ON THE ZEROS OF POLYNOMIALS OVER DIVISION RINGS

BY
B. GORDON $\left({ }^{1}\right)$ AND T. S. MOTZKIN $\left({ }^{2}\right)$

1. Introduction. Let $f(x)$ be a polynomial of degree n with coefficients in the center K of a division ring D. Herstein [1] has shown that the number of zeros of $f(x)$ in D is either $\leqq n$ or infinite. In this paper we investigate the situation for polynomials whose coefficients are in D, but not necessarily in K. Here one must distinguish between two types of polynomials, which we call left and general.

A left polynomial is an expression of the form $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+$ $\cdots+a_{n}$, where $a_{k} \in D(k=0, \cdots, n)$. Equality of two such polynomials is defined in the usual way. If $a_{0} \neq 0, n$ is called the degree of $f(x)$. If $c \in D$, we define $f(c)=a_{0} c^{n}+a_{1} c^{n-1}+\cdots+a_{n}$; if $f(c)=0, c$ is called a zero or root of $f(x)$. In $\S 2$ we prove that the number of distinct zeros of a left polynomial of degree n is either $\leqq n$ or infinite. This includes in particular a new proof of Herstein's result, avoiding the use of the Cartan-Brauer-Hua theorem.

Left polynomials can be added in the obvious way, and multiplied according to the rule $\left(a_{0} x^{m}+\cdots+a_{m}\right)\left(b_{0} x^{n}+\cdots+b_{n}\right)=c_{0} x^{m+n}+\cdots$ $+c_{m+n}$, where $c_{k}=\sum_{i+j=k} a_{i} b_{j}$; they then form a ring $D_{L}[x]$. However, the specialization maps $f(x) \rightarrow f(c)$ of $D_{L}[x]$ onto D are not homomorphisms if $c \notin K$. To overcome this difficulty we are led to introduce general polynomials. Roughly speaking, a general polynomial is a sum of terms of the form $a_{0} x a_{1} x \cdots a_{k-1} x a_{k}$, where $a_{0}, \cdots, a_{k} \in D$. But there are certain identifications which must be made in order to obtain the various distributive laws, and to guarantee that $c x=x c$ for $c \in K$; therefore we now give a more careful description. Consider first the set S of all finite sequences ($a_{0}, a_{1}, \cdots, a_{k}$), where $a_{i} \in D$. It is easily seen that S forms a semigroup under the product

$$
\left(a_{0}, a_{1}, \cdots, a_{k}\right)\left(b_{0}, b_{1}, \cdots, b_{l}\right)=\left(a_{0}, a_{1}, \cdots, a_{k-1}, a_{k} b_{0}, b_{1}, \cdots, b_{l}\right) .
$$

Let R be the semigroup ring of S, and let $A_{i k}$ (where $0 \leqq i \leqq k$) be the set of all elements in R of the form $\left(a_{0}, \cdots, a_{i}+b_{i}, \cdots, a_{k}\right)-\left(a_{0}, \cdots, a_{i}, \cdots, a_{k}\right)$ $-\left(a_{0}, \cdots, b_{i}, \cdots, a_{k}\right)$. Let B_{k} be the set of all elements of R of the form

[^0]$\left(a_{0}, a_{1}, \cdots, a_{k}\right)-\left(c_{0} a_{0}, c_{1} a_{1}, \cdots, c_{k} a_{k}\right)$, where $c_{0}, \cdots, c_{k} \in K$, and $c_{0} c_{1} \cdots c_{k}=1$. We consider the quotient ring R / \mathfrak{a}, where \mathfrak{a} is the ideal generated by
$$
\bigcup_{k=0}^{\infty}\left(\bigcup_{i=0}^{k} A_{i k} \cup B_{k}\right)
$$

Each element $\left(a_{0}\right)$ constitutes a residue class $\bmod \mathfrak{a}$, and these classes form a subring D^{\prime} of $R /$ a which is isomorphic to D. We now identify D^{\prime} with D, and write a_{0} instead of $\left(a_{0}\right)$. Let x denote the residue class of $(1,1) \operatorname{moda}$; then it is easily verified that

$$
\left(a_{0}, a_{1}, \cdots, a_{k}\right) \equiv a_{0} x a_{1} x \cdots a_{k-1} x a_{k} \quad(\bmod a)
$$

The elements of R / a of the form $a_{0} x a_{1} x \ldots a_{k-1} x a_{k}$ are called general monomials, and denoted by symbols $M(x), M_{v}(x)$, etc. If $a_{0} a_{1} \ldots a_{k} \neq 0$, then $M(x)=a_{0} x \cdots x a_{k}$ is said to have degree k. Every element of R / a can be represented as a sum $\sum_{\nu=1}^{m} M_{\nu}(x)$ of general monomials. Such elements are called general polynomials, and are denoted by symbols $f(x)$, $g(x)$, etc. It can be shown that every $f(x) \in R / a$ has a unique representation in the form $f(x)=\sum_{v=1}^{m} M_{v}(x)$ where m is minimal. Then if $f(x)$ $\neq 0$, we define its degree to be $n=\max _{\nu} \operatorname{deg} M_{\nu}(x)$.

