ON THE ZERO-DIVISOR GRAPH OF A RING

David F. Anderson ${ }^{a}$ AND Ayman Badawi ${ }^{b}$
${ }^{a}$ Department of Mathematics, The University of Tennessee, Knoxville, TN 37996-1300, U. S. A., anderson@math.utk.edu.
${ }^{b}$ Department of Mathematics \& Statistics, The American University of Sharjah , P.O. Box 26666, Sharjah, United Arab Emirates, abadawi@aus.edu.

Abstract

Let R be a commutative ring with identity, $Z(R)$ its set of zerodivisors, and $\operatorname{Nil}(R)$ its ideal of nilpotent elements. The zero-divisor graph of R is $\Gamma(R)=Z(R) \backslash\{0\}$, with distinct vertices x and y adjacent if and only if $x y=0$. In this paper, we study $\Gamma(R)$ for rings R with nonzero zerodivisors which satisfy certain divisibility conditions between elements of R or comparability conditions between ideals or prime ideals of R. These rings include chained rings, rings R whose prime ideals contained in $Z(R)$ are linearly ordered, and rings R such that $\{0\} \neq N i l(R) \subseteq z R$ for all $z \in Z(R) \backslash N i l(R)$.

Key Words: Linearly Ordered Prime Ideals; ϕ-Rings; Chained Rings; Zerodivisor Graph.

Mathematics Subject Classification: Primary 13A15; Secondary 13F99, 05C99.

1. Introduction

Let R be a commutative ring with 1 , and let $Z(R)$ be its set of zero-divisors. The zero-divisor graph of R, denoted by $\Gamma(R)$, is the (undirected) graph with vertices $Z(R)^{*}=Z(R) \backslash\{0\}$, the set of nonzero zero-divisors of R, and for distinct $x, y \in$ $Z(R)^{*}$, the vertices x and y are adjacent if and only if $x y=0$. Note that $\Gamma(R)$ is the empty graph if and only if R is an integral domain and that a nonempty $\Gamma(R)$ is finite if and only if R is finite and not a field [9, Theorem 2.2]. This concept is due to Beck [24], who let all the elements of R be vertices and was mainly interested in colorings. Our present definition and emphasis on the interplay between ringtheoretic properties of R and graph-theoretic properties of $\Gamma(R)$ are from [9].

In this paper, we study $\Gamma(R)$ for several classes of rings which generalize valuation domains to the context of rings with zero-divisors. These are rings with nonzero zero-divisors that satisfy certain divisibility conditions between elements or comparability conditions between ideals or prime ideals. In Sections 2 and 3, we consider rings R such that the prime ideals of R contained in $Z(R)$ are linearly ordered. In particular, we compute the diameter and girth for $\Gamma(R)$ and $\Gamma(R[X])$. In Section 4, we specialize to the case where R is a chained ring. In the final section, we investigate $\Gamma(R)$ for rings R such that $\{0\} \neq \operatorname{Nil}(R) \subseteq z R$ for all $z \in Z(R) \backslash \operatorname{Nil}(R)$.

We assume throughout that all rings are commutative with $1 \neq 0$. If R is a ring, then $\operatorname{dim}(R)$ denotes its (Krull) dimension, $T(R)$ its total quotient ring, $U(R)$ its
group of units, $Z(R)$ its set of zero-divisors, $\operatorname{Nil}(R)$ its ideal of nilpotent elements, $N(R)=\left\{x \in R \mid x^{2}=0\right\} \subseteq \operatorname{Nil}(R)$, and $\operatorname{Rad}(I)=\left\{x \in R \mid x^{n} \in I\right.$ for some integer $n \geq 1\}$ for I an ideal of R. We say that R is reduced if $\operatorname{Nil}(R)=\{0\}$. For $A, B \subseteq R$, let $A^{*}=A \backslash\{0\}$ and $(A: B)=\{x \in R \mid x B \subseteq A\}$. We let $\mathbb{Z}, \mathbb{Z}_{n}, \mathbb{Z}_{(p)}$, \mathbb{Q}, \mathbb{R}, and \mathbb{F}_{q} denote the rings of integers, integers modulo n, integers localized at the prime ideal $p \mathbb{Z}$, rational numbers, real numbers, and the finite field with q elements, respectively. In the next six paragraphs, we recall some background material. To avoid any trivialities when $\Gamma(R)$ is the empty graph, we implicitly assume when necessary that R is not an integral domain. For any undefined ringtheoretic concepts or terminology, see [30] or [31].

Let G be a graph. We say that G is connected if there is path between any two distinct vertices of G. At the other extreme, we say that G is totally disconnected if no two vertices of G are adjacent. For vertices x and y of G, we define $d(x, y)$ to be the length of a shortest path from x to y in $G(d(x, x)=0$ and $d(x, y)=\infty$ if there is no such path). The diameter of G is $\operatorname{diam}(G)=\sup \{d(x, y) \mid x$ and y are vertices of $G\}$. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of a shortest cycle in $G(\operatorname{gr}(G)=\infty$ if G contains no cycles). Then $\Gamma(R)$ is connected with $\operatorname{diam}(\Gamma(R)) \leq 3[9$, Theorem 2.3] and $\operatorname{gr}(\Gamma(R)) \leq 4$ if $\Gamma(R)$ contains a cycle [33, (1.4)]. Thus $\operatorname{diam}(\Gamma(R))=0,1,2$, or 3 , and $\operatorname{gr}(\Gamma(R))=3,4$, or ∞. For other papers on zero-divisor graphs, see [1], [2], [7], [8], [10], [11], [12], [26], [32], [33], [34], and [35]. In particular, a list of all the zero-divisor graphs with up to 14 vertices is given in [34]. A general reference for graph theory is [25].

Recall from [29] that an integral domain R with quotient field K is called a pseudo-valuation domain ($P V D$) if every prime ideal P of R is strongly prime, in the sense that whenever $x, y \in K$ and $x y \in P$, then $x \in P$ or $y \in P$. This concept was extended to rings with zero-divisors in [21], where R is called a pseudo-valuation ring ($P V R$) if every prime ideal P of R is strongly prime, in the sense that $x P$ and $y R$ are comparable (under inclusion) for all $x, y \in R$. Any valuation domain is a PVD, and it was shown in [21] that an integral domain is a PVD if and only if it is a PVR. It is known that a ring R is a PVR if and only if for all $x, y \in R$, we have either $x \mid y$ or $y \mid x z$ for every nonunit $z \in R$ [21, Theorem 5]. We say that a ring R is a chained ring if the (principal) ideals of R are linearly ordered (by inclusion), equivalently, if either $x \mid y$ or $y \mid x$ for all $x, y \in R$. By our earlier comments, a chained ring is a PVR.

Another generalization of pseudo-valuation rings is given in [15]. Recall from [27] and [14] that a prime ideal of a ring R is called a divided prime ideal of R if $P \subseteq x R$ for all $x \in R \backslash P$. Thus a divided prime ideal of R is comparable with every ideal of R. We say that a ring R is a divided ring if every prime ideal of R is divided; so the prime ideals in a divided ring are linearly ordered. Let $\mathcal{H}=\{R \mid R$ is a ring and $N i l(R)$ is a divided prime ideal of $R\}$. Note that an integral domain or a PVR is in \mathcal{H}. For any ring $R \in \mathcal{H}$, the ring homomorphism $\phi=\phi_{R}: T(R) \longrightarrow R_{N i l(R)}$, given by $\phi(x / y)=x / y$ for all $x \in R$ and $y \in R \backslash Z(R)$, was introduced in [15]. Then $\left.\phi\right|_{R}: R \longrightarrow R_{N i l(R)}$ is a ring homomorphism satisfying $\phi(x)=x / 1$ for all $x \in R$ and $T(\phi(R))=R_{N i l(R)}$.

Let $R \in \mathcal{H}$, and put $K=R_{N i l(R)}$. As in [15], a prime ideal Q of $\phi(R)$ is said to be K-strongly prime if whenever $x, y \in K$ and $x y \in Q$, then either $x \in Q$ or $y \in Q$. A prime ideal P of R is said to be a ϕ-strongly prime ideal of R if $\phi(P)$ is a K-strongly prime ideal of $\phi(R)$. It is known that the prime ideals of $\phi(R)$ are the
sets that are (uniquely) expressible as $\phi(P)$ for some prime ideal P of R (cf. [15, Lemma 2.5]), the key fact being that $\operatorname{Ker}(\phi) \subseteq \operatorname{Nil}(R)$. If every prime ideal of R is a ϕ-strongly prime ideal, then R is called a ϕ-pseudo-valuation ring ($\phi-P V R$). It was shown in [18, Proposition 2.9] that a ring $R \in \mathcal{H}$ is a ϕ-PVR if and only if $R / N i l(R)$ is a PVD. A PVR is a $\phi-\mathrm{PVR}$, but an example of a $\phi-\mathrm{PVR}$ which is not a PVR was given in [16]. Also, a ϕ-PVR is a divided ring [15, Proposition 4], and thus the prime ideals in a ϕ-PVR (or a PVR) are linearly ordered. In particular, a $\phi-\mathrm{PVR}$, and hence a PVR or a chained ring, is quasilocal.

Observe that if $\operatorname{Nil}(R)$ is a divided prime ideal of R, then $\operatorname{Nil}(R)$ is also the nilradical of $T(R)$ and $\operatorname{Ker}(\phi)$ is a common ideal of R and $T(R)$. Other useful features of each ring $R \in \mathcal{H}$ include the following: (i) $\phi(R) \in \mathcal{H}$; (ii) $T(\phi(R))=R_{N i l(R)}$ has only one prime ideal, namely, $\operatorname{Nil}(\phi(R))$; (iii) $\phi(R)$ is naturally isomorphic to $R / \operatorname{Ker}(\phi)$; (iv) $Z(\phi(R))=\operatorname{Nil}(\phi(R))=\phi(\operatorname{Nil}(R))=\operatorname{Nil}\left(R_{N i l(R)}\right)$; and (v) $R_{N i l(R)} / \operatorname{Nil}(\phi(R))=T(\phi(R)) / \operatorname{Nil}(\phi(R))$ is the quotient field of $\phi(R) / \operatorname{Nil}(\phi(R))$. For further studies on rings in the class \mathcal{H}, see [4], [5], [15], [16], [17], [18], [22], and [23].

Throughout this paper, we will use the technique of idealization of a module to construct examples. Recall that for an R-module B, the idealization of B over R is the ring formed from $R \times B$ by defining addition and multiplication as $(r, a)+(s, b)=$ $(r+s, a+b)$ and $(r, a)(s, b)=(r s, r b+s a)$, respectively. A standard notation for this "idealized ring" is $R(+) B$; see [30] for basic properties of rings resulting from the idealization construction. In particular, note that the ideal $I=\{0\}(+) B$ of $T=R(+) B$ satisfies $I^{2}=\{0\}$; so $I \subseteq N i l(T)$. The zero-divisor graph $\Gamma(R(+) B)$ has recently been studied in [10] and [12].

2. LINEARLY ORDERED PRIMES

In this section, we investigate the zero-divisor graph of a ring R such that the prime ideals of R contained in $Z(R)$ are linearly ordered. These are precisely the rings R such that the prime ideals of $T(R)$ are linearly ordered, and include chained rings, divided rings, PVRs, ϕ-PVRs, rings with $Z(R)=N i l(R)$, and zerodimensional quasilocal rings. For these rings, we show that $\operatorname{diam}(\Gamma(R)) \leq 2$ and $\operatorname{gr}(\Gamma(R))=3$ or ∞. We start with the following lemma (cf. [32, Lemma 2.3] and [2, Lemma 3.1]).
Lemma 2.1. Let R be a ring, and let $x, y \in \operatorname{Nil}(R)^{*}$ be distinct with $x y \neq 0$. Then $(0:(x, y)) \neq\{0\}$, and moreover, there is a path of length 2 from x to y in $\operatorname{Nil}(R)^{*} \subseteq \Gamma(R)$. In particular, if $Z(R)=\operatorname{Nil}(R)$, then $\operatorname{diam}(\Gamma(R)) \leq 2$.

