ON THE ZEROS OF STIELTJES AND VAN VLECK POLYNOMIALS¹

BY

G. M. Shah

1. Introduction

The generalized Lamé differential equation with which we shall be concerned is

(1.1)
$$\prod_{j=1}^{p} (x - a_j)[y'' + (\sum_{j=1}^{p} \alpha_j / (x - a_j))y'] + V(x)y = 0,$$

where all α_j are positive and $a_1 < a_2 < \cdots < a_p$. Also V(x) is a polynomial of degree (p-2) in x to be specified presently. It is known [5] that there exist exactly C(n + p - 2, p - 2) polynomials V(x) of degree (p - 2)such that corresponding to each such V(x) the equation (1.1) has a polynomial solution S(x) of degree n. Such S(x) are called *Stieltjes polynomials* and the corresponding V(x) are known as Van Vleck polynomials in the literature (see e.g. [2]). It has been shown that the zeros of all such S(x) lie in (a_1, a_p) and those of the V(x) also lie in (a_1, a_p) ([1] and [7]). Given a decomposition of the positive integer n into n_1, n_2, \dots, n_{p-1} nonnegative integers with $\sum_{j=1}^{p-1} n_j = n$, it was shown by Stieltjes [5] that there exists exactly one polynomial solution S(x) of degree n with n_j $(j = 1, 2, \dots, n_j)$ p-1) zeros in (a_j, a_{j+1}) . This result gives completely the location of the zeros of S(x) in various intervals (a_j, a_{j+1}) $(j = 1, 2, \dots, p-1)$. The object of this paper is to give such information about the zeros of Van Vleck polynomials V(x). In Section 2 we prove two lemmas which, in turn, are used in Section 3 to show that each V(x) can have at most two zeros in any interval $(a_j, a_{j+1}), 2 \leq j \leq p-2$. It is also shown that each of the intervals (a_1, a_2) , (a_{p-1}, a_p) contains at most one zero of V(x). Section 4 deals with the bounds for the zeros of S(x). These bounds can be used to give some known bounds for various classical polynomials.

2. Lemmas

In this section we intend to construct a function whose only zeros are the zeros of S(x) and those of the corresponding V(x). This will be done by proving the following two lemmas.

LEMMA 1. A necessary and sufficient condition that an a_j $(j = 1, 2, \dots, p)$ be a zero of V(x) is that it be a zero of the derivative S'(x) of the corresponding S(x).

Received July 8, 1968.

¹ This paper is part of the author's doctoral dissertation written at the University of Wisconsin-Milwaukee under the supervision of Professor M. Marden.

Proof. (Necessity). Suppose that a_j , $1 \le j \le p$ is a zero of V(x). Since the equation (1.1) holds for $x = a_j$, it follows that either α_j is zero or S'(x) has a zero at a_j . In view of the hypothesis that all α_j are positive we have that a_j is a zero of S'(x).

(Sufficiency) Suppose that a_k is a zero of S'(x). Then equation (1.1) yields for $x = a_k$, $V(a_k)S(a_k) = 0$. Since $S(a_k) \neq 0$, (S(x)) has all its zeros simple) it follows that V(x) has a zero at a_k .

For convenience we denote by P the class of Van Vleck polynomials V(x) which have each no zero at any a_j , $1 \leq j \leq p$ and the class consisting of the remaining V(x) will be denoted by Q. It is easy to construct examples to show that neither P nor Q need be empty. The next lemma and the results of section 3 will deal with members of class P. It will, however, be shown at the end of Section 3 how the results obtained for the members of class P can be modified for the members of class Q.

LEMMA 2. The zeros of a Van Vleck polynomial V(x) of degree (p-2)and of class P and those of the corresponding Stieltjes polynomial S(x) of degree n are the zeros of the function

$$F(x) = \sum_{j=1}^{n-1} \frac{1}{(x - x'_j)} + \sum_{j=1}^{p} \frac{\alpha_j}{(x - a_j)}$$

and conversely, where x'_j $(j = 1, 2, \dots, n-1)$ are the zeros of the derivative of S(x).