We are now justified in introducing the notation $D_{G}[x]$ for the ring R / a. There is a natural way of identifying $D_{L}[x]$ with a subset of $D_{G}[x]$, but this subset is not a subring of $D_{G}[x]$ unless $D=K$, in which case $D_{L}[x]$ $=D_{G}[x]=K[x]$. It is, however, always possible to map $D_{G}[x]$ homomorphically onto $D_{L}[x]$ by extending the map $a_{0} x a_{1} x \cdots x a_{k} \rightarrow a_{0} a_{1} \cdots a_{k} x^{k}$ to be additive.

In the construction of $D_{L}[x]$ and $D_{G}[x]$ we used only the fact that D was a ring with identity; hence we can define $D_{L}\left[x_{1}, \cdots, x_{r}\right]$ and $D_{G}\left[x_{1}, \cdots, x_{r}\right]$ by induction.

If $c \in D$ and $M(x)=a_{0} x a_{1} \ldots x a_{k}$, put $M(c)=a_{0} c a_{1} \cdots c a_{k}$; it is clear from the definition of a that $M(c)$ depends only on the residue class moda in which $\left(a_{0}, \cdots, a_{k}\right)$ lies, and is therefore well-defined. If $f(x)=\sum M_{\nu}(x)$, put $f(c)=\sum M_{\nu}(c)$; this is also well-defined. The specializations $f(x) \rightarrow f(c)$ are now homomorphisms of $D_{G}[x]$ onto D.

An element $c \in D$ is a zero or root of $f(x) \in D_{G}[x]$ if $f(c)=0$. Let $N(f)$ be the number of distinct zeros of $f(x)$. In $\S 3$ we study $N(f)$ in the case where K is infinite and $[D: K]=d<\infty$. We prove that if h is any integer in the range $1 \leqq h \leqq n^{d}$, then there is a polynomial $f(x) \in D_{G}[x]$ of degree n such that $N(f)=h$.
2. Left polynomials. Our first two theorems are essentially due to Richardson [3]; however his proofs are not quite correct, as pointed out by Rohrbach [4].

Theorem 1. An element $c \in D$ is a zero of a polynomial $f(x) \in D_{L}[x]$ if and only if there exists a $g(x) \in D_{L}[x]$ such that $f(x)=g(x)(x-c)$.
Proof. Let $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$. The theorem is trivial if $n=0$ or 1 , so we may suppose $n \geqq 2$. If c is a root of $f(x)$, let

$$
\begin{aligned}
g(x)=a_{0} x^{n-1}+\left(a_{1}+a_{0} c\right) x^{n-2} & +\left(a_{2}+a_{1} c+a_{0} c^{2}\right) x^{n-3} \\
& +\cdots+\left(a_{n-1}+a_{n-2} c+\cdots+a_{0} c^{n-1}\right)
\end{aligned}
$$

Then a simple calculation shows that $f(x)=g(x)(x-c)$.
Conversely, suppose that $f(x)=g(x)(x-c)$, where $g(x)=b_{0} x^{n-1}$ $+b_{1} x^{n-2}+\cdots+b_{n-1}$. Equating coefficients, we obtain

$$
\begin{aligned}
a_{0} & =b_{0}, \\
a_{1} & =b_{1}-b_{0} c, \\
a_{2} & =b_{2}-b_{1} c, \\
\vdots & \\
a_{n-1} & =b_{n-1}-b_{n-2} c, \\
a_{n} & =-b_{n-1} c .
\end{aligned}
$$

Multiplying the equation for a_{i} on the right by c^{n-i} and adding, we get $f(c)$ $=0$. This completes the proof.

We note that the existence of a factorization $f(x)=(x-c) h(x)$ neither implies nor is implied by $f(c)=0$.

Now let D^{*} be the multiplicative group of nonzero elements of D. Two elements $a, b \in D$ are called conjugates if $a=t b t^{-1}$ for some $t \in D^{*}$. As usual this equivalence relation partitions D into disjoint sets called conjugacy classes.

