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Abstract. Stieltjes and Van Vleck polynomials arise in the study of the

polynomial solutions of the generalized Lamé differential equation. Our

object is to generalize a theorem due to Marden on the location of the zeros

of Stieltjes and Van Vleck polynomials. In fact, our generalization is

two-fold: Firstly, we employ sets which are more general than the ones used

by Marden for prescribing the location of the complex constants occurring

in the Lamé differential equation; secondly, Marden deals only with the

standard form of the said differential equation, whereas our result is equally

valid for yet another form of the same differential equation. The part of our

main theorem concerning Stieltjes polynomials may also be regarded as a

generalization of Lucas' theorem to systems of partial fraction sums.

1. Introduction. A generalized Lamé differential equation is a second order

linear differential equation of the form

(1.1) Q+
az

^-i"y

(* - «,)

dw   , *(*) n

where <3>(z) is a polynomial of degree at most (p — 2) and a¡, Oj are complex

constants. Heine [3] showed that there exist at most C (n + p — 2, p — 2)

polynomials V(z) such that for <3>(z) = V(z) equation (1.1) has a polynomial

solution S(z) of degree n. Each polynomial V(z) and the corresponding

polynomial S(z), associated with the differential equation (1.1), are, respec-

tively, called [1, p. 37] a Van Vleck polynomial and a Stieltjes polynomial.

We shall be primarily interested in determining the location of the zeros of

the systems of polynomials that arise in the study of the polynomial solutions

of the differential equation
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(1.2)

d\/

dz2

p      f Utí(z - bj)

dw
dz

*(*)

n;.,nj.,(2 - <g
w = 0,

where <E>(z) is a polynomial of degree at most (nx + n2+ • • • + np — 2) and

«¿j, 6y, and a, are suitable complex constants. We may, however, note that the

differential equation (1.2) can always be written in the form (1.1) by ex-

pressing each fraction (in the coefficient of dw/dz) into its partial fractions,

and that (1.2) is indeed of the form (1.1) in case «_, = 1 for all values of/.

Consequently, there do exist Stieltjes polynomials S(z) and Van Vleck

polynomials V(z) associated with the differential equation (1.2).

In order to avoid repetitions of long expressions and unnecessary details in

the treatment of our proofs throughout the next section, we shall freely use

the following abbreviations and notations: We shall denote by S(z) the

zith-degree Stieltjes polynomial corresponding to a Van Vleck polynomial

V(z) associated with the differential equation (1.2) or (1.1); the zeros of V(z),

S(z), and S'(z) will be denoted by tp zp and zj, respectively. We shall write

nj-\

(1.3)     fj(z) =U{z- bj),   gj(z) = n (z - ajs),   hj(z) =
z-i sA*)

for every j = 1, 2,... ,p (with the convention that^(z) = 1 for zz,. = 1), and

(1.4) F(z)=2ry/z,.(4
7-1

2. A generalization of Marden's theorem. In this section we generalize a

theorem due to Marden ([1, Theorem (9, 1)] or [2]) on the location of the

zeros of Stieltjes polynomials and of Van Vleck polynomials associated with

the differential equation (1.1). Our generalization is two-fold: Firstly, we use

sets which are more general than the ones used by Marden for prescribing the

location of the points a- (cf. (1.1)); secondly, Marden's theorem deals with the

polynomials S(z) and V(z) in relation to (1.1) only, whereas our result is

equally valid for both forms (1.1) and (1.2).

In order to prove our main theorem, we need to establish the following

lemmas on the zeros of the polynomials S(z) and V(z).

Lemma (2.1). Every zero zk of an nth-degree Stieltjes polynomial S(z),

associated with the differential equation (1.2), is either one of the points ajs

(I < j < p, I < s < nj) or satisfies the equation
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(2.1) jF(zk)+     2      7-T7 = 0'
¿ j*kJ-\   Zk       Zj

where F(z) is as defined by (1.4).

Proof. Let S(z) = E"^x(z — zj) be a Stieltjes polynomial corresponding to

a Van Vleck polynomial V(z). Then (cf. abbreviations (1.3)-(1.4)) the dif-

ferential equation (1.2) can be written as

(2.2) S"(z) + F(z)-S'(z) +
V(z)

n;-,*,-o)
S(z) = 0.

If zk ¥= ajs (1 < / < p, 1 < s < «,•) is a zero of S(z), then equation (2.2)

becomes

(2.3) S"(zk) + F(zk)-S[(zk) = 0.

If zk ¥= ajs, then two cases are to be considered:

Case 1. S'(zk) = 0. Using equation (2.3) and successively differentiating

equation (2.2) we observe that S^m\zk) = 0 for all m, which contradicts the

fact that the degree of S(z) is n. Hence, this case is impossible to happen.