Proof. Let S(x) be a Stieltjes polynomial of degree n such that the corresponding V(x) is of class P. Let

$$S(x) = \prod_{j=1}^{n} (x - x_j), \quad S'(x) = n \prod_{j=1}^{n-1} (x - x'_j),$$
$$V(x) = A \prod_{k=1}^{p-2} (x - t_k),$$

A a constant. Since $S'(x_k) \neq 0$, for zeros of S(x) are all real and distinct [4], we have from equation (1.1), for $x = x_k$,

$$S''(x_k)/S'(x_k) + \sum_{j=1}^{p} \alpha_j/(x_k - a_j) = 0 \qquad (k = 1, 2, \cdots, n)$$

(2.1)
$$\sum_{j=1}^{n-1} \frac{1}{x_k - x_j} + \sum_{j=1}^{p} \alpha_j \ (x_k - a_j) = 0$$
 $(k = 1, 2, \dots, n).$

Now, consider a zero t_k of V(x). In view of the fact that $V(x) \in P$, $t_k \neq a_j$, $1 \leq j \leq p$ and $S'(t_k) \neq 0$ by Lemma 1. Hence for $x = t_k$, equation (1.1) yields

$$S''(t_k)/S'(t_k) + \sum_{j=1}^{p} \alpha_j/(t_k - a_j) = 0 \qquad (k = 1, 2, \dots, p-2)$$

or

(2.2)
$$\sum_{j=1}^{n-1} \frac{1}{t_k} - x'_j + \sum_{j=1}^p \frac{\alpha_j}{t_k} - a_j = 0$$
 $(k = 1, 2, \dots, p-2).$

Equations (2.1) and (2.2) show that the zeros of any S(x) and those of the corresponding V(x), if $V(x) \in P$, are among the zeros of the function

(2.3)
$$F(x) \equiv \sum_{j=1}^{n-1} \frac{1}{(x-x'_j)} + \sum_{j=1}^{p} \frac{\alpha_j}{(x-a_j)}.$$

On the other hand, it is easy to see that F(x) has only (n + p - 2) zeros, equal to the number of zeros of S(x) and of V(x).

To prove the converse, we note that if ν is a zero of F(x), then for $x = \nu$, equation (1.1) becomes

(2.4) $\prod_{j=1}^{p} (\nu - a_j) [S''(\nu) + S'(\nu) \sum_{j=1}^{p} \alpha_j / (\nu - a_j)] + V(\nu) S(\nu) = 0.$

We assert that $S'(\nu) \neq 0$, for otherwise $V(\nu) = 0$ and $\nu = a_k$ for some k by Lemma 1, which would contradict that $V(x) \in P$. Hence equation (2.4) can be simplified to

$$\frac{S''(\nu)}{S'(\nu)} + \sum_{j=1}^{p} \frac{\alpha_j}{\nu - a_j} + \frac{V(\nu)S(\nu)}{S'(\nu)\prod_{j=1}^{p} (\nu - a_j)} = 0$$

which in turn gives $V(\nu)S(\nu) = 0$. Hence ν is either a zero of S(x) or of the corresponding V(x).

3. Zeros of V(x)

Strong use of Lemma 2 is made in obtaining the results of this section.

THEOREM I. Any interval (a_k, a_{k+1}) , $1 \leq k \leq p - 1$, which does not contain any zero of S'(x) contains at most one zero of the corresponding V(x), if $V(x) \in P$.

Proof. By Lemma 2, since $V(x) \in P$, the zeros of V(x) are among the zeros of the function

(3.1)
$$F(x) \equiv \sum_{j=1}^{n-1} \frac{1}{(x-x'_j)} + \sum_{j=1}^{p} \alpha_j (x-a_j).$$

Differentiating the identity (3.1), we have

$$F'(x) \equiv -\sum_{j=1}^{n-1} \frac{1}{(x-x_j')^2} - \sum_{j=1}^{p} \frac{\alpha_j}{(x-a_j)^2}.$$

Thus F(x), apart from (n + p - 1) points of discontinuity, namely x'_j $(j = 1, 2, \dots, n-1)$ and a_s $(s = 1, 2, \dots, p)$, is differentiable in $[a_1, a_p]$ and a decreasing function of x in each interval of continuity.

We now restrict our attention to a fixed interval (a_k, a_{k+1}) . As $x \to a_k +$, $F(x) \to +\infty$ and as $x \to a_{k-1} -$, $F(x) \to -\infty$. Thus, if (a_k, a_{k+1}) does not tain any x'_j , F(x) is continuous in (a_k, a_{k+1}) and decreases from $+\infty$ to $-\infty$ as x varies from a_k to a_{k+1} . Hence F(x) changes sign just once in (a_k, a_{k+1}) . In view of Lemma 2, either V(x) or S(x) has one zero, namely the zero of F(x)in (a_k, a_{k+1}) .

An immediate sequence of the above result is the following:

COROLLARY 1. Any interval $(a_k, a_{k+1}), 1 \leq k \leq p - 1$, which does not contain any zero of S'(x) and S(x) contains precisely one zero of the corresponding V(x), if $V(x) \in P$.