Theorem 2. If $f(x) \in D_{L}[x]$ has degree n, then at most n conjugacy classes of D contain roots of $f(x)$.

Proof. The proof is by induction on n. It is clear that a polynomial of degree zero has no roots, and a polynomial of degree one has exactly one root. Hence the theorem is true for $n<2$. Now suppose $n \geqq 2$, and assume that the theorem has already been proved for polynomials of degree $<n$. Suppose $f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ has $n+1$ distinct zeros c_{0}, c_{1}, \cdots, c_{n}. By Theorem 1 we have factorizations $f(x)=g_{i}(x)\left(x-c_{i}\right)(i=0, \cdots, n)$. Now assume $i>0$, and set $t_{i}=c_{i}-c_{0}$. Then $x-c_{0}=x-c_{i}+t_{i}$; hence

$$
\begin{aligned}
g_{i}(x)\left(x-c_{i}\right) & =g_{0}(x)\left(x-c_{0}\right) \\
& =g_{0}(x)\left(x-c_{i}\right)+g_{0}(x) t_{i}
\end{aligned}
$$

Thus

$$
\begin{aligned}
g_{0}(x) & =\left[g_{i}(x)-g_{0}(x)\right]\left(x-c_{i}\right) t_{i}^{-1} \\
& =\left[g_{i}(x)-g_{0}(x)\right] t_{i}^{-1}\left(x-t_{i} c_{i} t_{i}^{-1}\right),
\end{aligned}
$$

remembering that $x t_{i}^{-1}=t_{i}^{-1} x$ in the ring $D_{L}[x]$. Another application of Theorem 1 now shows that $t_{i} c_{i} t_{i}^{-1}$ is a root of $g_{0}(x)(i=1, \cdots, n)$. Since $\operatorname{deg} g_{0}(x)<n$, the induction hypothesis implies that two of the elements $t_{i} c_{i} t_{i}^{-1}$ are conjugate (they may be equal). But if, say, $t_{1} c_{1} t_{1}^{-1}$ is conjugate to $t_{2} c_{2} t_{2}^{-1}$, then c_{1} is conjugate to c_{2}, completing the induction.

Theorem 3. If D is a noncommutative division ring, then the centralizer $Z(c)$ of any element $c \in D$ is infinite.

Proof. We suppose $Z(c)$ is finite, and obtain a contradiction as follows. The center K of D is contained in $Z(c)$, so K is a finite field; say $K=\operatorname{GF}(q)$. If $c \in K$, then $Z(c)=D$, which is infinite by Wedderburn's theorem. Hence $c \notin K$. Another application of Wedderburn's theorem shows that $Z(c)$ is a field, and hence $Z(c)=\mathrm{GF}\left(q^{f}\right)$, where $f>1$. The mapping $\mu: a \rightarrow a^{q}$ is an automorphism of $Z(c)$ with fixed field K. By a well-known theorem [2, p. 162], μ can be extended to an inner automorphism of D. Thus there is an element $t \in D$ such that $\operatorname{tat}^{-1}=a^{q}$ for all $a \in Z(c)$. In particular $t c t^{-1}=c^{q}$, and by iteration, $t^{\prime} c t^{-f}=c^{q^{f}}=c$. Hence $t^{f} \in Z(c)$, which implies that t is of finite order. From these facts it follows easily that there are only a finite number of distinct elements of the form $\sum \lambda_{i, j} c^{i} t^{j} \quad\left(\lambda_{i, j} \in K\right)$ and that they form a subring $E \subset D$. The nonzero elements of E form a finite semigroup $E^{*} \subset D^{*}$; hence E^{*} is a group, and E is a division ring. This contradicts Wedderburn's theorem, since $t c=c^{q} t \neq c t$.

Theorem 4. If a polynomial $f(x) \in D_{L}[x]$ has two distinct zeros in a conjugacy class of D, then it has infinitely many zeros in that class.

Proof. Suppose c and $t c t^{-1} \neq c$ are zeros of $f(x)=a_{0} x^{n}+\cdots+a_{n}$. Consider the equation

$$
\begin{equation*}
f\left(y c y^{-1}\right)=a_{0} y c^{n} y^{-1}+a_{1} y c^{n-1} y^{-1}+\cdots+a_{n}=0 \tag{1}
\end{equation*}
$$

where y is the unknown. Except for the extraneous root 0 , this is equivalent to the equation

$$
\begin{equation*}
a_{0} y c^{n}+a_{1} y c^{n-1}+\cdots+a_{n} y=0 \tag{2}
\end{equation*}
$$

By hypothesis $y=1$ and $y=t$ are solutions of (2). Now (2) clearly has the following properties:
(i) If y_{1} and y_{2} are solutions, so is $y_{1}+y_{2}$.
(ii) If y is a solution and $z \in Z(c)$, then $y z$ is a solution.

