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1. Introduction. Let f(x) be a polynomial of degree n with coefficients

in the center K of a division ring D. Herstein [l] has shown that the

number of zeros of f(x) in D is either ^ n or infinite. In this paper we

investigate the situation for polynomials whose coefficients are in D,

but not necessarily in K. Here one must distinguish between two types

of polynomials, which we call left and general.

A left polynomial is an expression of the form f(x) — a0xn + a^"'1 +

• ■•+a„, where akE:D (k = 0, • ■ - ,n). Equality of two such polynomials

is defined in the usual way. If a0 9^ 0, n is called the degree of f(x). If

c G D, we define /(c) = a0cn + Oic"_I +-h a„;  if /(c) = 0, c is called

a zero or root of /(x). In §2 we prove that the number of distinct zeros of

a left polynomial of degree n is either ^ n or infinite. This includes in

particular a new proof of Herstein's result, avoiding the use of the Cartan-

Brauer-Hua theorem.

Left polynomials can be added in the obvious way, and multiplied

according to  the   rule   (a0xmH-r-aJ(&0x"H-\-= c0xm+n-\-

+ cm+n, where c« = S»+>-*a«"^/» triey then f°rm 3 rmg DL[x]. However,

the specialization maps f(x) —»/(c) of DL[x] onto D are not homomorphisms

if c G P- To overcome this difficulty we are led to introduce general poly-

nomials. Roughly speaking, a general polynomial is a sum of terms of the

form a0xaiX • • ■ Ok^\Xak, where a0, • • • ,aA£ D. But there are certain

identifications which must be made in order to obtain the various distrib-

utive laws, and to guarantee that cx = xc for c£K; therefore we now

give a more careful description. Consider first the set S of all finite se-

quences (ao,ab ■ • - ,ah), where a;G D. It is easily seen that S forms a semi-

group under the product

(a0,au ■ ■ - .a^H&oA, • • - ,6,) = (a0,au • ■ -,ak^uat60,c\, • • •,&,).

Let R be the semigroup ring of S, and let Aik (where 0 ^ i ^ k) be the set

of all elements in R of the form (a0, • • •, a, + t\, • • •, ak) — (a0, • • •, a„ • • •, ak)

— (a0, • ■ ■ ,bit • ■ ■ ,ak). Let B* be the set of all elements of R of the form

Presented to the Society, August 25, 1964 under the title The number of zeros of a polynomial

in a division ring; received by the editors May 15, 1964.

(') Alfred P. Sloan Fellow.
(2) National Science Foundation Grant GP 2480.

218

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ZEROS OF POLYNOMIALS OVER DIVISION RINGS 219

(a0, ab • • •, ak) - (c0a0, cxah chak), where c0, • • •, c* £ if, and cücx ■■■ck=l.

We consider the quotient ring R/ a, where a is the ideal generated by

Each element (a0) constitutes a residue class mod a, and these classes form

a subring D' of R/ a which is isomorphic to D. We now identify D' with D,

and write a0 instead of (a0). Let x denote the residue class of (1,1) mod a;

then it is easily verified that

The elements of R/a of the form a0xaix ■ • ■ ak_xxak are called general mo-

nomials, and denoted by symbols M(x), M„(x), etc. If a0a1 • • • ak 9* 0,

then M(x) = a0x • • • xak is said to have degree k. Every element of R/a

can be represented as a sum £r=iAf,.(x) of general monomials. Such ele-

ments are called general polynomials, and are denoted by symbols fix),

g(x), etc. It can be shown that every f(x) £ R/a has a unique represen-

tation in the form f(x) = X,m=i Af„(x) where m is minimal. Then if /(x)

^ 0, we define its degree to be n = max, deg M„(x).

We are now justified in introducing the notation Aj[x] for the ring R/a.

