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Let u be a solution of the differential equation u§Ru¯ 0, where R is rational. Newton’s method of
finding the zeros of u consists of iterating the function f(z)¯ z®u(z)}u«(z). With suitable hypotheses on R
and u, it is shown that the iterates of f converge on an open dense subset of the plane if they converge for
the zeros of R. The proof is based on the iteration theory of meromorphic functions, and in particular on
the result that, if the family of K-quasiconformal deformations of a meromorphic function f depends on
only finitely many parameters, then every cycle of Baker domains of f contains a singularity of f −". This
result, together with classical results of Hille concerning the asymptotic behaviour of solutions of the above
differential equations, is also used to study their value distribution. For example, it is shown that, if R is
a rational function which satisfies R(z)C a

m
zm as z!¢ and has only k distinct zeros where k! (m2)}2,

then δ(0, u)%k}(m2®k)! 1.

1. Newton’s method

We consider the differential equation

w§pw«qw¯ 0 (1)

where the coefficients p and q are rational functions. The well known substitution

u¯w exp 012&
z

p(t) dt1 (2)

leads to the differential equation

u§Ru¯ 0 (3)

where

R¯ q®
1

4
p#®

1

2
p«.

We shall assume that RJ 0 so that u is not linear or constant. If R has a multiple pole

z
!
, then �(z)¯ zu(z

!
1}z) satisfies �§S�¯ 0, where S(z)¯R(z

!
1}z)}z%1 o(1}z#)

as z!¢. Thus it is no loss of generality to restrict to the case in which R has only

simple poles or satisfies

R(z)1 o 01z#1 (4)

as z!¢. We note that (4) is satisfied if (3) has a transcendental meromorphic

solution (see, for example, [33, §5; 40, §3]). (Here and in the following, ‘meromorphic ’

will always mean meromorphic in the plane, unless a domain is specified.)

An important problem is to study the zeros of solutions of (1) and (3). Here we

say that z
!
is a zero of u if some branch of u is analytic in a neighbourhood of z

!
and

u(z
!
)¯ 0 for this branch. We note that, if u and w are related by (2), then any zero
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z
!
of u is also a zero of w and vice versa, except possibly if z

!
is a pole of p. Therefore

it suffices to consider differential equations of form (3). We also note that, even if w

is a meromorphic function, u need not be meromorphic. However, we have

u«
u

¯
w«
w


1

2
p

and thus u}u« is meromorphic if and only if w}w« is. We shall assume throughout that

this is the case.

Newton’s method of finding the zeros of u consists of iterating the function

f(z)¯ z®
u(z)

u«(z)
. (5)

In terms of w, we have

f(z)¯ z®
2w(z)

2w«(z)p(z)w(z)
. (6)

Denote by f n the nth iterate of f. If z
!
is a zero of u, then f n(z)! z

!
as n!¢ for all

z sufficiently close to z
!
. If, in addition, z

!
is not a pole of R, then z

!
is a simple zero

of u because otherwise the uniqueness of solutions yields u3 0. It follows that z
!

is

a multiple zero of f «¯ u§u}(u«)#¯®R(u}u«)# so that f(z)¯ z
!
O((z®z

!
)$) as z! z

!

in this case. This implies that the convergence to z
!
is of the third order. We note that,

in general, Newton’s method converges only quadratically to simple zeros ; that is, for

solutions of (3), the local behaviour of Newton’s method near zeros is better than for

general meromorphic functions.

In this paper, however, we are mainly interested in the global aspects of Newton’s

method applied to solutions of (3). From this point of view, it is of interest that there

are simple examples (see, for example, [11, §2] and Examples 5 and 6 in §9 of this

paper) where Newton’s method fails to converge on some open set.

T 1. Let R be a rational function ha�ing only simple poles or satisfying (4),

and denote by z
"
,… , z

N
the finite zeros of R. Let u be a solution of (3) such that u}u«

is meromorphic, and define f by (5). Suppose that f n(z
j
) con�erges to a finite limit as

n!¢ for all j ` ²1, 2,… ,N ´. If u}u« is transcendental, then f n(z) con�erges to zeros of

u or finite poles of R on an open dense subset of #. If u is meromorphic but not of the

form u(z)¯ exp(azb) for some a, b `#, then f n(z) con�erges to zeros of u on an open

dense subset of #.

If u}u« is rational and u is not meromorphic, then not only does the case in which

u(z)¯ exp(azb) have to be excluded, but there are further exceptional cases (see the

remarks at the end of §6 and Example 4 in §9).

In the case in which z
!
is a pole of R, one can easily determine from the Laurent

series of R and u}u« whether there is an open set where f n converges to z
!
(see Lemma

2 in §8).

This paper is organised as follows. In §2 we study the asymptotic behaviour and

the value distribution of meromorphic solutions u of (3). In particular, we give some

upper bounds for the Nevanlinna deficiency of the zeros of u. In §3 we state some

results from iteration theory on which the proofs of Theorem 1 and the results of §2

are based. These results include conditions implying that cycles of Baker domains

contain a singularity of the inverse function. They are proved in §4 and §5, and
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Theorem 1 is then proved in §6. The results of §2 are proved in §7. In §8 we consider

the behaviour of u and f near poles of R. Finally, in §9, we consider some examples,

for example Bessel functions.

2. Value distribution theory

The methods used in the proof of Theorem 1 also give information on the

frequency of the zeros of solutions of (3). More specifically, we shall obtain upper

bounds for the Nevanlinna deficiency δ(0, u) if u is meromorphic and satisfies (3). For

the notations and basic results of Nevanlinna theory, we refer to [24, 31, 33, 36].

Assume that
R(z)C a

m
zm (7)

as z!¢ where m is an integer and a
m

1 0. Further suppose that u is a transcendental

meromorphic solution of (3). Then m&®1 so that (4) is satisfied and the order ρ(u)

of u is given by

ρ¯
m2

2

(see, for example, [33, §5; 40, §2]). Clearly, u has at most finitely many poles.

We shall use some results of Hille [26, 27] (see also [35, 40]) on the asymptotic

behaviour of solutions of (3). In order to describe these results, we assume that

a
m

¯®((m2)}2)# so that

R(z)C a
m

zm¯®0m2

2 1# zm¯®ρ#zm (8)

as z!¢. This is no loss of generality, as it can be achieved by considering u(cz)

instead of u(z) where cm+#¯®ρ#}a
m
. For fixed ε satisfying 0! ε!π}(m2) and

j ` ²0, 1,… ,m1´, we consider the sectors

S
j
¯ (z : )arg z®

2πj

m2)!
π

m2
®ε* .

It is a consequence of Hille’s basic result that for each j there exists ε
j
` ²³1´ such

that
log u(z)C ε

j
z(m+#)/#¯ ε

j
zρ

uniformly as z!¢ in S
j
. In particular, either ru(z)r! 0 in S

j
or ru(z)r!¢ in S

j
. If

ru(z)r! 0 in S
j
, then ru(z)r!¢ in S

j−"
and in S

j+"
. Here we use the convention that

S
−"

¯S
m+"

and S
m+#

¯S
!
. Denote by p the number of sectors where ru(z)r! 0, and

denote by q the number of sectors where ru(z)r!¢. Then pq¯m2 and p% q.