Combining these properties we see that $t+z$ is a solution of (2) for any $z \in Z(c)$. Moreover $t+z \neq 0$ since $t \notin Z(c)$. Hence $t+z$ is a solution of (1), and so $(t+z) c(t+z)^{-1}$ is a zero of $f(x)$. To complete the proof we show that the elements $(t+z) c(t+z)^{-1}$ are all distinct and apply Theorem 3. Suppose that $\left(t+z_{1}\right) c\left(t+z_{1}\right)^{-1}=\left(t+z_{2}\right) c\left(t+z_{2}\right)^{-1}$, where z_{1}, z_{2} $\in Z(c)$. Then $\left(t+z_{2}\right)^{-1}\left(t+z_{1}\right)$ commutes with c, so that $\left(t+z_{2}\right)^{-1}\left(t+z_{1}\right)$ $=z_{3}$ where $z_{3} \in Z(c)$. Thus $t+z_{1}=\left(t+z_{2}\right) z_{3}=t z_{3}+z_{2} z_{3}$. If $z_{3} \neq 1$, this
implies that $t=\left(z_{2} z_{3}-z_{1}\right)\left(1-z_{3}\right)^{-1}$, which is in $Z(c)$ since $Z(c)$ is a division ring. This contradicts the fact that $t c t^{-1} \neq c$. Hence $z_{3}=1$, which means that $t+z_{1}=t+z_{2}$, or finally $z_{1}=z_{2}$.

Theorem 5. If $f(x) \in D_{L}[x]$ has degree n, then the number of zeros of $f(x)$ is either $\leqq n$ or infinite.

Proof. If $f(x)$ has more than n zeros, then two of them lie in the same conjugacy class by Theorem 2. By Theorem 4, this class contains infinitely many zeros of $f(x)$.
3. General polynomials. We suppose throughout this section that [$D: K$] $=d<\infty$. Elements of K are denoted by greek letters. Let $1=e_{1}, \cdots, e_{d}$ be a basis of D over K, and let $x=\xi_{1} e_{1}+\cdots+\xi_{d} e_{d}$ be the generic element of D. If $f(x)$ is a general polynomial of degree n, we can express all its coefficients in terms of the basis e_{1}, \cdots, e_{d}. Then after multiplying the factors of each monomial $a_{0} x a_{1} \cdots x a_{k}$ and collecting terms, we obtain

$$
f(x)=f_{1}\left(\xi_{1}, \cdots, \xi_{d}\right) e_{1}+\cdots+f_{d}\left(\xi_{1}, \cdots, \xi_{d}\right) e_{d}
$$

where the $f_{i}\left(\xi_{1}, \cdots, \xi_{d}\right)$ are polynomials in $K\left[\xi_{1}, \cdots, \xi_{d}\right]$. Thus the equation $f(x)=0$ is equivalent to the system $f_{i}\left(\xi_{1}, \cdots, \xi_{d}\right)=0 \quad(i=1, \cdots, d)$. We note that each f_{i} is either identically zero or of degree $\leqq n$.

To avoid endless separation of cases in what follows, we make the convention that 0 is a homogeneous polynomial of degree n for any $n \geqq 0$.