Case 2. S'(zk) ¥= 0. Since zk is a nonrepeated zero of S(z) in this case, we

can write S(z) = (z - zk)T(z), where T(zk) ¥= 0. Therefore S'(zk) = T(zk)

and S"(zk) = 2T'(zk). Consequently, due to (2.3), we have

S"(zk) T'(zk) » ,

û (Z*J i (z*7 j*k-J-\  Zk       zj

That is,

j -^fe) +   i    —z— °-
¿ j*kj=l   Zk       Zj

This establishes our claim regarding the zeros of S (z).

Lemma (2.2). Every zero tk of a Van Vleck polynomial V(z), associated with

the diSferential equation (1.2), (/" not an ajs is either one oS the zeros oS S'(z) or

satisSies the equation

(2-4) F(tk) + "^ -^- = 0,
j-\   lk       Zj

Zj being the zeros of S'(z).

Proof. If tk is a zero of V(z) and if S(z) is a corresponding Stieltjes

polynomial, then from (1.2) we get

(2.5) S"(tk) + F(tk)-S'(tk) = 0.

If tk ¥= ajs and S'(tk) =£ 0, then
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s'Vk)    %x     i

where zj (1 < / < « - 1) are the zeros of S'(z). Thus, from (2.5) it follows

that

"-'       1

-F(tk) = 2 7^-7 •

That is, tk satisfies equation (2.4). The proof is now complete.

We now proceed to prove our main theorem.

Theorem (2.3). Let E be an ellipse with centre at the point c, semimajor axis

as a, and eccentricity e. Let 0 < y < 77/2 and

A = max{l,(l - e2/2)1/2secy}.

// |arg a-| < cos_1(l/A)/oz- every j = 1,2, ... ,p, and if all the points aJs, bjt

(occurring in equation (1.2)) lie on or inside E, then the zeros of each Stieltjes

polynomial S(z) and the zeros of each Van Vleck polynomial V(z), associated

with the differential equation (1.2), lie in the circular region

\z - c\< asec[{(q- 1)tt + cos" X(l/X)}/ (2q - 1)],

where q = max(zz,, n2, . . ., np).

0
Figure 1
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Proof. Let us draw a circle C with centre at the point c and radius as

TT = asec[{(a- \)ir + cos~x(\/X)}/ (2a - 1)].

Suppose, on the contrary, that one or more zeros zk of S(z) lie outside the

circle C and that z, is the one farthest from the centre c, so that all the zeros

of S(z) lie on or inside the circle C given by \z — c\ = |z,|. Let 9, 9',

respectively, denote the acute angles which the tangents from zx to the ellipse

E make with the tangent at the point zx on C (see Figure 1). Now join zx to

the centre c of the ellipse by a straight line, cutting the circle C at a point P

(say). Now draw the tangents PA ' and PB ' from the point P to the ellipse E.

Let ip, uV (resp. <p, <p') denote, respectively, the angles which the tangents from

the point z, (resp. P) to the ellipse make with the line joining the points zx

and c (Figure 1). Since zx is outside C, we see that \p < <p and \j/' < <p'. Let <p0

(resp. (pó) be the maximum value of <p (resp. <p') corresponding to all possible

positions that z, could take on the circle C. If p (resp. p') denotes the length

of the perpendicular dropped from the centre c upon the tangent PA' (resp.

PB'), we see that sin <p = p/R' (resp. sin 9/ = p'/R') and that <p (resp. <p')

takes a maximum value when p = a (resp. p' = a). Therefore,

(2.6) sin (¡p0 = sin <p'Q = cos((a - 1)77 + cos"'(l/A)}/ (2q - 1).

Now, the definition of X implies that 0 < cos~'(1/a) < y < tt/2. Using

these inequalities, we can easily verify that

(2.7) 0 < {(? - 1)77 + cos-i(1/a)}/ (2a - 1) < 77/2

and that

(a - 1)77 + cos-,(1/a)       (nj - \)ir + cos-'(l/A)

(2-8)    -TTn-ñ- >-T->-T^-'       1 < / < P-(2a - 1) (2/1. - 1)

Since, \p < (¡s < q>0 and \b' < <p' < <p'0, from (2.6) and (2.7) we conclude that

9 = (77/2 - *) > (77/2 - <p0) = {(a - 1)77 + cos-'O/À)}/ (2a - 1)

and

9' = (77/2 - f) > (77/2 - V¿) = {(a - 1)77 + COS-'il/X)}/ (2a - 1).