There is a natural way of identifying Dz.[x] with a subset of DG[x], but

this subset is not a subring of #g[x] unless D = K, in which case öL[x]

= DG[x] = K[x]. It is, however, always possible to map Dg[x] homo-

morphically onto DL[ x] by extending the map a0xaxx ■ ■ ■ xak—> a0ax • • • akxk

to be additive.

In the construction of DL[x] and Dg[*] we used only the fact that D

was a ring with identity; hence we can define DL[xu ••■,xr] and DG[xu ---.x,.]

by induction.

If c£ D and M(x) = aüxax ■ ■ ■ xah, put M(c) = a0cai ■ ■ ■ cah; it is clear

from the definition of a that M(c) depends only on the residue class mod a

in which (a0, ■■■,ak) lies, and is therefore well-defined. If f(x) =^M„(x),

put/(c) = £M„(c); this is also well-defined. The specializations /(x) —»/(c)

are now homomorphisms of Ög[x] onto D.

An element c£ D is a zero or root of /(x) £ Da[x] if /(c) = 0. Let N(f)

be the number of distinct zeros of f(x). In §3 we study N(f) in the case

where K is infinite and [ D: K] = d < °° . We prove that if h is any integer

in the range I g h g nd, then there is a polynomial f(x) £ DG[ x] of degree

n such that N(/) = h.

2. Left polynomials. Our first two theorems are essentially due to Richard-

son [3]; however his proofs are not quite correct, as pointed out by Rohr-

bach [4].

(ao,ab ■■•,ak) = a0xa,x ■ • • ak^xak (mod a).
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Theorem 1. An element c£ D is a zero of a polynomial f{x) £ L\[x] if

and only if there exists a g(x) (E DL[x] such that f(x) = g(x)(x — c).

Proof. Let f(x) = a0x" + c^x""1 + • • • + a„. The theorem is trivial if

n = 0 or 1, so we may suppose n^2. If c is a root of /(x), let

g(x) = aox""1 + (oi + a0c)x"-2 + (o2 + axc + a0c2)x"~3

H-h (o„_, + o„_2cH-r-aoc""1).

Then a simple calculation shows that /(x) =g(x)(x — c).

Conversely, suppose that f(x) = g(x)(x — c), where g(x) = b0xn~l

+ &iXn^2 + • • • + ivj. Equating coefficients, we obtain

a0 = b0,

al = bl — b0c,

o2 = b2 — bxc,

an-i = tVi - ön-2c,

a„ = - 6„-iC.

Multiplying the equation for a, on the right by c"_1 and adding, we get /(c)

= 0. This completes the proof.

We note that the existence of a factorization f(x) = (x — c)h(x) neither

implies nor is implied by /(c) = 0.

Now let D* be the multiplicative group of nonzero elements of D. Two

elements a,bED are called conjugates if a = tbt1 for some t£E.D*. As

usual this equivalence relation partitions D into disjoint sets called con-

jugacy classes.

Theorem 2. If f(x) £ -Dz.[*] has degree n, then at most n conjugacy classes

of D contain roots of f(x).

Proof. The proof is by induction on n. It is clear that a polynomial of

degree zero has no roots, and a polynomial of degree one has exactly one

root. Hence the theorem is true for n < 2. Now suppose n 2 2, and assume

that the theorem has already been proved for polynomials of degree < n.

Suppose f(x) = a0x" + a^'1 + • • • + an has re + 1 distinct zeros c0,cu

•••,c„. By Theorem 1 we have factorizations f(x) = g,(x)(x — c,) (i = 0, •••,«).

Now assume i > 0, and set t, = c, — c0. Then x — c0 = x — c, + t,; hence

g,(x)(x - C{) = g0(x)(x - c0)

= g0(x)(x - c.) +g0(*)fi.

