertices of G. At the other extreme, we say that G is totally disconnected
if no two vertices of G are adjacent. For vertices x and y of G, we define d(x, y)
to be the length of a shortest path from x to y in G (d(x, x) = 0 and d(x, y) = ∞
if there is no such path). The diameter of G is diam(G) = sup{ d(x, y) | x and y
are vertices of G }. The girth of G, denoted by gr(G), is the length of a shortest
cycle in G (gr(G) = ∞ if G contains no cycles). Then Γ(R) is connected with
diam(Γ(R)) ≤ 3 [9, Theorem 2.3] and gr(Γ(R)) ≤ 4 if Γ(R) contains a cycle [33,
(1.4)]. Thus diam(Γ(R)) = 0, 1, 2, or 3, and gr(Γ(R)) = 3, 4, or ∞. For other
papers on zero-divisor graphs, see [1], [2], [7], [8], [10], [11], [12], [26], [32], [33], [34],
and [35]. In particular, a list of all the zero-divisor graphs with up to 14 vertices is
given in [34]. A general reference for graph theory is [25].

Recall from [29] that an integral domain R with quotient field K is called a
pseudo-valuation domain (PVD) if every prime ideal P of R is strongly prime, in
the sense that whenever x, y ∈ K and xy ∈ P , then x ∈ P or y ∈ P . This concept
was extended to rings with zero-divisors in [21], where R is called a pseudo-valuation
ring (PVR) if every prime ideal P of R is strongly prime, in the sense that xP and
yR are comparable (under inclusion) for all x, y ∈ R. Any valuation domain is a
PVD, and it was shown in [21] that an integral domain is a PVD if and only if it is
a PVR. It is known that a ring R is a PVR if and only if for all x, y ∈ R, we have
either x|y or y|xz for every nonunit z ∈ R [21, Theorem 5]. We say that a ring R
is a chained ring if the (principal) ideals of R are linearly ordered (by inclusion),
equivalently, if either x|y or y|x for all x, y ∈ R. By our earlier comments, a chained
ring is a PVR.

Another generalization of pseudo-valuation rings is given in [15]. Recall from [27]
and [14] that a prime ideal of a ring R is called a divided prime ideal of R if P ⊆ xR
for all x ∈ R\P . Thus a divided prime ideal of R is comparable with every ideal of
R. We say that a ring R is a divided ring if every prime ideal of R is divided; so the
prime ideals in a divided ring are linearly ordered. Let H = {R | R is a ring and
Nil(R) is a divided prime ideal of R }. Note that an integral domain or a PVR is
in H. For any ring R ∈ H, the ring homomorphism φ = φR : T (R) −→ RNil(R),
given by φ(x/y) = x/y for all x ∈ R and y ∈ R\Z(R), was introduced in [15]. Then
φ|R : R −→ RNil(R) is a ring homomorphism satisfying φ(x) = x/1 for all x ∈ R
and T (φ(R)) = RNil(R).

Let R ∈ H, and put K = RNil(R). As in [15], a prime ideal Q of φ(R) is said
to be K-strongly prime if whenever x, y ∈ K and xy ∈ Q, then either x ∈ Q or
y ∈ Q. A prime ideal P of R is said to be a φ-strongly prime ideal of R if φ(P ) is a
K-strongly prime ideal of φ(R). It is known that the prime ideals of φ(R) are the
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sets that are (uniquely) expressible as φ(P ) for some prime ideal P of R (cf. [15,
Lemma 2.5]), the key fact being that Ker(φ) ⊆ Nil(R). If every prime ideal of R
is a φ-strongly prime ideal, then R is called a φ-pseudo-valuation ring (φ-PVR).
It was shown in [18, Proposition 2.9] that a ring R ∈ H is a φ-PVR if and only if
R/Nil(R) is a PVD. A PVR is a φ-PVR, but an example of a φ-PVR which is not
a PVR was given in [16]. Also, a φ-PVR is a divided ring [15, Proposition 4], and
thus the prime ideals in a φ-PVR (or a PVR) are linearly ordered. In particular, a
φ-PVR, and hence a PVR or a chained ring, is quasilocal.

Observe that if Nil(R) is a divided prime ideal of R, then Nil(R) is also the nil-
radical of T (R) and Ker(φ) is a common ideal of R and T (R). Other useful features
of each ring R ∈ H include the following: (i) φ(R) ∈ H; (ii) T (φ(R)) = RNil(R)

has only one prime ideal, namely, Nil(φ(R)); (iii) φ(R) is naturally isomorphic
to R/Ker(φ); (iv) Z(φ(R)) = Nil(φ(R)) = φ(Nil(R)) = Nil(RNil(R)); and (v)
RNil(R)/Nil(φ(R)) = T (φ(R))/Nil(φ(R)) is the quotient field of φ(R)/Nil(φ(R)).
For further studies on rings in the class H, see [4], [5], [15], [16], [17], [18], [22], and
[23].

Throughout this paper, we will use the technique of idealization of a module to
construct examples. Recall that for an R-module B, the idealization of B over R is
the ring formed from R×B by defining addition and multiplication as (r, a)+(s, b) =
(r + s, a + b) and (r, a)(s, b) = (rs, rb + sa), respectively. A standard notation for
this “idealized ring” is R(+)B; see [30] for basic properties of rings resulting from
the idealization construction. In particular, note that the ideal I = {0}(+)B of
T = R(+)B satisfies I2 = {0}; so I ⊆ Nil(T ). The zero-divisor graph Γ(R(+)B)
has recently been studied in [10] and [12].

2. linearly ordered primes

In this section, we investigate the zero-divisor graph of a ring R such that the
prime ideals of R contained in Z(R) are linearly ordered. These are precisely
the rings R such that the prime ideals of T (R) are linearly ordered, and include
chained rings, divided rings, PVRs, φ-PVRs, rings with Z(R) = Nil(R), and zero-
dimensional quasilocal rings. For these rings, we show that diam(Γ(R)) ≤ 2 and
gr(Γ(R)) = 3 or ∞. We start with the following lemma (cf. [32, Lemma 2.3] and
[2, Lemma 3.1]).

Lemma 2.1. Let R be a ring, and let x, y ∈ Nil(R)∗ be distinct with xy 6= 0.
Then (0 : (x, y)) 6= {0}, and moreover, there is a path of length 2 from x to y in
Nil(R)∗ ⊆ Γ(R). In particular, if Z(R) = Nil(R), then diam(Γ(R)) ≤ 2.

Proof. Since xy 6= 0 and x ∈ Nil(R)∗, let n (≥ 2) be the least positive integer
such that xny = 0. Also, since xn−1y 6= 0 and y ∈ Nil(R)∗, let m (≥ 2) be the
least positive integer such that xn−1ym = 0. Then 0 6= xn−1ym−1 ∈ Nil(R) and
xn−1ym−1 ∈ (0 : (x, y)). Thus x− xn−1ym−1 − y is a path of length 2 from x to y
in Nil(R)∗. The “in particular” statement is clear. ¤

When Z(R) = Nil(R), it is easy to explicitly describe the diameter of Γ(R); and
moreover, diam(Γ(R)) 6= 3 in this case. We record this as our first theorem (cf. [32,
Theorem 2.6]). Note that in this case, Nil(R) is the unique minimal prime ideal of
R and is the only prime ideal of R contained in Z(R); so this is the simplest case
where the prime ideals of R contained in Z(R) are linearly ordered.
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Theorem 2.2. Let R be a ring with Z(R) = Nil(R) 6= {0}. Then exactly one of
the following three cases must occur.

(1) |Z(R)∗| = 1. In this case, R is isomorphic to Z4 or Z2[X]/(X2), and
diam(Γ(R)) = 0.

(2) |Z(R)∗| ≥ 2 and Z(R)2 = {0}. In this case, Γ(R) is a complete graph, and
diam(Γ(R)) = 1.

(3) Z(R)2 6= {0}. In this case, diam(Γ(R)) = 2.

Proof. (1) If |Z(R)∗| = 1, then R ∼= Z4 or Z2[X]/(X2) [24, Proposition 2.2]. Thus
diam(Γ(R)) = 0.

(2) If Z(R)2 = {0}, then xy = 0 for all x, y ∈ Z(R). Thus Γ(R) is a complete
graph with diam(Γ(R)) = 1 since |Z(R)∗| ≥ 2.