It is easy to see that among C(n + p - 2, p - 2) Stieltjes polynomials S(x) of degree *n* there are (p - 1) polynomials which have each all its zeros

in one interval (a_j, a_{j+1}) $(j = 1, 2, \dots, p-1)$. It follows from Lemma 1 that all V(x) corresponding to such S(x) are in class P. The following result gives the distribution of the zeros of such V(x).

THEOREM II. If all the zeros of a Stieltjes polynomial S(x) of degree n lie in $(a_j, a_{j+1}), 1 \leq j \leq p - 1$, then no zero of the corresponding V(x) lies in (a_j, a_{j+1}) and each of the remaining (p - 2) intervals (a_k, a_{k+1}) $(k \neq j, 1 \leq k \leq p - 1)$ contains precisely one zero of V(x).

Proof. As all the zeros of S(x) are in (a_j, a_{j+1}) , all x'_j , the zeros of S'(x) are contained in this interval [4]. Consequently no x'_j or x_j is contained in any (a_k, a_{k+1}) $(k \neq j, k = 1, 2, \dots, p-1)$. It follows by Corollary 1 that V(x) has one zero in each interval (a_k, a_{k+1}) $(k \neq j, k = 1, 2, \dots, p-1)$. Since V(x) is of degree (p-2) and the number of the intervals (a_k, a_{k+1}) $(k \neq j, k = 1, 2, \dots, p-1)$. It follows by Corollary 1 that $(k \neq j, k = 1, 2, \dots, p-1)$.

THEOREM III. Any two consecutive zeros of S(x) if not separated by any a_i are not separated by a zero of the corresponding V(x), if $V(x) \in P$. More generally, any $q \ (q \leq n)$ consecutive zeros of S(x) if not separated by any a_i are not separated by zeros of the corresponding V(x), if $V(x) \in P$.

Proof. Let x_k , x_{k+1} be two successive zeros of S(x) with $x_k < x_{k+1}$ which are not separated by any a_j . Thus both x_k and x_{k+1} lie in the same interval, say (a_j, a_{j+1}) . We have to show that V(x) has no zero in (x_k, x_{k+1}) .

By Rolle's theorem, S'(x) vanishes once between x_k and x_{k+1} , say at x'_k . Thus $x_k < x'_k < x_{k+1}$. $F(x_k) = 0$ and as $x \to x'_k - F(x) \to -\infty$. Hence F(x) decreases continuously from 0 to $-\infty$ as x varies from x_k to x'_k . Consequently F(x) has no zero in the open interval (x_k, x'_k) . Similarly F(x) decreases from $+\infty$ to 0 as x moves from x'_k to x_{k+1} and has, therefore, no zero in the open interval (x'_k, x'_{k+1}) .

To prove the last assertion, let $x_k < x_{k+1} < \cdots < x_{k+q-1}$ be q consecutive zeros of S(x) not separated by any a_j . These zeros, then, lie in the same interval, say in (a_j, a_{j+1}) . In view of the simplicity and reality of the zeros of S(x) the inequalities

$$a_j < x_k < x'_k < x_{k+1} < \cdots < x'_{k+q-2} < x_{k+q-1} < a_{j+1}$$

hold, where x'_j $(j = k, \dots, k+q-2)$ denote the zeros of S'(x) in (x_k, x_{k+q-1}) . By repeated application of the argument used in the proof of the first part of this theorem it follows that V(x) has no zero in (x_k, x_{k+q-1}) .

The following result gives information about the zeros of those $V(x) \in P$ whose corresponding S(x) have their zeros in more than one interval (a_j, a_{j+1}) .

THEOREM IV. Let $x_{k+1} < x_{k+2} < \cdots < x_{k+r}$ be r zeros of $S(x), 1 \le r \le n$, in $(a_j, a_{j+1}), 1 \le j \le p - 1$, then the corresponding V(x), if $V(x) \in P$, has at most one zero in (a_j, x_{k+1}) , at most one zero in (x_{k+r}, a_{j+1}) and no zero in (x_{k+1}, x_{k+r}) . *Proof.* That V(x) has no zero in (x_{k+1}, x_{k+r}) is the content of Theorem III. It is obvious that (a_j, x_{k+1}) contains at most one zero of S'(x). In case (a_j, x_{k+1}) does not contain any zero of S'(x), then F(x) is a continuously decreasing function of x in (a_j, x_{k+1}) . Also as $x \to a_j +$, $F(x) \to +\infty$ and $F(x_{k+1}) = 0$. Thus F(x) and by Lemma 2, V(x) has no zero in (a_j, x_{k+1}) .