Proof. Since $x y \neq 0$ and $x \in \operatorname{Nil}(R)^{*}$, let $n(\geq 2)$ be the least positive integer such that $x^{n} y=0$. Also, since $x^{n-1} y \neq 0$ and $y \in \operatorname{Nil}(R)^{*}$, let $m(\geq 2)$ be the least positive integer such that $x^{n-1} y^{m}=0$. Then $0 \neq x^{n-1} y^{m-1} \in \operatorname{Nil}(R)$ and $x^{n-1} y^{m-1} \in(0:(x, y))$. Thus $x-x^{n-1} y^{m-1}-y$ is a path of length 2 from x to y in $\operatorname{Nil}(R)^{*}$. The "in particular" statement is clear.

When $Z(R)=N i l(R)$, it is easy to explicitly describe the diameter of $\Gamma(R)$; and moreover, $\operatorname{diam}(\Gamma(R)) \neq 3$ in this case. We record this as our first theorem (cf. [32, Theorem 2.6]). Note that in this case, $\operatorname{Nil}(R)$ is the unique minimal prime ideal of R and is the only prime ideal of R contained in $Z(R)$; so this is the simplest case where the prime ideals of R contained in $Z(R)$ are linearly ordered.

Theorem 2.2. Let R be a ring with $Z(R)=\operatorname{Nil}(R) \neq\{0\}$. Then exactly one of the following three cases must occur.
(1) $\left|Z(R)^{*}\right|=1$. In this case, R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$, and $\operatorname{diam}(\Gamma(R))=0$.
(2) $\left|Z(R)^{*}\right| \geq 2$ and $Z(R)^{2}=\{0\}$. In this case, $\Gamma(R)$ is a complete graph, and $\operatorname{diam}(\Gamma(R))=1$
(3) $Z(R)^{2} \neq\{0\}$. In this case, $\operatorname{diam}(\Gamma(R))=2$.

Proof. (1) If $\left|Z(R)^{*}\right|=1$, then $R \cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$ [24, Proposition 2.2]. Thus $\operatorname{diam}(\Gamma(R))=0$.
(2) If $Z(R)^{2}=\{0\}$, then $x y=0$ for all $x, y \in Z(R)$. Thus $\Gamma(R)$ is a complete graph with $\operatorname{diam}(\Gamma(R))=1$ since $\left|Z(R)^{*}\right| \geq 2$.
(3) Suppose that $Z(R)^{2} \neq\{0\}$. Then $\bar{\Gamma}(R)$ is not complete [9, Theorem 2.8], and thus $\operatorname{diam}(\Gamma(R)) \geq 2$. Hence $\operatorname{diam}(\Gamma(R))=2$ by Lemma 2.1.

Thus when studying the diameter of the zero-divisor graph of a ring R, the interesting case is when $N i l(R) \subsetneq Z(R)$. We next give several lemmas. Note that in Lemma 2.4 we need only assume that $x \in Z(R) \backslash N(R)$, where $N(R)=\{x \in R \mid$ $\left.x^{2}=0\right\}$.

Lemma 2.3. Let R be a ring with $x \in \operatorname{Nil}(R)^{*}$ and $y \in Z(R)^{*}$. Then $d(x, y) \leq 2$ in $\Gamma(R)$.

Proof. We may assume that $x \neq y$ and $x y \neq 0$. Since $y \in Z(R)^{*}$ and $x y \neq 0$, there is a $z \in Z(R)^{*} \backslash\{x\}$ such that $y z=0$. Let n be the least positive integer such that $x^{n} z=0$ (such an n exists since $\left.x \in \operatorname{Nil}(R)^{*}\right)$. Then $x-x^{n-1} z-y$ is a path of length 2 from x to z (if $n=1$, then $x^{n-1} z=z$). Thus $d(x, y) \leq 2$ in $\Gamma(R)$.

Lemma 2.4. Let R be a ring with $x \in Z(R) \backslash \operatorname{Nil}(R)$ and $y \in Z(R)^{*}$ such that $x \mid z y^{n}$ for some integer $n \geq 1$ and $z \in R \backslash Z(R)$. Then $d(x, y) \leq 2$ in $\Gamma(R)$.

Proof. We may assume that $x \neq y$ and $x y \neq 0$. Since $x \in Z(R) \backslash N i l(R)$ and $x y \neq 0$, there is a $w \in Z(R)^{*} \backslash\{x, y\}$ such that $x w=0$. Since $x \mid z y^{n}$ with $z \in R \backslash Z(R)$ and $x w=0$, we conclude that $y^{n} w=0$. Let k be the least positive integer such that $y^{k} w=0$. Then $x-y^{k-1} w-y$ is a path of length 2 from x to y. Thus $d(x, y) \leq 2$ in $\Gamma(R)$.

By [13, Theorem 1], the prime ideals of R are linearly ordered if and only if the radical ideals of R are linearly ordered, if and only if for all $x, y \in R$, there is an integer $n=n(x, y) \geq 1$ such that either $x \mid y^{n}$ or $y \mid x^{n}$. This result easily extends to the prime ideals of R contained in $Z(R)$.

Theorem 2.5. Let R be a ring.
(1) The prime ideals of R contained in $Z(R)$ are linearly ordered if and only if for all $x, y \in Z(R)$, there is an integer $n=n(x, y) \geq 1$ and an element $z \in R \backslash Z(R)$ such that either $x \mid z y^{n}$ or $y \mid z x^{n}$.
(2) The radical ideals of R contained in $Z(R)$ are linearly ordered if and only if for all $x, y \in Z(R)$, there is an integer $n=n(x, y) \geq 1$ such that either $x \mid y^{n}$ or $y \mid x^{n}$.
(3) If the prime ideals of R contained in $Z(R)$ are linearly ordered, then $\operatorname{Nil}(R)$ and $Z(R)$ are prime ideals of R.

Proof. (1) Note that the prime ideals of R contained in $Z(R)$ are linearly ordered if and only if the prime ideals of $T(R)$ are linearly ordered, if and only if for all $x, y \in T(R)$, there is an integer $n=n(x, y) \geq 1$ such that either $x \mid y^{n}$ or $y \mid x^{n}$ in $T(R)$ [13, Theorem 1]. The result now easily follows.
(2) Suppose that the radical ideals of R contained in $Z(R)$ are linearly ordered. Let $x, y \in Z(R)$. Then $\operatorname{Rad}(x R), \operatorname{Rad}(y R) \subseteq Z(R)$; so we may assume that $\operatorname{Rad}(x R) \subseteq \operatorname{Rad}(y R)$. Thus $x \in \operatorname{Rad}(y R)$; so $y \mid x^{n}$ for some integer $n \geq 1$. Conversely, let $I, J \subseteq Z(R)$ be radical ideals of R. If I and J are not comparable, pick $x \in I \backslash J$ and $y \in J \backslash I$. If $x \mid y^{n}$, then $y^{n} \in x R \subseteq I$, and hence $y \in I$, a contradiction.
(3) Suppose that the prime ideals of R contained in $Z(R)$ are linearly ordered. Then $\operatorname{Nil}(R)$ is an intersection of linearly ordered prime ideals of R since each minimal prime ideal of R is contained in $Z(R)$ [30, Theorem 2.1], and thus $\operatorname{Nil}(R)$ is prime. Also, $Z(R)$ is the union of linearly ordered prime ideals of R [31, page 3], and hence $Z(R)$ is prime.

Since $Z(R)$ is a union of prime ideals of $R[31$, page 3], $Z(R)$ is a prime ideal of R if and only if it is an ideal of R. If $\operatorname{dim}(R)=0$ (e.g., R is finite) and the prime ideals of R contained in $Z(R)$ are linearly ordered, then R is quasilocal with $Z(R)=\operatorname{Nil}(R)$ its unique prime ideal. If $\operatorname{Nil}(R) \subsetneq Z(R)$ and $\operatorname{Nil}(R)$ is a prime ideal of R, then $\operatorname{dim}(R) \geq 1$ and $\Gamma(R)$ must be infinite. For in this case, R is not an integral domain, and thus if $\Gamma(R)$ is finite, then R must also be finite [9, Theorem 2.2], contradicting $\operatorname{dim}(R) \geq 1$. In particular, if the prime ideals of R contained in $Z(R)$ are linearly ordered and $\operatorname{Nil}(R) \subsetneq Z(R)$, then $\Gamma(R)$ is infinite. It is clear that if the radical ideals of R contained in $Z(R)$ are linearly ordered, then the prime ideals of R contained in $Z(R)$ are also linearly ordered. However, we next give an example where the prime ideals of R contained in $Z(R)$ are linearly ordered, but the radical ideals of R contained in $Z(R)$ are not linearly ordered, and hence the prime ideals of R are not linearly ordered.

Example 2.6. Let $D=\mathbb{Z}+X \mathbb{Q}[[X]]$, and let $I=\mathbb{Z}_{(2)} X+X^{2} \mathbb{Q}[[X]]$ be an ideal of D. Set $R=D / I$. Then $Z(R)=(2 \mathbb{Z}+X \mathbb{Q}[[X]]) / I=2 R=$ ann $_{R}\left(\frac{1}{2} X+I\right), N(R)=$ $\operatorname{Nil}(R)=X \mathbb{Q}[[X]] / I$, and $\operatorname{Nil}(R)^{2}=\{0\}$. The prime ideals of R contained in $Z(R)$, namely $Z(R)$ and $N i l(R)$, are linearly ordered. But the radical ideals of R contained in $Z(R)$ are not linearly ordered since the two radical ideals $(6 \mathbb{Z}+$ $X \mathbb{Q}[[X]]) / I$ and $(10 \mathbb{Z}+X \mathbb{Q}[[X]]) / I$ are not comparable. Thus the prime ideals of R are also not linearly ordered; for example, $(2 \mathbb{Z}+X \mathbb{Q}[[X]]) / I$ and $(3 \mathbb{Z}+X \mathbb{Q}[[X]]) / I$ are not comparable. We have $\operatorname{diam}(\Gamma(R))=2$ by Theorem 2.7, and $\operatorname{gr}(\Gamma(R))=3$ by Theorem 2.12. Also note that $R \cong \mathbb{Z}(+)\left(\mathbb{Q} / \mathbb{Z}_{(2)}\right)$.

The prime ideals of R contained in $Z(R)$ are linearly ordered if and only if the prime ideals of $T(R)$ are linearly ordered. Moreover, $\Gamma(R) \cong \Gamma(T(R))$ ([8, Theorem 2.2]). Thus we can often reduce to the case where the prime ideals of R are linearly ordered. Note that a reduced ring R with its prime ideals contained in $Z(R)$ linearly ordered is an integral domain. Also observe that a nonreduced ring R has $\Gamma(R)$ complete if and only if $Z(R)^{2}=\{0\}[9$, Theorem 2.8], i.e., if $x y=0$ for all $x, y \in Z(R)$ with $x \neq y$, then $x^{2}=0$ for all $x \in Z(R)$. So if R is a nonreduced ring with $Z(R)^{2}=\{0\}$, then $\{0\} \neq N(R)=\operatorname{Nil}(R)=Z(R)$ and $\operatorname{diam}(\Gamma(R)) \leq 1$, with equality when $\left|Z(R)^{*}\right| \geq 2$. We are now ready for the first of the two main results of this section.