For the quantities of Nevanlinna theory, we obtain

T(r, u)Cm(r, u)C
q

πρ
r ρ

and

m 0r, 1u1C
p

πρ
r ρ

as r!¢. This implies that

δ(0, u)¯
p

q
¯

p

m2®p
¯

p

2ρ®p
. (9)

In particular, δ(0, u) is always of form (9) for some integer p satisfying 0% p% ρ. We

may, of course, take (9) as the definition of p if δ(0, u) and m are given.
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T 2. Let u be a meromorphic solution of (3) with R satisfying (8). Suppose

that u(z)1 exp(azb) with a, b `#. Define f by (5) and p by (9). Then there exist zeros

z
"
,… , z

p
of R such that

lim
n!¢

r f n(z
k
)r ρ

n
¯ 1 (10)

for k¯ 1,… , p, where ρ¯ (m2)}2 is the order of u. In particular,

lim
n!¢

r f n(z
k
)r¯¢

for k¯ 1,… , p.

C 1. Let u be a meromorphic solution of (3) for some rational R.

Suppose that the hypotheses of Theorem 1 are satisfied, that is, if R(z
!
)¯ 0, then f n(z

!
)

con�erges to a finite limit. Then δ(0, u)¯ 0.

C 2. Let u be a meromorphic solution of (3) for some rational R

satisfying (7). Denote by k the number of distinct zeros of R, and suppose that k!
(m2)}2¯ ρ. Then δ(0, u)%k}(m2®k)! 1.

For example, we see that, if

u§(z)®zmu(z)¯ 0, (11)

then δ(0, u)% 1}(m1). This follows also from the result in [23]. In [6, §4] it was

shown that solutions of (11) cannot have 0 as a Borel exceptional value.

3. Iteration theory

Let f be a rational or transcendental meromorphic function. The Fatou set F( f )

is the set of all z `## which have a neighbourhood U such that all iterates f n are

meromorphic in U and form a normal family there. The complement of the Fatou set

is called the Julia set of f. For an introduction to iteration theory, we refer to the

books [7, 14, 38] and the lecture notes [34] for rational functions, and to the survey

article [9] for transcendental functions. The classical papers are [19, 20, 32].

Let U be a component of F( f ). Then f n(U ) is contained in some component U
n

of F( f ), with the convention that U
!
¯U. One says that U is a wandering domain

if U
m

1U
n

for all m1 n. Otherwise, U is called preperiodic. If U¯U
l
for some

l `., then U is called periodic, and the smallest l satisfying U¯U
l

is called the

period of U.

One of the basic results in iteration theory is Theorem A, which is due to Sullivan

[39].

T A. Rational functions do not ha�e wandering domains.

This result has been generalised to various classes of transcendental entire and

meromorphic functions (see [2, 5, 8, 11, 12, 16, 18, 22, 37]). For our purposes, the

following generalisation of Theorem A is important [13, Theorem 3].

T B. Let f be a meromorphic function which satisfies the Riccati equation

f «(z)R(z) ( f(z)®z)#¯ 0 (12)

where R is rational. Then f does not ha�e wandering domains.
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Note that, if u satisfies (3) and if f is defined by (5), then (12) holds.

For functions which do not have wandering domains, it suffices to consider

periodic components of the Fatou set. The limiting behaviour of the iterates in

periodic components is well understood. For rational functions, a periodic component

of the Fatou set is a (super)attracting component, a parabolic component, a Siegel

disc, or a Herman ring. We refer to [7, §7.1] for the terminology used and a proof of

this classification of periodic components. The result can also be found in [14, §IV.2]

and [38, §3.2], where a slightly different terminology is used.

For transcendental functions, the only further possibility for a periodic component

of the Fatou set is that of a Baker domain, also called an essentially parabolic domain

(see [3, Theorems 2.2 and 2.3; 9, Theorem 6]). By definition, a periodic component

U of F( f ) of period l is called a Baker domain if f lnr
U

! z
!
` ¦U as n!¢, and f l(z

!
)

is not defined. For l¯ 1 or for entire f, this is possible only if z
!
¯¢, but, in general,

z
!

can also be a pole of f k for some k% l®1.

The periodic components that occur in the iteration of rational functions are

closely related to the singularities of the inverse function f −" of f, that is, to the critical

and asymptotic values of f (see, for example, [9, §4.3]). On the other hand, there do

not seem to be close relations between Baker domains and critical or asymptotic

values (compare [10, 17, 25]). However, we have the following result.

T 3. Let f be a transcendental meromorphic function satisfying (12) with

some rational function R. If U is a Baker domain of period l of f, then Vl−"
j=!

U
j
contains

a critical or asymptotic �alue of f.

Sullivan’s proof [39] of Theorem A uses the theory of K-quasiconformal

mappings. Let f be meromorphic and Φ be a K-quasiconformal mapping of the

sphere, and suppose that fΦ ¯Φa f aΦ−" is also meromorphic. Then fΦ is called a K-

quasiconformal deformation of f. If f is rational, then so is fΦ [39, Proposition 8]. In

fact, f and fΦ have the same degree then, and thus the family of K-quasiconformal

deformations of f depends (real analytically) on only finitely many (real) parameters.

This fact plays a key role in Sullivan’s proof of Theorem A. Most results concerning

the non-existence of wandering domains for transcendental functions exploit the fact

that, for certain classes of functions, the family of K-quasiconformal deformations

depends on only finitely many parameters. (An exception is [11].) In particular, it was

shown in [11, §4.3] that this is the case for functions satisfying the hypotheses of

Theorem 3. Thus Theorem 3 is a consequence of the following result.

T 4. Let f be a transcendental meromorphic function, and suppose that the

family of K-quasiconformal deformations of f depends on only finitely many parameters.

Then the conclusion of Theorem 3 holds.

We note that Herman [25, §III.9] has stated this result (without proof) for entire

functions. The case of entire functions is somewhat easier, because here preperiodic

components of the Fatou set, and thus in particular Baker domains, are always simply

connected by a result of Baker [2, Theorem 3.1].

In [8, Theorem 2; 9, Theorem 14], it was shown that the conclusion of Theorem

3 holds for certain other classes of meromorphic function. The results given there also

follow from Theorem 4.
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4. Proof of Theorem 4

Our proof is based on the ideas introduced by Sullivan [39] in his proof of

Theorem A. There, the case of a wandering annulus was considered separately

[39, §2]. Here we have the following result.

L 1. Let f be a meromorphic function with a doubly connected Baker domain

U of period l. Then Vl−"
j=!

U
j
contains a critical or asymptotic �alue of f.