Thus

goM = [&(*) -go(*)](x - c,)ff1

= [gi(x) -g0(x)]t[1(x-ticltrl),
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remembering that xtf1 == tf1* in the ring Z)l[x]. Another application of

Theorem 1 now shows that i,c,l,rl is a root of g0(x) (i = 1, • ••,«). Since

degg0M < the induction hypothesis implies that two of the elements

tfiiti1 are conjugate (they may be equal). But if, say, tiC^f1 is conjugate

to t2c2t2\ then c, is conjugate to c2, completing the induction.

Theorem 3. // D is a noncommutative division ring, then the centralizer

Z(c) of any element cGfl is infinite.

Proof. We suppose Z(c) is finite, and obtain a contradiction as follows.

The center K of D is contained in Z(c), so K is a finite field; say K = GF(q).

If c G K, then Z(c) = D, which is infinite by Wedderburn's theorem.

Hence c £ X. Another application of Wedderburn's theorem shows that

Z(c) is a field, and hence Z(c) = GF(g'), where / > 1. The mapping u: a—>aq

is an automorphism of Z(c) with fixed field K. By a well-known theorem

[2, p. 162], u can be extended to an inner automorphism of D. Thus there

is an element t£D such that tat1 = aq for all a£Z(c). In particular

tct'1 = c", and by iteration, tfct'1 = cqf = c. Hence ('GZ(c), which implies

that t is of finite order. From these facts it follows easily that there are

only a finite number of distinct elements of the form ^hjc't* (Kj^K)

and that they form a subring E(ZD. The nonzero elements of E form a

finite semigroup E* C D*; hence E* is a group, and £ is a division ring.

This contradicts Wedderburn's theorem, since tc = c't ^ ct.

Theorem 4. // a polynomial /(x)Gßt[xj has two distinct zeros in a

conjugacy class of D, then it has infinitely many zeros in that class.

Proof. Suppose c and tct'x ^ c are zeros of /(x) = a0xn + • • • + a„. Con-

sider the equation

(1) fiycy-1) = a0ycny-1 + aiyc"-'y-' + ... + an = 0,

where y is the unknown. Except for the extraneous root 0, this is equivalent

to the equation

(2) a0yc" + a^c"-1 + ■■■ + any = 0.

By hypothesis y = 1 and y = t are solutions of (2). Now (2) clearly has

the following properties:

(i) If yi and y2 are solutions, so is yx + y2-

(ii) If y is a solution and zGZ(c), then yz is a solution.

Combining these properties we see that t + z is a solution of (2) for any

zEZ(c). Moreover t + z^0 since t(£Z(c). Hence t + z is a solution of

(1), and so (t + z)c(t + z)is a zero of /(x). To complete the proof we

show that the elements (t + z)c(t + z)1 are all distinct and apply The-

orem 3. Suppose that (t + 2i)c(i + z,)= (r + z2)c(t + z2) ~\ where zuz2

EZ(c). Then (t + z2) \t + zx) commutes with c, so that (r 4- z2) \t + zx)

= z3 where z3 G 2(c).  Thus t + zx= (t+ z2)z3 = te3 + z223. If «3^1, this
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implies that t = {z2z3 - 2^(1 - 23)_1, which is in Z(c) since Z(c) is a

division ring. This contradicts the fact that fct-1 ^ c. Hence z3 = 1, which

means that t + Zi = t + z2, or finally zx = z2.

Theorem 5. If f(x) £DL[x] has degree n, then the number of zeros of

fix) is either ^n or infinite.

Proof. If f{x) has more than n zeros, then two of them lie in the same

conjugacy class by Theorem 2. By Theorem 4, this class contains infinitely

many zeros of f{x).