Theorem 6. If $f_{i}\left(\xi_{1}, \cdots, \xi_{d}\right) \in K\left[\xi_{1}, \cdots, \xi_{d}\right] \quad(i=1, \cdots, d)$ are d given polynomials of degree $\leqq n$, then there exists a polynomial $f(x) \in D_{G}[x]$ of degree $\leqq n$ such that $f(x)=\sum_{i=1}^{d} f_{i} e_{i}$.
Proof. The theorem is clearly true if $d=1$, i.e., $D=K$. Assume from now on that $d>1$, so that D is noncommutative. It suffices to show that if the f_{i} are all homogeneous polynomials of degree n, then there is a homogeneous polynomial $f(x) \in D_{G}[x]$ of degree n with $f(x)=\sum_{i=1}^{d} f_{i} e_{i}$. (The general case then follows by forming sums.) If $n=0$ the result is obvious. If $n=1$, we have $f_{i}\left(\xi_{1}, \cdots, \xi_{d}\right)=\sum_{j=1}^{d} \alpha_{i j} \xi_{j}$ with $\alpha_{i j} \in K$. Thus the f_{i} define a linear transformation of D, considered as a vector space over K, into itself. It is our object to show that this transformation is of the form $x \rightarrow f(x)$ for some homogeneous polynomial $f(x) \in D_{G}[x]$ of degree one. Such polynomials have the form $f(x)=\sum a_{\nu} x b_{\nu}$, where $a_{\nu}, b_{\nu} \in D$. From this it is trivial to verify that the corresponding transformations $x \rightarrow f(x)$ form a ring R. We now show that R is doubly transitive. Let a and b be two elements of D which are linearly independent over K, and let c, d be any two elements of D. Then $a b \neq 0$, and $a b^{-1} \notin K$. Hence there is an element $r \in D$ such that $s=r a b^{-1}-a b^{-1} r \neq 0$. Then $t=b a^{-1} r^{-1}-r^{-1} b a^{-1}$ $\neq 0$. The polynomial

$$
g(x)=\left(r x b^{-1}-x b^{-1} r\right) s^{-1} c+\left(x a^{-1} r^{-1}-r^{-1} x a^{-1}\right) t^{-1} d
$$

satisfies $g(a)=c$ and $g(b)=d$, proving that R is doubly transitive. By a theorem of Jacobson [2, p. 32], R is the ring of all linear transformations of D; thus there is an $f(x) \in D_{G}[x]$ such that $f(x)=\sum_{i=1}^{d} f_{i} e_{i}$.

To deal with the case $n>1$ we consider the ring $D_{G}\left[x_{1}, \cdots, x_{n}\right]$ of general polynomials in n indeterminates. A polynomial $p\left(x_{1}, \cdots, x_{n}\right) \in D_{G}\left[x_{1}, \cdots, x_{n}\right]$ is called a multilinear form if it is homogeneous and linear in each indeterminate x_{k}. Putting $x_{k}=\sum_{i=1}^{d} \xi_{i}^{(k)} e_{i}$, and expressing the coefficients of f in terms of the basis e_{1}, \cdots, e_{d}, we find that

$$
p\left(x_{1}, \cdots, x_{n}\right)=\sum_{i=1}^{d} p_{i}\left(\xi_{1}^{(1)}, \cdots, \xi_{d}^{(n)}\right) e_{i},
$$

where the p_{i} are polynomials in $K\left[\xi_{1}^{(1)}, \cdots, \xi_{d}^{(n)}\right]$. Moreover p is multilinear if and only if all the p_{i} are multilinear (i.e., linear in each set of indeterminates $\left.\xi_{1}^{(k)}, \cdots, \xi_{d}^{(k)}\right)$. We assert that given any d multilinear forms p_{i} $\in K\left[\xi_{1}^{(1)}, \cdots, \xi_{d}^{(n)}\right]$, there exists a multilinear form $p \in D_{G}\left[x_{1}, \cdots, x_{n}\right]$ such that $p=\sum f_{i} e_{i}$. For let

$$
g_{k}\left(\xi_{1}^{(k)}, \cdots, \xi_{d}^{(k)}\right) \in K\left[\xi_{1}^{(k)}, \cdots, \xi_{d}^{(k)}\right] \quad(k=1, \cdots, n)
$$

be given linear forms. By what we have already shown there exist polynomials $h_{k}\left(x_{k}\right) \in D_{G}\left[x_{k}\right] \quad(k=1, \cdots, n)$ such that $h_{1}\left(x_{1}\right)=g_{1} e_{i}$, and $h_{k}\left(x_{k}\right)$ $=g_{k} e_{1}$ for $k>1$. Then (recalling that $e_{1}=1$) we have $h_{1}\left(x_{1}\right) \cdots h_{n}\left(x_{n}\right)$ $=g_{1} \ldots g_{n} e_{i}$. The terms of the given polynomial p_{i} are of the form $g_{1} \ldots g_{n}$, so p_{i} is a sum of such polynomials. Hence $p_{i} e_{i}$ is the sum of the corresponding polynomials $h_{1}\left(x_{1}\right) \cdots h_{n}\left(x_{n}\right) \in D_{G}\left[x_{1}, \cdots, x_{n}\right]$. Applying this fact for each $i=1, \cdots, d$ and summing over i we obtain a multilinear form $p\left(x_{1}, \cdots, x_{n}\right) \in D_{G}\left[x_{1}, \cdots, x_{n}\right]$ such that $p=\sum p_{i} e_{i}$.