(3) Suppose that Z(R)2 6= {0}. Then Γ(R) is not complete [9, Theorem 2.8],
and thus diam(Γ(R)) ≥ 2. Hence diam(Γ(R)) = 2 by Lemma 2.1. ¤

Thus when studying the diameter of the zero-divisor graph of a ring R, the
interesting case is when Nil(R) ( Z(R). We next give several lemmas. Note that
in Lemma 2.4 we need only assume that x ∈ Z(R) \N(R), where N(R) = {x ∈ R |
x2 = 0}.
Lemma 2.3. Let R be a ring with x ∈ Nil(R)∗ and y ∈ Z(R)∗. Then d(x, y) ≤ 2
in Γ(R).

Proof. We may assume that x 6= y and xy 6= 0. Since y ∈ Z(R)∗ and xy 6= 0, there
is a z ∈ Z(R)∗ \ {x} such that yz = 0. Let n be the least positive integer such that
xnz = 0 (such an n exists since x ∈ Nil(R)∗). Then x − xn−1z − y is a path of
length 2 from x to z (if n = 1, then xn−1z = z). Thus d(x, y) ≤ 2 in Γ(R). ¤

Lemma 2.4. Let R be a ring with x ∈ Z(R) \ Nil(R) and y ∈ Z(R)∗ such that
x|zyn for some integer n ≥ 1 and z ∈ R \ Z(R). Then d(x, y) ≤ 2 in Γ(R).

Proof. We may assume that x 6= y and xy 6= 0. Since x ∈ Z(R)\Nil(R) and xy 6= 0,
there is a w ∈ Z(R)∗ \ {x, y} such that xw = 0. Since x|zyn with z ∈ R \Z(R) and
xw = 0, we conclude that ynw = 0. Let k be the least positive integer such that
ykw = 0. Then x− yk−1w − y is a path of length 2 from x to y. Thus d(x, y) ≤ 2
in Γ(R). ¤

By [13, Theorem 1], the prime ideals of R are linearly ordered if and only if the
radical ideals of R are linearly ordered, if and only if for all x, y ∈ R, there is an
integer n = n(x, y) ≥ 1 such that either x|yn or y|xn. This result easily extends to
the prime ideals of R contained in Z(R).

Theorem 2.5. Let R be a ring.
(1) The prime ideals of R contained in Z(R) are linearly ordered if and only

if for all x, y ∈ Z(R), there is an integer n = n(x, y) ≥ 1 and an element
z ∈ R \ Z(R) such that either x|zyn or y|zxn.

(2) The radical ideals of R contained in Z(R) are linearly ordered if and only
if for all x, y ∈ Z(R), there is an integer n = n(x, y) ≥ 1 such that either
x|yn or y|xn.

(3) If the prime ideals of R contained in Z(R) are linearly ordered, then Nil(R)
and Z(R) are prime ideals of R.
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Proof. (1) Note that the prime ideals of R contained in Z(R) are linearly ordered
if and only if the prime ideals of T (R) are linearly ordered, if and only if for all
x, y ∈ T (R), there is an integer n = n(x, y) ≥ 1 such that either x|yn or y|xn in
T (R) [13, Theorem 1]. The result now easily follows.

(2) Suppose that the radical ideals of R contained in Z(R) are linearly or-
dered. Let x, y ∈ Z(R). Then Rad(xR), Rad(yR) ⊆ Z(R); so we may assume
that Rad(xR) ⊆ Rad(yR). Thus x ∈ Rad(yR); so y|xn for some integer n ≥ 1.
Conversely, let I, J ⊆ Z(R) be radical ideals of R. If I and J are not comparable,
pick x ∈ I \ J and y ∈ J \ I. If x|yn, then yn ∈ xR ⊆ I, and hence y ∈ I, a
contradiction.

(3) Suppose that the prime ideals of R contained in Z(R) are linearly ordered.
Then Nil(R) is an intersection of linearly ordered prime ideals of R since each
minimal prime ideal of R is contained in Z(R) [30, Theorem 2.1], and thus Nil(R)
is prime. Also, Z(R) is the union of linearly ordered prime ideals of R [31, page 3],
and hence Z(R) is prime. ¤

Since Z(R) is a union of prime ideals of R [31, page 3], Z(R) is a prime ideal
of R if and only if it is an ideal of R. If dim(R) = 0 (e.g., R is finite) and the
prime ideals of R contained in Z(R) are linearly ordered, then R is quasilocal with
Z(R) = Nil(R) its unique prime ideal. If Nil(R) ( Z(R) and Nil(R) is a prime
ideal of R, then dim(R) ≥ 1 and Γ(R) must be infinite. For in this case, R is not an
integral domain, and thus if Γ(R) is finite, then R must also be finite [9, Theorem
2.2], contradicting dim(R) ≥ 1. In particular, if the prime ideals of R contained in
Z(R) are linearly ordered and Nil(R) ( Z(R), then Γ(R) is infinite. It is clear that
if the radical ideals of R contained in Z(R) are linearly ordered, then the prime
ideals of R contained in Z(R) are also linearly ordered. However, we next give an
example where the prime ideals of R contained in Z(R) are linearly ordered, but
the radical ideals of R contained in Z(R) are not linearly ordered, and hence the
prime ideals of R are not linearly ordered.

Example 2.6. Let D = Z+XQ[[X]], and let I = Z(2)X +X2Q[[X]] be an ideal of
D. Set R = D/I. Then Z(R) = (2Z+XQ[[X]])/I = 2R = annR( 1

2X +I), N(R) =
Nil(R) = XQ[[X]]/I, and Nil(R)2 = {0}. The prime ideals of R contained in
Z(R), namely Z(R) and Nil(R), are linearly ordered. But the radical ideals of
R contained in Z(R) are not linearly ordered since the two radical ideals (6Z +
XQ[[X]])/I and (10Z+ XQ[[X]])/I are not comparable. Thus the prime ideals of
R are also not linearly ordered; for example, (2Z+XQ[[X]])/I and (3Z+XQ[[X]])/I
are not comparable. We have diam(Γ(R)) = 2 by Theorem 2.7, and gr(Γ(R)) = 3
by Theorem 2.12. Also note that R ∼= Z(+)(Q/Z(2)).

The prime ideals of R contained in Z(R) are linearly ordered if and only if
the prime ideals of T (R) are linearly ordered. Moreover, Γ(R) ∼= Γ(T (R)) ([8,
Theorem 2.2]). Thus we can often reduce to the case where the prime ideals of R
are linearly ordered. Note that a reduced ring R with its prime ideals contained in
Z(R) linearly ordered is an integral domain. Also observe that a nonreduced ring
R has Γ(R) complete if and only if Z(R)2 = {0} [9, Theorem 2.8], i.e., if xy = 0 for
all x, y ∈ Z(R) with x 6= y, then x2 = 0 for all x ∈ Z(R). So if R is a nonreduced
ring with Z(R)2 = {0}, then {0} 6= N(R) = Nil(R) = Z(R) and diam(Γ(R)) ≤ 1,
with equality when |Z(R)∗| ≥ 2. We are now ready for the first of the two main
results of this section.
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Theorem 2.7. Let R be a ring with Z(R)2 6= {0} such that the prime ideals of R
contained in Z(R) are linearly ordered. Then diam(Γ(R)) = 2.

Proof. By the above comments, R is not reduced. So Γ(R) is not a complete graph
and diam(Γ(R)) ≥ 2. Let x, y ∈ Z(R)∗ be distinct with xy 6= 0. If x, y ∈ Nil(R),
then d(x, y) = 2 by Lemma 2.1. If x ∈ Nil(R) and y ∈ Z(R) \ Nil(R), then
d(x, y) = 2 by Lemma 2.3. Finally, suppose that x, y ∈ Z(R) \ Nil(R). Since the
prime ideals of R contained in Z(R) are linearly ordered, there is an integer n ≥ 1
and an element z ∈ R \ Z(R) such that either x|zyn or y|zxn by Theorem 2.5(1).
We may assume that x|zyn for some integer n ≥ 1 and z ∈ R \ Z(R). Thus
d(x, y) = 2 by Lemma 2.4. Hence diam(Γ(R)) ≤ 2, and thus diam(Γ(R)) = 2 since
diam(Γ(R)) ≥ 2. ¤

Corollary 2.8. If R is any of the following types of rings with Z(R)2 6= {0}, then
diam(Γ(R)) = 2.