3. General polynomials. We suppose throughout this section that [D:K]

= d < co. Elements of K are denoted by greek letters. Let I — eu ■ • • ,ed

be a basis of D over K, and let x = + • • ■ + ^ed be the generic ele-

ment of D. If f{x) is a general polynomial of degree n, we can express all

its coefficients in terms of the basis eu ■ ■ ■, ed. Then after multiplying the

factors of each monomial a0xax ■ ■ ■ xak and collecting terms, we obtain

/(*) = fitiu ■ • ii)ei + • • • + /d(£„ • • •,Qeit

where the fiikw'tii) are polynomials in K[%u ■■ . Thus the equa-

tion f{x) = 0 is equivalent to the system /,■({,, ...,£,) = 0 (i=l,---,d).

We note that each /, is either identically zero or of degree ^ n.

To avoid endless separation of cases in what follows, we make the con-

vention that 0 is a homogeneous polynomial of degree n for any n^O.

Theorem 6. // /,(£,, ••■,&) £#[£1, •••»&] (1 = 1, • • •, d) are d given

polynomials of degree ^ n, then there exists a polynomial /(x)£DG[x] of

degree Sn such that fix) = E *-»/»'*«'■

Proof. The theorem is clearly true if d = 1, i.e., D = K. Assume from

now on that d > 1, so that D is noncommutative. It suffices to show that

if the /, are all homogeneous polynomials of degree n, then there is a homo-

geneous polynomial /(x)£DG[x] of degree n with f{x) = ££.i/,ej. (The

general case then follows by forming sums.) If n = 0 the result is obvious.

If n = 1, we have /,(£i, •••,&) = Z1-iaüii with a^K. Thus the /, define

a linear transformation of D, considered as a vector space over K, into

itself. It is our object to show that this transformation is of the form

x—>f{x) for some homogeneous polynomial /(x)£DG[x] of degree one.

Such polynomials have the form f{x) =Za.x0» where a„b, £ D. From

this it is trivial to verify that the corresponding transformations x —> fix)

form a ring R. We now show that R is doubly transitive. Let a and b be

two elements of D which are linearly independent over K, and let c, d be

any two elements of D. Then a6 ^ 0, and ab~l(£K. Hence there is an

element r£ D such that s = rab~l - ab~lr ^ 0. Then i = 6a"'r~l - r"'6a_1

?*0. The polynomial

g(x) = {rxb~l - xb-lr)s-lc + (xfl-'r"1 - r^xa^'d
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satisfies g{a) = c and g(b) = d, proving that R is doubly transitive. By a

theorem of Jacobson [2, p. 32], R is the ring of all linear transformations

of D; thus there is an f(x) EDG[x] such that f(x) = XXi/;e<-

To deal with the case n > 1 we consider the ring DG[ xb • • •, x„] of general

polynomials in n indeterminates. A polynomial p(xi, • ■ - ,x„) E DG[xu • • - ,xn]

is called a multilinear form if it is homogeneous and linear in each indeter-

minate xk. Putting X* = £?=i£'(*)e» and expressing the coefficients of / in

terms of the basis e\, •••,ei, we find that

i = l

where the p, are polynomials in K[$\ • £i"']. Moreover p is multilinear

if and only if all the p, are multilinear (i.e., linear in each set of indeter-

minates • • •,$*). We assert that given any d multilinear forms p,

E K[ti\ ■■ -,^n)], there exists a multilinear form pEDG[xu •••,*„] such

that p = £/,e,.  For let

ftttP, •••,#•) eXtä*, ...,if] (* = l,...,n)
be given linear forms. By what we have already shown there exist poly-

nomials hk(xk) E Da[ xk] (k = l, •••,«) such that Aifo) = ^e,-, and A*(xt)

= gAei for A>1. Then (recalling that ex = 1) we have A^x^ • • • A„(x„)