In case (a_j, x_{k+1}) does contain one zero of S'(x), say x'_k , then $a_j < x'_k < x_{k+1}$, for $V(x) \in P$ and zeros of S(x) are simple. Again, F(x) is a continuously decreasing function of x in (a_j, x'_k) . As $x \to a_j +$, $F(x) \to +\infty$ and as $x \to x'_k -$, $F(x) \to -\infty$. Hence F(x) has precisely one zero in (a_j, x'_k) . This zero of F(x) cannot be a zero of S(x), since the smallest zero of S(x)in (a_j, a_{j+1}) , by hypothesis, is x_{k+1} and $x'_k < x_{k+1}$. Therefore, this zero of F(x) must be a zero of V(x). It is easy to see that no zero of V(x) lies in (x'_k, x_{k+1}) , for F(x) decreases continuously from $+\infty$ to 0 in this interval. It can be shown similarly that V(x) has at most one zero in (x_{k+r}, a_{j+1}) .

The following corollaries follow from the proof of the above theorem.

COROLLARY 2. Any interval $(a_j, a_{j+1}), 1 \leq j \leq p-1$, which contains (n-1) zeros of S(x), contains at most one zero of the corresponding V(x), if $V(x) \in P$.

COROLLARY 3. The intervals (a_1, a_2) and (a_{p-1}, a_p) contain each at most one zero of V(x), if $V(x) \in P$.

We take up now the class Q of Van Vleck polynomials V(x) which have some of the zeros at a_j , $2 \le j \le p - 1$. In view of Lemma 1, the corresponding S'(x) have also zeros at these a_j . We intend to show that all the results following Lemma 2 are still valid except that open intervals (a_j, a_{j+1}) are to be replaced by closed intervals $[a_j, a_{j+1}]$.

For convenience, let us suppose that V(x) has a zero at a_k and that the remaining (p-3) zeros of V(x) do not coincide with any a_j . By Lemma 1, the corresponding S'(x) has a zero at a_k . Then, let

$$S'(x) = n(x - a_k) \sum_{j=1}^{n-2} (x - x'_j) \text{ and } V(x) = A(x - a_k) \prod_{j=1}^{p-3} (x - t_j).$$

For a zero x_i of S(x), we have then, from equation (1.1)

$$S''(x_i)/S'(x_i) + \sum_{j=1}^{p} \alpha_j/(x_i - a_j) = 0 \qquad (i = 1, 2, \dots, n)$$

or

(3.2)
$$\sum_{j=1}^{n-2} \frac{1}{(x_i - x'_j)} + \frac{1}{(x_i - a_k)} + \sum_{j=1}^{p} \frac{\alpha_j}{(x_i - a_j)} = 0$$

(*i* = 1, 2, ..., *n*).

We have used the fact that no $x_i = a_j$ $(j = 1, 2, \dots, p)$ which is well known. Also, for a zero $t_i \neq a_k$ of V(x), equation (1.1) gives,

$$S''(t_i) + S'(t_i) \sum_{j=1}^{p} \alpha_j / (t_i - a_j) = 0 \qquad (i = 1, 2, \dots, p - 3).$$

In view of Lemma 1, $S'(t_i) \neq 0$, thus

$$S''(t_i)/S'(t_i) + \sum_{j=1}^{p} \alpha_j/(t_i - a_j) = 0$$

or

(3.3)
$$\sum_{j=1}^{n-2} \frac{1}{(t_i - x'_j)} + \frac{1}{(t_i - a_k)} + \sum_{j=1}^{p} \frac{\alpha_j}{(t_i - a_j)} = 0 \quad (i = 1, 2, \dots, p-3).$$

Equations (3.2) and (3.3) show that the zeros of S(x) and those of the corresponding V(x), apart from a_k , are the zeros of the function

(3.4)
$$G(x) = \sum_{j=1}^{n-2} \frac{1}{x-x_j} + \frac{1}{x-a_k} + \sum_{j=1}^{p} \frac{\alpha_j}{x-a_j}.$$

It is clear from equation (3.4) and Lemma 2 that we can get the zeros of S(x) and those of V(x), apart from a_k (which is a zero of V(x)) directly from F(x) by replacing the zero of S'(x) which coincides with a_k by a_k . Also G(x) has (n + p - 3) zeros. Among these are n zeros of S(x) and (p - 3) zeros of V(x). We may then state the following lemma.

LEMMA 2'. The zeros of a V(x), which has one zero at a_k , $2 \le k \le p - 1$, and the remaining zeros not coinciding with any a_j , and the zeros of the corresponding S(x) are the zeros of the function $(x - a_k)G(x)$, where G(x) is given by equation (3.4).