Theorem 2.7. Let R be a ring with $Z(R)^{2} \neq\{0\}$ such that the prime ideals of R contained in $Z(R)$ are linearly ordered. Then $\operatorname{diam}(\Gamma(R))=2$.
Proof. By the above comments, R is not reduced. So $\Gamma(R)$ is not a complete graph and $\operatorname{diam}(\Gamma(R)) \geq 2$. Let $x, y \in Z(R)^{*}$ be distinct with $x y \neq 0$. If $x, y \in \operatorname{Nil}(R)$, then $d(x, y)=2$ by Lemma 2.1. If $x \in \operatorname{Nil}(R)$ and $y \in Z(R) \backslash \operatorname{Nil}(R)$, then $d(x, y)=2$ by Lemma 2.3. Finally, suppose that $x, y \in Z(R) \backslash N i l(R)$. Since the prime ideals of R contained in $Z(R)$ are linearly ordered, there is an integer $n \geq 1$ and an element $z \in R \backslash Z(R)$ such that either $x \mid z y^{n}$ or $y \mid z x^{n}$ by Theorem 2.5(1). We may assume that $x \mid z y^{n}$ for some integer $n \geq 1$ and $z \in R \backslash Z(R)$. Thus $d(x, y)=2$ by Lemma 2.4. Hence $\operatorname{diam}(\Gamma(R)) \leq 2$, and thus $\operatorname{diam}(\Gamma(R))=2$ since $\operatorname{diam}(\Gamma(R)) \geq 2$.
Corollary 2.8. If R is any of the following types of rings with $Z(R)^{2} \neq\{0\}$, then $\operatorname{diam}(\Gamma(R))=2$ 。
(1) R is a ring such that the prime ideals of R are linearly ordered.
(2) R is a divided ring.
(3) R is a $P V R$.
(4) R is a $\phi-P V R$.
(5) R is a chained ring.

In view of Theorem 2.7 and [32, Theorem 2.6(3)], we have the following corollary.
Corollary 2.9. Let R be a ring with $Z(R)^{2} \neq\{0\}$ such that the prime ideals of R contained in $Z(R)$ are linearly ordered. Then $Z(R)$ is an (prime) ideal of R and each pair of distinct zero-divisors of R has a nonzero annihilator.

Our next example illustrates what can happen when the prime ideals of R contained in $Z(R)$ are not linearly ordered.
Example 2.10. (a) Let $D=\mathbb{R}[[X, Y]]+Z K[[Z]]$, where K is the quotient field of $\mathbb{R}[[X, Y]]$, and let $I=Z D$. Set $R=D / I$. Then R is quasilocal with maximal ideal $Z(R)=((X, Y)+Z K[[Z]]) / I, N(R)=\operatorname{Nil}(R)=Z K[[Z]] / I, N i l(R)^{2}=\{0\}$, and $((X)+Z K[[Z]]) / I$ and $((Y)+Z K[[Z]]) / I$ are incomparable prime ideals of R contained in $Z(R)$. One can easily show that $\operatorname{diam}(\Gamma(R))=3$ and $\operatorname{gr}(\Gamma(R))=3$. Also see Example 5.3(b).
(b) Let $R=\mathbb{Z}_{2} \times \mathbb{Z}_{4}$. Then $N(R)=\operatorname{Nil}(R)=\{0\} \times\{0,2\} \subsetneq Z(R)=P \cup Q$, where $P=\mathbb{Z}_{2} \times\{0,2\}$ and $Q=\{0\} \times \mathbb{Z}_{4}$ are incomparable primes ideals of R contained in $Z(R)$. One can easily show that $\operatorname{diam}(\Gamma(R))=3$ and $\operatorname{gr}(\Gamma(R))=\infty$.

We conclude this section with a discussion of the girth of $\Gamma(R)$ when the prime ideals of R contained in $Z(R)$ are linearly ordered. We first handle the case where $Z(R)=\operatorname{Nil}(R)$. In this case, $\operatorname{gr}(\Gamma(R)) \neq 4$, and we can explicitly say when the girth is either 3 or ∞. Note that in Theorem 2.11, $\operatorname{gr}(\Gamma(R))=\infty$ if and only if $\Gamma(R)$ is a finite star graph. (Recall that a graph is a star graph if it has a vertex which is adjacent to every other vertex and this is the only adjacency relation. We consider a singleton graph to be a star graph.)

Theorem 2.11. Let R be a ring with $Z(R)=\operatorname{Nil}(R) \neq\{0\}$. Then exactly one of the following four cases must occur.
(1) $\left|Z(R)^{*}\right|=1$. In this case, R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$, and $g r(\Gamma(R))=\infty$.
(2) $\left|Z(R)^{*}\right|=2$. In this case, R is isomorphic to \mathbb{Z}_{9} or $\mathbb{Z}_{3}[X] /\left(X^{2}\right)$, and $\operatorname{gr}(\Gamma(R))=\infty$.
(3) $\left|Z(R)^{*}\right|=3$. If R is isomorphic to $\mathbb{Z}_{8}, \mathbb{Z}_{2}[X] /\left(X^{3}\right)$, or $\mathbb{Z}_{4}[X] /\left(2 X, X^{2}-2\right)$, then $\operatorname{gr}(\Gamma(R))=\infty$. Otherwise, R is isomorphic to $\mathbb{Z}_{2}[X, Y] /(X, Y)^{2}$, $\mathbb{Z}_{4}[X] /(2, X)^{2}, \mathbb{Z}_{4}[X] /\left(X^{2}+X+1\right)$, or $\mathbb{F}_{4}[X] /\left(X^{2}\right) ;$ and in this case, $\operatorname{gr}(\Gamma(R))=3$.
(4) $\left|Z(R)^{*}\right| \geq 4$. In this case, $\operatorname{gr}(\Gamma(R))=3$.

Proof. By [10, Theorem 2.3], $\operatorname{gr}(\Gamma(R)) \neq 4$ when $Z(R)=N i l(R)$. Thus $\operatorname{gr}(\Gamma(R))=$ 3 or ∞. The theorem then follows from [10, Theorem 2.5], [10, Remark 2.6(a)], and [7, Example 2.1].

We next handle the $\operatorname{Nil}(R) \subsetneq Z(R)$ case when $\operatorname{Nil}(R)$ a prime ideal of R (cf. Remark 2.13(b)). In this case, we have already observed that $\Gamma(R)$ is infinite. The next theorem, together with Theorem 2.11, completely characterizes $\operatorname{gr}(\Gamma(R))$ in terms of $\left|\operatorname{Nil}(R)^{*}\right|$ when the prime ideals of R contained in $Z(R)$ are linearly ordered. In particular, we have $\operatorname{gr}(\Gamma(R))=3$ or ∞, with $\operatorname{gr}(\Gamma(R))=\infty$ if and only if $\Gamma(R)$ is a star graph.

Theorem 2.12. Let R be a ring such that $N i l(R)$ is a prime ideal of R and $N i l(R) \subsetneq Z(R)$. In particular, this holds when the prime ideals of R contained in $Z(R)$ are linearly ordered and $\operatorname{Nil}(R) \subsetneq Z(R)$. Then $\operatorname{gr}(\Gamma(R))=3$ or ∞. Moreover, $\operatorname{gr}(\Gamma(R))=\infty$ if and only if $\left|\operatorname{Nil}(R)^{*}\right|=1$; and in this case, $\Gamma(R)$ is an infinite star graph.

Proof. Since $\Gamma(R)) \cong \Gamma(T(R))[8$, Theorem 2.2], we may assume that $R=T(R)$. Note that R is not reduced; so if $\operatorname{gr}(\Gamma(R))=4$, then $R \cong D \times B$, where D is an integral domain and $B=\mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$ by [10, Theorem 2.3]. In this case, $N i l(R) \cong\{0\} \times \mathbb{Z}_{2}$ is not a prime ideal of R. So we must have $\operatorname{gr}(\Gamma(R))=3$ or ∞. The "in particular" statement follows from Theorem 2.5(3). The "moreover" statement follows from [10, Theorem 2.5 and Remark 2.6(a)].

Remark 2.13. (a) $\Gamma(R)$ is a finite star graph if and only if either $R \cong \mathbb{F}_{q} \times \mathbb{Z}_{2}$ for some finite field \mathbb{F}_{q} (when R is reduced), or R is one of the 7 rings with $\operatorname{gr}(\Gamma(R))=$ ∞ given in Theorem 2.11 ([9, Theorem 2.13] and [26, Corollary 1.11]).

If $\Gamma(R)$ is an infinite star graph, then either $R \cong D \times \mathbb{Z}_{2}$ for D an integral domain (when R is reduced), or $\operatorname{Nil}(R)$ is a prime ideal of R with $\left|\operatorname{Nil}(R)^{*}\right|=1$ and $Z(R)$ is a prime ideal of R ([26, Theorem 1.12] or [33, (2.1)]). For example, if $R=\mathbb{Z}(+) \mathbb{Z}_{2}\left(\cong \mathbb{Z}[X] /\left(2 X, X^{2}\right)\right)$, then $\Gamma(R)$ is an infinite star graph with center $(0,1)$ and the prime ideals of R contained in $Z(R)$ are linearly ordered.
(b) The hypothesis that $\operatorname{Nil}(R)$ is a prime ideal of R is needed in Theorem 2.12. For example, let $R=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. Then $\operatorname{Nil}(R) \subsetneq Z(R), N i l(R)$ is not a prime ideal of R, and $\operatorname{gr}(\Gamma(R))=4$.
(c) It is instructive to give an elementary, self-contained proof of Theorem 2.12. If $\left|\operatorname{Nil}(R)^{*}\right|=1$, then $\operatorname{gr}(\Gamma(R))=\infty$ since $\Gamma(R) \backslash \operatorname{Nil}(R)$ is totally disconnected (Theorem 3.5(1)). So suppose that $\left|\operatorname{Nil}(R)^{*}\right| \geq 2$, and let $z \in Z(R) \backslash \operatorname{Nil}(R)$. Then there is a $w \in \operatorname{Nil}(R)^{*}$ with $z w=0$. First suppose that $w^{2} \neq 0$, and let $m(\geq 3)$ be the least positive integer such that $w^{m}=0$. Thus $w^{m-1} \neq w$, and hence $z-w-w^{m-1}-z$ is a cycle of length 3 . Now suppose that $w^{2}=0$, and let $d \in \operatorname{Nil}(R)^{*} \backslash\{w\}$. Assume that $w d \neq 0$. Since $w d$ and w are distinct and nonzero, we conclude that $z-w-w d-z$ is a cycle of length 3 . Now assume that $w d=0$
and $w^{2}=0$. If $z d=0$, then $z-w-d-z$ is a cycle of length 3. Thus we may assume that $z d \neq 0$. If $z d=w$, then $z d^{2}=w d=0$, and hence $w-z^{2}-d-w$ is a cycle of length 3. Thus we assume that $z d$ and w are distinct and nonzero. Let n be the least positive integer such that $z d^{n}=0$. Assume $n>2$. Then it is clear that $d \neq z d^{n-1}$. If $z d^{n-1} \neq w$, then $w-z d^{n-1}-d-w$ is a cycle of length 3 . Assume that $z d^{n-1}=w$. Then $z^{2} d^{n-1}=z w=0$. Since $z w=0, d^{n-1}$ and w are distinct and nonzero, and thus $w-z^{2}-d^{n-1}-w$ is a cycle of length 3 . Now assume that $n=2$ and $z d \neq w$. Then $z d^{2}=0$. If $z d \neq d$, then $w-z d-d-w$ is a cycle of length 3. Thus assume that $z d=d$. Hence $d^{2}=z d^{2}=0$. Since $z w=0$ and $z d \neq 0$, we have $w+d \neq 0$. Hence w, d, and $w+d$ are all distinct. Since $w^{2}=d^{2}=w d=0$, $w-w+d-d-w$ is a cycle of length 3. Thus $\operatorname{gr}(\Gamma(R))=3$.

3. LINEARLY ORDERED PRIMES-II

In this section, we continue the investigation of $\Gamma(R)$ when the prime ideals of R contained in $Z(R)$ are linearly ordered. We show that for such rings R, $\Gamma(R) \backslash N i l(R)$ is totally disconnected, every finite set of vertices of $\Gamma(R) \backslash N i l(R)$ is adjacent to a common vertex of $\operatorname{Nil}(R)^{*}$, and $\Gamma(R) \backslash \operatorname{Nil}(R)$ is infinite when $\operatorname{Nil}(R) \subsetneq Z(R)$. We also determine $\operatorname{diam}(\Gamma(R[X]))$ and $\operatorname{gr}(\Gamma(R[X]))$. Our first goal is to show that such a ring R is a McCoy ring, where a ring R is called a McCoy ring if every finitely generated ideal of R contained in $Z(R)$ has a nonzero annihilator.