= £j • • • £ne.. The terms of the given polynomial p, are of the form gx • ■ ■ gn,

so pi is a sum of such polynomials. Hence p,e, is the sum of the correspond-

ing polynomials A^Xj) • • • A„(x„) E DG[xx, • • •, x„]. Applying this fact for

each i = 1, • •-,d and summing over i we obtain a multilinear form

p(*i, • ••,xB) EDel*i» •••»*»] such that p = Xp.«,-
Now suppose that

/K&,-",€deX[ti,"-,fc]     0 = 1, •••,<*)

are d given homogeneous polynomials of degree n. By "polarization" we con-

struct multilinear polynomials Pi(k(i\ E K^i11, • • •, fin)] such that

Pi reduces to /, under the substitution = • • • = ^ = £u ■ • = • • •

= liB> = I* By what we have shown, there is a polynomial p(xb •••,x„)

EDG[xu •••,x„]such that p = £p,e,. Then /(x) = p(x, • • -,x) E DG[x]

satisfies f=Zf'e» completing the proof.

Theorem 7. Let K be any infinite field, and let \ nu n2, • ■ ■, nd ( be any set

of positive integers. Suppose 1 ^ A ̂  nxn2 •■■nd. Then there exist d poly-

nomials /,-($!, • ■ •,Q E K[$x, •••,&] (i = 1, ■ • •.d) such that deg/, = nit and

such that the system /i(ii. •••>&) =0 (i = l,---,d) has exactly A solutions.

The same conclusion holds for A = 0, provided that d > 1.

Proof. It is convenient to prove a stronger statement, namely that the

/, can be chosen so that /, is a product of n, linear polynomials, and such

that if Pi is any linear factor of /, (i = 1, •• -,d), then pu ■ ■ -,pd are linearly
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independent over K. Consider first the case d = 1, and write nt = n,

£1 = £• We have 0 5j ft g, n. Since if is infinite, there exist ft distinct ele-

ments a,, ■ •■,al6K The polynomial/^) = (£ - ai)n~',+1(£ - «2) •••(£-<*,,)

clearly does what is required.

Assume next that d > 1, and that nx = n2 = ■ • • = nd = 1. Then 0 g ft

gl. If ft = 1, set fi = for all i. If ft = 0 put /, = fc, /2 = £1 4- 1, and
/, = £, for all i > 2. (Note that these polynomials are linearly independent

over K.) The proof now proceeds by induction on d, and for fixed d by

induction on s = £i-in>- Assume then that s > d, and that the theorem

is true for all sets | mu ■ ■ -,mc), wherec < d, and also for all sets [mu ■ ■ ■, md j,

where E?=i mi < s- Suppose without loss of generality that n-i > 1. Then

the induction hypothesis can be applied to the set \nx—\,n2, ■ • • ,nd\.

Thus for any ft in the range 0 ^ ft ^ («! — l)re2 • • • «<* we can find poly-

nomials g,(£i, • • -,id) (i = l,---,d) of the special type described above,

such that deggj = 1*1 — 1, degg, = ft, for i > 1, and such that the system

g;(£i, • • •,Q = 0 has exactly ft solutions. Let p(^, •••,&) be one of the

linear factors of gi(£1; ■ • •, &). Then set fx = pgx and /, = g, for i > 1. Clearly

the polynomials / have the desired property.

We may therefore suppose that (rii — l)n2 • • ■ nd < ft ^ nxn2 ■■■ nd. Write

ft = (m — l)n2 • ■ ■ nd+ k,   where   1 g k g n2 • By   induction there

exist polynomials g,€E P[£2, • • •>&] (i = 2, •••,<*) of our special type such

that deggi = n„ and such that the system g,-(£2» •■•>&) = 0 (t = 2,---,d)

has exactly k solutions. Let the decomposition of g, into linear factors be

g, = pP • • • P,w (i = 2, • • -,d). Set /, = n*_, + PP) 0' = 2, • • •, d),
where the ay are elements in K which will be specified later. Put

/i = {ili(ftfi + pP),

where the ßj are elements of K to be specified later, and the p^ are linear

polynomials in £2, • • •, to be determined. There is no nontrivial relation

of the form

Xl{l + A2(«2r£i + P2r)) + • • • + Math + pf = 0.