Consequently, due to inequalities (2.8), we have

(n, - IW + cos-'H/a)
(2.9)     9, 9' > -^- - pj   (say)   V/ - 1,2.p.

(2«,. - 1)

Let S(z) = IT"=1(z - Zj). If any zero zk of S(z) is one of the points ajs, then

it lies in C and we are done. However, if a zero zk is none of the points ajs,

then (cf. Lemma (2.1)) zk satisfies equation (2.1). In particular (for k = 1), we

have
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¿ j-2 Z\       Zj

Therefore,

I.Jf(2l).(i,-„,)+|J|^).0,

where zz, is any point on the tangent drawn to the circle |z — c\ = |z,| at the

point zx, i.e.,

P /v.

(2.10)   2 \ -im-ie^) +k^h
Since all the zeros zk lie in |z — c\ < |z,|, we get

(2.11) 0 < argi j-^y j < m   V/ = 2, 3,..., n.

Next, we also observe that the inequalities

(2.12) -(m - 9') < argi j-^ j < - 9

and

(2.13) 9 < argi *'_g' \<ir-9'

hold for every j = 1, 2,... ,p; s = 1,2,..., ny, t — 1,2,..., «,_,. Inequali-

ties (2.9), (2.12), and (2.13) imply that

- («,- - 1)(tt - p,) < arg
z-ll2l-"l/

< -(«,-l)/4

and

^<Mg[,?I(ir^)]<^-^)

for all values of/ = 1,2,... ,p. Using the above inequalities and the value of

Pj from (2.9), a simple calculation yields the following inequalities:

n,-\

(2.14)

cos~'(l/A) < arg "n'(íizM.g(í-M

< m - cos"'(I/A)
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for every / = 1, 2,... ,p. In view of (2.14) and the hypothesis on aJt we

conclude that

(2.15) 0<arg fi(^)-km) < m

for every/ = 1,2,... ,p. Hence, in the light of inequalities (2.11) and (2.15),

the imaginary part of each term on the left-hand side of equation (2.10) is

positive. This contradicts the fact that zx satisfies equation (2.10). Therefore,

all the zeros of S(z) lie on or inside the circle C.

Now, we prove the second part of our theorem for a Van Vleck polynomial

V(z) corresponding to an «th-degree Stieltjes polynomial S(z). Proceeding as

in the case of Stieltjes polynomials and assuming r, to be a zero of V(z) lying

outside the circle C and farthest from the centre c, we see that all the zeros of

V(z) lie on or inside the circle C given by \z — c\ = \tx\. Our previous

diagram (Figure 1) remains the same except that r, replaces zx. If tx = ajs,

then tx is in E and, hence, in C. In case tx is a zero of S'(z), then the Lucas

theorem [1, Theorem (6, 2)], [4], [5], [6], together with the first part of our

theorem (just proved), implies that tx lies in C and, hence, the theorem

follows. In case tx is not a zero of S'(z), then (cf. Lemma (2.2)) it satisfies

equation (2.4) with k — 1. Hence

Hh)+2
J-i

Therefore,

1
U-z'j

= 0.

n-\

*"('.)• ('.-«.)+2
t, - z'

= 0,
j-l  M      -j

where «, is any point on the tangent to the circle \z — c\ = |r,| at the point *,,

Since the points z¿ lie in C, we may replace z, by z'} and zx by tx in inequalities

(2.11) and (2.15) and obtain

0< arg(H)<"V/ = 1, 2,..., n - 1,

and

0<arg ^-imim < m,        1 < / < p.
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Consequently, the imaginary part of each term on the left-hand side of

equation (2.16) is positive, which contradicts the fact that tx satisfies equation

(2.16). Hence, all the zeros of V(z) also lie on or inside the circle C.

This completes the proof of Theorem (2.3).

An immediate consequence of Theorem (2.3) is the following result, exclu-

sively in terms of the differential equation (1.1).

Corollary (2.4). Let E be an ellipse with centre at the point c, semimajor

axis as a, and eccentricity e. Let 0 < y < 7r/2 and

A = max{l,(l - e2/2)1/2secy}.

// |arg Oj\ < cos~'(l/A) for every / = 1, 2, . . . ,p and if all the points Oj

(1 < j < p) lie on or inside E, then the zeros of each Stieltjes polynomial S(z)

and the zeros of each Van Vleck polynomial V(z), associated with the differen-

tial equation (1.1), lie in the circular region \z — c\ < Aa.

Proof. In Theorem (2.3), if we take all zz/s to be 1 (i.e. q = 1), then the

differential equation (1.2) reduces to the differential equation (1.1), with the

constants a, corresponding to the constants ajX, and Corollary (2.4) is then

obvious.