Lemma 3.1. Let R be a ring such that the prime ideals of R contained in $Z(R)$ are linearly ordered, and let $z_{1}, \ldots, z_{n} \in Z(R)$. Then there is an integer $i, 1 \leq i \leq n$, a positive integer m, and an $s \in R \backslash Z(R)$ such that $z_{i} \mid s z_{k}^{m}$ for every integer k, $1 \leq k \leq n$.

Proof. Let $T=T(R)$. Then the prime ideals of T are linearly ordered. Thus $\operatorname{Rad}\left(z_{1} T\right), \ldots, \operatorname{Rad}\left(z_{n} T\right)$ are prime ideals of T, and hence are linearly ordered. Thus there is an integer $\mathrm{i}, 1 \leq i \leq n$, such that $\operatorname{Rad}\left(z_{k} T\right) \subseteq \operatorname{Rad}\left(z_{i} T\right)$ for every integer k, $1 \leq k \leq n$. Hence there are positive integers m_{1}, \ldots, m_{n} and $s_{1}, \ldots, s_{n} \in R \backslash Z(R)$ such that $z_{i} \mid s_{i} z_{k}^{m_{k}}$ for every integer $k, 1 \leq k \leq n$. Let $s=s_{1} \cdots s_{n} \in R \backslash Z(R)$ and $m=\max \left\{m_{1}, \ldots, m_{n}\right\}$. Then $z_{i} \mid s z_{k}{ }^{m}$ for every integer $k, 1 \leq k \leq n$, as desired.

Theorem 3.2. Let R be a ring such that the prime ideals of R contained in $Z(R)$ are linearly ordered. Then R is a McCoy ring.

Proof. Let $I=\left(z_{1}, \ldots, z_{n}\right)$ be a nonzero finitely generated ideal of R contained in $Z(R)$. By Lemma 3.1, we may assume that there is a positive integer m and an $s \in R \backslash Z(R)$ such that $z_{1} \mid s z_{k}^{m}$ for every integer $k, 2 \leq k \leq n$. Let $w \in Z(R)^{*}$ such that $z_{1} w=0$. Thus there is an integer $m_{2} \geq 0$ such that $z_{2}^{m_{2}} w \neq 0$ and $z_{2}^{m_{2}} w z_{2}=0$. Hence $0 \neq z_{2}^{m_{2}} w \in\left(0:\left(z_{1}, z_{2}\right)\right)$. Since $z_{2}^{m_{2}} w z_{1}=0$ and $z_{1} \mid s z_{3}^{m}$, there is an integer $m_{3} \geq 0$ such that $z_{3}^{m_{3}} z_{2}^{m_{2}} w \neq 0$ and $z_{3}^{m_{3}} z_{2}^{m_{2}} w z_{3}=0$. Thus $0 \neq z_{3}^{m_{3}} z_{2}^{m_{2}} w \in\left(0:\left(z_{1}, z_{2}, z_{3}\right)\right)$. Continuing in this manner, we can construct a $0 \neq z_{n}^{m_{n}} z_{n-1}^{m_{n-1}} \cdots z_{2}^{m_{2}} w \in\left(0:\left(z_{1}, z_{2}, z_{3}, \ldots, z_{n}\right)\right)$. Hence R is a McCoy ring.

Corollary 3.3. Let R be a ring such that the prime ideals of R contained in $Z(R)$ are linearly ordered, and let $x_{1}, \ldots, x_{n} \in Z(R) \backslash \operatorname{Nil}(R)$. Then there is a $y \in \operatorname{Nil}(R)^{*}$ such that $x_{i} y=0$ for every integer $i, 1 \leq i \leq n$.

Proof. There is a $y \in Z(R)^{*}$ such that each $x_{i} y=0$ since R is a McCoy ring and $Z(R)$ is an ideal of R. Moreover, $y \in \operatorname{Nil}(R)$ since $x_{1} \notin \operatorname{Nil}(R)$ and $\operatorname{Nil(R)}$ is a prime ideal of R by Theorem 2.5(3).

Remark 3.4. If R is a McCoy ring and $Z(R)$ is an ideal of R, then clearly $\operatorname{diam}(\Gamma(R)) \leq 2$. This observation, together with Theorem 3.2, gives another proof of Theorem 2.7. However, note that $R=\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ is a McCoy ring with $\operatorname{diam}(\Gamma(R))=3$ (cf. Example 2.10(b)).

We next show that the subgraph $\Gamma(R) \backslash \operatorname{Nil}(R)$ of $\Gamma(R)$ is infinite and totally disconnected when $\operatorname{Nil}(R)$ is a prime ideal of R and $\operatorname{Nil}(R) \subsetneq Z(R)$ (i.e., when $\Gamma(R) \backslash \operatorname{Nil}(R)$ is nonempty). This fact gives another proof of the "moreover" statement of Theorem 2.12, namely, that $\Gamma(R)$ is an infinite star graph when $\operatorname{Nil}(R)$ is a prime ideal of $R, \operatorname{Nil}(R) \subsetneq Z(R)$, and $\left|\operatorname{Nil}(R)^{*}\right|=1$.

Theorem 3.5. Let R be a ring.
(1) $\Gamma(R) \backslash N i l(R)$ is totally disconnected if and only if $\operatorname{Nil}(R)$ is a prime ideal of R.
(2) If $\operatorname{Nil}(R)$ is a prime ideal of R and $\operatorname{Nil}(R) \subsetneq Z(R)$, then $Z(R) \backslash \operatorname{Nil}(R)$ is infinite.
In particular, $\Gamma(R) \backslash N i l(R)$ is infinite and totally disconnected when the prime ideals of R contained in $Z(R)$ are linearly ordered and $N i l(R) \subsetneq Z(R)$.

Proof. (1) Suppose that $\Gamma(R) \backslash \operatorname{Nil}(R)$ is totally disconnected. Let $x y \in \operatorname{Nil}(R)$ with $x, y \notin \operatorname{Nil}(R)$. Then $x^{n} y^{n}=0$ for some positive integer n. Thus $x^{n}, y^{n} \in$ $Z(R) \backslash \operatorname{Nil}(R)$ and $x^{n} \neq y^{n}$ since $x, y \notin \operatorname{Nil}(R)$. But then x^{n} and y^{n} are adjacent in $\Gamma(R) \backslash \operatorname{Nil}(R)$, a contradiction. Hence $\operatorname{Nil}(R)$ is a prime ideal of R. The converse is clear.
(2) Let $x \in Z(R) \backslash \operatorname{Nil}(R)$. Suppose that $x^{n}=x^{m}$ for some integers $n>m \geq 1$. Then $x^{m}\left(1-x^{n-m}\right)=0 \in \operatorname{Nil}(R)$ and $x \notin \operatorname{Nil}(R)$ implies $1-x^{n-m} \in \operatorname{Nil}(R)$ since $\operatorname{Nil}(R)$ is prime. Thus $x^{n-m}=1-\left(1-x^{n-m}\right) \in U(R)$, and hence $x \in U(R)$, a contradiction. Thus $Z(R) \backslash \operatorname{Nil}(R)$ is infinite.

The "in particular" statement holds since in this case $N i l(R)$ is a prime ideal of R by Theorem 2.5(3).

Combining Lemma 2.1, Theorem 3.5, and Corollary 3.3, we have the following structure theorem for $\Gamma(R)$ when the prime ideals of R contained in $Z(R)$ are linearly ordered. Then $\operatorname{Nil}(R)^{*}$ is a subgraph of $\Gamma(R)$ of diameter at most 2, $\Gamma(R) \backslash N i l(R)$ is infinite and totally disconnected when $\operatorname{Nil}(R) \subsetneq Z(R)$, and for each finite set of vertices $Y \subseteq \Gamma(R) \backslash \operatorname{Nil}(R)$, there is a vertex $y \in \operatorname{Nil}(R)^{*}$ which is adjacent to every element of Y.

Our next goal is to investigate $\operatorname{diam}(\Gamma(R[X]))$ when the prime ideals of R contained in $Z(R)$ are linearly ordered. The diameter of $\Gamma(R[X])$ has recently been studied in [11], [10], and [32]. In particular, [32, Theorems 3.4 and 3.6] give nice characterizations of $\operatorname{diam}\left(\Gamma(R[X])\right.$). If $Z(R)^{2}=\{0\}$ (i.e., $\Gamma(R)$ is a complete graph), then $Z(R[X])^{2}=\{0\}$; so $\Gamma(R[X])$ is a complete graph with $\operatorname{diam}(\Gamma(R[X]))=1$. McCoy's Theorem for polynomial rings states that $f(X) \in$ $Z(R[X])$ if and only if $r f(X)=0$ for some $0 \neq r \in R$, i.e., $Z(R[X]) \subseteq Z(R)[X]$. Thus $Z(R[X])$ is an ideal of $R[X]$ if and only if R is a McCoy ring and $Z(R)$ is an ideal of $R[32$, Theorem 3.3], and in this case, $Z(R[X])=Z(R)[X]$.

Theorem 3.6. Let R be a ring such that the prime ideals of R contained in $Z(R)$ are linearly ordered.
(1) $Z(R[X])$ is an (prime) ideal of $R[X]$.
(2) If R is not an integral domain and $Z(R)^{2}=\{0\}$, then $\operatorname{diam}(\Gamma(R[X]))=1$.
(3) If $Z(R)^{2} \neq\{0\}$, then $\operatorname{diam}(\Gamma(R[X]))=2$.

Proof. Part (1) follows from Theorem 3.2 and [32, Theorem 3.3]. We have already observed part (2) above. Part (3) follows from Theorem 3.2, Corollary 2.9, and [32, Theorem 3.4(3)].
Corollary 3.7. If R is any of the following types of rings with $Z(R)^{2} \neq\{0\}$, then $\operatorname{diam}(\Gamma(R[X]))=2$.
(1) R is a ring such that the prime ideals of R are linearly ordered.
(2) R is a divided ring.
(3) R is a $P V R$.
(4) R is a $\phi-P V R$.
(5) R is a chained ring.

Corollary 3.8. Let R be a nonreduced ring such that the prime ideals of R contained in $Z(R)$ are linearly ordered. Then exactly one of the following four cases must occur.
(1) $\left|Z(R)^{*}\right|=1$. In this case, R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[Y] /\left(Y^{2}\right), \operatorname{diam}(\Gamma(R))=$ 0 , and $\operatorname{diam}(\Gamma(R[X]))=1$.
(2) $\left|Z(R)^{*}\right| \geq 2, Z(R)=\operatorname{Nil}(R)$, and $Z(R)^{2}=\{0\}$. In this case, $\operatorname{diam}(\Gamma(R))$ $=\operatorname{diam}(\Gamma(R[X]))=1$.
(3) $Z(R)=N i l(R)$ and $Z(R)^{2} \neq\{0\}$. In this case, $\operatorname{diam}(\Gamma(R))=\operatorname{diam}(\Gamma(R[X]))=$ 2.
(4) $\operatorname{Nil}(R) \subsetneq Z(R)$. In this case, $\operatorname{diam}(\Gamma(R))=\operatorname{diam}(\Gamma(R[X]))=2$.

Proof. This follows directly from Theorem 2.2 and Theorem 3.6.
The following example illustrates the four cases stated in Corollary 3.8. In each case, the ring R is actually a chained ring. The routine details are left to the reader.