Proof. For a suitable r" 0, there exists a Riemann map ψ :U!A¯
²z :r! rzr! 1´. Define g¯ψa f l aψ−". If Vl−"

j=!
U

j
does not contain a critical or

asymptotic value of f, then f l :U!U, and thus g :A!A is an unramified covering.

We deduce that g(z)¯ eiαz or g(z)¯ eiαr}z for some α `2. This implies that the

iterates of gr
A

do not tend to the boundary of A, and thus there does not exist z
!
` ¦U

such that f lnr
U

! z
!
as n!¢, contradicting the hypothesis that U is a Baker domain.

This contradiction completes the proof of Lemma 1.

We remark that Baker, Kotus, and Lu$ [4, Theorem 3.1] have shown that invariant

Baker domains are either simply or infinitely connected, regardless of whether or not

they contain critical or asymptotic values.

In [39, Proposition 3], Sullivan proved Proposition A.

P A. If S is a hyperbolic Riemann surface of infinite topological type,

then there are arbitrarily large dimensional families of deformations of the hyperbolic

structures so that each pair of surfaces in the family is quasiconformally (e�en quasi-

isometrically) isomorphic.

Proposition B has been given by Sullivan [39, Proposition 4] under the assumption

that the rational function f has a wandering domain U. However, a look at the proofs

reveals the following.

P B. Let f be a transcendental meromorphic function, and let U be a

component of F( f ). Suppose that the U
i
are not doubly connected and do not contain

critical or asymptotic �alues of f, for all i& 0. Then

(1) either, from some n on, U
n+i

has finite topological type and for each i& 0 the

mapping f :U
n+i

!U
n+i+"

is a conformal bijection;

(2) or the direct limit U¢ of f :U
i
!U

i+"
, i& 0, exists and has infinite topological

type.

Proof of Theorem 4. Let ²U
!
,… ,U

l−"
´ be a cycle of Baker domains of period l,

and assume that Vl−"
j=!

U
j
does not contain a critical or asymptotic value of f.

At first let ²U
!
,… ,U

l−"
´ satisfy case (1) of Proposition B. Following Sullivan

[39, §9], we can rule out the possibility of U
i
being simply connected, since Sullivan

shows that, for such a U
i

to be a wandering domain, this implies that, for each

K" 1, the family of K-quasiconformal deformations cannot depend on only finitely

many parameters. His proof has been simplified by Baker [2] (see also [5 ; 7, §8; 14,

§IV.1; 38, §3.1]). It was shown in [8, Theorem 2] (see also [9, Theorem 14] and the

remarks following it) how the argument can be modified to yield under our

assumption the same conclusion that the family of K-quasiconformal deformations of
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f cannot depend on only finitely many parameters. Thus we obtain a contradiction to

the hypothesis.

In [39, §10], Sullivan shows how to modify the argument for multiply connected

U
i
. In our case, the situation is much simpler, because the case of doubly connected

domains is ruled out by Lemma 1, and the number of conformal automorphisms

of a multiply connected domain of finite connectivity greater than 2 is finite (see,

for example, [30, p. 583]). Thus, if the connectivity is greater than 2, then the

sequence ( f nlr
U
) is eventually periodic, say f ml r

U
¯ f nl r

U
where m" n. It follows that

f (m−n)l r
Un

¯ idr
Un

, which is clearly impossible for transcendental meromorphic f.

In [39, §10], Sullivan also deals with case (2) of Proposition B. Applying

Proposition A to S¯U¢, he shows that the family of K-quasiconformal deformations

of f cannot depend on only finitely many parameters. The argument given there

extends to our case without modification. Again we find that the family of K-

quasiconformal deformations of f cannot depend on only finitely many parameters,

contradicting the hypothesis.

Hence the proof of Theorem 4 is complete.

5. Proof of Theorem 3

In view of Theorem 4, we only have to prove that the family of K-quasiconformal

deformations of f depends on only finitely many parameters. (This has been proved

in [11, §4.3], but for the convenience of the reader we give a short outline of the proof

here.)

Let f be a transcendental meromorphic function and let Φ be a K-quasiconformal

self-map of the Riemann sphere such that fΦ ¯Φa f aΦ−" is meromorphic in #.

Because of the Riccati equation (12), all zeros of f « are double and are fixpoints of f

and vice versa, with the exception of at most finitely many. The same is then true with

f replaced by fΦ, and hence f !Φ(z)}( fΦ(z)®z)# has only finitely many zeros and poles.

Since f is of finite order ρ( f ) (see [31, Satz 22.4]), and since Φ is Ho$ lder continuous

with exponent 1}K, we find that fΦ, and hence f !Φ(z)}( fΦ(z)®z)#, is of order at most

Kρ( f ).

This yields f !Φ(z)}( fΦ(z)®z)#¯RΦ(z) exp(PΦ(z)) for some rational RΦ of the same

degree as R and some polynomial PΦ of degree less than or equal to Kρ( f ). We

conclude that the family of K-quasiconformal deformations of f depends on only

finitely many parameters, and therefore the proof is complete.

6. Proof of Theorem 1

Let u be a solution of (3) such that u}u« is meromorphic, and let f be defined by

(5). Then f satisfies the Riccati equation (12). We shall use some results from iteration

theory which do not hold for Mo$ bius transformations and constant functions.

Therefore we consider the case in which f is a Mo$ bius transformation or a constant

function first.

If f is constant, then R3 0 by (12), contradicting the hypothesis. If f (z)¯
(αzβ)}(γzδ) where αδ®βγ1 0 and γ1 0, then (12) implies that R(z)¯O(1}z%)¯
o(1}z#) as z!¢. Moreover, f has a finite fixpoint which, by (12), is a multiple pole

of R. Hence R does not satisfy the hypothesis. Thus f has the form f (z)¯αzβ where

α1 0. If α¯ 1, then u}u«3®β, and thus u has the form u(z)¯ exp(azb) excluded

in the hypothesis. If α1 0, 1, then u«(z)}u(z)¯ λ}(z®µ) where λ¯ 1}(1®α) and

µ¯ βλ. Since the conclusion concerns (for rational u}u«) only the case in which u is
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meromorphic, we assume that this is the case. Then λ is an integer and we obtain

u(z)¯ c(z®µ)λ for some constant c. If λ is positive, then µ is a zero of u and rαr! 1.

We find that f n(z)!µ for all z `#. If λ is negative, then ¢ is a zero of u, and

f n(z)!¢ for all z `#c²µ´, since rαr" 1.

We now consider the case in which f is not constant and not a Mo$ bius

transformation. The hypotheses of Theorem B are fulfilled, and thus f has no

wandering domains. Therefore we can restrict our attention to periodic components

of F( f ). Let ²U
!
,… ,U

l−"
´ be a periodic cycle of components of F( f ) of period l.