For setting £1 = 0 we see that X2 = • • • = \d = 0 by the independence of

pt\ • • -,pf- Hence Xi = 0. Now choose the polynomials pf (j > 1) so that

p\J\P2r\ •• -,Pd are linearly independent for all choices of j,r, This

can be done since the set V of linear polynomials in £2, • • •, i,d is a d-dimen-

sional vector space over the infinite field K, and we need merely avoid a

finite number of (d - 1)-dimensional subspaces of V in choosing the p^.

Then it is clear that ß&i + pf, ^£1 + p2\■ • •,<*d/£i + Pd are linearly in-

dependent. Furthermore the d X (d — 1) matrix formed by the coeffi-

cients of £2, ...,&( in the polynomials Pi\p2h-•• .pi" has rank d- 1. Hence
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by avoiding a finite number of proper subspaces in the space W of vectors

whose coordinates are the ßj and alJt we can choose the <*'s and ß's so that

the matrix formed by the coefficients of £1, ■ ■, %d in the polynomials ßfa

+ Pi0, «2r£i + Pi\ • • •, ocdth + Pd is nonsingular for all choices of j>l,

r,...,t. Then the system + pr° = «a-fi + p2r) = ■ • • = a&h + pf = 0

has a unique solution for each j > 1, r,... , f. By avoiding a further finite

set of subspaces of W, we can insure that no d + 1 of these equations have

a common solution, so that the solutions corresponding to different choices

of j, r,..., t are distinct.

Now consider the system • ■ = 0 (i = 1, •• •,<!). For this to be

satisfied, some linear factor of each /, must vanish. If ft = 0, then the

system reduces to g,(£2, • • •, £<f) = 0 (i = 2,..., d). This has k solutions by

the construction of the gi. If £i ^ 0, we get exactly one solution for every

choice of a linear factor from each of the polynomials f\,...,/«(. There are

(tii — \)n2... nd such choices, and therefore the total number of solutions

is k + («i — l)rc2-.. nd = h. This completes the proof.

Theorem 8. Let D be a noncommutative division ring with [D:K] = d

< oo. Suppose n ^ 1, and let h be an integer satisfying 0 ^ h ^ nd. Then

there is a polynomial f(x) G DG[x] of degree n with N(f) = h.

Proof. By Theorem 7 with nx = ... = nd = n, we can find d polynomials

ftii, K[ix,..., &,] of degree n such that the system ffa, ...,&) = 0

(i — 1,...,d) has exactly h solutions. By Theorem 6 there is a polynomial

f(x) £ Da[ x] of degree gn such that f(x) =Zd-ifie-- Clearly deg/=n,

and N(f) = A.
The question of what values > nd, if any, can be assumed by N{f) for

polynomials f(x) (EDa[x] of degree n, is extremely deep, and depends on

the arithmetic nature of K. By Bezout's theorem we know that if nd

<N(f) < oo , then the system • • •, £<*) =0 has infinitely many solu-

tions in the algebraic closure K. But of course K ^ K, since there are no

division rings of finite dimension d > 1 over an algebraically closed field.

Thus we gain little information about the zeros of the system // = 0 in K.

For example, let K = Q(V — 3), where Q is the rational field. Let D

be a division ring with center K such that [ D: K\ = 4. Then the poly-

nomial

fix) = (|3 - fDc +       - 3f2 - 3fc - l)e2 + (d - l)e3

has degree 2, but has exactly 18 zeros in D. To see this, we consider the

system

d-i.
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Eliminating £3 from the first two equations we obtain

By Fermat's last theorem for cubes, the only solutions in Q(y/ — 3) are

such that £2 = 0 or £i + 1 = 0 or £i = 0. There are nine such solutions.

Once £i,£2 are known, £3 is uniquely determined, and £4 = ± 1. Hence our

system has precisely eighteen solutions in K, as asserted. On the other

hand, nd = 24 = 16.
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