(1) R is a ring such that the prime ideals of R are linearly ordered.
(2) R is a divided ring.
(3) R is a PVR.
(4) R is a φ-PVR.
(5) R is a chained ring.

In view of Theorem 2.7 and [32, Theorem 2.6(3)], we have the following corollary.

Corollary 2.9. Let R be a ring with Z(R)2 6= {0} such that the prime ideals of R
contained in Z(R) are linearly ordered. Then Z(R) is an (prime) ideal of R and
each pair of distinct zero-divisors of R has a nonzero annihilator.

Our next example illustrates what can happen when the prime ideals of R con-
tained in Z(R) are not linearly ordered.

Example 2.10. (a) Let D = R[[X, Y ]] + ZK[[Z]], where K is the quotient field
of R[[X, Y ]], and let I = ZD. Set R = D/I. Then R is quasilocal with maximal
ideal Z(R) = ((X, Y )+ZK[[Z]])/I, N(R) = Nil(R) = ZK[[Z]]/I, Nil(R)2 = {0},
and ((X) + ZK[[Z]])/I and ((Y ) + ZK[[Z]])/I are incomparable prime ideals of R
contained in Z(R). One can easily show that diam(Γ(R)) = 3 and gr(Γ(R)) = 3.
Also see Example 5.3(b).

(b) Let R = Z2 × Z4. Then N(R) = Nil(R) = {0} × {0, 2} ( Z(R) = P ∪ Q,
where P = Z2 × {0, 2} and Q = {0} × Z4 are incomparable primes ideals of R
contained in Z(R). One can easily show that diam(Γ(R)) = 3 and gr(Γ(R)) = ∞.

We conclude this section with a discussion of the girth of Γ(R) when the prime
ideals of R contained in Z(R) are linearly ordered. We first handle the case where
Z(R) = Nil(R). In this case, gr(Γ(R)) 6= 4, and we can explicitly say when the
girth is either 3 or ∞. Note that in Theorem 2.11, gr(Γ(R)) = ∞ if and only if
Γ(R) is a finite star graph. (Recall that a graph is a star graph if it has a vertex
which is adjacent to every other vertex and this is the only adjacency relation. We
consider a singleton graph to be a star graph.)

Theorem 2.11. Let R be a ring with Z(R) = Nil(R) 6= {0}. Then exactly one of
the following four cases must occur.

(1) |Z(R)∗| = 1. In this case, R is isomorphic to Z4 or Z2[X]/(X2), and
gr(Γ(R)) = ∞.
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(2) |Z(R)∗| = 2. In this case, R is isomorphic to Z9 or Z3[X]/(X2), and
gr(Γ(R)) = ∞.

(3) |Z(R)∗| = 3. If R is isomorphic to Z8, Z2[X]/(X3), or Z4[X]/(2X,X2−2),
then gr(Γ(R)) = ∞. Otherwise, R is isomorphic to Z2[X,Y ]/(X, Y )2,
Z4[X]/(2, X)2, Z4[X]/(X2 + X + 1), or F4[X]/(X2); and in this case,
gr(Γ(R)) = 3.

(4) |Z(R)∗| ≥ 4. In this case, gr(Γ(R)) = 3.

Proof. By [10, Theorem 2.3], gr(Γ(R)) 6= 4 when Z(R) = Nil(R). Thus gr(Γ(R)) =
3 or ∞. The theorem then follows from [10, Theorem 2.5], [10, Remark 2.6(a)], and
[7, Example 2.1]. ¤

We next handle the Nil(R) ( Z(R) case when Nil(R) a prime ideal of R (cf.
Remark 2.13(b)). In this case, we have already observed that Γ(R) is infinite.
The next theorem, together with Theorem 2.11, completely characterizes gr(Γ(R))
in terms of |Nil(R)∗| when the prime ideals of R contained in Z(R) are linearly
ordered. In particular, we have gr(Γ(R)) = 3 or ∞, with gr(Γ(R)) = ∞ if and only
if Γ(R) is a star graph.

Theorem 2.12. Let R be a ring such that Nil(R) is a prime ideal of R and
Nil(R) ( Z(R). In particular, this holds when the prime ideals of R contained
in Z(R) are linearly ordered and Nil(R) ( Z(R). Then gr(Γ(R)) = 3 or ∞.
Moreover, gr(Γ(R)) = ∞ if and only if |Nil(R)∗| = 1; and in this case, Γ(R) is an
infinite star graph.

Proof. Since Γ(R)) ∼= Γ(T (R))[8, Theorem 2.2], we may assume that R = T (R).
Note that R is not reduced; so if gr(Γ(R)) = 4, then R ∼= D × B, where D is an
integral domain and B = Z4 or Z2[X]/(X2) by [10, Theorem 2.3]. In this case,
Nil(R) ∼= {0} × Z2 is not a prime ideal of R. So we must have gr(Γ(R)) = 3 or
∞. The “in particular” statement follows from Theorem 2.5(3). The “moreover”
statement follows from [10, Theorem 2.5 and Remark 2.6(a)]. ¤

Remark 2.13. (a) Γ(R) is a finite star graph if and only if either R ∼= Fq×Z2 for
some finite field Fq (when R is reduced), or R is one of the 7 rings with gr(Γ(R)) =
∞ given in Theorem 2.11 ([9, Theorem 2.13] and [26, Corollary 1.11]).

If Γ(R) is an infinite star graph, then either R ∼= D × Z2 for D an integral
domain (when R is reduced), or Nil(R) is a prime ideal of R with |Nil(R)∗| = 1
and Z(R) is a prime ideal of R ([26, Theorem 1.12] or [33, (2.1)]). For example,
if R = Z(+)Z2 (∼= Z[X]/(2X,X2)), then Γ(R) is an infinite star graph with center
(0, 1) and the prime ideals of R contained in Z(R) are linearly ordered.

(b) The hypothesis that Nil(R) is a prime ideal of R is needed in Theorem 2.12.
For example, let R = Z3 × Z3. Then Nil(R) ( Z(R), Nil(R) is not a prime ideal
of R, and gr(Γ(R)) = 4.

(c) It is instructive to give an elementary, self-contained proof of Theorem 2.12.
If |Nil(R)∗| = 1, then gr(Γ(R)) = ∞ since Γ(R) \ Nil(R) is totally disconnected
(Theorem 3.5(1)). So suppose that |Nil(R)∗| ≥ 2, and let z ∈ Z(R) \ Nil(R).
Then there is a w ∈ Nil(R)∗ with zw = 0. First suppose that w2 6= 0, and let
m (≥ 3) be the least positive integer such that wm = 0. Thus wm−1 6= w, and
hence z − w − wm−1 − z is a cycle of length 3. Now suppose that w2 = 0, and let
d ∈ Nil(R)∗ \{w}. Assume that wd 6= 0. Since wd and w are distinct and nonzero,
we conclude that z − w − wd − z is a cycle of length 3. Now assume that wd = 0
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and w2 = 0. If zd = 0, then z − w − d − z is a cycle of length 3. Thus we may
assume that zd 6= 0. If zd = w, then zd2 = wd = 0, and hence w − z2 − d− w is a
cycle of length 3. Thus we assume that zd and w are distinct and nonzero. Let n
be the least positive integer such that zdn = 0. Assume n > 2. Then it is clear that
d 6= zdn−1. If zdn−1 6= w, then w − zdn−1 − d− w is a cycle of length 3. Assume
that zdn−1 = w. Then z2dn−1 = zw = 0. Since zw = 0, dn−1 and w are distinct
and nonzero, and thus w − z2 − dn−1 − w is a cycle of length 3. Now assume that
n = 2 and zd 6= w. Then zd2 = 0. If zd 6= d, then w−zd−d−w is a cycle of length
3. Thus assume that zd = d. Hence d2 = zd2 = 0. Since zw = 0 and zd 6= 0, we
have w + d 6= 0. Hence w, d, and w + d are all distinct. Since w2 = d2 = wd = 0,
w − w + d− d− w is a cycle of length 3. Thus gr(Γ(R)) = 3.