Now suppose that

$$
f_{i}\left(\xi_{1}, \cdots, \xi_{d}\right) \in K\left[\xi_{1}, \cdots, \xi_{d}\right] \quad(i=1, \cdots, d)
$$

are d given homogeneous polynomials of degree n. By "polarization" we construct multilinear polynomials $p_{i}\left(\xi_{1}^{(1)}, \cdots, \xi_{d}^{(n)}\right) \in K\left[\xi_{1}^{(1)}, \cdots, \xi_{d}^{(n)}\right]$ such that p_{i} reduces to f_{i} under the substitution $\xi_{1}^{(1)}=\cdots=\xi_{1}^{(n)}=\xi_{1}, \cdots, \xi_{d}^{(1)}=\cdots$ $=\xi_{d}^{(n)}=\xi_{d}$. By what we have shown, there is a polynomial $p\left(x_{1}, \cdots, x_{n}\right)$ $\in D_{G}\left[x_{1}, \cdots, x_{n}\right]$ such that $p=\sum p_{i} e_{i}$. Then $f(x)=p(x, \cdots, x) \in D_{G}[x]$ satisfies $f=\sum f_{i} e_{i}$, completing the proof.

Theorem 7. Let K be any infinite field, and let $\left\{n_{1}, n_{2}, \cdots, n_{d}\right\}$ be any set of positive integers. Suppose $1 \leqq h \leqq n_{1} n_{2} \cdots n_{d}$. Then there exist d polynomials $f_{i}\left(\xi_{1}, \cdots, \xi_{d}\right) \in K\left[\xi_{1}, \cdots, \xi_{d}\right] \quad(i=1, \cdots, d)$ such that $\operatorname{deg} f_{i}=n_{i}$, and such that the system $f_{i}\left(\xi_{1}, \cdots, \xi_{d}\right)=0(i=1, \cdots, d)$ has exactly h solutions. The same conclusion holds for $h=0$, provided that $d>1$.

Proof. It is convenient to prove a stronger statement, namely that the f_{i} can be chosen so that f_{i} is a product of n_{i} linear polynomials, and such that if p_{i} is any linear factor of $f_{i}(i=1, \cdots, d)$, then p_{1}, \cdots, p_{d} are linearly
independent over K. Consider first the case $d=1$, and write $n_{1}=n$, $\xi_{1}=\xi$. We have $0 \leqq h \leqq n$. Since K is infinite, there exist h distinct elements $\alpha_{1}, \cdots, \alpha_{h} \in K$. The polynomial $f(\xi)=\left(\xi-\alpha_{1}\right)^{n-h+1}\left(\xi-\alpha_{2}\right) \cdots\left(\xi-\alpha_{h}\right)$ clearly does what is required.

Assume next that $d>1$, and that $n_{1}=n_{2}=\cdots=n_{d}=1$. Then $0 \leqq h$ $\leqq 1$. If $h=1$, set $f_{i}=\xi_{i}$, for all i. If $h=0$ put $f_{1}=\xi_{1}, f_{2}=\xi_{1}+1$, and $f_{i}=\xi_{i}$ for all $i>2$. (Note that these polynomials are linearly independent over K.) The proof now proceeds by induction on d, and for fixed d by induction on $s=\sum_{i=1}^{d} n_{i}$. Assume then that $s>d$, and that the theorem is true for all sets $\left\{m_{1}, \cdots, m_{c}\right\}$, where $c<d$, and also for all sets $\left\{m_{1}, \cdots, m_{d}\right\}$, where $\sum_{i=1}^{d} m_{i}<s$. Suppose without loss of generality that $n_{1}>1$. Then the induction hypothesis can be applied to the set $\left\{n_{1}-1, n_{2}, \cdots, n_{d}\right\}$. Thus for any h in the range $0 \leqq h \leqq\left(n_{1}-1\right) n_{2} \cdots n_{d}$ we can find polynomials $g_{i}\left(\xi_{1}, \cdots, \xi_{d}\right) \quad(i=1, \cdots, d)$ of the special type described above, such that $\operatorname{deg} g_{1}=n_{1}-1, \operatorname{deg} g_{i}=n_{i}$ for $i>1$, and such that the system $g_{i}\left(\xi_{1}, \cdots, \xi_{d}\right)=0$ has exactly h solutions. Let $p\left(\xi_{1}, \cdots, \xi_{d}\right)$ be one of the linear factors of $g_{1}\left(\xi_{1}, \cdots, \xi_{d}\right)$. Then set $f_{1}=p g_{1}$ and $f_{i}=g_{i}$ for $i>1$. Clearly the polynomials f_{i} have the desired property.