Example 3.9. (a) Let $R=\mathbb{Z}_{4}$. Then R is a a chained ring with $\left|Z(R)^{*}\right|=1$. Thus $\operatorname{diam}(\Gamma(R))=0$ and $\operatorname{diam}(\Gamma(R[X]))=1$.
(b) Let $R=\mathbb{Z}_{9}$. Then R is a chained ring with $\left|Z(R)^{*}\right|=2, Z(R)=\operatorname{Nil}(R)=$ $N(R)$, and $Z(R)^{2}=\{0\}$. Thus $\operatorname{diam}(\Gamma(R))=\operatorname{diam}(\Gamma(R[X]))=1$.
(c) Let $R=\mathbb{Z}_{8}$. Then R is a chained ring with $N(R) \subsetneq \operatorname{Nil}(R)=Z(R)$ and $Z(R)^{2} \neq\{0\}$. Thus diam $(\Gamma(R))=\operatorname{diam}(\Gamma(R[X]))=2$.
(d) Let $D=\mathbb{Z}_{(2)}+X \mathbb{Q}[[X]]$ and $I=X D=\mathbb{Z}_{(2)} X+X^{2} \mathbb{Q}[[X]]$. Set $R=D / I$. Then D is a valuation domain; so R is a chained ring. Note that $Z(R)=\left(2 \mathbb{Z}_{(2)}+\right.$ $X \mathbb{Q}[[X]]) / I=2 R$ and $N(R)=\operatorname{Nil}(R)=X \mathbb{Q}[[X]] / I$; so $\operatorname{Nil}(R) \subsetneq Z(R)$ and $\operatorname{Nil}(R)^{2}=\{0\}$. Thus $\operatorname{diam}(\Gamma(R))=\operatorname{diam}(\Gamma(R[X]))=2$.

Unlike the case for the diameter of the zero-divisor graph of a polynomial ring as in Corollary 3.8, the girth case is very easy. The girth of $\Gamma(R[X])$ and $\Gamma(R[[X]])$ has been studied in [11] and [10], and a complete characterization is given in [10, Theorem 3.2]. For any nonreduced ring R, we always have $\operatorname{gr}(\Gamma(R[X]))=$ $\operatorname{gr}(\Gamma(R[[X]]))=3$ by [10, Lemma 3.1] (since $a X-a X^{2}-a X^{3}-a X$ forms a triangle for any $\left.a \in N(R)^{*}\right)$.

4. CHAINED RINGS

In this section, we investigate $\Gamma(R)$ when R is a chained ring. This is probably the nicest case where the prime ideals of R contained in $Z(R)$ are linearly ordered since in a chained ring all the ideals are linearly ordered. A typical example of a chained ring is a homomorphic image of a valuation domain. In particular, \mathbb{Z}_{n} is a chained ring if and only if n is a prime power. In fact, it was an open question (attributed to Kaplansky) if every chained ring is the homomorphic image of a valuation domain (cf. [30, Chapter V]). However, an example in [28] shows that this is not true in general. It will turn out that the subset $N(R)=\left\{x \in R \mid x^{2}=0\right\}$ of $\operatorname{Nil}(R)$ will play a major role in describing $\Gamma(R)$ when R is a chained ring. Note that if R is a chained ring, then $N(R)=\{0\}$ if and only if $Z(R)=\{0\}$. Also note that for any ring R, we have $N(R)=\operatorname{Nil}(R)$ when $\operatorname{Nil}(R)^{2}=\{0\}$, and $N(R)=\{0\}$ if and only if $\operatorname{Nil}(R)=\{0\}$. We start with several lemmas. In some cases, these results are special cases of ones from previous sections; however, the proofs are much easier in the chained ring setting.

Lemma 4.1. Let R be a ring, $N(R)=\left\{x \in R \mid x^{2}=0\right\}$, and $x \in \operatorname{Nil}(R) \backslash N(R)$. Then $x y=0$ for some $y \in N(R)^{*} \backslash\{x\}$.

Proof. Let $n(\geq 3)$ be the least positive integer such that $x^{n}=0$, and let $y=x^{n-1}$. Then $x y=x^{n}=0, y=x^{n-1} \neq 0$, and $y^{2}=\left(x^{n-1}\right)^{2}=x^{2 n-2}=0$ because $2 n-2 \geq n$ since $n \geq 3$. Clearly $x \neq y$ since $x^{2} \neq 0$.

Thus any vertex of the subgraph $\operatorname{Nil}(R) \backslash N(R)$ of $\Gamma(R)$ is adjacent to a vertex of $N(R)^{*}$. We next show, among other things, that for a chained ring R, any vertex of $\Gamma(R) \backslash N(R)$ is adjacent to a vertex of $N(R)^{*}$ and any two vertices of $N(R)^{*}$ are adjacent.

Lemma 4.2. Let R be a chained ring, $N(R)=\left\{x \in R \mid x^{2}=0\right\}$, and $x, y \in R$.
(1) If $x y=0$, then either $x \in N(R)$ or $y \in N(R)$.
(2) If $x, y \in N(R)$, then $x y=0$.
(3) If $x, y \in Z(R) \backslash N(R)$, then $x y \neq 0$.
(4) If $x \in Z(R)^{*}$, then $x y=0$ for some $y \in N(R)^{*}$.
(5) If $x_{1}, \ldots, x_{n} \in Z(R)^{*}$, then there is a $y \in N(R)^{*}$ such that $x_{i} y=0$ for every integer $i, 1 \leq i \leq n$.
(6) $N(R)$ is an ideal of R.
(7) $N(R)$ is a prime ideal of R if and only if $N(R)=\operatorname{Nil(R)}$.

Proof. (1) Suppose that $x \mid y$. Then $y=r x$ for some $r \in R$; so $y^{2}=r x y=0$.
(2) Suppose that $x \mid y$. Then $y=r x$ for some $r \in R$, and hence $x y=r x^{2}=0$.
(3) This follows from part (1).
(4) If $x \in N(R)^{*}$, then let $y=x$. If $x \in Z(R) \backslash N(R)$, then $x y=0$ for some $0 \neq y \in R$. By part (3) above, we must have $y \in N(R)$.
(5) There is an integer $j, 1 \leq j \leq n$, such that $x_{j} \mid x_{i}$ for all $i, 1 \leq i \leq n$. By part (4) above, there is a $y \in N(R)^{*}$ such that $x_{j} y=0$; so $x_{i} y=0$ for all $i, 1 \leq i \leq n$.
(6) Clearly $x N(R) \subseteq N(R)$ for all $x \in R$; so we need only show that $N(R)$ is closed under addition. Let $x, y \in N(R)$. Then $x^{2}=y^{2}=0$, and $x y=0$ by part (2) above. Thus $(x+y)^{2}=x^{2}+2 x y+y^{2}=0$, and hence $x+y \in N(R)$.
(7) This is clear since $\operatorname{Nil}(R)$ is the unique minimal prime ideal of R.

One can ask if part(5) above extends to any subset of $Z(R)^{*}$. Of course, if $X \subseteq x R$ and $y x=0$, then $y X=\{0\}$. So if $X \subseteq Z(R)^{*}$ and $X \subseteq x R$ for some $x \in Z(R)^{*}$, then $y X=\{0\}$ for some $y \in N(R)^{*}$. Our next remark addresses this question.

Remark 4.3. (a) Let $D=V+X K[[X]]$, where V is a valuation domain with nonzero maximal ideal M and quotient field K; so D is also a valuation domain. Let $I=X D=V X+X^{2} K[[X]]$, and set $R=D / I$. Then R is a chained ring with maximal ideal $Z(R)=(M+X K[[X]]) / I$ and $N(R)=\operatorname{Nil}(R)=X K[[X]]] / I$. Note that there is a $y \in N(R)^{*}$ such that $y Z(R)=\{0\}$ if and only if there is a $y \in M^{-1} \backslash V$. (So for $\operatorname{dim}(V)=1$, this happens if and only if V is a $D V R$.)
(b) If R is a chained ring, then $N(R)=\left\{x \in R \mid x^{2}=0\right\}$ is an ideal of R by Lemma 4.2(6). In general, $N(R)$ need not be an ideal of R (see Examples 5.5 and 5.6). However, if $\operatorname{char}(R)=2$, then $N(R)$ is an ideal of R. Also note that if $2 \in U(R)$ and $N(R)$ is an ideal of R, then $x y=0$ for all $x, y \in N(R)$.

By Theorem 3.5(1), $\Gamma(R) \backslash \operatorname{Nil}(R)$ is totally disconnected when R is a chained ring. Lemma $4.2(3)$ yields the following stronger result (also see Example 5.5).

Theorem 4.4. Let R be a chained ring and $N(R)=\left\{x \in R \mid x^{2}=0\right\}$. Then $\Gamma(R) \backslash N(R)$ is totally disconnected.

Our next result is a special case of Theorem 2.7, but we give a proof in the spirit of this section. We can also explicitly say when $\operatorname{diam}(\Gamma(R))$ is 0,1 , or 2 .

Theorem 4.5. Let R be a chained ring. Then $\operatorname{diam}(\Gamma(R)) \leq 2$.
Proof. We may assume that $\left|Z(R)^{*}\right| \geq 2$. Let $N(R)=\left\{x \in R \mid x^{2}=0\right\}$, and let $x, y \in Z(R)^{*}$ be distinct. If $x, y \in N(R)$, then $x y=0$ by Lemma 4.2(2), and thus $d(x, y)=1$. If $x \in N(R)$ and $y \notin N(R)$, then $y z=0$ for some $z \in N(R)^{*}$ by Lemma 4.2(4), and hence $x z=0$ by Lemma 4.2(2). Thus $d(x, y) \leq 2$. Finally, let $x \notin N(R)$ and $y \notin N(R)$. Then $x z=y z=0$ for some $z \in N(R)^{*}$ by Lemma 4.2(5). Thus $d(x, y) \leq 2$, and hence $\operatorname{diam}(\Gamma(R)) \leq 2$.

Theorem 4.6. Let R be a chained ring with $Z(R) \neq\{0\}$, and let $N(R)=\{x \in$ $\left.R \mid x^{2}=0\right\}$. Then exactly one of the following three cases must occur.
(1) $\left|Z(R)^{*}\right|=1$. In this case, R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$, and $\operatorname{diam}(\Gamma(R))=0$.
(2) $\left|Z(R)^{*}\right| \geq 2$ and $N(R)=Z(R)$. In this case, $\operatorname{diam}(\Gamma(R))=1$.
(3) $N(R) \subsetneq Z(R)$. In this case, $\operatorname{diam}(\Gamma(R))=2$.

Proof. The first part follows from [24, Proposition 2.2]. The other two follow directly from Lemma 4.2 and Theorem 4.5.

Let R be a chained ring with $N(R)=\left\{x \in R \mid x^{2}=0\right\}$. It is now easy to describe the structure of $\Gamma(R)$. First, observe that $N(R)^{*}$ is a complete subgraph of $\Gamma(R)$ by Lemma $4.2(2), \Gamma(R) \backslash N(R)$ is totally disconnected by Lemma $4.2(3)$, and $\Gamma(R) \backslash N(R)$ is infinite if $N i l(R) \subsetneq Z(R)$. Moreover, for any finite set of vertices $Y \subseteq \Gamma(R) \backslash N(R)$, there is a vertex $z \in N(R)^{*}$ adjacent to every element in Y by Lemma 4.2(5). In particular, $\Gamma(R)$ is complete if and only if $Z(R)=N(R)$. Note that this description of $\Gamma(R)$ recovers Theorem 4.6. Also note that $N i l(R)^{*}$ need not be a complete subgraph of $\Gamma(R)$ (e.g., when R is the chained ring \mathbb{Z}_{16}).

The structure of $\Gamma(R)$ described in the preceding paragraph also extends to $\Gamma(R[X])$ when R is a chained ring. Note that when R is a chained ring, we have $N(R[X])=N(R)[X], N i l(R[X])=N i l(R)[X]$, and $Z(R[X])=Z(R)[X]$ (of course, $\operatorname{Nil}(R[X])=\operatorname{Nil}(R)[X]$ holds for any ring $R)$. These statements are easy to verify directly, or just note that for any $0 \neq f \in R[X]$, we have $f=a f^{*}$, where $a \in R$ and $f^{*} \in R[X]$ has unit content. Then $f \in N(R[X])$ (resp., $\left.N i l(R[X]), Z(R[X])\right)$ if and only if $a \in N(R)$ (resp., $N i l(R), Z(R)$). Thus $N(R[X])^{*}$ is a complete subgraph of $\Gamma(R[X]), \Gamma(R[X]) \backslash N(R[X])$ is totally disconnected, and for any finite set of vertices $Y \subseteq \Gamma(R[X]) \backslash N(R[X])$, there is a vertex $f \in N(R[X])^{*}$ which is adjacent to every element in Y when R is a chained ring. Moreover, $N(R[X])^{*}$ and $\Gamma(R[X]) \backslash N(R[X])$ are both infinite when R is a nonreduced chained ring. This observation shows that $\operatorname{diam}(\Gamma(R[X]))=1$ when $Z(R)^{2}=\{0\}$ and $\operatorname{diam}(\Gamma(R[X]))=2$ when $Z(R)^{2} \neq\{0\}$.