3. linearly ordered primes-II

In this section, we continue the investigation of Γ(R) when the prime ideals
of R contained in Z(R) are linearly ordered. We show that for such rings R,
Γ(R) \Nil(R) is totally disconnected, every finite set of vertices of Γ(R) \Nil(R)
is adjacent to a common vertex of Nil(R)∗, and Γ(R) \ Nil(R) is infinite when
Nil(R) ( Z(R). We also determine diam(Γ(R[X])) and gr(Γ(R[X])). Our first
goal is to show that such a ring R is a McCoy ring, where a ring R is called a
McCoy ring if every finitely generated ideal of R contained in Z(R) has a nonzero
annihilator.

Lemma 3.1. Let R be a ring such that the prime ideals of R contained in Z(R) are
linearly ordered, and let z1, . . . , zn ∈ Z(R). Then there is an integer i, 1 ≤ i ≤ n,
a positive integer m, and an s ∈ R \ Z(R) such that zi|szm

k for every integer k,
1 ≤ k ≤ n.

Proof. Let T = T (R). Then the prime ideals of T are linearly ordered. Thus
Rad(z1T ), . . . , Rad(znT ) are prime ideals of T , and hence are linearly ordered. Thus
there is an integer i, 1 ≤ i ≤ n, such that Rad(zkT ) ⊆ Rad(ziT ) for every integer k,
1 ≤ k ≤ n. Hence there are positive integers m1, . . . , mn and s1, . . . , sn ∈ R \Z(R)
such that zi|siz

mk

k for every integer k, 1 ≤ k ≤ n. Let s = s1 · · · sn ∈ R \ Z(R)
and m = max{m1, . . . , mn}. Then zi|szk

m for every integer k, 1 ≤ k ≤ n, as
desired. ¤

Theorem 3.2. Let R be a ring such that the prime ideals of R contained in Z(R)
are linearly ordered. Then R is a McCoy ring.

Proof. Let I = (z1, . . . , zn) be a nonzero finitely generated ideal of R contained in
Z(R). By Lemma 3.1, we may assume that there is a positive integer m and an
s ∈ R \ Z(R) such that z1|szm

k for every integer k, 2 ≤ k ≤ n. Let w ∈ Z(R)∗

such that z1w = 0. Thus there is an integer m2 ≥ 0 such that zm2
2 w 6= 0 and

zm2
2 wz2 = 0. Hence 0 6= zm2

2 w ∈ (0 : (z1, z2)). Since zm2
2 wz1 = 0 and z1|szm

3 ,
there is an integer m3 ≥ 0 such that zm3

3 zm2
2 w 6= 0 and zm3

3 zm2
2 wz3 = 0. Thus

0 6= zm3
3 zm2

2 w ∈ (0 : (z1, z2, z3)). Continuing in this manner, we can construct a
0 6= zmn

n z
mn−1
n−1 · · · zm2

2 w ∈ (0 : (z1, z2, z3, . . . , zn)). Hence R is a McCoy ring. ¤

Corollary 3.3. Let R be a ring such that the prime ideals of R contained in
Z(R) are linearly ordered, and let x1, . . . , xn ∈ Z(R) \ Nil(R). Then there is a
y ∈ Nil(R)∗ such that xiy = 0 for every integer i, 1 ≤ i ≤ n.
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Proof. There is a y ∈ Z(R)∗ such that each xiy = 0 since R is a McCoy ring and
Z(R) is an ideal of R. Moreover, y ∈ Nil(R) since x1 /∈ Nil(R) and Nil(R) is a
prime ideal of R by Theorem 2.5(3). ¤

Remark 3.4. If R is a McCoy ring and Z(R) is an ideal of R, then clearly
diam(Γ(R)) ≤ 2. This observation, together with Theorem 3.2, gives another
proof of Theorem 2.7. However, note that R = Z2 × Z4 is a McCoy ring with
diam(Γ(R)) = 3 (cf. Example 2.10(b)).

We next show that the subgraph Γ(R) \ Nil(R) of Γ(R) is infinite and totally
disconnected when Nil(R) is a prime ideal of R and Nil(R) ( Z(R) (i.e., when
Γ(R) \ Nil(R) is nonempty). This fact gives another proof of the “moreover”
statement of Theorem 2.12, namely, that Γ(R) is an infinite star graph when Nil(R)
is a prime ideal of R, Nil(R) ( Z(R), and |Nil(R)∗| = 1.

Theorem 3.5. Let R be a ring.
(1) Γ(R) \Nil(R) is totally disconnected if and only if Nil(R) is a prime ideal

of R.
(2) If Nil(R) is a prime ideal of R and Nil(R) ( Z(R), then Z(R) \ Nil(R)

is infinite.
In particular, Γ(R) \Nil(R) is infinite and totally disconnected when the prime

ideals of R contained in Z(R) are linearly ordered and Nil(R) ( Z(R).

Proof. (1) Suppose that Γ(R) \ Nil(R) is totally disconnected. Let xy ∈ Nil(R)
with x, y /∈ Nil(R). Then xnyn = 0 for some positive integer n. Thus xn, yn ∈
Z(R)\Nil(R) and xn 6= yn since x, y /∈ Nil(R). But then xn and yn are adjacent in
Γ(R) \Nil(R), a contradiction. Hence Nil(R) is a prime ideal of R. The converse
is clear.

(2) Let x ∈ Z(R) \Nil(R). Suppose that xn = xm for some integers n > m ≥ 1.
Then xm(1 − xn−m) = 0 ∈ Nil(R) and x /∈ Nil(R) implies 1 − xn−m ∈ Nil(R)
since Nil(R) is prime. Thus xn−m = 1− (1−xn−m) ∈ U(R), and hence x ∈ U(R),
a contradiction. Thus Z(R) \Nil(R) is infinite.

The “in particular” statement holds since in this case Nil(R) is a prime ideal of
R by Theorem 2.5(3). ¤

Combining Lemma 2.1, Theorem 3.5, and Corollary 3.3, we have the following
structure theorem for Γ(R) when the prime ideals of R contained in Z(R) are
linearly ordered. Then Nil(R)∗ is a subgraph of Γ(R) of diameter at most 2,
Γ(R) \ Nil(R) is infinite and totally disconnected when Nil(R) ( Z(R), and for
each finite set of vertices Y ⊆ Γ(R) \Nil(R), there is a vertex y ∈ Nil(R)∗ which
is adjacent to every element of Y .

Our next goal is to investigate diam(Γ(R[X])) when the prime ideals of R
contained in Z(R) are linearly ordered. The diameter of Γ(R[X]) has recently
been studied in [11], [10], and [32]. In particular, [32, Theorems 3.4 and 3.6]
give nice characterizations of diam(Γ(R[X])). If Z(R)2 = {0} (i.e., Γ(R) is a
complete graph), then Z(R[X])2 = {0}; so Γ(R[X]) is a complete graph with
diam(Γ(R[X])) = 1. McCoy’s Theorem for polynomial rings states that f(X) ∈
Z(R[X]) if and only if rf(X) = 0 for some 0 6= r ∈ R, i.e., Z(R[X]) ⊆ Z(R)[X].
Thus Z(R[X]) is an ideal of R[X] if and only if R is a McCoy ring and Z(R) is an
ideal of R [32, Theorem 3.3], and in this case, Z(R[X]) = Z(R)[X].
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Theorem 3.6. Let R be a ring such that the prime ideals of R contained in Z(R)
are linearly ordered.

(1) Z(R[X]) is an (prime) ideal of R[X].
(2) If R is not an integral domain and Z(R)2 = {0}, then diam(Γ(R[X])) = 1.
(3) If Z(R)2 6= {0}, then diam(Γ(R[X])) = 2.

Proof. Part (1) follows from Theorem 3.2 and [32, Theorem 3.3]. We have already
observed part (2) above. Part (3) follows from Theorem 3.2, Corollary 2.9, and [32,
Theorem 3.4(3)]. ¤
Corollary 3.7. If R is any of the following types of rings with Z(R)2 6= {0}, then
diam(Γ(R[X])) = 2.

(1) R is a ring such that the prime ideals of R are linearly ordered.
(2) R is a divided ring.
(3) R is a PVR.
(4) R is a φ-PVR.
(5) R is a chained ring.

Corollary 3.8. Let R be a nonreduced ring such that the prime ideals of R con-
tained in Z(R) are linearly ordered. Then exactly one of the following four cases
must occur.

(1) |Z(R)∗| = 1. In this case, R is isomorphic to Z4 or Z2[Y ]/(Y 2), diam(Γ(R)) =
0, and diam(Γ(R[X])) = 1.