We may therefore suppose that $\left(n_{1}-1\right) n_{2} \cdots n_{d}<h \leqq n_{1} n_{2} \cdots n_{d}$. Write $h=\left(n_{1}-1\right) n_{2} \cdots n_{d}+k$, where $1 \leqq k \leqq n_{2} \cdots n_{d}$. By induction there exist polynomials $g_{i} \in K\left[\xi_{2}, \cdots, \xi_{d}\right](i=2, \cdots, d)$ of our special type such that $\operatorname{deg} g_{i}=n_{i}$, and such that the system $g_{i}\left(\xi_{2}, \cdots, \xi_{d}\right)=0(i=2, \cdots, d)$ has exactly k solutions. Let the decomposition of g_{i} into linear factors be $g_{i}=p_{i}^{(1)} \cdots p_{i}^{\left(n_{i}\right)}(i=2, \cdots, d)$. Set $f_{i}=\prod_{j=1}^{n_{i}}\left(\alpha_{i j} \xi_{1}+p_{i}^{(j)}\right) \quad(i=2, \cdots, d)$, where the $\alpha_{i j}$ are elements in K which will be specified later. Put

$$
f_{1}=\xi_{1} \prod_{j=2}^{n_{1}}\left(\beta_{j} \xi_{1}+p_{1}^{(j)}\right)
$$

where the β_{j} are elements of K to be specified later, and the $p_{1}^{()}$are linear polynomials in ξ_{2}, \cdots, ξ_{d}, to be determined. There is no nontrivial relation of the form

$$
\lambda_{1} \xi_{1}+\lambda_{2}\left(\alpha_{2 r} \xi_{1}+p_{2}^{(r)}\right)+\cdots+\lambda_{d}\left(\alpha_{d t} \xi_{1}+p_{d}^{(t)}=0\right.
$$

For setting $\xi_{1}=0$ we see that $\lambda_{2}=\cdots=\lambda_{d}=0$ by the independence of $p_{2}^{(r)}, \cdots, p_{d}^{(t)}$. Hence $\lambda_{1}=0$. Now choose the polynomials $p_{1}^{(i)}(j>1)$ so that $p_{1}^{(j)}, p_{2}^{(r)}, \cdots, p_{d}^{(t)}$ are linearly independent for all choices of j, r, \cdots, t. This can be done since the set V of linear polynomials in ξ_{2}, \cdots, ξ_{d} is a d-dimensional vector space over the infinite field K, and we need merely avoid a finite number of $(d-1)$-dimensional subspaces of V in choosing the $p_{1}^{(j)}$. Then it is clear that $\beta_{j} \xi_{1}+p_{1}^{(j)}, \alpha_{2 r} \xi_{1}+p_{2}^{(r)}, \ldots, \alpha_{d t} \xi_{1}+p_{d}^{(t)}$ are linearly independent. Furthermore the $d \times(d-1)$ matrix formed by the coefficients of ξ_{2}, \ldots, ξ_{d} in the polynomials $p_{1}^{(j)}, p_{2}^{(r)} \ldots, p_{d}^{(t)}$ has rank $d-1$. Hence
by avoiding a finite number of proper subspaces in the space W of vectors whose coordinates are the β_{j} and $\alpha_{i j}$, we can choose the α 's and β 's so that the matrix formed by the coefficients of ξ_{1}, \ldots, ξ_{d} in the polynomials $\beta_{j} \xi_{1}$ $+p_{1}^{())}, \alpha_{2 r} \xi_{1}+p_{2}^{(r)}, \ldots, \alpha_{d t} \xi_{1}+p_{d}^{(t)}$ is nonsingular for all choices of $j>1$, r, \ldots, t. Then the system $\beta_{j} \xi_{1}+p_{1}^{()}=\alpha_{2 r} \xi_{1}+p_{2}^{(r)}=\ldots=\alpha_{d t} \xi_{1}+p_{d}^{(t)}=0$ has a unique solution for each $j>1, r, \ldots, t$. By avoiding a further finite set of subspaces of W, we can insure that no $d+1$ of these equations have a common solution, so that the solutions corresponding to different choices of j, r, \ldots, t are distinct.