We shall use relations between this cycle and the singularities of f −". In [11, §4.3],

it has been shown that transcendental meromorphic solutions of the Riccati equation

(12) do not have asymptotic values. If ¢ is a critical point, then f is rational and (12)

implies that R(z)¯ o(1}z#) as z!¢. It is classical [19, I, p. 168; 32, pp. 85, 243] (see

also [34, Corollary 9±4]) that a rational function of degree at least 2 has a fixpoint

which is repelling or has multiplier 1. Thus, if ¢ is a critical point of f, then f has a

finite fixpoint ζ
!

which is repelling or satisfies f «(ζ
!
)¯ 1. From (12), we deduce that

ζ
!
is a multiple pole of R. Hence we find that R does not satisfy the hypothesis if ¢

is a critical point. The finite critical points of f are the zeros of f «¯ uu§}(u«)#¯
®R(u}u«)#. Since the zeros of u}u« are the fixpoints of f, we conclude that only the

finite zeros of R can lead to critical points of f which are not attracted by zeros of u}u«.
It is well known (see, for example, [9, §4.3]), that the closure of the forward orbits

of the singularities of f −" contains the boundary of any cycle of Siegel discs or Herman

rings From the assumption that f n(z
j
) converges as n!¢ for all zeros z

j
of R, we thus

deduce that ²U
!
,… ,U

l−"
´ cannot be a cycle of Siegel discs or Herman rings.

Hence, by the classification of periodic components mentioned in §3, there

remains the possibility of a (super)attracting cycle, a parabolic cycle, or a cycle of

Baker domains. For (super)attracting and parabolic cycles, it is well known that

Vl−"
j=!

U
j
contains a singularity of f −", and, because of Theorem 3, this holds in our

case also for cycles of Baker domains. Thus there is a critical value of f contained in

Vl−"
j=!

U
j
, and, in fact, Vl−"

j=!
U

j
also contains the corresponding critical point.

If Vl−"
j=!

U
j
contains a zero of u}u«, then, as already mentioned, we have l¯ 1 and

f n(z) converges to this zero for all z `U
!
. It remains to consider the case in which there

exists k, 1%k%N, such that z
k
`Vl−"

j=!
U

j
. By hypothesis, f n(z

k
)! z

!
as n!¢ for

some z
!
`#. Thus f nr

Uj

! z
!
as n!¢ for all j ` ²0,… , l®1´. On the other hand, if U

!
is

a Baker domain, then there exist some j ` ²0,… , l®1´ such that f nlr
Uj

!¢ as n!¢.

Thus U
!

cannot be a Baker domain. Moreover, since f nr
Uj

! z
!

as n!¢ for all

j ` ²0,… , l®1´, we see that z
!

is a fixpoint of f. We have either r f «(z
!
)r! 1, in which

case l¯ 1 and U
!

is a (super)attracting component, or f «(z
!
)l ¯ 1, in which case

²U
!
,… ,U

l−"
´ is a cycle of parabolic domains. Clearly, z

!
is a zero of u}u«. Since each

singularity of u is a pole of R, this implies that z
!
is a zero or pole of u or a pole of

R. Since a pole of u of multiplicity k is a fixpoint of f of multiplier 11}k, and hence

a repelling fixpoint of f, there are no open sets where f n converges to poles of u. It

follows that z
!
is a zero of u or a pole of R, and we conclude that f n(z) converges to

zeros of u or finite poles of R for all z `F( f ). Moreover, if u is meromorphic, then

finite poles of R are zeros or poles of u, and the above reasoning shows that f n(z)

converges to zeros of u for all z `F( f ) in this case.

Because the Fatou set F( f ) is either a dense subset of ## or empty, we have to show

that F( f )1W. First suppose that ν¯ u}u« is transcendental. From (3), we deduce

that ν satisfies the Riccati equation ν«¯ 1Rν#. This shows that, if ν has only finitely

many zeros, then ν« takes the value 1 only finitely often. However, this is impossible
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by [24, Theorem 3.5]. Thus ν has infinitely many zeros, and hence f has infinitely many

fixpoints. The Riccati equation (12) shows that infinitely many of them are

superattracting. Hence F( f )1W follows.

Now suppose that u is a meromorphic solution of (3). It is immediate that

F( f )1W if u has zeros. Hence we assume that u has no zeros. A consideration of the

multiplicity of the poles in equation (3) shows that u has poles at most at the multiple

poles of R and hence at most finitely many. Since u has finite order (see [31, Satz 22.1;

33, §5; 40, §2]), this implies that there are polynomials P,Q such that Pu¯ eQ. This

leads to the rational function

f (z)¯ z®
P(z)

Q«(z)P(z)®P«(z)
.

If the degree of Q is strictly larger than 1, or if Q has degree 1 and P is non-constant,

then ¢ is a rationally indifferent fixpoint of f. This implies that there exists a critical

point of f and hence a zero of R which tends to ¢ under iteration of f, contradicting

the hypothesis. If Q is constant, then P is non-constant and ¢ is an attracting but not

superattracting fixpoint of f (z)¯ z®P(z)}P«(z), and again we find that there is a zero

of R which tends to ¢ under iteration of f, contradicting the hypothesis. Thus the

degree of Q equals 1 and P is constant. Hence f is linear, and we are in the case already

considered. This completes the proof.

The above proof shows that, under the hypotheses of Theorem 1, we have

convergence of f n to zeros of u or finite poles of R on an open dense subset of # as

soon as F( f )1W, and we have shown that this is always the case if u}u« is

transcendental. Of course, F( f )1W is also satisfied for many rational functions

u}u«, for example if u has a zero, but it can occur for rational functions u}u« that

F( f )¯W (see Example 4 in §9).

The exceptional case in which u(z)¯ exp(azb) is of a different nature. Here we

have f (z)¯ z®1}a so that f is a linear polynomial. The iteration theory of Mo$ bius

transformations is fairly simple [7, §1.2], but, as mentioned in the above proof of

Theorem 1, it is somewhat exceptional in complex dynamics. If we do not make the

assumption that u is meromorphic, then there are more cases where f is a Mo$ bius

transformation and f n does not converge to zeros of u or finite poles of R. In the

above proof of Theorem 1, we also have to consider the case in which λ is not an

integer, and we find that we also have to exclude the case in which u has the form u(z)

¯ c(z®µ)λ where c,µ `#, c1 0, λ a:, and Re λ% "

#
.

If we do not hypothesise that R(z)1 o(1}z#) or that R has only simple poles, then

there are even more exceptional cases. Here we only mention that, if u(z)¯ z}(z®1),

then R(z)¯®2}(z(z®1)#) and f (z)¯ z#. Clearly f n(z)!¢ as n!¢ if rzr" 1, but ¢
is neither a zero of u nor a pole of R.