In view of Lemma 2', the modification in the proofs of earlier results in case $V(x) \in Q$ is obvious. In those results the open intervals (a_j, a_{j+1}) are to be replaced by the closed intervals $[a_j, a_{j+1}]$.

4. Bounds for the zeros of S(x)

The following theorem of Laguerre [3, p. 59] will be used to obtain some bounds for the zeros of S(x).

THEOREM (Laguerre). Let f(x) be a polynomial of degree n and x_0 one of its simple zeros. Then any circle through the points x_0 and $x'_0 = x_0 - 2(n-1)f'(x_0)/f''(x_0)$ separates the zeros of f(x) unless all the zeros lie on the circumference of this circle. The same is true if a straight line replaces this circle.

The following result gives the bounds for the zeros of S(x).

THEOREM V. If x_1 and x_n are the smallest and the largest zeros of any Stieltjes polynomial S(x) of degree n, then

(4.1)
(i)
$$\sum_{j=1}^{p} \alpha_j / (x_n - a_j) < 2(n-1)/(a_1 - x_n)$$

(ii) $\sum_{j=1}^{p} \alpha_j / (x_1 - a_j) > 2(n-1)/(a_p - x_1).$

Proof. We prove only (i). (ii) can be proved similarly. For $x = x_n$, equation (1.1) gives

(4.2)
$$S''(x_n) + (\sum_{j=1}^{p} \alpha_j / (x_n - a_j)) S'(x_n) = 0$$

or

$$2\sum_{j=1}^{n-1} \frac{1}{(x_n - x_j)} + \sum_{j=1}^{p} \frac{\alpha_j}{(x_n - a_j)} = 0,$$

where $S(x) = \prod_{j=1}^{n} (x - x_n)$. Thus

(4.3)
$$\sum_{j=1}^{p} \alpha_j / (x_n - a_j) = -2 \sum_{j=1}^{n-1} 1 / (x_n - x_j) < 0.$$

Also, $S''(x_n) \neq 0$, for otherwise, equation (4.2) would give $S'(x_n) = 0$. Therefore,

$$S'(x_n)/S''(x_n) = -(\sum_{j=1}^p \alpha_j/(x_n-a_j))^{-1}.$$

So

 $x'_{n} = x_{n} - 2(n-1)S'(x_{n})/S''(x_{n}) = x_{n} + 2(n-1)\left(\sum_{j=1}^{p} \alpha_{j}/(x_{n}-a_{j})\right)^{-1}.$

We assert that

$$x_1 < x_n + 2(n-1)(\sum_{j=1}^p \alpha_j/(x_n - a_j))^{-1},$$

for otherwise, since in view of inequality (4.3), $x'_n < x_n$, we could draw a circle through x_n and x'_n which would include all the zeros of S(x) in its interior, a contradiction to the above theorem of Laguerre.

Thus

$$a_1 < x_1 < x_n + 2(n-1)(\sum_{j=1}^p \alpha_j/(x_n - a_j))^{-1}$$

or

$$\sum_{j=1}^{p} \alpha_j / (x_n - a_j) < 2(n-1) / (a_1 - x_n).$$

It may be remarked that some classical orthogonal polynomials, e.g., Legendre, Jacobi, and Tchebychif polynomials are special cases of Stieltjes polynomials up to a constant factor. The bounds for their zeros given in [6, p. 118] can be obtained directly from inequalities (4.1).

BIBLIOGRAPHY

- 1. M. BOCHER, The roots of polynomials which satisfy certain linear differential equations of the second order, Bull. Amer. Math. Soc., vol. 4 (1898), pp. 256-258.
- M. MARDEN, Geometry of polynomials, 2nd ed., Math. Surveys, no. 3, Amer. Math. Soc., Providence, R.I., 1966.
- 3. G. PÓLYA AND G. SZEGÖ, Aufgaben Und Lehrsätze aus der Analysis, vol. 2, Springer, Berlin, 1925.
- 4. G. M. SHAH, Zeros of polynomial solutions of generalized Lamé differential equation, Ph.D. Dissertation, University of Wisconsin-Milwaukee, 1966.
- T. J. STIELTJES, Sur certains, polynômes que vérifient une équation différentielle linéaire du second, ordre et sur la theorie des fonctions de Lamé, Acta Math., vol. 6 (1885) pp. 321-326.
- G. SZEGÖ, Orthogonal Polynomials, 2nd ed., American Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1959.
- 7. E. B. VAN VLECK, On the polynomials of Stieltjes, Bull. Amer. Math. Soc., vol. 4 (1898), pp. 426-438.

UNIVERSITY OF WISCONSIN-MILWAUKEE. MILWAUKEE, WISCONSIN

528