(2) |Z(R)∗| ≥ 2, Z(R) = Nil(R), and Z(R)2 = {0}. In this case, diam(Γ(R))
= diam(Γ(R[X])) = 1.

(3) Z(R) = Nil(R) and Z(R)2 6= {0}. In this case, diam(Γ(R)) = diam(Γ(R[X])) =
2.

(4) Nil(R) ( Z(R). In this case, diam(Γ(R)) = diam(Γ(R[X])) = 2.

Proof. This follows directly from Theorem 2.2 and Theorem 3.6. ¤
The following example illustrates the four cases stated in Corollary 3.8. In each

case, the ring R is actually a chained ring. The routine details are left to the reader.

Example 3.9. (a) Let R = Z4. Then R is a a chained ring with |Z(R)∗| = 1.
Thus diam(Γ(R)) = 0 and diam(Γ(R[X])) = 1.

(b) Let R = Z9. Then R is a chained ring with |Z(R)∗| = 2, Z(R) = Nil(R) =
N(R), and Z(R)2 = {0}. Thus diam(Γ(R)) = diam(Γ(R[X])) = 1.

(c) Let R = Z8. Then R is a chained ring with N(R) ( Nil(R) = Z(R) and
Z(R)2 6= {0}. Thus diam(Γ(R)) = diam(Γ(R[X])) = 2.

(d) Let D = Z(2) + XQ[[X]] and I = XD = Z(2)X + X2Q[[X]]. Set R = D/I.
Then D is a valuation domain; so R is a chained ring. Note that Z(R) = (2Z(2) +
XQ[[X]])/I = 2R and N(R) = Nil(R) = XQ[[X]]/I; so Nil(R) ( Z(R) and
Nil(R)2 = {0}. Thus diam(Γ(R)) = diam(Γ(R[X])) = 2.

Unlike the case for the diameter of the zero-divisor graph of a polynomial ring
as in Corollary 3.8, the girth case is very easy. The girth of Γ(R[X]) and Γ(R[[X]])
has been studied in [11] and [10], and a complete characterization is given in
[10, Theorem 3.2]. For any nonreduced ring R, we always have gr(Γ(R[X])) =
gr(Γ(R[[X]])) = 3 by [10, Lemma 3.1] (since aX − aX2 − aX3 − aX forms a trian-
gle for any a ∈ N(R)∗).
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4. chained rings

In this section, we investigate Γ(R) when R is a chained ring. This is probably
the nicest case where the prime ideals of R contained in Z(R) are linearly ordered
since in a chained ring all the ideals are linearly ordered. A typical example of a
chained ring is a homomorphic image of a valuation domain. In particular, Zn is
a chained ring if and only if n is a prime power. In fact, it was an open question
(attributed to Kaplansky) if every chained ring is the homomorphic image of a
valuation domain (cf. [30, Chapter V]). However, an example in [28] shows that
this is not true in general. It will turn out that the subset N(R) = {x ∈ R | x2 = 0}
of Nil(R) will play a major role in describing Γ(R) when R is a chained ring. Note
that if R is a chained ring, then N(R) = {0} if and only if Z(R) = {0}. Also note
that for any ring R, we have N(R) = Nil(R) when Nil(R)2 = {0}, and N(R) = {0}
if and only if Nil(R) = {0}. We start with several lemmas. In some cases, these
results are special cases of ones from previous sections; however, the proofs are
much easier in the chained ring setting.

Lemma 4.1. Let R be a ring, N(R) = {x ∈ R | x2 = 0}, and x ∈ Nil(R) \N(R).
Then xy = 0 for some y ∈ N(R)∗ \ {x}.
Proof. Let n (≥ 3) be the least positive integer such that xn = 0, and let y = xn−1.
Then xy = xn = 0, y = xn−1 6= 0, and y2 = (xn−1)2 = x2n−2 = 0 because
2n− 2 ≥ n since n ≥ 3. Clearly x 6= y since x2 6= 0. ¤

Thus any vertex of the subgraph Nil(R) \N(R) of Γ(R) is adjacent to a vertex
of N(R)∗. We next show, among other things, that for a chained ring R, any vertex
of Γ(R) \N(R) is adjacent to a vertex of N(R)∗ and any two vertices of N(R)∗ are
adjacent.

Lemma 4.2. Let R be a chained ring, N(R) = {x ∈ R | x2 = 0}, and x, y ∈ R.

(1) If xy = 0, then either x ∈ N(R) or y ∈ N(R).
(2) If x, y ∈ N(R), then xy = 0.
(3) If x, y ∈ Z(R) \N(R), then xy 6= 0.
(4) If x ∈ Z(R)∗, then xy = 0 for some y ∈ N(R)∗.
(5) If x1, . . . , xn ∈ Z(R)∗, then there is a y ∈ N(R)∗ such that xiy = 0 for

every integer i, 1 ≤ i ≤ n.
(6) N(R) is an ideal of R.
(7) N(R) is a prime ideal of R if and only if N(R) = Nil(R).

Proof. (1) Suppose that x|y. Then y = rx for some r ∈ R; so y2 = rxy = 0.
(2) Suppose that x|y. Then y = rx for some r ∈ R, and hence xy = rx2 = 0.
(3) This follows from part (1).
(4) If x ∈ N(R)∗, then let y = x. If x ∈ Z(R) \ N(R), then xy = 0 for some

0 6= y ∈ R. By part (3) above, we must have y ∈ N(R).
(5) There is an integer j, 1 ≤ j ≤ n, such that xj |xi for all i, 1 ≤ i ≤ n. By part

(4) above, there is a y ∈ N(R)∗ such that xjy = 0; so xiy = 0 for all i, 1 ≤ i ≤ n.
(6) Clearly xN(R) ⊆ N(R) for all x ∈ R; so we need only show that N(R) is

closed under addition. Let x, y ∈ N(R). Then x2 = y2 = 0, and xy = 0 by part (2)
above. Thus (x + y)2 = x2 + 2xy + y2 = 0, and hence x + y ∈ N(R).

(7) This is clear since Nil(R) is the unique minimal prime ideal of R. ¤
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One can ask if part(5) above extends to any subset of Z(R)∗. Of course, if
X ⊆ xR and yx = 0, then yX = {0}. So if X ⊆ Z(R)∗ and X ⊆ xR for some
x ∈ Z(R)∗, then yX = {0} for some y ∈ N(R)∗. Our next remark addresses this
question.

Remark 4.3. (a) Let D = V + XK[[X]], where V is a valuation domain with
nonzero maximal ideal M and quotient field K; so D is also a valuation domain.
Let I = XD = V X + X2K[[X]], and set R = D/I. Then R is a chained ring
with maximal ideal Z(R) = (M + XK[[X]])/I and N(R) = Nil(R) = XK[[X]]]/I.
Note that there is a y ∈ N(R)∗ such that yZ(R) = {0} if and only if there is a
y ∈ M−1 \ V . (So for dim(V ) = 1, this happens if and only if V is a DVR.)

(b) If R is a chained ring, then N(R) = {x ∈ R | x2 = 0} is an ideal of R
by Lemma 4.2(6). In general, N(R) need not be an ideal of R (see Examples 5.5
and 5.6). However, if char(R) = 2, then N(R) is an ideal of R. Also note that if
2 ∈ U(R) and N(R) is an ideal of R, then xy = 0 for all x, y ∈ N(R).

By Theorem 3.5(1), Γ(R) \Nil(R) is totally disconnected when R is a chained
ring. Lemma 4.2(3) yields the following stronger result (also see Example 5.5).

Theorem 4.4. Let R be a chained ring and N(R) = {x ∈ R | x2 = 0}. Then
Γ(R) \N(R) is totally disconnected.

Our next result is a special case of Theorem 2.7, but we give a proof in the spirit
of this section. We can also explicitly say when diam(Γ(R)) is 0, 1, or 2.

Theorem 4.5. Let R be a chained ring. Then diam(Γ(R)) ≤ 2.