The following corollary is a special case of Theorem (2.3) for circles.

Corollary (2.5). // |arg a,-| < y < m/2for eveiyj = 1, 2, ... ,p and if all

the points aJs, bjt (occurring in the differential equation (1.2)) lie on or inside the

circle C: \z — c\ = a, then the zeros of each Stieltjes polynomial and the zeros

of each Van Vleck polynomial, associated with the differential equation (1.2), lie

in the circular region \z — c\ < a sec[{(<7 — l)m + y}/(2q — 1)].

Proof. In Theorem (2.3), if we take e = 0 (i.e. if E is taken as the circle C),

then A = sec y, and the corollary follows at once.

If we put q = 1 in Corollary (2.5), we deduce the following well-known

result due to Marden [1, Theorem (9.1)], [2], the proof being similar to that of

Corollary (2.4).

Corollary (2.6). In the differential equation (1.1), if |arg a,| < y < m/2for

every j = 1, 2, . . . ,p and if all the points a} lie on or inside a circle C:

\z — c\ = a, then the zeros of each Stieltjes polynomial and the zeros of each

Van Vleck polynomial, associated with the differential equation (1.1), lie on or

inside a concentric circle C: \z — c\ = a sec y.

Remark. It may be noted that the theorem as stated by Marden [1,

Theorem (9, 1)], [2] is, in fact, the same as Corollary (2.6) for the case when

the centre c = 0. But the same proof as given by him is valid also for the

general case when the centre c is not necessarily at the origin.
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As an application of Theorem (2.3), we prove

Theorem (2.7). Let 0 < y < 77/2 and ¡1 = max{l, (sec y)/V2 }. If |arg a-|

< cos_1(l/ju)/or every j — 1,2, ... ,p and if all the points ajs, bJt (occurring in

equation (1.2)) lie in the real interval [ — a, a], then the zeros of each Stieltjes

polynomial S(z) and the zeros of each Van Vleck polynomial V(z), associated

with the differential equation (1.2), lie in

|z|<asec[{(a- 1)77 + cos^l/fx)}/ (2a - 1)],

where q = max{«], n2, . . . , np).

Proof. Let Se denote the closed interior of an ellipse Ee with centre at the

origin, semimajor axis as a, and eccentricity e, and let

A, = max{l,(l -e2/2)1/2secy}.

Then [-a, a] = De£[0tX)Se and (1 - e2/2)x/2- sec y decreases continuously

and monotonically to (1/V2 ) • sec y as e increases in [0, 1). Obviously, then

[ — a, a] C Se for every e£[0, 1) and Xe decreases continuously and mono-

tonically to u as e increases in [0, 1) (easy to verify this statement for the

cases when y < 77/4 and y > 77/4 respectively). Therefore,

(2.17) |arg ay\ < cos~x(l/ix) < cos_,(1/a,)   Ve e[0, 1)

and

(2.18) ajs, bß ESe   Ve G [O, 1),       1 < j < p; 1 < s < n¡\ 1 < t < n¡ - 1.

In view of (2.17) and (2.18), we can apply Theorem (2.3) and conclude that

the zeros of each S(z) and of each V(z) lie in

= Re   (say)   VeE[0, 1).

Since Xe decreases continuously and monotonically to ¡i as e increases in [ 0,

1), we conclude that Re decreases continuously and monotonically to

asec[{(a- 1)77 + cos^l/p)}/ (2a - l)] = T?(say).

Finally, it is easy to see that the zeros of each S(z) and those of each V(z)

lie in \z\ < R. For, otherwise, it would contradict that the disc \z\ < Re

contains all the zeros of S(z) and those of V(z) for all values of e. This

completes our proof.

The following corollary is an immediate consequence of the above theorem

for the case when a = 1 (use the same explanation as in the proof of

Corollary (2.4)).

|z| < a sec
(a- 1)77 + cos" \\/\t)

(2? - O

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



288 NEYAMAT ZAHEER AND MAHFOOZ ALAM

Corollary (2.8). Let 0 < y < 7r/2 and p = max{l, (1/V2 )sec y}. In

equation (1.1), if |arg a-| < cos_1(l/p)/or every j = 1,2,. .. ,p and if all the

points üj lie in the real interval [ — a, a], then the zeros of each Stieltjes

polynomial S(z) and the zeros of each Van Vleck polynomial V(z), associated

with the differential equation (1.1), lie in \z\ < pa.

Finally, it may be remarked that the part of our Theorem (2.3) that

concerns Stieltjes polynomials may be regarded as a generalization of Lucas'

theorem [1, Theorems (6, 1), (6, 1)', (6, 2)] to systems of partial fraction sums.
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