The above description of $\Gamma(R)$ also enables us to easily determine $\operatorname{gr}(\Gamma(R))$ when R is a chained ring (cf. Theorem 2.12). Note that $\Gamma(R)$ is a finite star graph in the first three cases of the next theorem, but it is not possible to have $\Gamma(R)$ be an infinite star graph when R is a chained ring (cf. Theorem 2.12).

Theorem 4.7. Let R be a chained ring with $N(R)=\left\{x \in R \mid x^{2}=0\right\} \neq\{0\}$. Then exactly one of the following five cases must occur.
(1) $\left|N(R)^{*}\right|=1$ and $N(R)=Z(R)$. In this case, R is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$, and $\operatorname{gr}(\Gamma(R))=\infty$.
(2) $\left|N(R)^{*}\right|=1$ and $N(R) \subsetneq Z(R)$. In this case, R is isomorphic to $\mathbb{Z}_{8}, \mathbb{Z}_{2}[X] /\left(X^{3}\right)$, or $\mathbb{Z}_{4}[X] /\left(2 X, X^{2}-2\right)$, and $\operatorname{gr}(\Gamma(R))=\infty$.
(3) $\left|N(R)^{*}\right|=2$ and $N(R)=Z(R)$. In this case, R is isomorphic to \mathbb{Z}_{9} or $\mathbb{Z}_{3}[X] /\left(X^{2}\right)$, and $\operatorname{gr}(\Gamma(R))=\infty$.
(4) $\left|N(R)^{*}\right|=2$ and $N(R) \subsetneq Z(R)$. In this case, $g r(\Gamma(R))=3$.
(5) $\left|N(R)^{*}\right| \geq 3$. In this case, $\operatorname{gr}(\Gamma(R))=3$.

Proof. If $\left|N(R)^{*}\right| \geq 3$, then clearly $\operatorname{gr}(\Gamma(R))=3$ by Lemma 4.2(2). Suppose that $\left|N(R)^{*}\right|=2$; say $N(R)^{*}=\{x, y\}$. If $y \neq-x$, then $x+y$ is a third nonzero element of $N(R)$, a contradiction. Thus $y=-x$; so $\operatorname{ann}_{R}(x)=\operatorname{ann}_{R}(y)$. If there is a $z \in Z(R) \backslash N(R)$, then $x-y-z-x$ is a triangle by Lemma 4.2(4); so $\operatorname{gr}(\Gamma(R))=3$. Otherwise, $Z(R)=N(R)$, and thus $\operatorname{gr}(\Gamma(R))=\infty$. Finally, suppose that $\left|N(R)^{*}\right|=1$, say $N(R)=\{0, x\}$. If $Z(R)=N(R)$, then $R \cong \mathbb{Z}_{4}$ or $\mathbb{Z}_{2}[X] /\left(X^{2}\right)$ by [24, Proposition 2.2]. In this case, $\operatorname{gr}(\Gamma(R))=\infty$. So suppose that $N(R) \subsetneq Z(R)$. By parts (3) and (4) of Lemma 4.2, $\Gamma(R)$ is a star graph with center x. Thus $|R|=8,|R|=9$, or $|R|>9$ and $\operatorname{Nil}(R)=\{0, x\}$ by [8, Lemma 3.7]. The $|R|>9$ case can not happen. For in this case, $\operatorname{Nil}(R)=N(R)=x R$ is a prime ideal of R. Let $y \in Z(R)^{*} \backslash\{x\}$. Then $x R \subsetneq y R$; so $x=y r$ for some $0 \neq r \in R$. Hence $r \in x R=\{0, x\}$ since $x R$ is a prime ideal of R; so $r=x$. Thus $x=y x$, and hence $x(1-y)=0$. But R is quasilocal; so $1-y \in U(R)$, and thus $x=0$, a contradiction. If $|R|=8$, then $R \cong \mathbb{Z}_{8}, \mathbb{Z}_{2}[X] /\left(X^{3}\right)$, or $\mathbb{Z}_{4}[X] /\left(2 X, X^{2}-2\right)$; and if $|R|=9$, then $R \cong \mathbb{Z}_{9}$ or $\mathbb{Z}_{3}[X] /\left(X^{3}\right)$ by [8, Corollary 3.11$]$. As each of these rings is a chained ring, the result follows.

We close this section with several examples.
Example 4.8. (a) Let R be the (nonreduced) chained ring $\mathbb{Z}_{p^{n}}$, where p is prime and $n \geq 2$. Then $\operatorname{diam}(\Gamma(R))=0$ if and only if $p=2$ and $n=2$, $\operatorname{diam}(\Gamma(R))=1$ if and only if $p>2$ and $n=2$, and $\operatorname{diam}(\Gamma(R))=2$ if and only if $n \geq 3$.

We have $\operatorname{gr}(\Gamma(R))=\infty$ if either $p=2$ and $2 \leq n \leq 3$ or $p=3$ and $n=2$; otherwise, $\operatorname{gr}(\Gamma(R))=3$.
(b) We have $N(R) \subseteq N i l(R) \subseteq Z(R)$ for any ring R. We give examples to show that all four cases for inclusion or proper inclusion are possible when R is a chained ring. The easy details are left to the reader. Recall that $\{0\} \neq N i l(R) \subsetneq Z(R)$ forces a chained ring R to be infinite, and thus so is $\Gamma(R)$. (i) Let $R=\mathbb{Z}_{4}$. Then $N(R)=\operatorname{Nil}(R)=Z(R)$. (ii) Let $R=\left(\mathbb{Z}_{(2)}+X \mathbb{Q}[[X]]\right) /(X)$. Then $N(R)=$ $\operatorname{Nil}(R) \subsetneq Z(R)$. (iii) Let $R=\mathbb{Z}_{8}$. Then $N(R) \subsetneq \operatorname{Nil}(R)=Z(R)$. (iv) Let $R=\left(\mathbb{Z}_{(2)}+X \mathbb{Q}[[X]]\right) /\left(X^{2}\right)$. Then $N(R) \subsetneq N i l(R) \subsetneq Z(R)$.
(c) Let R_{1} and R_{2} be chained rings and $R=R_{1} \times R_{2}$. Then $N(R)=N\left(R_{1}\right) \times$ $N\left(R_{2}\right)$ and R is never a chained ring since the ideals $(1,0) R$ and $(0,1) R$ are not comparable. Note that $N(R)^{*}$ is still a complete subgraph of $\Gamma(R)$ and any $(x, y) \in$ $\Gamma(R)$ is still adjacent to some element of $N(R)^{*}$, but $\Gamma(R) \backslash N(R)$ is not totally disconnected since $(0,1)$ and $(1,0)$ are adjacent.
(d) We have already observed that for a chained ring R, its zero-divisor graph $\Gamma(R)$ is complete if and only if $Z(R)=N(R)$. However, if R is not a chained ring, then $Z(R)=N(R)$ does not imply that $\Gamma(R)$ is complete. For example, let $R=\mathbb{Z}_{2}[X, Y] /\left(X^{2}, Y^{2}\right)=\mathbb{Z}_{2}[x, y]$. Then R is not a chained ring since the ideals $x R$ and $y R$ are not comparable. However, $N(R)=\operatorname{Nil}(R)=Z(R)=\{0, x, y, x+$ $y, x y, x+x y, y+x y, x+y+x y\}$, but $\Gamma(R)$ is not complete since $x y \neq 0$. Note that the prime ideals of R are (trivially) linearly ordered, $\operatorname{diam}(\Gamma(R))=2$, and $g r(\Gamma(R))=3$.
(e) A ring R such that $\operatorname{Nil}(R)^{*}\left(=N(R)^{*}\right)$ is a complete subgraph of $\Gamma(R)$ and $\Gamma(R) \backslash \operatorname{Nil}(R)$ is totally disconnected, but R is not a chained ring. Let D be an integral domain which is not a valuation domain, and let K be the quotient field of D. Set $R=D(+)(K / D)$; for example, let $R=\mathbb{Z}(+)(\mathbb{Q} / \mathbb{Z})$. Note that $N(R)=$ $\operatorname{Nil}(R)=\{0\}(+)(K / D) \subsetneq Z(R)=(D \backslash U(D))(+)(K / D)$ and $\operatorname{Nil}(R)^{2}=\{0\}$. Thus one can easily verify that R satisfies the desired conditions.

5. $\Gamma(R)$ WHEN $R \in \mathcal{H}$

In this final section, we are interested in the case where the ring R satisfies $\{0\} \neq N i l(R) \subseteq z R$ for all $z \in Z(R) \backslash N i l(R)$. In particular, this condition holds when $R \in \mathcal{H}$ is not an integral domain (i.e., when $\operatorname{Nil}(R)$ is a nonzero divided prime ideal of R; so $\{0\} \neq \operatorname{Nil}(R) \subseteq z R$ for all $z \in R \backslash \operatorname{Nil}(R))$. We start by showing that if $\{0\} \neq \operatorname{Nil}(R) \subseteq z R$ for all $z \in Z(R) \backslash \operatorname{Nil}(R)$, then $\operatorname{Nil}(R)$ is a prime ideal of R (cf. the proof of [3, Proposition 5.1]), and that $\operatorname{Nil}(R)$ is a divided prime ideal of R when $\operatorname{Nil}(R) \subsetneq Z(R)$.
Theorem 5.1. Let R be a ring with $\{0\} \neq \operatorname{Nil}(R) \subseteq z R$ for all $z \in Z(R) \backslash N i l(R)$.
(1) $\operatorname{Nil}(R)$ is a prime ideal of R.
(2) $\operatorname{Nil}(R) \subseteq \bigcap_{n \geq 1} z^{n} R$ for all $z \in Z(R) \backslash \operatorname{Nil}(R)$.
(3) If $\operatorname{Nil}(R) \subsetneq \bar{Z}(R)$, then $N i l(R)$ is a divided prime ideal of R.

Proof. (1) If $N i l(R)=Z(R)$, then $N i l(R)$ is a prime ideal of R. So we may assume that $\operatorname{Nil}(R) \subsetneq Z(R)$ and $\operatorname{Nil}(R) \subseteq z R$ for all $z \in Z(R) \backslash N i l(R)$. Suppose that $\operatorname{Nil}(R)$ is not prime. Then there are $x, y \in Z(R) \backslash \operatorname{Nil}(R)$ with $x y \in \operatorname{Nil}(R)$. Thus $x^{2} \in Z(R) \backslash \operatorname{Nil}(R)$, and hence $\operatorname{Nil}(R) \subseteq x^{2} R$. Thus $x y=x^{2} d$ for some $d \in R$, and hence $y-x d \notin \operatorname{Nil}(R)$ since $x d \in \operatorname{Nil}(R)$ and $y \notin \operatorname{Nil}(R)$. Since
$(y-x d) x=0$, we have $y-x d \in Z(R) \backslash \operatorname{Nil}(R)$. Thus $\operatorname{Nil}(R) \subseteq(y-x d) R$, and hence $x \operatorname{Nil}(R) \subseteq x(y-x d) R=\{0\}$. Let $0 \neq z \in \operatorname{Nil}(R) \subseteq x^{2} R$. Then $z=x^{2} r$ for some $r \in R$, and $x r \in \operatorname{Nil}(R)$. Thus $z=x(x r)=0$, a contradiction. Hence $\operatorname{Nil}(R)$ is a prime ideal of R.
(2) Let $z \in Z(R) \backslash \operatorname{Nil}(R)$. Then $z^{n} \in Z(R) \backslash \operatorname{Nil}(R)$ for all integers $n \geq 1$ since
 $n \geq 1$. Hence $\operatorname{Nil}(R) \subseteq \bigcap_{n \geq 1} z^{n} R$.
(3) Let $z \in R \backslash \operatorname{Nil}(R)$ and $w \in Z(R) \backslash \operatorname{Nil}(R)$. Then $w z \in Z(R) \backslash N i l(R)$, and thus $\operatorname{Nil}(R) \subseteq w z R \subseteq z R$. Hence $\operatorname{Nil}(R)$ is a divided prime ideal of R.