7. Proof of Theorem 2

As described before the statement of Theorem 2, we have p sectors S
j
"

,… ,S
jp

such

that ru(z)r! 0 as z!¢ in S
jk

, k¯ 1,… , p. We shall prove that for each k there exists

a zero z
k
of R satisfying (10). Moreover, we shall show that the z

k
have the additional

property that f n(z
k
) `S

jk

for all large n. This implies that the z
k
are pairwise disjoint,

and the conclusion of Theorem 2 follows. We shall only consider the case in which

j
k
¯ 0 because the other cases are analogous. We thus assume that ru(z)r! 0 in S

!
. It
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follows that log u(z)C®zρ as z!¢ in S
!
. (In the case in which m is odd so that ρ

is not an integer, we have used the branch of zρ which is positive on the positive real

axis.) Let �(z)¯ log u(z)zρ. Then �(z)¯ o(rzr ρ) as z!¢ in S
!
, and hence

r�«(z)r¯
1

2π )&rζ−zr=ηrzr

�(ζ )

(ζ®z)#
dζ)% 1

ηrzr
max

rζ−zr=ηrzr
r�(ζ )r¯ }(rzr ρ−")

as z!¢ for rarg zr%π}(m2)®ε®arcsin η, provided that η! 1. As ε and η may be

chosen arbitrarily small, we can in fact assume that �«(z)¯ o(rzr ρ−") as z!¢ in S
!
so

that

u«(z)
u(z)

C®ρ
zρ

z

and hence

f(z)¯ z®
u(z)

u«(z)
¯ z 01(1o(1))

1

ρzρ1 (13)

as z!¢ in S
!
. Standard arguments now yield the existence of a Baker domain. In

fact, the change of variable ζ¯ zρ conjugates f to

F(ζ )¯ f (ζ "/
ρ) ρ ¯ ζ 01(1o(1))

1

ρζ1
ρ

¯ ζ 01
1

ζ
o 0 1

rζ r11¯ ζ1o(1). (14)

Define V¯²ζ : rζ r"R
!
, rarg ζr!π}2®ρε´, where R

!
" 0. For sufficiently large R

!
, we

have F(V)ZV and Fn(ζ )!¢ for ζ `V as n!¢. Putting W¯²z :zρ `V ´, we find

that f(W )ZW and f n(z)!¢ for z `W as n!¢. Thus W is contained in an

invariant Baker domain U of f. By Theorem 3, U contains a singularity of f −". As

proved in [11, §4.3] and already used in §6, f does not have asymptotic values. Thus

U contains a critical value. In fact, U also contains the corresponding critical point

z
!
, which must be a zero of R.

It is not difficult to see that f n(z
!
) `WZS

!
for all large n, say for n&N. Define

ζ
n
¯ f n(z

!
) ρ for n&N. Then ζ

n+"
¯F(ζ

n
), and we find from (14) that rζ

n
rC n as

n!¢. It follows that r f n(z
!
)r ρ C n, and the proof of Theorem 2 is complete.

We remark that, if we do not normalise as in (8), then we obtain

lim
n!¢

r f n(z
k
)r ρ

n
¯

ρ

ora
m
r

instead of (10).

Instead of using Theorem 3, we could also modify a result of Hinkkanen [28,

Theorem 2] in the above proof of Theorem 2.

8. The beha�iour of u and f near poles of R

It follows from (12) that poles of R are fixpoints of f and thus zeros of u}u«. Here

we consider the behaviour of u and f near poles of R in more detail.

L 2. Let z
!
be a pole of multiplicity k of the rational function R. Let u be a

solution of (3) such that u}u« is meromorphic, and define f by (5).

(i) If k¯ 1, then z
!
is a zero of u and an attracting fixpoint of f so that f n con�erges

to z
!

in some neighbourhood of z
!
.
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(ii) If k¯ 2, say

R(z)¯
c

(z®z
!
)#

O 0 1

z®z
!

1
as z! z

!
, then

u(z)

u«(z)
¯ a(z®z

!
)O((z®z

!
)#)

as z! z
!
, where ca#®a1¯ 0. If r1®ar! 1 (or, equi�alently, if Re(1}a)" "

#
), then z

!

is an attracting fixpoint of f so that f n con�erges to z
!
in a neighbourhood of z

!
. If 1®a

is a root of unity, then z
!
is a rationally indifferent fixpoint of f so that f n con�erges to

z
!
in the corresponding parabolic domains. In the remaining cases, there does not exist

an open set where f n con�erges to z
!
. Moreo�er, z

!
is a zero of u if and only if 1}a `..

(iii) Let k& 3. Then k is e�en and z
!
is not a zero of u, but a rationally indifferent

fixpoint of f so that f n con�erges to z
!

in the corresponding parabolic domains.

We note that, if ca#®a1¯ 0, then

1

a
¯

1

2
³’ 1

4
®c.

Thus, in case (ii), the question of whether there is some open set where f n converges

to z
!

depends not only on R but also on u (see Example 3 in §9).

Proof of Lemma 2. Let h(z)¯ (z®z
!
)kR(z) so that h(z

!
)1 0, ¢ and let l `: and

g be analytic in some neighbourhood of z
!

with g(z
!
)1 0, ¢ such that u(z)}u«(z)¯

(z®z
!
)l g(z). The equation

0u(z)

u«(z)1
!

¯ 1R(z) 0u(z)

u«(z)1
#

leads to

(z®z
!
)l−" (lg(z)(z®z

!
) g«(z)®(z®z

!
)l−k+" g(z)# h(z))3 1. (15)

Case (i) : Let k¯ 1. It follows from (15) that l¯ 1 and g(z
!
)¯ 1 so that u«(z)}u(z)

¯ 1}(z®z
!
)O(1). This implies that z

!
is a (simple) zero of u and hence an attracting

fixpoint of f.

Case (ii) : Let k¯ 2. It follows from (15) that l¯ 1 and g(z
!
)®g(z

!
)# h(z

!
)¯ 1 and

hence ca#®a1¯ 0 if a¯ g(z
!
) and c¯ h(z

!
). We have f «(z

!
)¯ 1®a. If r1®ar! 1,

then z
!
is an attracting fixpoint of f. It is easy to verify that r1®ar! 1 is equivalent

to Re(1}a)" "

#
. If 1®a is a root of unity, then z

!
is a rationally indifferent fixpoint of

f. In the other cases, z
!
is a repelling or irrationally indifferent fixpoint of f. It is clear

that f n cannot converge to a repelling fixpoint in some open set. In general, it is not

known whether it is possible that the iterates of a meromorphic function converge to

an irrationally indifferent fixpoint in some component of the Fatou set. It is known,

however, that such a component must be a wandering domain, and thus we deduce

from Theorem B that this situation does not occur in our case. Hence there does not

exist an open set where f n converges to z
!

if r1®ar& 1 and if 1®a is not a root of

unity.

The last claim that z
!

is a zero of u if and only if 1}a `. is obvious from the

Laurent series of u«}u.
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Case (iii) : Let k& 3. It follows from (15) that k¯ 2l with l `.c²1´. Thus z
!

is a

multiple zero of u}u«. Therefore f «(z
!
)¯ 1 and z

!
is a rationally indifferent fixpoint of

f. Moreover, u cannot be meromorphic at z
!

and thus z
!

is not a zero of u. This

completes the proof.

L 3. Let z
!

be a simple zero of u}u« such that u(z)}u«(z)¯
a(z®z

!
)O((z®z

!
)#) as z! z

!
. Then u(z

!
reiθ)! 0 as r! 0 for any fixed branch of

u and θ `2 if and only if Re a" 0.