Proof. We may assume that |Z(R)∗| ≥ 2. Let N(R) = {x ∈ R | x2 = 0}, and let
x, y ∈ Z(R)∗ be distinct. If x, y ∈ N(R), then xy = 0 by Lemma 4.2(2), and thus
d(x, y) = 1. If x ∈ N(R) and y /∈ N(R), then yz = 0 for some z ∈ N(R)∗ by
Lemma 4.2(4), and hence xz = 0 by Lemma 4.2(2). Thus d(x, y) ≤ 2. Finally, let
x /∈ N(R) and y /∈ N(R). Then xz = yz = 0 for some z ∈ N(R)∗ by Lemma 4.2(5).
Thus d(x, y) ≤ 2, and hence diam(Γ(R)) ≤ 2. ¤

Theorem 4.6. Let R be a chained ring with Z(R) 6= {0}, and let N(R) = {x ∈
R | x2 = 0}. Then exactly one of the following three cases must occur.

(1) |Z(R)∗| = 1. In this case, R is isomorphic to Z4 or Z2[X]/(X2), and
diam(Γ(R)) = 0.

(2) |Z(R)∗| ≥ 2 and N(R) = Z(R). In this case, diam(Γ(R)) = 1.
(3) N(R) ( Z(R). In this case, diam(Γ(R)) = 2.

Proof. The first part follows from [24, Proposition 2.2]. The other two follow di-
rectly from Lemma 4.2 and Theorem 4.5. ¤

Let R be a chained ring with N(R) = {x ∈ R | x2 = 0}. It is now easy to
describe the structure of Γ(R). First, observe that N(R)∗ is a complete subgraph
of Γ(R) by Lemma 4.2(2), Γ(R) \ N(R) is totally disconnected by Lemma 4.2(3),
and Γ(R)\N(R) is infinite if Nil(R) ( Z(R). Moreover, for any finite set of vertices
Y ⊆ Γ(R) \N(R), there is a vertex z ∈ N(R)∗ adjacent to every element in Y by
Lemma 4.2(5). In particular, Γ(R) is complete if and only if Z(R) = N(R). Note
that this description of Γ(R) recovers Theorem 4.6. Also note that Nil(R)∗ need
not be a complete subgraph of Γ(R) (e.g., when R is the chained ring Z16).
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The structure of Γ(R) described in the preceding paragraph also extends to
Γ(R[X]) when R is a chained ring. Note that when R is a chained ring, we have
N(R[X]) = N(R)[X], Nil(R[X]) = Nil(R)[X], and Z(R[X]) = Z(R)[X] (of course,
Nil(R[X]) = Nil(R)[X] holds for any ring R). These statements are easy to verify
directly, or just note that for any 0 6= f ∈ R[X], we have f = af∗, where a ∈ R and
f∗ ∈ R[X] has unit content. Then f ∈ N(R[X]) (resp., Nil(R[X]), Z(R[X])) if and
only if a ∈ N(R) (resp., Nil(R), Z(R)). Thus N(R[X])∗ is a complete subgraph of
Γ(R[X]), Γ(R[X])\N(R[X]) is totally disconnected, and for any finite set of vertices
Y ⊆ Γ(R[X])\N(R[X]), there is a vertex f ∈ N(R[X])∗ which is adjacent to every
element in Y when R is a chained ring. Moreover, N(R[X])∗ and Γ(R[X])\N(R[X])
are both infinite when R is a nonreduced chained ring. This observation shows that
diam(Γ(R[X])) = 1 when Z(R)2 = {0} and diam(Γ(R[X])) = 2 when Z(R)2 6= {0}.

The above description of Γ(R) also enables us to easily determine gr(Γ(R)) when
R is a chained ring (cf. Theorem 2.12). Note that Γ(R) is a finite star graph in
the first three cases of the next theorem, but it is not possible to have Γ(R) be an
infinite star graph when R is a chained ring (cf. Theorem 2.12).

Theorem 4.7. Let R be a chained ring with N(R) = {x ∈ R | x2 = 0} 6= {0}.
Then exactly one of the following five cases must occur.

(1) |N(R)∗| = 1 and N(R) = Z(R). In this case, R is isomorphic to Z4 or
Z2[X]/(X2), and gr(Γ(R)) = ∞.

(2) |N(R)∗| = 1 and N(R) ( Z(R). In this case, R is isomorphic to Z8,Z2[X]/(X3),
or Z4[X]/(2X, X2 − 2), and gr(Γ(R)) = ∞.

(3) |N(R)∗| = 2 and N(R) = Z(R). In this case, R is isomorphic to Z9 or
Z3[X]/(X2), and gr(Γ(R)) = ∞.

(4) |N(R)∗| = 2 and N(R) ( Z(R). In this case, gr(Γ(R)) = 3.
(5) |N(R)∗| ≥ 3. In this case, gr(Γ(R)) = 3.

Proof. If |N(R)∗| ≥ 3, then clearly gr(Γ(R)) = 3 by Lemma 4.2(2). Suppose that
|N(R)∗| = 2; say N(R)∗ = {x, y}. If y 6= −x, then x + y is a third nonzero
element of N(R), a contradiction. Thus y = −x; so annR(x) = annR(y). If
there is a z ∈ Z(R) \ N(R), then x − y − z − x is a triangle by Lemma 4.2(4);
so gr(Γ(R)) = 3. Otherwise, Z(R) = N(R), and thus gr(Γ(R)) = ∞. Finally,
suppose that |N(R)∗| = 1, say N(R) = {0, x}. If Z(R) = N(R), then R ∼= Z4 or
Z2[X]/(X2) by [24, Proposition 2.2]. In this case, gr(Γ(R)) = ∞. So suppose that
N(R) ( Z(R). By parts (3) and (4) of Lemma 4.2, Γ(R) is a star graph with center
x. Thus |R| = 8, |R| = 9, or |R| > 9 and Nil(R) = {0, x} by [8, Lemma 3.7]. The
|R| > 9 case can not happen. For in this case, Nil(R) = N(R) = xR is a prime
ideal of R. Let y ∈ Z(R)∗ \ {x}. Then xR ( yR; so x = yr for some 0 6= r ∈ R.
Hence r ∈ xR = {0, x} since xR is a prime ideal of R; so r = x. Thus x = yx,
and hence x(1 − y) = 0. But R is quasilocal; so 1 − y ∈ U(R), and thus x = 0, a
contradiction. If |R| = 8, then R ∼= Z8,Z2[X]/(X3), or Z4[X]/(2X,X2 − 2); and if
|R| = 9, then R ∼= Z9 or Z3[X]/(X3) by [8, Corollary 3.11]. As each of these rings
is a chained ring, the result follows. ¤

We close this section with several examples.

Example 4.8. (a) Let R be the (nonreduced) chained ring Zpn , where p is prime
and n ≥ 2. Then diam(Γ(R)) = 0 if and only if p = 2 and n = 2, diam(Γ(R)) = 1
if and only if p > 2 and n = 2, and diam(Γ(R)) = 2 if and only if n ≥ 3.
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We have gr(Γ(R)) = ∞ if either p = 2 and 2 ≤ n ≤ 3 or p = 3 and n = 2;
otherwise, gr(Γ(R)) = 3.

(b) We have N(R) ⊆ Nil(R) ⊆ Z(R) for any ring R. We give examples to show
that all four cases for inclusion or proper inclusion are possible when R is a chained
ring. The easy details are left to the reader. Recall that {0} 6= Nil(R) ( Z(R)
forces a chained ring R to be infinite, and thus so is Γ(R). (i) Let R = Z4. Then
N(R) = Nil(R) = Z(R). (ii) Let R = (Z(2) + XQ[[X]])/(X). Then N(R) =
Nil(R) ( Z(R). (iii) Let R = Z8. Then N(R) ( Nil(R) = Z(R). (iv) Let
R = (Z(2) + XQ[[X]])/(X2). Then N(R) ( Nil(R) ( Z(R).

(c) Let R1 and R2 be chained rings and R = R1 × R2. Then N(R) = N(R1)×
N(R2) and R is never a chained ring since the ideals (1, 0)R and (0, 1)R are not
comparable. Note that N(R)∗ is still a complete subgraph of Γ(R) and any (x, y) ∈
Γ(R) is still adjacent to some element of N(R)∗, but Γ(R) \ N(R) is not totally
disconnected since (0, 1) and (1, 0) are adjacent.

