Erratum

"On the zeros and poles of Padé approximants to $e^{\text {" ", by E. B. Saff and }}$ R. S. Varga, Numer. Math. 25, 1-14 (1975).

Page 3, line 5 of Theorem 2.1: Read $\left\{R_{n,[\sigma n]}(z)\right\}_{n=1}^{\infty}$ for $\left\{R_{n}\left[\sigma^{n}\right](z)\right\}_{n=1}^{\infty}$.

Errata

"Geometric convergence to e^{-x} by rational functions with real poles" by E. B. Saff, A. Schönhage, and R. S. Varga, Numer. Math. 25, 307-322 (1976).

Page 308, Eq. (2.2). Read "O($\left.\frac{n}{2^{n}}\right)$ " for " $\mathcal{O}\left(\frac{n}{2!}\right)$ "
Page 310, first line of Eq. (3.2). Read " $\cdots \frac{p(c x)}{(1+x)^{n}}$ " for " $\ldots \frac{p(c x)}{(1+x)_{n}}$ "; second line of Eq. (3.2). Read " $\cdots e^{-c\left(\frac{1+t}{1-t}\right) \text { " }}$ for " $\cdots e_{-c}\left(\frac{1+t}{1-t}\right)$
Page 311, last line. Insert a right bracket after e^{-v}.
Page 312, line 4. Read " $\gamma_{k}=\frac{\cdots}{2^{k-1}}$ " for " $\gamma_{k}=\frac{\cdot \cdot \dot{C}}{2^{k-\frac{1}{2}}}$ "
Page 316, line 2. Raise up last "tan" in display.
Page 318, Eq. (3.41). Read " $\sum_{k=1}^{n} \frac{1}{a_{k}^{2}}$ " for " $\sum_{k=1}^{n} \frac{1}{2 a_{k}}$ ".
The same mistake appears again two lines below.