Corollary 5.2. The following statements are equivalent for a ring R.
(1) $\{0\} \neq \operatorname{Nil}(R) \subseteq z R$ for all $z \in Z(R) \backslash \operatorname{Nil}(R)$ and $\operatorname{Nil}(R) \subsetneq Z(R)$.
(2) $R \in \mathcal{H}$ and $\operatorname{Nil}(R) \subsetneq Z(R)$.

The simplest example of a ring R with $\{0\} \neq \operatorname{Nil}(R) \subseteq z R$ for all $z \in \operatorname{Nil}(R) \backslash$ $\operatorname{Nil}(R)$ and $\operatorname{Nil}(R) \subsetneq Z(R)$ is a nondomain chained ring R with $\operatorname{dim}(R) \geq 1$. We next give two examples to show that the condition $\{0\} \neq N i l(R) \subseteq z R$ for all $z \in Z(R) \backslash N i l(R)$ neither implies nor is implied by the condition that the prime ideals of R contained in $Z(R)$ are linearly ordered. We also show that the $N i l(R) \subsetneq Z(R)$ hypothesis is needed in part (3) of Theorem 5.1.

Example 5.3. (a) Let $R=\mathbb{Z}(+) \mathbb{Z}_{2}$. Then $N(R)=\operatorname{Nil}(R)=\{0\}(+) \mathbb{Z}_{2}$ and $Z(R)=2 \mathbb{Z}(+) \mathbb{Z}_{2}$. Thus the prime ideals of R contained in $Z(R)$, namely $\operatorname{Nil}(R)$ and $Z(R)$, are linearly ordered, but $\operatorname{Nil}(R) \nsubseteq(2,0) R$ for $(2,0) \in Z(R) \backslash N i l(R)$.
(b) Let $R=\mathbb{Z}(+)(\mathbb{Q} / \mathbb{Z})$. Then $N(R)=\operatorname{Nil}(R)=\{0\}(+)(\mathbb{Q} / \mathbb{Z})$ and $Z(R)=$ $(\mathbb{Z} \backslash\{1,-1\})(+)(\mathbb{Q} / \mathbb{Z})$. Thus the prime ideals of R contained in $Z(R)$ are not linearly ordered, but $\operatorname{Nil}(R) \subseteq z R$ for all $z \in Z(R) \backslash N i l(R)$; so $R \in \mathcal{H}$. We have $\operatorname{diam}(\Gamma(R))=3$ since $d((2,0),(3,0))=3$. Also note that R is a McCoy ring, $\operatorname{gr}(\Gamma(R))=3$, and $R \cong(\mathbb{Z}+X \mathbb{Q}[[X]]) /(X)$.
(c) Let $R=\mathbb{Z}_{4}[X]$ (or $\mathbb{Z}_{4}[[X]]$). Then $N(R)=\operatorname{Nil}(R)=Z(R)=2 R$; so $\{0\} \neq \operatorname{Nil}(R) \subseteq z R$ for all $z \in Z(R) \backslash \operatorname{Nil}(R)$. But $\operatorname{Nil}(R)$ is not divided since $\operatorname{Nil}(R)=2 R \nsubseteq X R$.

Suppose that $R \in \mathcal{H}$ with $\operatorname{Nil}(R) \subsetneq Z(R)$. Then we have already observed that $Z(R) \backslash \operatorname{Nil}(R)$ must be infinite (Theorem 3.5(2)). In fact, both $\operatorname{Nil(R)}$ and $Z(R) \backslash N i l(R)$ are infinite.
Theorem 5.4. Let $R \in \mathcal{H}$ with $\operatorname{Nil}(R) \subsetneq Z(R)$.
(1) If $x y=0$ for $x \in Z(R) \backslash \operatorname{Nil}(R)$ and $y \in R$, then $y \in N(R) \subseteq \operatorname{Nil}(R)$ and $y \operatorname{Nil}(R)=\{0\}$. Thus ann $n_{R}(x) \subseteq \operatorname{ann}_{R}(\operatorname{Nil}(R))$.
(2) $\operatorname{Nil}(R)$ is infinite.
(3) $\Gamma(R) \backslash N i l(R)$ is infinite and totally disconnected.

Proof. (1) Suppose that $x y=0$ for $x \in Z(R) \backslash \operatorname{Nil}(R)$ and $y \in R$. Then $y \in \operatorname{Nil}(R)$ since $\operatorname{Nil}(R)$ is a prime ideal of R. Then $\operatorname{Nil}(R) \subseteq x R$ since $\operatorname{Nil}(R)$ is a divided prime ideal, and thus $y \operatorname{Nil}(R) \subseteq x y R=\{0\}$. In particular, $y^{2}=0$; so $y \in N(R)$.
(2) Let $x \in Z(R) \backslash \operatorname{Nil}(R)$. We have $x z=0$ for some $z \in \operatorname{Nil}(R)^{*}$. Then for each integer $n \geq 1$, we have $z=z_{n} x^{n}$ for some $z_{n} \in R$ by Theorem 5.1(2). Note that $z_{n} \in \operatorname{Nil}(R)^{*}$ since $\operatorname{Nil}(R)$ is a prime ideal of R and $x^{n} \notin \operatorname{Nil}(R)$. If $z_{n}=z_{m}$ for some integers $n>m \geq 1$, then $z=x^{n} z_{n}=x^{n} z_{m}=x^{n-m}\left(x^{m} z_{m}\right)=x^{n-m} z=0$, a contradiction. Thus $\operatorname{Nil}(R)$ is infinite.
(3) Since $\operatorname{Nil}(R)$ is a prime ideal of R, the $\operatorname{graph} \Gamma(R) \backslash \operatorname{Nil}(R)$ is totally disconnected by Theorem 3.5(1) and infinite by Theorem 3.5(2).

We can now describe the structure of $\Gamma(R)$ when $R \in \mathcal{H}$ and $\operatorname{Nil}(R) \subsetneq Z(R)$. The subgraph $\Gamma(R) \backslash N i l(R)$ is infinite and totally disconnected, $N i l(R)^{*}$ is infinite, and for each vertex $x \in \Gamma(R) \backslash \operatorname{Nil}(R)$, there is a vertex $y \in \operatorname{Nil}(R)^{*}$ such that y is adjacent to x and to all other elements of $\operatorname{Nil}(R)^{*}$.

Since $N(R) \subseteq N i l(R)$, the graph $\Gamma(R) \backslash N i l(R)$ is totally disconnected when $\Gamma(R) \backslash N(R)$ is totally disconnected (so this happens when R is a chained ring). However, our next example shows that we may have $\Gamma(R) \backslash N i l(R)$ totally disconnected, but $\Gamma(R) \backslash N(R)$ is not totally disconnected for a ring $R \in \mathcal{H}$ with the prime ideals of R contained in $Z(R)$ linearly ordered.
Example 5.5. Let $D=\mathbb{Z}_{(2)}+X \mathbb{R}[[X]]$ and $I=X^{2} D=\mathbb{Z}_{(2)} X^{2}+X^{3} \mathbb{R}[[X]]$. Set $R=D / I$. Then R is quasilocal with maximal ideal $Z(R)=\left(2 \mathbb{Z}_{(2)}+X \mathbb{R}[[X]]\right) / I=$ $2 R$ and $\operatorname{Nil}(R)=X \mathbb{R}[[X]] / I$. Note that R is not a chained ring and the prime ideals of R contained in $Z(R)$, namely $\operatorname{Nil}(R)$ and $Z(R)$, are linearly ordered. Let $f=\pi X+I$ and $g=\pi^{-1} X+I$. Then $f, g \in \operatorname{Nil}(R) \backslash N(R)$, but $f g=X^{2}+I=0$; so $\Gamma(R) \backslash N(R)$ is not totally disconnected. Also $N(R)$ is not an ideal of R and $N(R)^{2} \neq\{0\}$ (and hence $\operatorname{Nil}(R)^{2} \neq\{0\}$) since $f=\sqrt{2} X+I, g=\sqrt{3} X+I \in N(R)$, but $f+g \notin N(R)$ and $f g=\sqrt{6} X^{2}+I \neq 0$. It is easy to check that $R \in \mathcal{H}$.

The next example shows that Theorem 5.4(1) need not hold if we only assume that the prime ideals of R contained in $Z(R)$ are linearly ordered.
Example 5.6. Let $D=\mathbb{Q}[X, Y, Z]_{(X, Y, Z)}$ and $I=\left(X^{2}, Y^{2}, X Z\right)_{(X, Y, Z)}$. Set $R=$ $D / I=\mathbb{Q}[x, y, z]$. Then $\operatorname{Nil}(R)=(x, y) \subsetneq(x, y, z)=Z(R)$. The prime ideals of R contained in $Z(R)$, namely $\operatorname{Nil}(R)$ and $Z(R)$, are linearly ordered. Then $z \in Z(R) \backslash \operatorname{Nil}(R)$ and $x z=0$, but $x \operatorname{Nil}(R) \neq\{0\}$ since $x y \neq 0$. Note that $N(R)$ is not an ideal of R and $\operatorname{Nil}(R)^{2} \neq\{0\}$.

Observe that if $R \in \mathcal{H}$ and $\operatorname{Nil}(R) \subsetneq Z(R)$, then $\operatorname{Ker}(\phi)=\{w \in \operatorname{Nil}(R) \mid$ $z w=0$ for some $z \in Z(R) \backslash \operatorname{Nil}(R)\} \subseteq \operatorname{Nil}(R)$. Thus $\operatorname{Ker}(\phi)^{*}$ is precisely the set of vertices of $\Gamma(R)$ which are adjacent to some vertex of $\Gamma(R) \backslash N i l(R)$. Clearly $\operatorname{Nil}(R) \subseteq \operatorname{Ker}(\phi)$ when $\phi(R)$ is an integral domain, and thus $\operatorname{Ker}(\phi)=\operatorname{Nil}(R)$ when $\phi(R)$ is an integral domain.
Corollary 5.7. Let $R \in \mathcal{H}$ with $\operatorname{Nil}(R) \subsetneq Z(R)$. Then $\operatorname{Nil}(R) \operatorname{Ker}(\phi)=\{0\}$, and thus $\operatorname{Ker}(\phi)^{2}=\{0\}$ (so $\operatorname{Ker}(\phi) \subseteq N(R)$). In particular, when $\phi(R)$ is an integral domain, then $\operatorname{Nil}(R)^{2}=\{0\}$, and hence $\operatorname{Nil}(R)^{*}$ is a complete subgraph of $\Gamma(R)$.
Proof. Let $y \in \operatorname{Ker}(\phi)$. Then there is a $z \in Z(R) \backslash \operatorname{Nil}(R)$ with $z y=0$. Thus $y \operatorname{Nil}(R)=\{0\}$ by Theorem 5.4(1), and hence $\operatorname{Nil}(R) \operatorname{Ker}(\phi)=\{0\}$. Thus $\operatorname{Ker}(\phi)^{2}=$ $\{0\}$ since $\operatorname{Ker}(\phi) \subseteq \operatorname{Nil}(R)$. Now suppose that $\phi(R)$ is an integral domain. Then $\operatorname{Nil}(R)=\operatorname{Ker}(\phi)$, and hence $\operatorname{Nil}(R)^{2}=\{0\}$. Thus $\operatorname{Nil}(R)^{*}$ is a complete subgraph of $\Gamma(R)$.