(d) We have already observed that for a chained ring R, its zero-divisor graph
Γ(R) is complete if and only if Z(R) = N(R). However, if R is not a chained
ring, then Z(R) = N(R) does not imply that Γ(R) is complete. For example, let
R = Z2[X, Y ]/(X2, Y 2) = Z2[x, y]. Then R is not a chained ring since the ideals
xR and yR are not comparable. However, N(R) = Nil(R) = Z(R) = {0, x, y, x +
y, xy, x + xy, y + xy, x + y + xy}, but Γ(R) is not complete since xy 6= 0. Note
that the prime ideals of R are (trivially) linearly ordered, diam(Γ(R)) = 2, and
gr(Γ(R)) = 3.

(e) A ring R such that Nil(R)∗(= N(R)∗) is a complete subgraph of Γ(R) and
Γ(R) \ Nil(R) is totally disconnected, but R is not a chained ring. Let D be an
integral domain which is not a valuation domain, and let K be the quotient field
of D. Set R = D(+)(K/D); for example, let R = Z(+)(Q/Z). Note that N(R) =
Nil(R) = {0}(+)(K/D) ( Z(R) = (D \ U(D))(+)(K/D) and Nil(R)2 = {0}.
Thus one can easily verify that R satisfies the desired conditions.

5. Γ(R) when R ∈ H
In this final section, we are interested in the case where the ring R satisfies

{0} 6= Nil(R) ⊆ zR for all z ∈ Z(R) \Nil(R). In particular, this condition holds
when R ∈ H is not an integral domain (i.e., when Nil(R) is a nonzero divided
prime ideal of R; so {0} 6= Nil(R) ⊆ zR for all z ∈ R \ Nil(R)). We start by
showing that if {0} 6= Nil(R) ⊆ zR for all z ∈ Z(R) \ Nil(R), then Nil(R) is a
prime ideal of R (cf. the proof of [3, Proposition 5.1]), and that Nil(R) is a divided
prime ideal of R when Nil(R) ( Z(R).

Theorem 5.1. Let R be a ring with {0} 6= Nil(R) ⊆ zR for all z ∈ Z(R)\Nil(R).
(1) Nil(R) is a prime ideal of R.
(2) Nil(R) ⊆ ⋂

n≥1 znR for all z ∈ Z(R) \Nil(R).
(3) If Nil(R) ( Z(R), then Nil(R) is a divided prime ideal of R.

Proof. (1) If Nil(R) = Z(R), then Nil(R) is a prime ideal of R. So we may assume
that Nil(R) ( Z(R) and Nil(R) ⊆ zR for all z ∈ Z(R) \ Nil(R). Suppose that
Nil(R) is not prime. Then there are x, y ∈ Z(R) \ Nil(R) with xy ∈ Nil(R).
Thus x2 ∈ Z(R) \ Nil(R), and hence Nil(R) ⊆ x2R. Thus xy = x2d for some
d ∈ R, and hence y − xd 6∈ Nil(R) since xd ∈ Nil(R) and y 6∈ Nil(R). Since
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(y − xd)x = 0, we have y − xd ∈ Z(R) \ Nil(R). Thus Nil(R) ⊆ (y − xd)R, and
hence xNil(R) ⊆ x(y− xd)R = {0}. Let 0 6= z ∈ Nil(R) ⊆ x2R. Then z = x2r for
some r ∈ R, and xr ∈ Nil(R). Thus z = x(xr) = 0, a contradiction. Hence Nil(R)
is a prime ideal of R.

(2) Let z ∈ Z(R) \Nil(R). Then zn ∈ Z(R) \Nil(R) for all integers n ≥ 1 since
Nil(R) is a prime ideal of R by part (1), and thus Nil(R) ⊆ znR for all integers
n ≥ 1. Hence Nil(R) ⊆ ⋂

n≥1 znR.
(3) Let z ∈ R \Nil(R) and w ∈ Z(R) \Nil(R). Then wz ∈ Z(R) \Nil(R), and

thus Nil(R) ⊆ wzR ⊆ zR. Hence Nil(R) is a divided prime ideal of R. ¤

Corollary 5.2. The following statements are equivalent for a ring R.
(1) {0} 6= Nil(R) ⊆ zR for all z ∈ Z(R) \Nil(R) and Nil(R) ( Z(R).
(2) R ∈ H and Nil(R) ( Z(R).

The simplest example of a ring R with {0} 6= Nil(R) ⊆ zR for all z ∈ Nil(R) \
Nil(R) and Nil(R) ( Z(R) is a nondomain chained ring R with dim(R) ≥ 1.
We next give two examples to show that the condition {0} 6= Nil(R) ⊆ zR for
all z ∈ Z(R) \ Nil(R) neither implies nor is implied by the condition that the
prime ideals of R contained in Z(R) are linearly ordered. We also show that the
Nil(R) ( Z(R) hypothesis is needed in part (3) of Theorem 5.1.

Example 5.3. (a) Let R = Z(+)Z2. Then N(R) = Nil(R) = {0}(+)Z2 and
Z(R) = 2Z(+)Z2. Thus the prime ideals of R contained in Z(R), namely Nil(R)
and Z(R), are linearly ordered, but Nil(R) 6⊆ (2, 0)R for (2, 0) ∈ Z(R) \Nil(R).

(b) Let R = Z(+)(Q/Z). Then N(R) = Nil(R) = {0}(+)(Q/Z) and Z(R) =
(Z \ {1,−1})(+)(Q/Z). Thus the prime ideals of R contained in Z(R) are not
linearly ordered, but Nil(R) ⊆ zR for all z ∈ Z(R) \ Nil(R); so R ∈ H. We
have diam(Γ(R)) = 3 since d((2, 0), (3, 0)) = 3. Also note that R is a McCoy ring,
gr(Γ(R)) = 3, and R ∼= (Z+ XQ[[X]])/(X).

(c) Let R = Z4[X] (or Z4[[X]]). Then N(R) = Nil(R) = Z(R) = 2R; so
{0} 6= Nil(R) ⊆ zR for all z ∈ Z(R) \ Nil(R). But Nil(R) is not divided since
Nil(R) = 2R 6⊆ XR.

Suppose that R ∈ H with Nil(R) ( Z(R). Then we have already observed
that Z(R) \ Nil(R) must be infinite (Theorem 3.5(2)). In fact, both Nil(R) and
Z(R) \Nil(R) are infinite.

Theorem 5.4. Let R ∈ H with Nil(R) ( Z(R).
(1) If xy = 0 for x ∈ Z(R) \Nil(R) and y ∈ R, then y ∈ N(R) ⊆ Nil(R) and

yNil(R) = {0}. Thus annR(x) ⊆ annR(Nil(R)).
(2) Nil(R) is infinite.
(3) Γ(R) \Nil(R) is infinite and totally disconnected.

Proof. (1) Suppose that xy = 0 for x ∈ Z(R)\Nil(R) and y ∈ R. Then y ∈ Nil(R)
since Nil(R) is a prime ideal of R. Then Nil(R) ⊆ xR since Nil(R) is a divided
prime ideal, and thus yNil(R) ⊆ xyR = {0}. In particular, y2 = 0; so y ∈ N(R).

(2) Let x ∈ Z(R)\Nil(R). We have xz = 0 for some z ∈ Nil(R)∗. Then for each
integer n ≥ 1, we have z = znxn for some zn ∈ R by Theorem 5.1(2). Note that
zn ∈ Nil(R)∗ since Nil(R) is a prime ideal of R and xn 6∈ Nil(R). If zn = zm for
some integers n > m ≥ 1, then z = xnzn = xnzm = xn−m(xmzm) = xn−mz = 0, a
contradiction. Thus Nil(R) is infinite.
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(3) Since Nil(R) is a prime ideal of R, the graph Γ(R) \ Nil(R) is totally dis-
connected by Theorem 3.5(1) and infinite by Theorem 3.5(2). ¤

We can now describe the structure of Γ(R) when R ∈ H and Nil(R) ( Z(R).
The subgraph Γ(R)\Nil(R) is infinite and totally disconnected, Nil(R)∗ is infinite,
and for each vertex x ∈ Γ(R) \Nil(R), there is a vertex y ∈ Nil(R)∗ such that y
is adjacent to x and to all other elements of Nil(R)∗.

Since N(R) ⊆ Nil(R), the graph Γ(R) \ Nil(R) is totally disconnected when
Γ(R) \ N(R) is totally disconnected (so this happens when R is a chained ring).
However, our next example shows that we may have Γ(R) \Nil(R) totally discon-
nected, but Γ(R) \ N(R) is not totally disconnected for a ring R ∈ H with the
prime ideals of R contained in Z(R) linearly ordered.