Now consider the system $f_{i}\left(\xi_{1}, \cdots, \xi_{d}\right)=0(i=1, \cdots, d)$. For this to be satisfied, some linear factor of each f_{i} must vanish. If $\xi_{1}=0$, then the system reduces to $g_{i}\left(\xi_{2}, \ldots, \xi_{d}\right)=0(i=2, \ldots, d)$. This has k solutions by the construction of the g_{i}. If $\xi_{1} \neq 0$, we get exactly one solution for every choice of a linear factor from each of the polynomials f_{1}, \ldots, f_{d}. There are ($\left.n_{1}-1\right) n_{2} \ldots n_{d}$ such choices, and therefore the total number of solutions is $k+\left(n_{1}-1\right) n_{2} \ldots n_{d}=h$. This completes the proof.

Theorem 8. Let D be a noncommutative division ring with $[D: K]=d$ $<\infty$. Suppose $n \geqq 1$, and let h be an integer satisfying $0 \leqq h \leqq n^{d}$. Then there is a polynomial $f(x) \in D_{G}[x]$ of degree n with $N(f)=h$.

Proof. By Theorem 7 with $n_{1}=\ldots=n_{d}=n$, we can find d polynomials $f_{i}\left(\xi_{1}, \ldots, \xi_{d}\right) \in K\left[\xi_{1}, \ldots, \xi_{d}\right]$ of degree n such that the system $f_{i}\left(\xi_{1}, \ldots, \xi_{d}\right)=0$ ($i=1, \ldots, d$) has exactly h solutions. By Theorem 6 there is a polynomial $f(x) \in D_{G}[x]$ of degree $\leqq n$ such that $f(x)=\sum_{i=1}^{d} f_{i} e_{i}$. Clearly $\operatorname{deg} f=n$, and $N(f)=h$.

The question of what values $>n^{d}$, if any, can be assumed by $N(f)$ for polynomials $f(x) \in D_{G}[x]$ of degree n, is extremely deep, and depends on the arithmetic nature of K. By Bézout's theorem we know that if n^{d} $<N(f)<\infty$, then the system $f_{i}\left(\xi_{1}, \ldots, \xi_{d}\right)=0$ has infinitely many solutions in the algebraic closure \bar{K}. But of course $K \neq \bar{K}$, since there are no division rings of finite dimension $d>1$ over an algebraically closed field. Thus we gain little information about the zeros of the system $f_{i}=0$ in K.

For example, let $K=\boldsymbol{Q}(\sqrt{ }-3)$, where \boldsymbol{Q} is the rational field. Let D be a division ring with center K such that $[D: K]=4$. Then the polynomial

$$
f(x)=\left(\xi_{3}-\xi_{2}^{2}\right) e_{1}+\left(\xi_{2} \xi_{3}-3 \xi_{1}^{2}-3 \xi_{1}-1\right) e_{2}+\left(\xi_{4}^{2}-1\right) e_{3}
$$

has degree 2 , but has exactly 18 zeros in D. To see this, we consider the system

$$
\begin{aligned}
\xi_{3} & =\xi_{2}^{2} \\
\xi_{2} \xi_{3} & =3 \xi_{1}^{2}+3 \xi_{1}+1 \\
\xi_{4}^{2} & =1
\end{aligned}
$$

Eliminating ξ_{3} from the first two equations we obtain

$$
\xi_{2}^{3}=3 \xi_{1}^{2}+3 \xi_{1}+1=\left(\xi_{1}+1\right)^{3}-\xi_{1}^{3} .
$$

By Fermat's last theorem for cubes, the only solutions in $Q(\sqrt{ }-3)$ are such that $\xi_{2}=0$ or $\xi_{1}+1=0$ or $\xi_{1}=0$. There are nine such solutions. Once ξ_{1}, ξ_{2} are known, ξ_{3} is uniquely determined, and $\xi_{4}= \pm 1$. Hence our system has precisely eighteen solutions in K, as asserted. On the other hand, $n^{d}=2^{4}=16$.

References

1. I. N. Herstein, Conjugates in division rings, Proc. Amer. Math. Soc. 7 (1956), 1021-1022.
2. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. Vol. 37, Amer. Math. Soc., Providence, R. I., 1956.
3. A. R. Richardson, Equations over a division algebra, Messenger of Mathematics 57 (1927), 1-6.
4. H. Rohrbach, Review of paper [3], Jahrbuch über die Fortschritte der Mathematik 53 (1927), 122.

University of California, Los Angeles, California

[^0]: Presented to the Society, August 25, 1964 under the title The number of zeros of a polynomial in a division ring; received by the editors May 15, 1964.
 $\left({ }^{1}\right)$ Alfred P. Sloan Fellow.
 (${ }^{2}$) National Science Foundation Grant GP 2480.