Lemma 3 says that, even if u is not meromorphic in a neighbourhood of z
!
, we can

still consider z
!
as a ‘zero’ of u if Re a" 0. However, if r1®ar" 1, there does not exist

an open subset of # where f n ! z
!

as n!¢. Hence values for which Re a" 0 and

r1®ar" 1 can be considered as ‘zeros ’ of u with no domain of attraction (see also

Example 3 in §9). On the other hand, if f n ! z
!
in some open set for a simple zero z

!

of u}u«, then z
!

is a ‘zero’ of u in the above sense.

There is no analogue of this for multiple zeros of u}u«. For example, if u(z)¯
z# exp(1}z), then u satisfies (3) with R(z)¯®(2z#®2z1)}z%, u(z)}u«(z)¯ z#}(2z®1),

and f(z)¯ z(z®1)}(2z®1). Thus f n ! 0 in some open set as n!¢, but it does not

seem to make sense to consider z
!
¯ 0 as a ‘zero’ of u.

Proof of Lemma 3. Let u, z
!

and a be as in Lemma 3. Then log u(z)¯
log(z®z

!
)}aO(1), and hence log ru(z)r¯Re(1}a) log rz®z

!
r®Im(1}a) arg(z®z

!
)

O(1) as z! z
!
. Thus ru(z

!
reiθ)r¯ exp²Re(1}a) log r®Im(1}a) θO(1)´ as r! 0.

From this it is obvious that ru(z
!
reiθ)r! 0 for r! 0 if and only if Re(1}a)" 0 or,

equivalently, if Re a" 0.

9. Examples

E 1. The simplest case occurs when R is constant, say R3 1. The general

solution of (3) is given by u(z)¯ a sin zb cos z. Theorem 1 says that Newton’s

method converges to zeros of u on an open dense subset of #, except when a¯³ib,

in which case u is of the form u(z)¯ b exp(³iz) excluded in Theorem 1.

E 2. For R(z)¯®1}z, differential equation (3) has the entire tran-

scendental solution

u(z)¯ 3
¢

n="

1

n !(n®1)!
zn.

Again we find that Newton’s method for u converges on an open dense subset of #

to zeros of u.

E 3. Let

R(z)¯ 1®
4ν#®1

4z#

where ν `#, Re ν& 0. Because the case R3 1 has already been considered in Example

1, we can assume that ν1 "

#
. A solution of (3) is given by uν(z)¯ozJν(z), where Jν

denotes the Bessel function of the first kind. For the corresponding Newton function

fν we find that

fν(z)¯ z®
2zJν(z)

Jν(z)®2zJ!ν(z)
.
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In the terminology of Lemma 2(ii), we have c¯®ν#"

%
and a¯ 2}(12ν). We see

that 0 is an attracting fixpoint of fν of multiplier 1®a¯ (2ν®1)}(2ν1) if Re ν" 0,

and a rationally indifferent fixpoint of fν if Re ν¯ 0 and 1®a¯ (2ν®1)}(2ν1) is a

root of unity.

We deduce that in these cases there is a critical point of fν and hence a zero of R

tending to 0 under iteration of fν. Since fν is odd, we conclude that both zeros of R

have this property. Thus Theorem 1 implies that fnν converges to 0 or to zeros of Jν

on an open dense subset of # if Re ν" 0 or if (2ν®1)}(2ν1) is a root of unity, for

example if ν¯ 0.

If ν is not an integer, then u
−ν(z)¯ozJ

−ν(z) is a solution of (3), which is linearly

independent of uν. We now have a¯ 2}(1®2ν) and deduce that, if Re ν" 0, then 0

is a repelling fixpoint of

f
−ν(z)¯ z®

2zJ
−ν(z)

J
−ν(z)®2zJ!

−ν(z)

so that there are no open sets where fn
−ν converges to 0. Note that ru

−ν(reiθ)r! 0 as

r! 0 if Re ν! "

#
. This follows immediately from the definition of Jν, and also from

Lemma 3.

The functions u³ν are meromorphic if and only if ν¯m"

#
for some m `.. In this

case, uν has a zero at 0 and u
−ν has a pole at 0. In fact, for these values of ν, the

functions u³ν can be expressed in terms of trigonometric functions. For example, we

have

u
$/#

(z)¯ ’ 2

π 0
sin z

z
®cos z1

and

u
−$/#

(z)¯ ’ 2

π 0®sin z®
cos z

z 1 .
The zeros of u

$/#
are the fixpoints of tan z. As noted above, fn

$/#
converges to zeros of

u
$/#

on an open dense subset of #.

The zeros of u
−$/#

are the solutions of

z tan z¯®1. (16)

For ν¯ $

#
, the zeros of R are given by ³o2. A numerical computation shows that

f n

−$/#
(o2)! 2±798386… as n!¢. Because f

−$/#
is odd, we have f n

−$/#
(®o2)!

®2±798386… as n!¢. We deduce from Theorem 1 that f n

−$/#
converges to

solutions of (16) on an open dense subset of #.

We remark that the solutions of (16) were computed in [29, p. 332] using

Newton’s method for the function ®1®z tan z which leads to iteration of φ(z)¯
(z#®cos z)}(zsin z cos z). It is shown in [29] that, apart from the attracting fix-

points of φ corresponding to the solutions of (16), there are no attracting cycles for

φ. It is not clear (to us) whether φ has Baker domains or wandering domains.

In [29], the more general equation z tan z¯ c `# was also considered by applying

Newton’s method to c®z tan z. Here, attractive cycles of higher order do occur for

certain c1®1. The last equation was also studied in [21, §4] by the application of

Newton’s method to z sin z®c cos z.
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We now give the example mentioned in the introduction where u is not

meromorphic, u}u« is rational (of degree greater than 1), and Newton’s method does

not converge to zeros of u or poles of R on any open set, although f n(z
j
) converges

for all zeros of R.

E 4. Let

R(z)¯
(7®i) (z®i) (z1)

z#(5z3®4i)#
.

Then

u(z)¯ exp 02i

5
log z

1

5
log 0z3®4i

5 11
is a solution of (3). We obtain

f(z)¯®
z(z1®i)

(1i) z1
.

The zeros of R are i and ®1, and these are also the critical points of f. We have

iMNf ®1MNf 1MNf ®
3

5


4

5
i.

Moreover, ®$

&
%

&
i is a (repelling) fixpoint of f so that f n(z

j
) converges to a finite limit

for all zeros of R. On the other hand, F( f )¯W since all critical points of f are

preperiodic but not periodic (compare, for example, [38, §5.1, Theorem 1]).

We mention that f is conjugate to g(z)¯ (z®2)#}z#, and g is a well known example

of a function with empty Fatou set (see also [7, §11.9] for an elementary proof that

F(g)¯W). We have taken f instead of g because the function R corresponding to g

has multiple poles but does not satisfy (4).