Example 5.5. Let D = Z(2) + XR[[X]] and I = X2D = Z(2)X
2 + X3R[[X]]. Set

R = D/I. Then R is quasilocal with maximal ideal Z(R) = (2Z(2) + XR[[X]])/I =
2R and Nil(R) = XR[[X]]/I. Note that R is not a chained ring and the prime
ideals of R contained in Z(R), namely Nil(R) and Z(R), are linearly ordered. Let
f = πX + I and g = π−1X + I. Then f, g ∈ Nil(R) \N(R), but fg = X2 + I = 0;
so Γ(R) \ N(R) is not totally disconnected. Also N(R) is not an ideal of R and
N(R)2 6= {0}(and hence Nil(R)2 6= {0}) since f =

√
2X +I, g =

√
3X +I ∈ N(R),

but f + g /∈ N(R) and fg =
√

6X2 + I 6= 0. It is easy to check that R ∈ H.

The next example shows that Theorem 5.4(1) need not hold if we only assume
that the prime ideals of R contained in Z(R) are linearly ordered.

Example 5.6. Let D = Q[X, Y, Z](X,Y,Z) and I = (X2, Y 2, XZ)(X,Y,Z). Set R =
D/I = Q[x, y, z]. Then Nil(R) = (x, y) ( (x, y, z) = Z(R). The prime ideals
of R contained in Z(R), namely Nil(R) and Z(R), are linearly ordered. Then
z ∈ Z(R) \Nil(R) and xz = 0, but xNil(R) 6= {0} since xy 6= 0. Note that N(R)
is not an ideal of R and Nil(R)2 6= {0}.

Observe that if R ∈ H and Nil(R) ( Z(R), then Ker(φ) = {w ∈ Nil(R) |
zw = 0 for some z ∈ Z(R) \Nil(R)} ⊆ Nil(R). Thus Ker(φ)∗ is precisely the set
of vertices of Γ(R) which are adjacent to some vertex of Γ(R) \ Nil(R). Clearly
Nil(R) ⊆ Ker(φ) when φ(R) is an integral domain, and thus Ker(φ) = Nil(R)
when φ(R) is an integral domain.

Corollary 5.7. Let R ∈ H with Nil(R) ( Z(R). Then Nil(R)Ker(φ) = {0}, and
thus Ker(φ)2 = {0} (so Ker(φ) ⊆ N(R)). In particular, when φ(R) is an integral
domain, then Nil(R)2 = {0}, and hence Nil(R)∗ is a complete subgraph of Γ(R).

Proof. Let y ∈ Ker(φ). Then there is a z ∈ Z(R) \ Nil(R) with zy = 0. Thus
yNil(R) = {0} by Theorem 5.4(1), and hence Nil(R)Ker(φ) = {0}. Thus Ker(φ)2 =
{0} since Ker(φ) ⊆ Nil(R). Now suppose that φ(R) is an integral domain. Then
Nil(R) = Ker(φ), and hence Nil(R)2 = {0}. Thus Nil(R)∗ is a complete subgraph
of Γ(R). ¤
Remark 5.8. The proof of Theorem 5.4(2) actually shows that Ker(φ) is infinite
since z and each zn are in Ker(φ). Thus by the above corollary, Ker(φ)∗ is an in-
finite complete subgraph of Γ(R) when R ∈ H and Nil(R) ( Z(R). Also Ker(φ) ⊆
N(R) ⊆ Nil(R); so all three are infinite when R ∈ H and Nil(R) ( Z(R).

The following is an example of a ring R ∈ H with Nil(R) ( Z(R) and Nil(R)2 =
{0}, but φ(R) is not an integral domain.
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Example 5.9. Let R = Z(+)(R/Z(2)). Then N(R) = Nil(R) = {0}(+)(R/Z(2)),
Nil(R)2 = {0}, Z(R) = 2Z(+)(R/Z(2)), and Ker(φ) = {0}(+)(Q/Z(2)). Thus
R ∈ H and Ker(φ) ( Nil(R) ( Z(R); so φ(R) is not an integral domain. In
fact, φ(R) ∼= R/Ker(φ) ∼= Z(+)(R/Q). Note that Nil(R)∗ (and hence Ker(φ)∗)
is a complete subgraph of Γ(R), and Γ(R) \Nil(R) is totally disconnected by The-
orem 5.4(3). However, Γ(R) \ Ker(φ) is not totally disconnected; for example,
(0, π +Z(2)) and (0, π−1 +Z(2)) are adjacent in Γ(R) \Ker(φ) (cf. Theorem 5.10).

We next give another characterization for when φ(R) is an integral domain in
terms of complete and totally disconnected subgraphs of Γ(R).

Theorem 5.10. The following statements are equivalent for a ring R ∈ H with
Nil(R) ( Z(R).

(1) φ(R) is an integral domain.
(2) Nil(R) = Ker(φ).
(3) Ker(φ)∗ is a complete subgraph of Γ(R) and Γ(R) \Ker(φ) is totally dis-

connected.
(4) Γ(R) \Ker(φ) is totally disconnected.

Proof. (1) ⇔ (2) This is clear.
(2) ⇒ (3) This follows from Theorem 5.4(3) and Corollary 5.7.
(3) ⇒ (4) This is also clear.
(4) ⇒ (2) We always have Ker(φ) ⊆ Nil(R) since R ∈ H. Suppose that there is

a w ∈ Nil(R) \Ker(φ), and let z ∈ Z(R) \Nil(R). Then zw ∈ Nil(R) \Ker(φ);
so zw 6= 0. For if zw ∈ Ker(φ), then tzw = 0 for some t ∈ Z(R) \ Nil(R). Thus
w ∈ Ker(φ) since tz ∈ Z(R) \ Nil(R), a contradiction. Also zw 6= w. For if
zw = w, then (z − 1)w = 0, and hence z − 1 ∈ Z(R)∗. Also z − 1 /∈ Nil(R) since
z − 1 ∈ Nil(R) implies that z = 1 + (z − 1) ∈ U(R), a contradiction. But then
z − 1 ∈ Z(R) \ Nil(R) and (z − 1)w = 0; so w ∈ Ker(φ), a contradiction. If
w2 = 0, then w − zw is an edge in Γ(R) \Ker(φ), a contradiction. Hence we may
assume that w2 6= 0. Let m (≥ 3) be the least positive integer such that wm = 0.
If wm−1 /∈ Ker(φ), then w − wm−1 is an edge in Γ(R) \Ker(φ), which is again a
contradiction. Thus let k, 1 ≤ k ≤ m − 1, be the least positive integer such that
wk ∈ Ker(φ), and let d ∈ Z(R) \ Nil(R) such that dwk = 0. Then k ≥ 2 since
w /∈ Ker(φ). Also dwk−1 /∈ Ker(φ). For if dwk−1 ∈ Ker(φ), then tdwk−1 = 0
for some t ∈ Z(R) \ Nil(R). Hence wk−1 ∈ Ker(φ) since td ∈ Z(R) \ Nil(R), a
contradiction. Since w 6= dwk−1 because w2 6= 0, we have that w − dwk−1 is an
edge in Γ(R) \Ker(φ), a contradiction. Hence Ker(φ) = Nil(R). ¤

Example 5.3(b) shows that a ring R ∈ H with Nil(R) ( Z(R) may have
diam(Γ(R)) = 3. Thus any of the possible diameters, 0, 1, 2, or 3, may be realized
by a ring in H. However, if R ∈ H and Nil(R) ( Z(R), then diam(Γ(R)) is either
2 or 3. For if diam(Γ(R)) = 0 or 1, then Z(R)2 = {0}, and thus Nil(R) = Z(R).

We end the paper with the analog of Theorem 2.12 for rings in H. Note that
the gr(Γ(R)) = ∞ case is not possible since Γ(R) can not be an infinite star graph.

Theorem 5.11. Let R ∈ H with Nil(R) ( Z(R). Then gr(Γ(R)) = 3.

Proof. The theorem follows directly from Theorem 2.12 and Theorem 5.4(2). ¤
As an alternate proof of the above theorem, just note that Ker(φ)∗ is an infinite

complete subgraph of Γ(R) when R ∈ H and Nil(R) ( Z(R) by Remark 5.8; so
gr(Γ(R)) = 3.
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