Remark 5.8. The proof of Theorem 5.4(2) actually shows that $\operatorname{Ker}(\phi)$ is infinite since z and each z_{n} are in $\operatorname{Ker}(\phi)$. Thus by the above corollary, $\operatorname{Ker}(\phi)^{*}$ is an infinite complete subgraph of $\Gamma(R)$ when $R \in \mathcal{H}$ and $\operatorname{Nil}(R) \subsetneq Z(R)$. Also $\operatorname{Ker}(\phi) \subseteq$ $N(R) \subseteq N i l(R)$; so all three are infinite when $R \in \mathcal{H}$ and $\operatorname{Nil}(R) \subsetneq Z(R)$.

The following is an example of a ring $R \in \mathcal{H}$ with $\operatorname{Nil}(R) \subsetneq Z(R)$ and $\operatorname{Nil}(R)^{2}=$ $\{0\}$, but $\phi(R)$ is not an integral domain.

Example 5.9. Let $R=\mathbb{Z}(+)\left(\mathbb{R} / \mathbb{Z}_{(2)}\right)$. Then $N(R)=\operatorname{Nil}(R)=\{0\}(+)\left(\mathbb{R} / \mathbb{Z}_{(2)}\right)$, $\operatorname{Nil}(R)^{2}=\{0\}, Z(R)=2 \mathbb{Z}(+)\left(\mathbb{R} / \mathbb{Z}_{(2)}\right)$, and $\operatorname{Ker}(\phi)=\{0\}(+)\left(\mathbb{Q} / \mathbb{Z}_{(2)}\right)$. Thus $R \in \mathcal{H}$ and $\operatorname{Ker}(\phi) \subsetneq \operatorname{Nil}(R) \subsetneq Z(R)$; so $\phi(R)$ is not an integral domain. In fact, $\phi(R) \cong R / \operatorname{Ker}(\phi) \cong \mathbb{Z}(+)(\mathbb{R} / \mathbb{Q})$. Note that $\operatorname{Nil}(R)^{*}$ (and hence $\left.\operatorname{Ker}(\phi)^{*}\right)$ is a complete subgraph of $\Gamma(R)$, and $\Gamma(R) \backslash \operatorname{Nil}(R)$ is totally disconnected by Theorem 5.4(3). However, $\Gamma(R) \backslash \operatorname{Ker}(\phi)$ is not totally disconnected; for example, $\left(0, \pi+\mathbb{Z}_{(2)}\right)$ and $\left(0, \pi^{-1}+\mathbb{Z}_{(2)}\right)$ are adjacent in $\Gamma(R) \backslash \operatorname{Ker}(\phi)$ (cf. Theorem 5.10).

We next give another characterization for when $\phi(R)$ is an integral domain in terms of complete and totally disconnected subgraphs of $\Gamma(R)$.
Theorem 5.10. The following statements are equivalent for a ring $R \in \mathcal{H}$ with $N i l(R) \subsetneq Z(R)$.
(1) $\phi(R)$ is an integral domain.
(2) $\operatorname{Nil}(R)=\operatorname{Ker}(\phi)$.
(3) $\operatorname{Ker}(\phi)^{*}$ is a complete subgraph of $\Gamma(R)$ and $\Gamma(R) \backslash \operatorname{Ker}(\phi)$ is totally disconnected.
(4) $\Gamma(R) \backslash \operatorname{Ker}(\phi)$ is totally disconnected.

Proof. (1) $\Leftrightarrow(2)$ This is clear.
$(2) \Rightarrow(3)$ This follows from Theorem 5.4(3) and Corollary 5.7.
$(3) \Rightarrow(4)$ This is also clear.
(4) $\Rightarrow(2)$ We always have $\operatorname{Ker}(\phi) \subseteq \operatorname{Nil}(R)$ since $R \in \mathcal{H}$. Suppose that there is a $w \in \operatorname{Nil}(R) \backslash \operatorname{Ker}(\phi)$, and let $z \in Z(R) \backslash \operatorname{Nil}(R)$. Then $z w \in N i l(R) \backslash \operatorname{Ker}(\phi)$; so $z w \neq 0$. For if $z w \in \operatorname{Ker}(\phi)$, then $t z w=0$ for some $t \in Z(R) \backslash \operatorname{Nil}(R)$. Thus $w \in \operatorname{Ker}(\phi)$ since $t z \in Z(R) \backslash \operatorname{Nil}(R)$, a contradiction. Also $z w \neq w$. For if $z w=w$, then $(z-1) w=0$, and hence $z-1 \in Z(R)^{*}$. Also $z-1 \notin \operatorname{Nil(R)}$ since $z-1 \in \operatorname{Nil}(R)$ implies that $z=1+(z-1) \in U(R)$, a contradiction. But then $z-1 \in Z(R) \backslash \operatorname{Nil}(R)$ and $(z-1) w=0$; so $w \in \operatorname{Ker}(\phi)$, a contradiction. If $w^{2}=0$, then $w-z w$ is an edge in $\Gamma(R) \backslash \operatorname{Ker}(\phi)$, a contradiction. Hence we may assume that $w^{2} \neq 0$. Let $m(\geq 3)$ be the least positive integer such that $w^{m}=0$. If $w^{m-1} \notin \operatorname{Ker}(\phi)$, then $w-w^{m-1}$ is an edge in $\Gamma(R) \backslash \operatorname{Ker}(\phi)$, which is again a contradiction. Thus let $k, 1 \leq k \leq m-1$, be the least positive integer such that $w^{k} \in \operatorname{Ker}(\phi)$, and let $d \in Z(R) \backslash \operatorname{Nil}(R)$ such that $d w^{k}=0$. Then $k \geq 2$ since $w \notin \operatorname{Ker}(\phi)$. Also $d w^{k-1} \notin \operatorname{Ker}(\phi)$. For if $d w^{k-1} \in \operatorname{Ker}(\phi)$, then $t d \overline{w^{k-1}}=0$ for some $t \in Z(R) \backslash \operatorname{Nil}(R)$. Hence $w^{k-1} \in \operatorname{Ker}(\phi)$ since $t d \in Z(R) \backslash \operatorname{Nil}(R)$, a contradiction. Since $w \neq d w^{k-1}$ because $w^{2} \neq 0$, we have that $w-d w^{k-1}$ is an edge in $\Gamma(R) \backslash \operatorname{Ker}(\phi)$, a contradiction. Hence $\operatorname{Ker}(\phi)=\operatorname{Nil}(R)$.

Example 5.3(b) shows that a ring $R \in \mathcal{H}$ with $\operatorname{Nil}(R) \subsetneq Z(R)$ may have $\operatorname{diam}(\Gamma(R))=3$. Thus any of the possible diameters, $0,1,2$, or 3 , may be realized by a ring in \mathcal{H}. However, if $R \in \mathcal{H}$ and $\operatorname{Nil}(R) \subsetneq Z(R)$, then $\operatorname{diam}(\Gamma(R))$ is either 2 or 3 . For if $\operatorname{diam}(\Gamma(R))=0$ or 1 , then $Z(R)^{2}=\{0\}$, and thus $\operatorname{Nil}(R)=Z(R)$.

We end the paper with the analog of Theorem 2.12 for rings in \mathcal{H}. Note that the $\operatorname{gr}(\Gamma(R))=\infty$ case is not possible since $\Gamma(R)$ can not be an infinite star graph.
Theorem 5.11. Let $R \in \mathcal{H}$ with $\operatorname{Nil}(R) \subsetneq Z(R)$. Then $\operatorname{gr}(\Gamma(R))=3$.
Proof. The theorem follows directly from Theorem 2.12 and Theorem 5.4(2).
As an alternate proof of the above theorem, just note that $\operatorname{Ker}(\phi)^{*}$ is an infinite complete subgraph of $\Gamma(R)$ when $R \in \mathcal{H}$ and $\operatorname{Nil}(R) \subsetneq Z(R)$ by Remark 5.8; so $\operatorname{gr}(\Gamma(R))=3$.

References

[1] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159(1993), 500-514.
[2] D. F. Anderson, On the diameter and girth of a zero-divisor graph, II, Houston J. Math., to appear.
[3] D. F. Anderson and A. Badawi, On root closure in commutative rings, Arabian J. Sci. Engrg. 26(1C)(2001), 17-30.
[4] D. F. Anderson and A. Badawi, On ϕ-Prüfer rings and ϕ-Bezout rings, Houston J. Math. 30(2004), 331-343.
[5] D. F. Anderson and A. Badawi, On ϕ-Dedekind rings and ϕ-Krull rings, Houston J. Math. 31(2005), 1007-1022.
[6] D. F. Anderson, A. Badawi, and D. E. Dobbs, Pseudo-valuation rings, II, Bollettino U. M. I. $8(3-B)(2000), 535-545$.
[7] D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring, II, Lecture Notes Pure Appl. Math., vol. 202, 61-72, Marcel Dekker, New York/Basel, 2001.
[8] D. F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras, J. Pure Appl. Algebra 180(2003), 221-241.
[9] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217(1999), 434-447.
[10] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210(2007), 543-550.
[11] M. Axtel, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33(2005), 2043-2050.
[12] M. Axtel and J. Stickles, Zero-divisor graphs of idealizations, J. Pure Appl. Algebra 204(2006), 235-243.
[13] A. Badawi, On domains which have prime deals that are linearly ordered, Comm. Algebra 23(1995), 4365-4373.
[14] A. Badawi, On divided commutative rings, Comm. Algebra 27(1999), 1465-1474.
[15] A. Badawi, On ϕ-pseudo-valuation rings, Lecture Notes Pure Appl. Math., vol. 205, 101-110, Marcel Dekker, New York/Basel, 1999.
[16] A. Badawi, On ϕ-pseudo-valuation rings, II, Houston J. Math. 26(2000), 473-480.
[17] A. Badawi, On ϕ-chained rings and ϕ-pseudo-valuation rings, Houston J. Math. 27(2001), 725-736.
[18] A. Badawi, On divided rings and ϕ-pseudo-valuation rings, Internat. J. Commutative Rings 1(2002), 51-60.
[19] A. Badawi, On nonnil-Noetherian rings, Comm. Algebra 31(2003), 1669-1677.
[20] A. Badawi, Factoring nonnil ideals into prime and invertible ideals, Bull. London Math. soc. 37(2005), 665-672.
[21] A. Badawi, D. F. Anderson, and D. E. Dobbs, Pseudo-valuation rings, Lecture Notes Pure Appl. Math., vol. 185, 57-67, Marcel Dekker, New York/Basel, 1995.
[22] A. Badawi and D. E. Dobbs, Strong ring extensions and ϕ-pseudo-valuation rings, Houston J. Math. 32(2006), 379-398.
[23] A. Badawi and T. G. Lucas, On ϕ-Mori rings, Houston J. Math. 32(2006), 1-32.
[24] I. Beck, Coloring of commutative rings, J. Algebra 116(1988), 208-226.
[25] B. Bollaboás, Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979.
[26] F. DeMeyer and K. Schneider, Automorphisms and zero-divisor graphs of commutative rings, Internat. J. Commutative Rings 1(2002), 93-106.
[27] D. E. Dobbs, Divided rings and going down, Pacific J. Math. 67(1976), 253-263.
[28] L. Fuchs and L. Salce, Modules over Valuation Domains, Marcel Dekker, New York/Basel, 1985.
[29] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domans, Pacific J. Math. 75(1978), 137-147.
[30] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York/Basel, 1988.
[31] I. Kaplansky, Commutative Rings, rev. ed., University of Chicago Press, Chicago, 1974.
[32] T. G. Lucas, The diameter of a zero-divisor graph, J. Algebra 301(2006), 174-193.
[33] S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30(2002), 3533-3558.
[34] S. P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math. 307(2007), 1155-1166.
[35] N. O. Smith, Planar zero-divisor graphs, Internat. J. Commutative Rings, 2(2003), 177-188.