Next we give two examples where the hypotheses of Theorem 1 are not satisfied

and where, in fact, there are open sets where f n does not converge to zeros of u or

finite poles of R.

E 5. We consider the case ν¯ $

#
of Example 3 in more detail. Then

R(z)¯ 1®2}z#. As noted above, the general soltion of (3) is meromorphic and given

by

u(z)¯ a 0®sin z®
cos z

z 1b 0sin z

z
®cos z1 .

As the case in which a¯ 0 has already been studied in Example 3, we now assume

that a1 0. The zeros of u are then the solutions of tan z¯ (1cz)}(c®z) where c¯
b}a. The Newton function corresponding to u is given by

f
c
(z)¯ z

22z tan z®z#c(®2 tan z2zz# tan z)

1z tan z®z#c(®tan zzz# tan z)
.

For c1 0, we also have the representation

f
c
(z)¯ 2z

z$

1®z#
z

c 0
c#1

1®c tan(z)
®11

.
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The zeros of R are ³o2 and we shall study their orbits under iteration of f
c
. Because

f
c
(®z)¯®f

−c
(z) and hence f n

c
(®z)¯®f n

−c
(z), it suffices to consider the orbit of o2.

We have

f
c
(o2)¯

4 tano24c

o2 tano2®1(o2tano2) c

and we find that, if

c¯
1o2 tano2

tano2®o2
¯ 2±023981360…,

then f
c
(o2)¯o2 so that f

c
has the superattracting fixpoint o2. For

c¯
1®o2 tano2

o2tano2
¯®1±027033492…

we have f
c
(o2)¯¢. The proof of Theorem 1 shows that the conclusion of Theorem

1 still holds for this value of c. On the other hand, it is fairly obvious that the

behaviour for c¯®1±027033492… is unstable in the sense that slight perturbation

of c may yield different dynamics. In fact, the equation

f #
c
(o2)¯o2 (17)

may be written as tan( f
c
(o2))¯Q(c) with a rational function Q, and we can deduce

from this that there are infinitely many solutions of (17) having c¯®1±027033492…

as a limit point. Hence there are infinitely many values of c, accumulating at

®1±027033492…, for which f
c

has a superattracting periodic point of period 2.

Numerical examples are c¯®0±335056289… with the superattracting cycle

²o2, 4±47552177…´, c¯®1±793311697… with ²o2, 11±4685457…´, and c¯
®17±76710140… with ²o2, 0±352577052…´. Clearly, for these values of c, Newton’s

method does not converge to zeros of u in the corresponding superattracting

components.

Similarly, we can find superattracting periodic points of higher period. Here we

only mention that c¯®9±486442848… leads to a superattracting periodic point of

period 3.

In Figures 1–3, black indicates that the sequence f n

c
(o2) was not found to

converge, white indicates that it converges but that many iterations were needed, and

the various shades of grey indicate that convergence was observed after comparatively

few iterations.

Figure 1 shows the set ®22!Re c! 2, rIm zr! 12, and Figure 2 shows

the set ®2±05!Re c! 0±25, rIm zr! 1±15. The complicated behaviour near

c¯®1±027033492… is clearly visible.

Figure 3 shows the range ®0±3375!Re c!®0±333, rIm zr! 0±00225, containing

the value c¯®0±3350568629… for which f
c
has a superattracting periodic point of

period 2. The similarity to the Mandelbrot set is not surprising in view of the theory

of polynomial-like mappings created by Douady and Hubbard [15]. In fact, there

seem to be Mandelbrot-like sets around all values of c for which f
c

has a

superattracting periodic point. The one near c¯®17±76710140… is visible in

Figure 1.
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F. 1

Finally we consider c¯³i. We have

f³i
(z)¯ 2z

z$

1®z#³iz
¯ z

z#®2iz®2

z#yiz®1
.

Hence ¢ is a rationally indifferent fixpoint of f³i
, and thus f n

³i
tends to ¢ in the

correponding parabolic domains. This implies that there is a zero of R which tends

to ¢ under iteration of f³i
. Because f³i

(®za )¯®f³i
(z), we deduce that both zeros of

R have this property. Since the corresponding solutions of (3) are

yia(zyi)

z
eyiz

we conclude that, if z `F( f³i
), then f n

³i
(z)!¢ or f n

³i
(z)!³i as n!¢.

In conclusion, we note that for many values of c there are open sets where f n

c
does

not converge to zeros of u.



         327

F. 2

E 6. The Airy function u(z)¯Ai(z) solves (3) for R(z)¯®z. We have

ρ(u)¯ $

#
, and from the asymptotic expansions [1, p. 448] of Ai(z) we see that δ(0, u)

¯ "

#
. As in the proof of Theorem 2, we see that, if η" 0 and R¯R(η) is sufficiently

large, then ²z : rzr"R, rarg zr!π}3®η´ is contained in an invariant Baker domain U

of f. Thus f n(z) tends to ¢ and not to zeros of u for all z `U, although u is

meromorphic.

From Theorems 1 and 2 and their proofs, we conclude that 0 `U and hence

r f n(0)r!¢ as n!¢. In fact, from the remark at the end of §7, we deduce that

lim
n!¢

r f n(0)r$/#

n
¯

3

2
.

We mention that the methods of §2 and §7 yield that, if R is a non-constant

polynomial, then (3) always has a solution such that the corresponding Newton

function f has an invariant Baker domain.
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F. 3

E 7. In [8, Theorem 3], a result similar to Theorem 1 was proved for

Newton’s method applied to

w(z)¯& z

!

a(t) eb(t) dtc

where a and b are polynomials and c is a constant. We note that w satisfies (1) with

p¯®a«}a®b« and q¯ 0. We obtain (3) with

u(z)¯w(z)
e−b(z)/#

oa(z)

and

R(z)¯®
3

4 0
a«
a1

#


1

2

a§
a

®
1

2

a«b«
a

®
1

4
b«#

1

2
b§.

The application of Newton’s method to u instead of w, that is, the definition of f by

(6) instead of (5), has the advantage that the convergence is of the third order for all
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zeros of w which are not zeros of a. On the other hand, the ‘ testpoints ’ in [8] are the

zeros of w§ which are just the zeros of a«ab«, while the ‘ testpoints ’ in Theorem 1 are

the zeros of R. In general, R will have more zeros than a«ab«, so that, in some sense,

(6) is more likely to lead to attracting cycles of higher period than (5). For the example

w(z)¯& z

!

e−t
# dt

considered in [8], we find that p(z)¯ 2z, a«(z)a(z) b«(z)¯®a(z) p(z)¯®2z while

R(z)¯®z#®1. Obviously 0 is a simple zero of w and thus a superattracting fixpoint

of the function f defined by (5). By the results in [8], the iterates of the function f

defined by (5) converge to zeros of w on an open dense subset of #. If we define f by

(6), then we find from a numerical computation that f n(³i)! 0 as n!¢. Since ³i

are the zeros of R, we deduce from Theorem 1 that the iterates of the function f

defined by (6) also converge to zeros of w on an open dense subset of #, the

convergence being faster than for the function defined by (5).

Acknowledgements. We would like to thank Marcus Jankowski and Jim Langley

for valuable comments, and the referee of this paper for a number of helpful

suggestions that led to an improvement of the paper.

References

1. M. A and I. A. S, Handbook of mathematical functions (Dover, New York, 1965).
2. I. N. B, ‘Wandering domains in the iteration of entire functions ’, Proc. London Math. Soc. (3)

49 (1984) 563–576.
3. I. N. B, J. K and Y. L$ , ‘ Iterates of meromorphic functions I ’, Ergodic Theory Dynam.

Systems 11 (1991) 241–248.
4. I. N. B, J. K and Y. L$ , ‘ Iterates of meromorphic functions III : preperiodic domains ’,

Ergodic Theory Dynam. Systems 11 (1991) 603–618.
5. I. N. B, J. K and Y. L$ , ‘ Iterates of meromorphic functions IV: critically finite functions ’,

Results Math. 22 (1992) 651–656.
6. S. B and I. L, ‘On the oscillation theory of f §Af¯ 0 where A is entire ’, Trans. Amer. Math.

Soc. 273 (1982) 351–363.
7. A. F. B, Iteration of rational functions (Springer, New York, 1991).
8. W. B, ‘Newton’s method and a class of meromorphic functions without wandering

domains ’, Ergodic Theory Dynam. Systems 13 (1993) 231–247.
9. W. B, ‘ Iteration of meromorphic functions ’, Bull. Amer. Math. Soc. 29 (1993) 151–188.

10. W. B, ‘ Invariant domains and singularities ’, Math. Proc. Cambridge Philos. Soc. 117 (1995)
525–532.

11. W. B and N. T, ‘Weakly repelling fixpoints and the connectivity of wandering
domains ’, Trans. Amer. Math. Soc. 348 (1996) 1–12.

12. W. B, M. H, H. K, H.-G. M and N. T, ‘On the limit functions of
iterates in wandering domains ’, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993) 369–375.

13. W. B, F.  H, H. K, H.-G. M and N. T, ‘Newton’s method for
meromorphic functions ’, Complex analysis and its applications, Pitman Research Notes in
Mathematics 305 (eds. C. C. Yang, G. C. Wen, K. Y. Li and Y. M. Chiang; Pitman, 1994)
147–158.

14. L. C and T. W. G, Complex dynamics (Springer, New York, 1993).
15. A. D and J. H. H, ‘On the dynamics of polynomial-like mappings ’, Ann. Sci. EU cole

Norm. Sup. (4) 18 (1985) 287–343.
16. A. E. E and M. Y. L, ‘ Iterates of entire functions ’, Dokl. Akad. Nauk. SSSR 279

(1984) (in Russian) ; So�iet Math. Dokl. 30 (1984) 592–594 (in English).
17. A. E. E and M. Y. L, ‘Examples of entire functions with pathological dynamics ’, J.

London Math. Soc. (2) 36 (1987) 458–468.
18. A. E. E and M. Y. L, ‘Dynamical properties of some classes of entire functions ’, Ann.

Inst. Fourier (Grenoble) 42 (1992) 989–1020.
19. P. F, ‘Sur les e!quations fonctionelles ’, Bull. Soc. Math. France 47 (1919) 161–271 and Bull. Soc.

Math. France 48 (1920) 33–94, 208–314.



330         

20. P. F, ‘Sur l’ite! ration des fonctions transcendantes entie' res ’, Acta Math. 47 (1926) 337–360.
21. S. G and R. V, ‘Application of Julia–Fatou iteration theory in dielectric spec-

troscopy’, Computational solution of nonlinear systems of equations, Lectures in Applied
Mathematics 26 (eds. E. L. Allgower and F. George; American Mathematical Society, Provi-
dence, RI, 1990) 189–208.

22. L. R. G and L. K, ‘A finiteness theorem for a dynamical class of entire functions ’,
Ergodic Theory Dynam. Systems 6 (1986) 183–192.

23. G. G and E. S, ‘A generalization of the Airy integral for f §®znf¯ 0’, Trans.
Amer. Math. Soc. 337 (1993) 737–755.

24. W. K. H, Meromorphic functions (Clarendon Press, Oxford, 1964).
25. M. H, ‘Are there critical points on the boundaries of singular domains?’, Comm. Math. Phys.

99 (1985) 593–612.
26. E. H, ‘Zero point problems for linear differential equations of the second order ’, Mat. Tidsskrift

B (2) (1927) 25–44.
27. E. H, Ordinary differential equations in the complex domain (John Wiley, 1976).
28. A. H, ‘ Iteration and the zeros of the second derivative of a meromorphic function’, Proc.

London Math. Soc. (3) 65 (1992) 629–650.
29. J. L. H and R. V, ‘Attractive cycles in the iteration of meromorphic functions ’,

Numer. Math. 46 (1985) 323–337.
30. A. H and R. C, Vorlesungen uX ber allgemeine Funktionentheorie und elliptische

Funktionen (Springer, 4th ed., 1964).
31. G. J and L. V, EinfuX hrung in die Theorie der ganzen und meromorphen Funktionen mit

Anwendungen auf Differentialgleichungen (Birkha$ user, 1985).
32. G. J, ‘Sur l’ite! ration des fonctions rationelles ’, J. Math. Pures Appl. 4 (1918) 47–245.
33. I. L, Ne�anlinna theory and complex differential equations (de Gruyter, New York, 1993).
34. J. M, ‘Dynamics in one complex variable : introductory lectures ’, Preprint 1990}5, Stony Brook

Institute for Mathematical Sciences, 1990.
35. R. N, ‘U$ ber Riemannsche Fla$ chen mit endlich vielen Windungspunkten’, Acta Math. 58

(1932) 295–373.
36. R. N, Analytic functions (Springer, 1970).
37. G. M. S, ‘A class of meromorphic functions with no wandering domains ’, Ann. Acad. Sci.

Fenn. Ser. A I Math. 16 (1991) 211–226.
38. N. S, Rational iteration (de Gruyter, 1993).
39. D. S, ‘Quasiconformal homeomorphisms and dynamics I : solution of the Fatou–Julia

problem on wandering domains ’, Ann. of Math. 122 (1985) 401–418.
40. H. W, ‘Eindeutige Lo$ sungen der Differentialgleichung w«¯R(z,w) ’, Math. Z. 74 (1960)

278–288.

Fachbereich Mathematik Lehrstuhl II fu$ r Mathematik
Sekr. MA 8-2 RWTH Aachen
TU Berlin D-52056 Aachen
Straße des 17 Juni 136 Germany
D-10623 Berlin
Germany E-mail : terglan!math2.rwth-aachen.de

Present address :
Mathematisches Seminar
CAU Kiel
Ludewig-Meyn-Straße 4
D-24098 Kiel
Germany

E-mail : bergweiler!math.uni-kiel.de


